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Abstract 
 
The effects of land uses on residential property values are crucial when evaluating costs and benefits of 

land projects for the purpose of public policy prescription or business decision making. It is widely 

recognized that a nuclear plant or a prison, for example, may often have an adverse effect on the property 

values of the nearby houses, while a park, a museum or a university usually has a beneficial effect. The 

effect of a land use defined as a function of distance between the locations of the land use factor and a 

particular house is, however, inherently nonlinear (in an unknown form) and the use of a simple linear 

regression method could lead to a misleading conclusion. 

 The purpose of this paper is to estimate the land use effect function by using the recently 

developed techniques of nonparametric regression method. There are three important features of our 

statistical model. First, it is a semiparametric model, which keeps a conventional linear form with respect to 

the dwelling attributes of the house just like in the popular hedonic model, but treats its location 

characteristics in a nonparametric fashion using the kernel method (Robinson 1988). Second, unlike the 

usual nonparametric regression, it keeps additive structure in the nonparametric component (Hastie and 

Tibshirani 1986, 1990), so that it retains much of the interpretative features of the linear models. Third, it 

uses the local linear smoother developed by Fan (1992, 1996), which is superior to other smoothers in 

terms of avoiding the boundary effect and other features. 

We estimate the effects of three land use factors: (1) golf courses, (2) a university, and (3) a 

nitrogen plant on the neighborhood home values in Lawrence, Kansas. The data on the sales price and other 

attributes of the house with 6,400 observations over the period from 1986 to 1995 are obtained from the 

Douglas County Appraisal Office and the data on distance to the three sites above are constructed using the 

Geographic Information System (GIS) 
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Nonparametric Assessment of the E®ects of Land Uses on House Values

1 Introduction

The e®ect of nearby land uses on residential property values has long been a popular topic

among a variety of agents such as city designers, property tax collectors, housing developers,

and possible house buyers as well as sellers. It is widely recognized that a nuclear plant or a

prison, for example, may have an adverse e®ect on the property value of the nearby houses,

while a park, a museum or a university usually has a bene¯cial e®ect. Assessment of such

e®ects is essential for designing public projects, evaluating property tax of nearby houses,

planning housing development and setting bid and ask prices of the houses in the market.

The impact of land uses on house prices often cannot be appropriately described by a

simple linear function of distance. For instance, the houses located close enough to overlook

a golf course entertain direct bene¯cial impact (wide open view, clean air, etc.) on their

property values. This direct impact is expected to decline rapidly and becomes zero at a

certain point, as distance gets large. This, however, is not the end of the story. The above

group of houses generates a `good neighborhood,' which in turn has a bene¯cial e®ect on

the houses located further away from the golf course. This secondary impact is expected to

decline much more slowly as distance grows.

Estimating such a nonlinear e®ect of a land use factor is complicated by the need to

control for many other factors including a variety of dwelling characteristics of the house

such as the size of the house and the number of the bedrooms, etc., as well as other land use

factors.

This paper introduces a partly linear and partly nonparametric regression procedure
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that treats its nonparametric part in additive manner and therefore provides a convenient

framework for analysis of this problem. A traditional approach to the house value assessment

in economics isbased on the hedonic price model (see e.g. Rosen, 1974), in which the value of a

house is viewed as a sum of the values of its dwelling attributes. What lacks in this approach is

the appropriate evaluation of the location characteristics of the house. The approach adopted

by this paper retains a linear structure of the hedonic price model with respect to the dwelling

characteristics of the house, while it models the location characteristics in nonparametric

but additive fashion. In this way the model preserves an important interpretation feature

of the linear model that would be lost with the usual nonparametric regression models. In

particular, the nature of the e®ect of a variable on the response surface does not depends

on the values of the other variables. Therefore, we can plot the function for each coordinate

separately to examine the roles of the variables in predicting the response.

There are several studies which attempted to quantify the e®ect of land uses empirically.

Nelson et al. (1992) estimate the e®ect of one Minnesota land¯ll on the values of 708 nearby

homes located within 2 miles of the land¯ll. Do and Grudnitski (1995) estimate the e®ect on

the values of 717 houses in San Diego when they are directly adjacent to golf courses. They

both found evidence of the presence of the land use e®ects (see also Waddell et al. 1993).

Their investigations, however, are restricted to the analysis based on conventional linear

regression with dummy variables, which allows them to capture only qualitative aspects of

the land use e®ect. Stock (1989, 1991), on the other hand, uses a semiparametric regression

to estimate the e®ect of removing hazardous waste on house prices. McMillen and Thorsnes

(1999) construct a house price index using a semiparametric regression (see also McMillen
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1996). Other applications of nonparametric or semiparametric estimation techniques to the

hedonic price model include Meese and Wallace (1991), Pace (1993, 1998), Goetzmann and

Spiegel (199?), and Anglin and Gencay (1996).

This paper identi¯es the e®ect of land uses on the value of a particular house as an

unrestricted function of distance to the land use factor, estimates this function by using

recently developed techniques of nonparametric regression, and assesses the e®ects in detail.

Speci¯cally, the goal of this paper is to make a nonparametric assessment of the e®ects of

three land use factors: (1) golf courses, (2) a university (a major employment and education

center of the city) and (3) a nitrogen plant (the main polluter), on the nearby home values

in Lawrence, Kansas.

The organization of the rest of the paper is as follows: In Section 2, the semiparametric

additive model is introduced and described for this application. Section 3 discusses the data,

Section 4 explains the estimation procedure and Section 5 gives the results. A brief conclusion

is given in Section 6.

2 The Semiparametric Additive Model

2.1 Semiparametric Model

To describe the semiparametric procedure, suppose that the i-th observation is given by a

(k + p +1) £ 1 vector (yi; x0i; z
0
i); i = 1; :::;n, which is generated by the model

yi = f(zi) + g(xi; ¯) +ui (1)
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where f(z) is an arbitrary function of z, while g(x; ¯) is a known parametric function of x

and a vector of unknown parameters ¯. The disturbance term ui is assumed to satisfy

E(uijxi;zi) = 0 (2)

and

E(uiuj jxi;xj;zi; zj) =

8
>>><
>>>:

¾2 if i = j

0 otherwise.

(3)

The most popular functional form of g(¢; ¢) is linear, i.e.

g(x;¯) = x0¯: (4)

In our application yi stands for the natural log of the sale price of the house, xi is a vector

of the dwelling characteristics of the house, and zi is a vector of the location characteristics

including distance to the land use factors. Rather than considering an arbitrarily chosen

parametric form, such as polynomials, for f(¢), we estimate it by a nonparametric function.

There are by now a variety of techniques available for applied researchers to estimate a

nonparametric regression model [see e.g. HÄardel (1990), Eubank (1988)]. These techniques

have much in common and may be referred to as `smoothers.' They are characterized in

essence by local averaging, that is, averaging the y-values of observations having predictor

values z close to a target value. Smoothers di®er mainly in their method of averaging. We

restrict our attention to linear smoothers, i.e. smoothers that are linear in y. Examples of

the linear smoothers include the Kernel, spline, and orthogonal series regression estimators

[see Eubank (1988) and HÄardel (1990) for a review of these smoothers].

Now let P denote the projection matrix X(X0X)¡1X0 and S be a linear smoothing opera-

tor, where X is an n£k matrix with its i-th row equal to x0i. For example, for the Nadaraya-
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Watson kernel regression estimator, the (i; j) element of S is given by Sij =
K(zi¡zj)P
j
K(zi¡zj) for

i; j = 1; :::n; where K(¢) is a kernel function, which generates the weights with a maximum

at zero and satis¯es certain moment conditions. Write equation (1) in matrix form

y = f + g +u (5)

where y; f ;g; and u are n£ 1 vectors with the i-th element equal to yi; f(zi); g(xi; ¯) and ui.

Assuming (2), (3), and (4), the estimators of f and g are given by

bf = S(y¡bg) = S(y ¡Xb̄ )

bg = P(y¡bf) = X(X0X)¡1X0(y¡bf) = Xb̄

Combining the above two equations, we obtain (Green, Jennison, and Seheult, 1985)

b̄ = [X0(I¡ S)X]¡1X0(I¡ S)y (6)

bf = S(y ¡Xb̄ ): (7)

Under some regularity conditions on the bandwidth parameter, b̄ and bf are consistent esti-

mators of ¯ and f =E(y ¡ X¯jZ), respectively. In particular, it is well known that the con-

vergence rate of b̄ as n ! 1 is the same as in the parametric case [see e.g. Robinson(1988)

for this property and its limit distribution; see Bierens (1987) for the limit distribution of

the kernel estimator).

2.2 Additive Model

We now make a further assumption that nonparametric part f in model (1) or (5) takes an

additive form, i.e.

f(zi) = ®+
pX

j=1

fj(zji) (8)
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where zji is the j-th components of vector zi. An underlying assumption here is that di®erent

land use factors do not have interactive e®ects on the house values. A simple test for the

validity of this assumption will be discussed in the later section.

There are three distinctive merits for the above speci¯cation [see Hastie and Tibshirani

(1989, 1990) for more detail]. First, it can avoid what is called the `curse of dimensionality'

problem that plagues standard non- or semi-parametric methods, i.e. far large sample size is

required to obtain a reasonable estimate of f with high dimensions of z. The additive model

speci¯cation converts a high dimension problem into that of a single dimension, thereby

getting around this problem.

Second, it provides a simple interpretation. Economists tend to ask ceteris paribus ques-

tions: What is the impact of zj (the j-th variable of z ) on the left hand variable if all other

variables are kept unchanged? The additive model gives an immediate answer to such ques-

tions. Because the impact of zj on y does not depend on all other zk's (k 6= j), we can plot

the p-coordinate functions separately to examine the roles of the variables in predicting y.

Third, it makes computation easy. With the help of the `back¯tting algorithm' devel-

oped by Friedman and Stuetzle (1981), estimation of the additive model becomes especially

attractive.

We refer to the model consisting of (5) and (8) as the \Semi-parametric Additive Model",

which is a version of the \Generalized Additive Model" introduced originally by Hastie and

Tibshirani (1986). Under this speci¯cation the property value of a house is explained by

a linear combination of conventional dwelling characteristics plus a sum of the unrestricted

functions of distance to each factor.
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2.3 Smoother

Among linear smoothers most popular are probably kernel smoothers and spline smoothers.

We adopt a special type of kernel smoother in our application. The reason for choosing it is

simply the availability of relatively more complete theoretical results than other smoothers.

In fact, many linear smoothers can be expressed as kernel smoothers.

It is sometimes useful to view kernel smoothers as local polynomial ¯ts. Consider a small

neighborhood N (z) of z and let zi 2 N (z) for i = 1; :::; n. Then, assuming the existence of

the q-th derivative of f(z), we have a Taylor series approximation

f (zi) ¼ b0+ b1(zi ¡ z)+ ¢ ¢ ¢ + bq (zi ¡ z)q ;

where bj = @jf(z)=@zj for j = 1; ¢ ¢ ¢ ; q. The problem of estimating f(z) is therefore equiva-

lent to that of estimating b0 in a local polynomial regression that minimizes

nX

i=1

[yi ¡ b0¡ b1(zi ¡ z) ¡¢ ¢ ¢ ¡ bq (zi ¡ z)q]2K

µ
zi ¡ z

¸

¶
;

where K(¢) stands for a kernel function and ¸ is the bandwidth parameter. When q = 0; the

solution bf(z) is known as the Nadaraya-Watson (NW) estimator:

bfNW(z) =
nX

i=1

K

µ
zi ¡ z

¸

¶
yi=

nX

i=1

K

µ
zi ¡ z

¸

¶
;

which is probably the most popular kernel regression estimator. It, however, often su®ers a

large bias. When q = 1, the estimator bf(z) is referred to as the local linear (LL) estimator

[Fan (1992), Fan and Gijbels (1996)] and is given by

bfLL(z) =
nX

i=1

[bs2(z) ¡ bs1(z) (zi ¡ z)] K

µ
zi ¡ z

¸

¶
yi=

nX

i=1

[bs2(z)¡ bs1(z) (zi¡ z)]K

µ
zi ¡ z

¸

¶
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where bsk(z) =
Pn
i=1 (zi¡ z)kK

¡ zi¡z
¸

¢
for k = 1; 2: The LL estimator simply provides a

higher order approximation than the NW estimator. There are two advantages of using

this estimator. First, it has high asymptotic e±ciency among all possible linear smoothers

[Fan(1992)]. Second, it does not require any modi¯cations at boundary points, where the

usual kernel estimator su®ers a large bias. Its disadvantage is its computational cost (n2

iterations are required, compared to n iterations in NW case).

3 Data

Our data are on the residential houses in Lawrence, Kansas (see Figure 1 for a map and

Appendix A for a brief description).

FIGURE 1 ABOUT HERE

Table 1 summarizes our data on dwelling attributes (`x-variables') and location characteristics

(`z-variables'), which are two fundamental determinants of house price (`y-variable').

TABLE 1 ABOUT HERE

Dwelling attributes are a set of variables that describe the characteristics of a house. Age of a

house, total square footage, and number of rooms are typical examples of dwelling attributes.

Location characteristics measure the characteristics of a real estate site, such as proximity to

various land uses or facilities. Four location characteristics: golf course, university, nitrogen

plant, and site elevation were evaluated. All three golf courses in Lawrence are located in

western part of the city. Houses around the golf courses are usually priced higher than the
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city average. The university, located at the center of the city, is the primary employment

center; students and university employees accounted for approximately one third of the city

population. The nitrogen plant, at the east edge of the city, is the major industrial establish-

ment and is perceived as a pollution source. Land elevation is an indicator of °ood potential.

Part of the residents can be victimized by rainstorms in a normal year, let alone the °ood of

1993. This last location variable was apparently not explicitly evaluated in previous research.

House sale data were obtained from Douglas County Appraisal O±ce and site investiga-

tions. The data include the dwelling attributes and sale values of each residential transaction

in Douglas County from January 1986 to May 1995. Douglas County TIGER (composed

in 1990) ¯le was used as the basic coverage. Lawrence was clipped out as the study area.

Address matching was accomplished in PC Arc/Info to identify the house locations. Bound-

aries of golf courses, university and nitrogen plant were digitized. GIS 'overlay' and 'near'

were then used to determine the distance of each house to a land use boundary [see Arono®

(1989)]. Eventually, 6,415 residential sales were available for our analysis with a set of vari-

ables necessary for modeling. The dependent variable is the logarithm of the sales price

of each property at the date of sale. Independent variables, summarized in Table 1 in the

Appendix, include multiple measures of dwelling attributes and four location characteristics:

golf course, university, nitrogen plant, and elevation. Dwelling characteristics include the log

of the living area, log of the lot area, log of the ¯nished living area, the age of the house

in order to estimate an age depreciation e®ect, and dummy variables for the number of full

and half baths, the number of bedrooms, the story height, the presence and type of ¯replace,

heating and cooling. The main city is on the south side of Kansas River; a dummy variable
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for whether a house falls in this side of the river is included to measure an expected positive

transportation convenience.

Three important variables, crime rate, school quality, and jurisdictional tax rates, are

not included. The omissions are mainly due to the consideration that Lawrence is relatively

homogeneous in these factors. We expect that the absence of these Tiebout variables would

not diminish our results.

One limitation of our data is that the distances to the land use factors were recorded

only for the houses located within the preselected maximum distance from the factors: 1,000

meters for the golf courses, 4,000 meters for the university, and 8,000 meters for the nitrogen

plant, respectively (those are 43.4%, 99.8%, and 79.1% of the total observations). Those

numbers were selected because, on the basis of the preliminary examination of a small subset

of the data, the price e®ect of a land use factor appears to be negligible for those located

beyond that distance. For each of such observations, a random distance larger than the

maximum was assigned; namely, a randomly generated number between 1,000 and 6,000 for

the golf courses, 4,000 and 5,000 for the university, and 8,000 and 9,000 for the nitrogen plant,

respectively. [In fact, the impacts of the factors were empirically found dying out within the

distance of 50{60% of the above maximum to the factors: about 600 meters, 2 kilometers,

and 5 kilometers for the golf courses, the university, and the nitrogen plant, respectively (see

Figure 3 A{C).]
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4 Estimation and Computation

The model we shall estimate is given by

yit = ®t +x0it¯ +
pX

j=1

fj(zjit) +uit (9)

for i = 1; : : : ; n; and t = 1; : : : ; T, where yit is the value of the house, xit is a vector of the

dwelling characteristics of the house (such as the size of the house, the number of bedrooms

and etc.), zjit is the j-th location characteristics including distance to the land use factors,

and uit is an unknown disturbance term.

The parametric part x
0
it¯ corresponds to the conventional hedonic price model, while

P
fj(zjit) represents the nonparametric part. The individual function fj(¢) is not restricted

to any functional form except that it is smooth, but the whole nonparametric part is restricted

to be additive. A most popular computational approach (among economists) to such a model

appears to be a two-step estimation procedure (e.g. Robinson 1988). In this procedure, the

¯rst step consists of the usual nonparametric regressions of y on z, and x on z, respectively,

and the second step is the ordinary least squares (OLS) regression of the residuals of the

former regression on those of the latter to obtain the `semiparametric estimate' of b̄ of ¯.

To obtain the estimate of f , we run the nonparametric regression of y ¡ xb̄ on z.

The actual computation goes as follows: After estimating E(yijzi) and E(xijzi) with any

usual nonparametric regression techniques, we calculate the `residuals' eyi ´ yi¡ bE(yijzi) and

exi ´ xi ¡ bE(xijzi). The estimator b̄ in (6) may be obtained by regressing eyi on exi with the

ordinary least squares. Our goal is then to estimate bf ´ bE(eijzi) with constraint (8), where

ei ´ yi¡ x0i b̄. To this end, we follow the steps below:
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1. We ¯rst approximate each fj by a step function and use it as a starting value for the

iteration.

(a) Let cjh denote the appropriately chosen equally spaced points in the support of

zj for h = 1; :::;Hj and j = 1; :::; p with cj0 = 0. De¯ne the location dummy

djh = 1(zj 2 (cj;h¡1; cjh]), which takes the value unity when zj falls into the h-th

interval.

(b) Regress ei linearly on djhi's with constant and obtain the ¯tted value of ei given

by bei = bµ0 +
Pp
j=1

PHj

h=1
bµjhdjhi. Write the ¯tted regression in the ¯rst step as

yi = b® + x0i
ē+

P
j d

0
ji

eµj + bui ´ b® + x0i
ē+e0i , where dji is a Hj £ 1 vector of j-th

location dummies and b®, ē and eµj are OLS estimates.

2. We now apply the iterative procedure known as the back¯tting algorithm, which is

explained brie°y as follows

(a) Set the initial values s0j (¢) =
PHj

h=1
eµjhdjh for j = 1; :::; p. This is the step for m = 0.

(b) The m-th iteration is described as follows: Starting with j = 1, set

rmji = yi¡ b®+ x0i b̄
m
j¡1 ¡

j¡1X

l=1

sml (zli) ¡
pX

l=j+1

sm¡1l (zli)

where b̄0
j = ē for j = 1; : : : ; p, and estimate

smj (zji) = bE(rjijzji)

with some nonparametric regression techniques.

(c) Compute b̄m
j =

�
nP
i=1

xix
0
i

¸¡1 nP
i=1

xi
h
yi ¡

Pj
l=1 s

m
l (zli) ¡ Pp

l=j+1 sm¡1l (zli)
i
:

(d) Repeat this step from j = 1 to p, and repeat the entire p-steps until ESS ´
Pn
i=1[yi ¡ s0 ¡Pp

j=1 smj (zji)]
2 fails to decrease.
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Clearly the error sum of squares (ESS) does not increase at any step of the algorithm and

therefore converges. Breiman and Friedman (1985) show that
Pp
j=1 s

1
j (zji) is unique and

provides the best additive approximation to the nonparametric part or f = E(yi¡x0i¯jzi) in

our model. This does not mean, however, that the individual functions fj (¢)'s are uniquely

estimated. Buja et al. (1989) show that if the smoothers Sj are symmetric with eigenvalues in

[0; 1) such as the cubic spline smoother, the normal equations corresponding to the algorithm

are consistent for every y.

The essential idea of this algorithm is to reduce computation of multiple regression to that

of successive simple regressions. We use a local linear estimator described in subsection 2.3

with the Epanechnikov kernel1 given by K(u) = 0:75(1¡u2)I(juj � 1). The cross-validation

functions (see the Appendix B) are computed to guide the selection of the bandwidth. The

SAS code for all procedures used in this paper is available at

http://falcon.cc.ukans.edu/~econ/workpaper/wp99.htm.

5 Empirical Results

We ¯rst show the result of the parametric linear model and then report nonparametric

estimation results.

5.1 Parametric Estimates

The left columns of Table 2 reports the estimates based on the linear regression with dummy

variables for equally spaced intervals of zj 's.

TABLE 2 ABOUT HERE
1 The Epanechnikov kernel is frequently used because of certain optimality properties, such as minimizing
mean integrated squared error.
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The results suggests that the most important three dwelling attributes of the house (in

terms of statistical signi¯cance) are the size of the total living area (LVG AREA), the size

of the land (LAND), and the age of the house (AGE). The age has a nonlinear e®ect on the

house value, which declines at a decreasing rate as the house gets older. Other important

characteristics are the number of full bathrooms (FL BATH), whether the basement is at

least half-¯nished (BASEMT), whether it has central heating system (HEAT) and or air

conditioner (HEAT AIR), and the number of openings of brick ¯replaces (BRICK). The

number of bedrooms (BED RMS) is totally insigni¯cant, and the number of family rooms

(FAM RMS) has a negative e®ect. These results might sound odd but it is not unreasonable

that when LVG AREA variable is included in the regressors, BED RMS variable does not

have any additional explanatory power. Also, given LVG AREA, an increase in FAM RMS

could lower the house value, because many family rooms often imply that the house is for

rent to multifamily tenants, in particular to a group of students, and usually such a house

is likely to be of low quality. The coe±cients of the year dummies measure the time e®ect

of each year from 1986 to 1994 with 1995 as the base year. The estimates show the upward

movement from 1986 to 1988, followed by the downward movement from 1989 to 1991, which

is followed again by the upward movement from 1992 to 1995. This trend roughly coincides

with the local business cycle of the real estate market in the Midwest during the period. In

any case, most of the results above are quite standard in empirical studies of the hedonic

price of a house.
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5.2 Semiparametric Estimates

5.2.1 Bandwidth Selection

We now estimate equation (9) according to the procedure outlined in section 4. The ¯rst

important step is the choice of the bandwidth, ¸, which determines how much to smooth.

There is a well-known trade-o® in kernel estimation between the bias and variance of the

estimate: Theuse of a small ¸ reduces the bias but generates a large variance, while choosing a

large value of ¸ will reduce the variance at the expense of introducing bias into the estimation.

Although there are many approaches to this problem [see, for example, Eubank (1988), HÄardel

(1990) and Silverman (1986)], we use the cross validation procedure, which is described in

the Appendix B. The idea of this procedure is to compute the squared prediction errors

for each selected value of ¸ by sample reuse techniques. We compute the cross-validation

function separately for four location characteristics: (i) distance to the nearest golf course

(z1), (ii) distance to the university (z2), (iii) distance to the nitrogen plant (z3), and (iv) land

elevation (z4), for a range of values of each ¸j and plot them in Figure 2(A)-(D).

FIGURE 2 ABOUT HERE

These ¯gures provide data driven criteria for bandwidth selection. In addition to this au-

tomatic criteria, we also have our own subjective criteria. Although we do not have prior

information about the exact shape of each regression curve, our natural expectation is sum-

marized as follows: (i) All curves are reasonably smooth, (ii) f1(z1) and f2(z2) are monotone

decreasing functions of z1and z2, respectively, (iii) f3(z3) is a monotone increasing function

of z3, (iv) f4(z4) is expected to be strictly increasing at least up to some point and then
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possibly may go down.

Each bandwidth is then selected by combining the automatic criteria with our subjective

criteria. More speci¯cally, starting from the bottom point of each cross-validation curve

in Figure 2, we search for the value of ¸j ( j = 1; ¢ ¢ ¢4) closest to the bottom value that

satis̄ es four subjective criteria described above. Each of the selected bandwidth for fj(zj) is

marked along the respective cross-validation curves in Figures 2(A)-(D). As we can see, the

bandwidths selected for all but the golf-course e®ect exceed that suggested by the mechanical

cross-validation procedure. These sizes of smoothing are needed for removing spurious noise

such as the e®ect of arterial streets.

The nonparametrically estimated e®ects of three land use factors and elevation on the

property value of the house are displayed in Figures 3(A) through (D).

FIGURE 3 ABOUT HERE

For comparison purpose, a polynomial function based on the cubic curve ¯t and a step

function estimated using dummy variables are superimposed in each ¯gure. The step function,

although not smooth, can capture rough shapes of the true curve. As we can observe in

Figures 3(A){(D), the kernel estimates smooth out the discontinuity of the step function

without losing important local features. The polynomial estimates, on the other hand, tend

to mask the local details of the curve in favor of the overall ¯t.

The vertical axis of each ¯gure measures the proportional change in house values. For

example, according to the kernel estimates, the house located 100 meters away from the

nearest golf course is expected to value 6 percentage point higher than the comparable house
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located 200 meters away ( bf1(100) ¡ bf1(200) = 0:06). The 95% pseudo con¯dence bands of

each kernel regression curve is shown in Figures 4(A)-(D).

FIGURE 4 ABOUT HERE

Strictly speaking, these bands are not exactly the con¯dence bands because the function

estimates bf(zj) are asymptotically biased.

5.3 Nonparametric Assessment

In the following we summarize the assessment of the e®ects of neighborhood land uses on the

residential house values on the basis of nonparametric regression curves.

5.3.1 Golf course e®ect and University e®ect

All four curves look very reasonable. The positive e®ects of the golf courses and the university

are quite sizable; the house directly adjacent to one of the golf courses values more than 20%

higher than the comparable house 600 meters or more away from it, while the house directly

adjacent to the university values more than 40% higher than the comparable house located

2,000 meters or more away from it. As the distance to the golf course or the university

gets large, such e®ects initially declines rapidly and then in a more moderate pace. The

parametric and nonparametric regression curves are quite close in both cases.

In the golf course case, about 22% price premium at 0 meter declines to 12% at 100

meters and to just 6% at 200 meters. This sharp decline stops around 200 meters, which is

followed by a more gradual decline. In particular, between 300 and 450 meters, the curve

has a plateau of 2.5% price premium. In the university case, the initial 42% price premium
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declines to 28% at 200 meters and to 15% at 400 meters. In this range the curve is close

to linear with a slope equal to minus 6.5% per 100 meters. Then the decline becomes much

gradual; 8% price premium at 500 meters and 3% at 1,000 meters|the slope in this range

is minus 1% per 100 meters.

The main source of the price e®ect of the golf course appears to be the direct and physical

bene¯ts that a house can entertain from the golf course, namely those such as big open space,

attractive view, and fresh air. The upper limit of the distance that allows such bene¯ts seems

to be about 200 meters. The small but positive price premium in the range of 300 to 450

meters, therefore, should have a di®erent source. It is commonly observed that the houses

located close to the golf courses tend to form a good neighborhood. The latter, in turn, has

a positive e®ect on the price of the houses located near but not so close to the golf courses.

The reason for this kind of `good neighborhood e®ect' to disappear around 500-600 meters

is most likely to be a wide street which cuts the otherwise continuous residential area and

prevents the e®ect to continue to spread.

The price premium for the houses near the university appears to have a di®erent source.

It is true that the direct physical bene¯ts similar to those described in the golf course case also

apply to the houses near the university. However, this explains only a fraction of total price

premium for the university. The major source of the price e®ect appears to be simply the

length of time required to travel to the university. The university is the center of activities

for 27,000 students as well as an employment center of many workers. A reason for the

university e®ect to disappear around 1,800 meters seems to be that the walking distance of

twenty minutes is likely to be the maximum for the usual person to choose to commute on
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foot.

5.3.2 Nitrogen-plant e®ect

The negative e®ect of the nitrogen plant, a pollution source of the city, is sizable as well

as wide spread. The house located 1,500 meters from the plant values 17% lower than

the comparable house located 6,000 meters or more from it. The negative price premium

decreases almost constantly by 2% per 500 meters from minus 11% at 2,000 meters to minus

4% at 4,000 meters and then the pace slows down. Although the thick smoke produced by

the plant is sometimes visible from the center of the city, its negative externality is not likely

to be entirely based on the measured pollution level.

5.3.3 Elevation e®ect

As seen in Figure 3(D), the discrepancy between parametric and semiparametric estimates is

largest for the elevation e®ect. The parametric estimates show a large variation of the e®ect;

the house at the lowest elevation values 16% lower than the house at the highest elevation,

whereas the semiparametric estimates suggest much smaller variation, just 6% di®erence. A

reason for this discrepancy appears to be that our subjective criteria make us to choose a

rather wide bandwidth, which °attens the curve.

5.4 Stability of the E®ects

So far we have implicitly assumed that the price e®ects of the four location characteristics

are time invariant. To check their stability, the model was estimated separately for 1986,

1990, and 1994 (the number of observations are 868, 595, and 655 for 1986, 1990, and 1994,

respectively). The results are displayed in Figures 5(A)-(D).
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FIGURE 5 ABOUT HERE

The most stable among the four characteristics is clearly the university e®ect, for which there

appears to be no structural change over time between 1986 and 1994. Interesting cases are

the e®ects of the golf course and nitrogen plant. The golf course e®ect looks relatively stable

over time in the range of distance between 200 and 600 meters, whereas there seems to be a

large negative shift in the e®ect on the houses within 200 meters from the golf course. The

house adjacent to a golf course values 24% higher in 1986 but only 16% higher in 1994. This

seems to re°ect a speci¯c situation on the supply side in that a new area next to one of the

golf courses had been rapidly developed for housing during 1990 and 1995. The e®ect of the

nitrogen plant exhibits a little di®erent pattern of change over time. There is an upward

shift in the estimated regression curve from 1984 to 1990, while the curve for 1994 is not

much di®erent from that for 1990. The negative e®ect of the nitrogen plant appears to have

decreased during this period. A possible explanation is that the plant became less pollutant.

5.5 Speci¯cation Tests and Prediction Performance

Two speci¯cation tests for checking the validity of the underlying assumptions of our Semi-

parametric Additive Model given by (9) are conducted.2 The ¯rst test examines the ad-

ditivity assumption (8), whereas the second one tests the semiparametric model against the

linear model.

A simple diagnostic test to check the additivity assumption, proposed by Hastie and

Tibshirani (1990), is to regress the residuals from the semiparametric regression (9) on the

2 Another potentially important misspeci¯cation is the omission of any major centers (land uses), which would
cause spatial autocorrelation of the errors. To test this possibility, a standard test (such as Moran I) for spatial
autocorrelation can be used. Such a test, however, is not conducted in this paper.
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interaction terms of estimated fj 's and examine the signi¯cance of each. More speci¯cally,

we run the regression

bui =
4X

j;k=1
j<k

°jk
bfji bfki + ei

where bui = yi¡ b®¡x0ib̄¡P bfji is the residual of semiparametric regression (9), bfji = bf(zji),

and °jk is the unknown parameter. If the coe±cient °jk were found to be signi¯cantly

di®erent from zero from conventional standard, we would suspect that location characteristics

zj and zk have enough interaction to prevent the additive speci¯cation (8). A preferred model

in such a case would be

f(zi) = ®+
X

h6=j;k
fh(zhi)+ fjk(zji; zki)

rather than (8), where fjk(¢) is an unknown function of zj and zk. The result of the regression

of the residuals on six interaction terms using 1993 data is reported in Table 3.

TABLE 3 ABOUT HERE

None of the terms is found signi¯cant at the 1 % level, providing support for the additivity

assumption (8).

Next, to test the linear speci¯cation (H0) against the semiparametric speci¯cation, we

conduct a simple Wu-Hausman test, which is described in Robinson (1988). The test is

based on the contrast between the OLS estimate ē and the semiparametric estimate b̄ . If

H0 is true, that is, the linear speci¯cation is correct, then ē is consistent and more e±cient

than b̄ , while b̄ is consistent whether or not H0 is true. Although our primary interest is
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in estimation of f rather than ¯, this test provides a simple and convenient way to examine

the validity of the semiparametric speci¯cation. Since b̄ is
p

n consistent, the test statistic

has the usual limit distribution and the test may be conducted in the manner same as in the

parametric case. The test statistic is given by

´ = ( b̄ ¡ ē )0
h
var( b̄ )¡ var( ē )

i¡1
( b̄ ¡ ē )

which, under H0, has Chi-Squared distribution with degrees of freedom equal to the dimension

of ¯. The right hand columns of Table 2 presents the semiparametric estimates of the

coe±cients of the dwelling attributes (x-variables). The Wu- Hausman statistic computed

from the 1993 data is 240.47. Since the 99 % quantile of the Chi-Squared distribution with

27 degrees of freedom is 46.96, the consistency of the OLS regression estimates is rejected,

providing support for our semiparametric model.

We may also compare the semiparametric regression with the OLS regression in terms of

prediction performance. For this purpose, we use 1993 observations (yj ; xj ; zj) to predict 1994

prices of houses, y¤i , given their dwelling attributes, x¤i , as well as location characteristics,

z¤i . The detailed prediction procedure is described in Appendix C. After obtaining by¤i 's,

the measures of prediction accuracy are computed for a subset of 1994 houses that are

located near either one of golf courses, the university, or the nitrogen plant (more speci¯cally,

z1 < 1;000, z2 < 4;000 and z3 < 8; 000). The total number of such houses is 158. The results

are reported in Table 4.

TABLE 4 ABOUT HERE
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As shown in the table, the prediction performance of the semiparametric regression is slightly

better than the OLS regression.

6 Conclusion

In this paper we estimated the e®ects of three land use factors and elevation on the residential

house values without assuming any parametric restrictions on the functional forms of the

distances. Our use of semi-parametric additive model with a local linear smoother enabled

us to reveal salient features of the price e®ect curves of the golf courses, the university, the

nitrogen plant, and the elevation, which are consistent with our natural expectations. Our

procedure can be applied to a broad range of similar studies.
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Appendix A

City of Lawrence

Lawrence is located in the northeast corner of the State of Kansas, about 40 miles west

of Kansas City and about 30 miles east of Topeka, the state capital. Lawrence is a university

town with the University of Kansas being the center of the city. The city has a population of

about 75,000 and the university has more than 27,000 students. Its geological size is about

5 to 6 miles in each direction (see also Figure 1).
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Appendix B

Cross-Validation

The problem of deciding how much to smooth is of great importance in nonparametric

regression. The choice of a bandwidth or smoothing parameter has frequently a more impor-

tant impact on the shape of the regression curve than the choice of a kernel has. To guide

our bandwidth selection, we compute the cross-validation function

CV (¸1; ¢ ¢ ¢ ;¸p) =
1

n

nX

i=1

2
4yi ¡ x0i b̄ (i)¡

pX

j=1

bf (i)¸j;j(zji)

3
5
2

for an appropriate range of values of j̧ , j = 1; ¢ ¢ ¢ ; p, where the estimate of the j-th function

is given by

bf (i)¸j;j(zji) =
nX

k6=i;k=1
K

Ã
zji ¡ zjk

j̧

!
rji=

nX

k 6=i;k=1
K

Ã
zji ¡ zjk

¸j

!
;

b̄
(i) =

h
X0
(i)X(i)

i¡1
X0
(i)y(i)¡

pX

j=1

bf (i)j (zj);

X(i) and y(i) stand for X and y with i-th rows are removed.

In practice, 1,164 observations were randomly chosen out of 6,415 total observations and

this subset was used for the cross-validation. The bandwidth selection depends on the sample

size and it must be rescaled for the whole data set.
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Appendix C

Prediction Procedure

Denote 1993 observations by (yi; x
0
i; z

0
i) for i = 1; : : : ;n, and 1994 observations by (y¤i ; x

¤0
i ;z¤0i )

for i = 1; : : : ; n¤. Let ri = yi ¡ b® ¡ x0i
b̄ where b® and b̄ are the semiparametric regression

estimates based on 1993 data. Now compute successively

bfk(z¤ji) =

nP
h=1

h
bsj2(z¤ji) ¡ bsj1(z¤ji)

³
zjh¡ z¤ji

´i
K

µ
(zjh¡z¤ji)

j̧

¶
rjh

nP
h=1

h
bsj2(z¤ji) ¡ bsj1(z¤ji)

³
zjh ¡ z¤ji

´i
K

µ
(zjh¡z¤ji)

j̧

¶

rjh = yh ¡ b® ¡x0h b̄ ¡
j¡1X

k=0

bfk(zkh)

from j = 1 to p, where bsjk(z) =
Pn
i=1 (zji¡ z)kK

³
zji¡z

j̧

´
for k = 1; 2, and bf0(zkh) ´ 0.

The predicted value of y¤i based on 1993 data is given by

by¤i = b®+ x¤0i b̄ +
pX

j=1

bfj(z¤ji)

and the root mean squared error is given by

RMSE =

"
(1=n¤)

n¤X

i=1

(by¤i ¡ y¤i )
2

#1=2
:
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Table 1: List of Variables 
 

   Type of   
   Variable 

  Variable Name Description M 
E 
A 
N 

S 
T  
D 

M 
I 
N 

M 
A 
X 

y-variable HOUSE_VALUE The sale price of the house in 1983 
dollars (log) 

10.88     0.46     8.2 1   12.59 

AGE The number of years after the house 
was built 

24.87    25.87    0    135 

AGE_SQ Square of AGE 1287.68       2437.39             0 18225 

REMODL A dummy variable for remodeling 
(1 if the house is remodeled) 

0.08     0.27             0 1 

AGERM The number of years after the house 
was remodeled 

0.75  3.98    0 61 

AGERM_SQ Square of AGERM 16.38   136.71 0 3721 

LVG_AREA The size of the total living area (log 
of square feet) 

7.33     0.39     5.95     8.70 

LAND The size of the primary site (log of 
square feet) 

9.10     0.47     6.74    12.21 

BED_RMS The number of bedrooms  3.08     0.74     1     7 

FAM_RMS The number of family rooms  0.36     0.49             0 2 

FL_BATH The number of full bathrooms (any 
three fixtures) 

1.67                0.66             0 4 

HLF_BATH The number of half bathrooms (any 
two fixtures) 

0.39     0.52             0 3 

HEIGHT A dummy variable for story height 
(1 if the story height is 20 feet or 
higher) 

0.15     0.35             0 1 

BASEMT A dummy variable for basement (1 
if the basement is either half- or 
full- finished) 

0.62     0.49             0 1 

HEAT A dummy variable for central 
heating (1 if the house is equipped 
with central heating) 

0.13     0.34             0 1 

HEAT_AIR A dummy variable for central 
heating and air conditioning ( 1 if 
the house is equipped with both) 

0.84     0.37             0 1 

BRICK The number of openings of brick 
fireplaces 

0.42    0.63             0 4 

METAL The number of openings of metal 
fireplaces 

0.25  0.45   0 3 

NORTH A dummy variable for north (1 if 
the house is in North Lawrence) 

0.04     0.20             0 1 

 
 
 
 
 
 
 
 
x-variables 

YEAR86-94 Dummy variables for each year 
1986 to 1994 

    

GOLF Distance from the house to the 
nearest golf course (meters) 

2176.69                1862.29     0.03       5997 

UNIV Distance from the house to the 
university (meters) 

2290.68   934.57 42 4991 

NITRO Distance from the house to the 
nitrogen plant (meters) 

5954.43       2125.33       1504 9000 

 
z-variables 
 

ELEV Elevation of the house site (meters) 277.01 19.78 247 322 

 
 



Table 2: Parameter Estimates of the Linear Model with  
Dummy Variables vs. the Semiparametric Model 

 
 

Parametric Regression Semiparametric Regression    Variable 
Estimate     Standard Error t-value Estimate   Standard Error t-value 

Constant  6.23735    0.09033   69.045    
AGE -0.00905    0.00041  -22.275 -0.00724       0.00039        -18.686   
AGE_SQ  0.00005    0.00000   15.090  0.00004      0.00000  12.026       
REMODL  0.07403    0.01292     5.729  0.07706       0.01275             6.043        
AGERM -0.00462    0.00183    -2.532 -0.00491       0.00181           -2.713        
AGERM_SQ  0.00007    0.00004     1.581  0.00008       0.00004              1.833        
LVG_AREA  0.44103    0.01206   36.573  0.42861       0.01183           36.233        
LAND  0.13607    0.00579   23.516  0.13502       0.00558           24.186        
BED_RMS -0.00263    0.00427    -0.062 -0.00083       0.00417            -0.199        
FAM_RMS -0.03812     0.00585    -6.513 -0.02079       0.00580            -3.581        
FL_BATH  0.07138    0.00590   12.104  0.06713       0.00580           11.576        
HLF_BATH  0.03666    0.00572     6.414  0.03337       0.00559              5.972        
HEIGHT  0.06824    0.00774     8.815  0.05844       0.00761              7.683        
BASEMT  0.09533    0.00591   16.127  0.08273       0.00571           14.498        
HEAT  0.21144    0.01513   13.978  0.22396       0.01492           15.015        
HEAT_AIR  0.28632    0.01524   18.784  0.31337       0.01504           20.830        
BRICK  0.06884    0.00533   12.915  0.07103       0.00520           13.668        
METAL  0.02519    0.00683     3.686  0.02006       0.00664              3.021        
NORTH -0.17328     0.01958    -8.849 -0.15891       0.01740           -9.134        
YEAR86 -0.11726    0.01503    -7.802 -0.09985       0.01490           -6.702        
YEAR87 -0.07820    0.01511    -5.173 -0.06265       0.01498           -4.182        
YEAR88 -0.05507    0.01512    -3.636 -0.04291       0.01498           -2.864        
YEAR89 -0.05519    0.01554    -3.552 -0.04808       0.01540           -3.123        
YEAR90 -0.07758    0.01552    -4.999 -0.07645       0.01536           -4.978        
YEAR91 -0.10881    0.01557    -6.986 -0.10392       0.01545           -6.726        
YEAR92 -0.11395    0.01529    -7.487 -0.10821       0.01508           -7.173        
YEAR93 -0.08632    0.01519    -5.681 -0.08050       0.01505           -5.347        
YEAR94 -0.04366    0.01526    -2.860 -0.03890       0.01512           -2.574        
 
 



Table 3: Regression of Residuals on Interaction Terms 
 

 
Variable Estimate Standard Error t-value 
FGFK -0.676729 1.98228160 -0.341 
FGFN 1.719703 3.95649979 0.435 
FGFE -11.854903 10.04750721 -1.180 
FKFN 1.870161 4.24298318 0.441 
FKKE 4.361601 10.84225800 0.402 
FNFE -4.346213 10.89307381 -0.399 

R2      0.0033 

 
 
Notes: 

1. The regression does not include an intercept term, and  R2  is computed in uncorrected form. 
2. FGFK stands for the interaction term between the golf-course effect and the university effect, 

i.e., 21
ˆˆ ffFGFK ⋅= . Similarly, 31

ˆˆ ffFGFN ⋅= , 41
ˆˆ ffFGFE ⋅= , 32

ˆˆ ffFKFN ⋅= , 

42
ˆˆ ffFKFE ⋅= , 43

ˆˆ ffFNFE ⋅= . 

3. To compute the above regression, 1993 year data are used. The sample size is  693 
 
 



 
Table 4: Prediction Performance of Parametric vs. Semiparametric Regressions 

 
 
Measures of Prediction Accuracy Parametric regression Semiparametric regression 
Root Mean Square Error 0.1959051 0.1904084 
Root Mean Square Percentage Error 0.0174042 0.0168488 
Theil’s U Statistic  0.0177319 0.0172344 
 
Notes:  
1. Both linear and semiparametric regressions were first run using 1993 data with 693 observations and 

then those estimates were used for predicting 1994 house sales prices.  To compute the measures of 
prediction accuracy, only 158 observation points of 1994 data that are located near the land use factors 
were utilized. 

2. Measures of prediction accuracy are defined as follows: 
(A) Root mean square error (RMSE) 

 ∑
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Figure 2: Cross-Validation Curves 
 

 
 
 

 
 
 



 
 

 



 
Figure 3: Nonparametric Estimates of the Effects of Location Characteristics 

 

 
 
 

 
 
 



 
 
 

 



 
Figure 4: Confidence Bands of Nonparametric Estimates 

 

 
 
 

 
 
 



 
 
 

 



Figure 5: Year Comparisons 
 

 
 
 
 
 
 

 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 


