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1 Introduction

Since the seminal work by Koenker and Bassett (1978), quantile regression, also called con-

ditional quantile or regression quantile or dynamic quantile, has become an increasingly popular

tool for risk analysis in many fields in economics such as labor economics, macroeconomics and

financial risk management. It is well known that quantile regression is concerned with esti-

mating a collection of conditional quantiles over the entire conditional distribution, instead of

investigating the conditional mean function of dependent variable. The reader is referred to the

∗Contact information: caiz@ku.edu (Z. Cai),liuxy@sem.tsinghua.edu.cn (X. Liu), sulj@sem.tsinghua.edu.cn
(L. Su).
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review papers by Koenker (2005) and Koenker, Chernozhukov, He and Peng (2017) for more

applications of quantile regression.

In the recent two decades, a great deal of attention has been paid to modeling the tail

dependence in the financial statistics/econometrics literature. Among the toolkits of quantile

methods, dynamic quantile models are naturally suitable for capturing tail dependence. For

example, White, Kim and Manganelli (2015) proposed an innovative method to directly estimate

the sensitivity of Value-at-Risk (VaR) of a given financial institution to shocks to the whole

financial system by constructing a vector autoregressive (VAR) model for dynamic quantiles,

while Härdle, Wang and Yu (2016) developed a model to describe the network relationship

among VaRs of financial institutions by a flexible nonparametric quantile model with L1-penalty.

Recently, Zhu, Wang, Wang and Härdle (2019) constructed a quantile autoregressive model that

embeds the observed dependency structure in a dynamic network.

A first important question arising in modeling dynamic quantiles is how to capture the

nonlinearities of tail dependence. To the best of our knowledge, much of the existing literature

assumed constant tail dependence in their models. However, numerous studies have documented

time-varying risk interdependence in financial time series and discussed their possible origins and

relation to risk spillover; see, for example, Billio, Getmansky, Lo and Pelizzon (2012), Diebold

and Yı̀lmaz (2014), Härdle et al. (2016), Yang and Zhou (2017), Liu, Ji and Fan (2017), Ando and

Bai (2020), and references therein. The driving force for the variations of risk interdependence

may be the institutional changes or the policy interventions, such as the changes of exchange

rate systems and the U.S. quantitative easing policy. A second crucial issue is how to model

the dependence among conditional quantiles of financial return distributions. Indeed, since the

VaR processes are witnessed to be significantly autocorrelated and interdependent with each

other by Engle and Manganelli (2004) and White et al. (2015), some important types of tail

dependence (e.g., the co-dependence between VaRs) can be excluded if a model does not allow

for interdependence among conditional quantiles.
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To deal with the aforementioned issues in a simultaneous way, we propose a nonparametric

approach involving multivariate dynamic quantile models with nonlinear structures. Different

from previous studies, we allow coefficients of the multivariate dynamic quantile models to vary

with a smoothing variable, which is chosen based on an economic theory or some data-driven

methods. In addition, the model allows the latent quantiles of several random variables to depend

on lagged quantiles and other lagged covariates, which forms a VAR model with unobserved

autoregressors. Thus, this model is termed as a functional-coefficient VAR model for dynamic

quantiles (FCVAR-DQ) and is presented in (1) later. Since coefficients of dynamic quantile

models play an important role in reflecting interdependences among dynamic quantiles, under

our model setup, one can easily illustrate the variation of tail dependence and its relation with

the variable which is of interest.

Our contributions to the literature can be summarized as follows. First, the model setting in

(1) is general enough to nest many well-known dynamic quantile models in the literature; see,

for example, the conditional autoregressive value at risk (CaViaR) model proposed by Engle and

Manganelli (2004) and further studied by Xiao and Koenker (2009), the threshold CaViaR model

in Gerlach, Chen and Chan (2011), and the static VAR for VaR model constructed by White et al.

(2015). Second, by allowing coefficients to vary with a smoothing variable, a FCVAR-DQ model

provides a new tool to estimate the relationship between the time-varying interdependence of risk

and the state variable of economy. Third, a new and simple-to-implement estimation procedure

is developed for estimating the proposed quantile model with highly nonlinear structure and

latent covariates. In addition, large sample theories for the proposed estimator are established

to construct confidence intervals for functional coefficients in the empirical study. Finally, our

empirical analysis provides a strong evidence to show that interdependences among VaRs of

four world major financial indices’ return series vary significantly with the change of U.S. dollar

index. This empirical finding is new to the literature and cannot be revealed from using a

standard constant-coefficient model
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With coefficients being functionals and autoregressors being latent conditional quantiles, the

proposed FCVAR-DQ model is highly nonlinear and conventional techniques of nonlinear quan-

tile regression are not directly applicable. Indeed, as pointed out by Xiao and Koenker (2009), es-

timation of specific class of fixed-coefficient CaViaR models involves fitting a restricted nonlinear

quantile regression, which is complicated both computationally and theoretically. The estimation

of FCVAR-DQ model makes this problem become more challenging, since the FCVAR-DQ model

nests the fixed-coefficient CaViaR model as a special case and all coefficients in our model are

allowed to vary with a smoothing variable. To overcome these difficulties, we develop a nonpara-

metric three-stage procedure to estimate functional coefficients in the FCVAR-DQ model. In the

first and second steps, latent conditional quantiles are approximated via a set of tensor-product

B-spline basis functions, and LASSO (least absolute shrinkage and selection operator)-based

approaches are applied for dimension reduction and variable selection. In the third stage, we

perform locally weighted estimation for functional coefficients using the estimated conditional

quantiles as autoregressors.

The rest of this paper is organized as follows. In Section 2, the model setup and the three-

stage estimation procedure are presented for the FCVAR-DQ model. In addition, large sample

theories for the proposed estimator are investigated in this section too, together with construct-

ing a consistent estimator of the asymptotic covariance matrix and corresponding confidence

interval. A Monte Carlo simulation study is conducted in Section 3 to illustrate the finite sam-

ple performance of the proposed estimation procedure. In Section 4, our proposed model and

its modeling procedure are applied to constructing a novel class of nonparametric financial net-

works based on the real example. Finally, a conclusion remark is given in Section 5, and the

descriptions of some important notations, assumptions, and mathematical proofs are gathered

in Appendix.
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2 FCVAR Model for Dynamic Quantiles

2.1 Model Setup

Let Yit (1 ≤ i ≤ κ, 1 ≤ t ≤ n), a scalar dependent variable, be the ith observation at time t

for fixed κ, Ft−1 represent the information set up to time t− 1 for all individuals 1 ≤ i ≤ κ, and

qτ,t,i be the τth conditional quantile of Yit given Ft−1. Then, we study the following functional-

coefficient VAR model for dynamic quantiles, termed as FCVAR-DQ model, given by,

qτ,t,i = γi0,τ (Zit) +

q󰁛

s=1

γ⊤
i,s,τ (Zit)qτ,t−s +

p󰁛

l=1

β⊤
i,l,τ (Zit)Yt−l (1)

for some p and q, where qτ,t = (qτ,t,1, . . . , qτ,t,κ)
⊤ is a κ×1 vector of conditional quantiles at time

t, and Yt is a κ1 × 1 vector of covariates with fixed κ1, including possibly some or all of {Yit}κi=1

and/or some exogenous information {xit}. In addition, γi0,τ (·) is a scalar function and is allowed

to depend on τ , both γi,s,τ (·) = (γsi1,τ (·), . . . , γsiκ,τ (·))⊤ and βi,l,τ (·) = (βli1,τ (·), . . . , βliκ1,τ (·))⊤

are κ × 1 and κ1 × 1 vectors of functional coefficients, respectively, and they are allowed to

depend on τ too. Here, Zit is an observable scalar smoothing variable, which might be one

part of Yt−l and/or other exogenous variables {xit} or their lagged variables. Of course, Zit

can be an economic index to characterize economic activities. Also, note that Zit can be set

as a multivariate variable. In such a case, the estimation procedures and the related theory for

the univariate case still hold for multivariate case, but more complicated notations are involved

and models with Zit in very high dimension are often not practically useful due to the “curse

of dimensionality”. In addition, note that both κ and κ1 in model (1) are assumed to be fixed,

which might be relatively strong settings.1 It is also noted that similar to the setting of the multi-

quantile CaViaR model as in White, Kim and Manganelli (2008), one may further generalize

1Indeed, in our empirical study, it is sufficient to consider VAR model with finite dimensions in the sense that
we are interested in measuring tail dependence among four major financial market indices. If both κ and κ1 (or
one of them) are allowed to diverge (a function of sample size and going to infinity when sample size goes to
infinity), then, model (1) becomes to a high-dimensional VAR model, which involves completely new theories and
is out of the scope of this paper.
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model (1) by allowing τ in qτ,t,i to vary across different equations, only with mild changes on

asymptotic theory in this paper. Thus, in order to meet our empirical motivation, all of τ ′s in

model (1) are the same throughout this article.

Importantly, in the case of estimating dynamic financial network in empirical studies, by

following White et al. (2015), we consider only the tail dependence between current state and

the state of one-period lagged, and take Yt to be Yt = (|Y1t|, . . . , |Yκt|)⊤ with | · | representing

absolute value.2 Furthermore, the smoothing variable Zit varies only across different time periods

but keeps constant over individual units. Therefore, in this paper, for easy exposition, our focus

is on the simple case that q = p = 1, κ = κ1, Yt = (|Y1t|, . . . , |Yκt|)⊤, and Zit = Zt for all

1 ≤ i ≤ κ. Then, model (1) can be rewritten as

qτ,t,i = g⊤
i,τ (Zt)X t, (2)

where gi,τ (·) = (γi0,τ (·), γi1,τ (·), . . . , γiκ,τ (·), βi1,τ (·), . . . , βiκ,τ (·))⊤ is a (2κ+1)× 1 vector of func-

tional coefficients andX t = (1, qτ,t−1,1, . . . , qτ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)⊤. As discussed in Engle

and Manganelli (2004), taking absolute value on lagged Yit allows for illustrating the case when

both very positive and negative returns increase the VaR in the future.

It is worthwhile to note that if qτ,t,i in model (2) is defined as VaR of return Yit, then,

{γij,τ (Zt)}κi=1,j=1 in model (2) becomes to the dependence of VaR for one portfolio at time t on

that of another at time t − 1. With these functional coefficients {γij,τ (Zt)}κi=1,j=1, define the

following κ× κ matrix

Γ1,τ (Zt) = (γij,τ (Zt))κ×κ , (3)

which can be used to characterize the cross-sectional dependence among conditional quantiles

{qτ,t,j}κi=1 at time t.3 Then, (2) can be expressed as a matrix form, which is a FCVAR model for

2Of course, Yt can be any covariates.
3It is well known that it is not easy to characterize the cross-sectional dependence among individual conditional

quantiles {qτ,t,j}κj=1 at time t for given τ . Therefore, Γ1,τ (Zt) defined in (3) can be used as one of measures to
capture the dependence.
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qτ,t with exogenous variables,

qτ,t = γ0,τ (Zt) + Γ1,τ (Zt) qτ,t−1 + Γβ,1,τ (Zt)Yt−1, (4)

where γ0,τ (Zt) and Γβ,1,τ (Zt) are defined obviously. Therefore, Γ1,τ (Zt) in (4) can serve as a

dynamic network system changing with both τ and some information variable Zt, and it is

in a nonparametric nature, so that it is a nonparametric dynamic network. Note that the

general setting in the dynamic network system (4) covers some famous network models for

characterizing financial risk system, including the one formed by VAR for VaR model in White

et al. (2015), which assumes the tail dependence {γij,τ (Zt)}κi=1,j=1 to be constant and the static

financial network in Adrian and Brunnermeier (2016) and Härdle et al. (2016) as special cases.

To investigate the large sample behavior of the proposed estimator (see Theorem 3 later), it

is assumed throughout this article that the process {(Yit, Zt)} in model (2) is strictly stationary

and α-mixing (strongly mixing).4 Indeed, in Appendix D, we show that under some regularity

conditions, the joint process {(Yit, xit, Zt, qτ,t,i)} generated by model (1) is strictly stationary and

α-mixing. By letting p = q = 1, these sufficient conditions for the process {(Yit, xit, Zt, qτ,t,i)}

in model (1) can be directly applied for verifying the aforementioned probabilistic properties of

{(Yit, Zt)} in model (2). The derivation of these two properties in this paper is of independent

interest, since our main interests in this article are to derive the asymptotic theory for model

(2) and estimate a new class of dynamic financial networks. Therefore, we provide some suffi-

cient conditions that imply these important probabilistic properties and corresponding rigorously

theoretical justifications in Appendix D.

Before introducing our estimation procedure in Section 2.2, it should be noted that model

(2) can be transformed into a functional-coefficient quantile function, which can serve as an

approximation for latent qτ,t,i in (2) in the preliminary step of our estimation. To see this, we

first focus our attention on (4), which is a vector form of (2). Under Assumptions A1 and A7

4If some regressors or some of {qτ,t,i} are nonstationary, say, unit root or local to unit root, the model in (1)
and its asymptotic theory become very complicated and it needs definitely a further investigation, warranted as
a future research; see, for example, the paper by Cheng, Han and Inoue (2022) for details.
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given in Appendix A, by recursively substituting in (4), one has

qτ,t = Γ0,τ,t +
∞󰁛

l=1

Γl,τ (Zt,l)Yt−l, (5)

where Γ0,τ,t =
󰁓∞

l=1 Γl0,τ (Zt,l) and Zt,l = (Zt, Zt−1, . . . , Zt−l+1)
⊤ is a vector of lagged smoothing

variables. Here, Γ10,τ (Zt,1) = γ0,τ (Zt) and Γl0,τ (Zt,l) =
󰁔l−2

ℓ=0 Γ1,τ (Zt−ℓ)γ0,τ (Zt−l+1) for l ≥

2; Γ1,τ (Zt,1) = Γβ,1,τ (Zt) and Γl,τ (Zt,l) =
󰁔l−2

ℓ=0 Γ1,τ (Zt−ℓ)Γβ,1,τ (Zt−l+1) for l ≥ 2. Now, let

αli0,τ (Zt,l) = γ⊤
i,1,τ (Zt)

󰀃󰁔l−2
ℓ=1 Γ1,τ (Zt−ℓ)γ0,τ (Zt−l+1)

󰀄
for l ≥ 3, α2i0,τ (Zt,2) = γ⊤

i,1,τ (Zt)γ0,τ (Zt−1),

and α1i0,τ (Zt,1) = γi0,τ (Zt); let αlij,τ (Zt,l) = γ⊤
i,1,τ (Zt)

󰀃󰁔l−2
ℓ=1 Γ1,τ (Zt−ℓ)Γβ,1j,τ (Zt−l+1)

󰀄
for l ≥ 3,

α2ij,τ (Zt,2) = γ⊤
i,1,τ (Zt)Γβ,1j,τ (Zt−1) and α1ij,τ (Zt,1) = βij,τ (Zt). Here, γi0,τ (·) and βij,τ (·) are

defined in (2), γ⊤
i,1,τ (·) is the ith row of Γ1,τ (·), Γβ,1j,τ (·) is the jth column of Γβ,1,τ (·). Then,

αli0,τ (·) and α⊤
li,τ (·) = (αli1,τ (·), . . . ,αliκ,τ (·)) are the ith row of Γl0,τ (·) and Γl,τ (·), respectively.

Thus, the ith row of (5) is written as

qτ,t,i =
∞󰁛

l=1

αli0,τ (Zt,l) +
∞󰁛

l=1

α⊤
li,τ (Zt,l)Yt−l. (6)

As discussed in Section 2.2, in the first stage of our estimation procedure, a truncated version of

(6) is used to approximate latent qτ,t,i and is modeled globally by a tensor product of normalized

B-spline basis functions. To handle the issue of high-dimensionality, a two-stage LASSO approach

is introduced for dimension reduction and variable selection.

Note that equation (6) corresponds to a functional-coefficient quantile autoregressive (AR)(∞)

process, which can be used as an underlying data generating process for Yit in model (1). In-

deed, denote Uit (1 ≤ i ≤ κ, 1 ≤ t ≤ n) as independent and identically distributed (iid) standard

uniform random variables on the set of [0, 1]. Then, following the same argument as in Koenker

and Xiao (2006), by assuming that the right side of (6) is monotonically increasing in τ , model

(6) corresponds to a functional-coefficient quantile AR(∞) process as follows

Yit =
∞󰁛

l=1

αli0(Uit,Zt,l) +
∞󰁛

l=1

α⊤
li (Uit,Zt,l)Yt−l (7)

where αli0(·, ·) is a scalar and measurable function of Uit and Zt,l (from R×Rl to R) and αli(·, ·)
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is a vector of measurable functions from R × Rl to R. Since our objectives in this paper are

estimation of model (2) and modeling time-varying tail dependence among dynamic quantiles,

we only present identification assumptions for (2) and (4) in Appendix A, instead of focusing on

model (7) with more complex coefficients. Therefore, further investigating the properties of (7),

omitted in this paper, is left as a future study. Next, we make some remarks on our model in

(1).

Remark 1. (Special Cases) The proposed FCVAR-DQ model (1) is related to the papers by

Engle and Manganelli (2004) and Xiao and Koenker (2009), which discuss the relation between

modeling dynamic structures of conditional quantiles and conditional volatility of returns. Indeed,

if κ = κ1 in (1), Yit in (1) takes a simple form as Yit = σit eit, where σ2
it is the conditional

variance of Yit and eit is an iid sequence of random variables with mean zero and unit variance,

then, qτ,t,i = σitF
−1
e (τ), where Fe(·) is the distribution function of eit. Furthermore, if Yit = σit eit

is generated from a functional coefficient multivariate GARCH (p, q)-type process for κ (κ ≥ 1)

returns extended from the setting in Taylor (1986) as follows

σit = γi0(Zt) +

q󰁛

s=1

γ⊤
i,s(Zt)Σt−s +

p󰁛

l=1

β⊤
i,l(Zt)Yt−l,

where Σt = (σit, . . . , σκt)
⊤ and Yt = (|Y1t|, . . . , |Yκt|)⊤, then, model (1) reduces to following

dynamic quantile model:

qτ,t,i = γi0,τ (Zt) +

q󰁛

s=1

γ⊤
i,s(Zt)qτ,t−s +

p󰁛

l=1

β⊤
i,l,τ (Zt)Yt−l, (8)

where γi0,τ (·) = γi0(·)F−1
e (τ), γi,s(·) = (γsi1(·), . . . , γsiκ(·))⊤ and βi,l,τ (·) = (βli1,τ (·), . . . , βliκ,τ (·))⊤

with βlij,τ (·) = βlij(·)F−1
e (τ). Note that if γ′s and β′s in (8) are constant, model (8) reduces to

those in Engle and Manganelli (2004) and Xiao and Koenker (2009), respectively. For details,

the reader is referred to the aforementioned papers. Finally, note that if qτ,t would be observable

and all coefficients are threshold functions, model (1) covers the model in Tsay (1998).

Remark 2. (Monotonicity). The issue of monotonicity is frequently discussed for the quantile

autoregression model. A specific case for the monotonicity of (1) to hold is that {γi,s,τ (Zt)}κ,qi=1,s=1
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and {βi,l,τ (Zt)}κ,pi=1,l=1 are all monotone increasing functions with respect to τ , and Yt is a positive

random vector. In other cases, the assumption of monotonicity can be satisfied by conducting

certain data transformation techniques; see Koenker and Xiao (2006) and Fan and Fan (2006)

for detailed discussions.

Remark 3. Let κ = κ1 and Zit = Zt. Then, the matrix form of model (1) is given by qτ,t =

γ0,τ (Zt) +
󰁓q

s=1 Γs,τ (Zt) qτ,t−s +
󰁓p

l=1 Γβ,l,τ (Zt)Yt−l, where Γs,τ (Zt) and Γβ,l,τ (Zt) are defined

obviously. Note that for 1 ≤ t ≤ n, 1 ≤ s ≤ q and 1 ≤ l ≤ p, if all eigenvalues of Γs,τ (Zt) and

Γβ,l,τ (Zt) have modulus less than 1, then, the matrix form of model (1) corresponds to a recursive

form similar to equation (5). Thus, under this additional assumption, the proposed estimation

procedure and theories for model (2) are extendable to model (1), with more complicated notations

being involved.

2.2 Three-stage Estimation Procedure

In this paper, we only focus on estimating functional coefficients gi,τ (·) in (2) for simplicity,

rather than jointly forecasting qτ,t,i or doing impulse response analysis. So, it is sufficient to

estimate gi,τ (·) in an equation-by-equation way for different i. Thus, by abuse of notation, i is

dropped in what follows.

By Assumption A1 in Appendix A, αl0,τ (·) and each entry of αl,τ (·) = (αl1,τ (·), . . . ,αlκ,τ (·))⊤

defined in (6) decrease at a geometric rate; that is, there exist positive constants ρ < 1 and

c, such that max
1≤t≤n

|αlj,τ (Zt,l)| ≤ cρl for j = 0, . . . ,κ. Since αlj,τ (·) decreases geometrically, by

choosing truncation parameter mn = m(n) = m, (6) becomes to

qτ,t =
mn󰁛

l=1

αl0,τ (Zt,l) +
mn󰁛

l=1

α⊤
l,τ (Zt,l)Yt−l ≡

mn󰁛

l=1

α⊤
1,l,τ (Zt,l)W t−l ≡ α⊤

τ (Zt)Wt ≡ qτ (Zt,W t),

(9)

where α1,l,τ (·) = (αl0,τ (·),α⊤
l,τ (·))⊤ = (αl0,τ (·),αl1,τ (·), . . . ,αlκ,τ (·))⊤, W t = (1,Y⊤

t )
⊤, ατ (Zt) =

(α⊤
1,1,τ (Zt,1), . . . ,α

⊤
1,m,τ (Zt,m))

⊤ and Wt = (W⊤
t−1, . . . ,W

⊤
t−m)

⊤.
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Now, denote b̃Kn(z) = (b̃1(z), . . . , b̃Kn(z))
⊤ as a vector of normalized B-spline basis functions

on a compact interval [a, b], where a < b are finite numbers. Here, Kn = K = kn + 󰄁+1, with 󰄁

being the degree of polynomial and kn being the number of quasi-uniform internal knots; see Schu-

maker (1981) for details on the construction of normalized B-spline bases. Then, for 1 ≤ l ≤ m,

define aK l×1 vector of tensor-product B-spline bases as follows. Define B̃lt =
󰀃󰁑l−2

ι=0 b̃
K(Zt−ι)

󰀄
⊗

b̃K(Zt−l+1) for l ≥ 2 and B̃1t = b̃K(Zt), let Blt =

󰀣
Kl

n

󰁓n
t=1 B̃ltB̃

⊤
lt

󰀤−1/2

K l/2B̃lt. Similar trans-

formation to the basis functions is also conducted in Tang, Song, Wang and Zhu (2013), which

guarantees that the last part of Assumption A9 in Appendix A is satisfied. Then, there ex-

ist vectors cl0,τ ∈ RKl
and clj,τ ∈ RKl

such that αl0,τ (Zt,l) and αlj,τ (Zt,l) can be approxi-

mated by αl0,τ (Zt,l) ≈ B⊤
lt cl0,τ and αlj,τ (Zt,l) ≈ B⊤

lt clj,τ , respectively. Furthermore, denote

P lt = W t−l ⊗ Blt as a (1 + κ)K l × 1 vector and Πt = (P⊤
1t, . . . ,P

⊤
mt)

⊤. Finally, let Mn = (1 +

κ)
󰁓m

l=1 K
l = (1 + κ)K

󰀃
1−Km

1−K

󰀄
be the dimension of Πt and define cτ = (c⊤1,τ , . . . , c

⊤
m,τ )

⊤ ∈ RMn ,

where cl,τ = (c⊤l0,τ , . . . , c
⊤
lκ,τ )

⊤ = (cl1, cl2, . . . , cl((1+κ)Kl))
⊤. Thus, qτ,t can be approximated by

qτ,t ≈ Π⊤
t cτ .

Remark 4. (Tensor-product B-spline bases) The tensor-product B-spline approximation is a

standard approach to generate linear sieves of multivariate functions from linear sieves of uni-

variate functions. Different from the paper by He and Shi (1996) using bivariate tensor-product

B-splines to approximate unknown functions under M-type regression setting, in this article, the

length of the tensor-product Blt is K l and can diverge to infinity very fast. To overcome this

ultra-high-dimensional problem, in the first stage of our procedure, we apply LASSO penalty to

the L1 norm of each coefficient group for dimension reduction.

First-step: In the first stage, we apply LASSO penalty to the L1 norms of cl,τ , l = 1, . . . ,m.

Hence, c̃ = argmin
c

Q0(c), where Q0(c) is given by

Q0(c) =
1

n

n󰁛

t=m+1

ρτ
󰀋
Yt −Π⊤

t c
󰀌
+

1

n

m󰁛

l=1

pλn,0(󰀂cl󰀂1), (10)

ρτ (y) = y[τ− I (y < 0)] is called the “check” (loss) function, I (A) is the indicator function of any

11



set A and pλn,0(·) is a penalty function with a tuning parameter λn,0 for the first step. It is worth-

while to note that different types of penalty function pλn,0(·) are allowed to use in (10), including

but not limited to the LASSO, the smoothly clipped absolute deviation (SCAD) of Fan and Li

(2001) and the minimax concave penalty (MCP) of Zhang (2010). However, we do not attempt

to derive the theory for a general setup of penalty function, since the regularized regression is

only applied as a preliminary step of our procedure. Therefore, in this article, we choose to use

LASSO by setting pλn,0(·) = λn,0 · (·) due to its theoretical and computational simplicity. Note

that minimizing (10) with pλn,0(·) = λn,0 · (·) can be written as a linear programming problem

as follows

min
(ξ+,ξ−,c+,c−)∈R2(n−m)+2Mn

+

n−1

n󰁛

t=m+1

󰀋
τξ+t + (1− τ)ξ−t

󰀌
+

λn,0

n

m󰁛

l=1

(1+κ)Kl󰁛

u=1

(c+lu + c−lu)

subject to ξ+t − ξ−t = Yt −Π⊤
t (c

+ − c−), t = m+ 1, . . . , n.

Second-step: Based on the initial estimator c̃τ obtained by minimizing (10), we apply adaptive

LASSO penalty to exclude the remained irrelevant covariates survived after the first stage of

dimension reduction. Define T̃n = {l : 󰀂c̃l,τ󰀂2 > 0, l = 1, . . . ,m}, let cl = 0(1+κ)Kl for l /∈ T̃n.

Then, we propose to minimizing

Q1(c) =
1

n

n󰁛

t=m+1

ρτ
󰀋
Yt −Π⊤

t c
󰀌
+

λn,1

n

󰁛

l∈T̃n

ω̃l󰀂cl󰀂1 (11)

with respect to the unknown components of c, where λn,1 is the tuning parameter for the second

step and ω̃l = 󰀂c̃l,τ󰀂−1
2 for l ∈ T̃n. After yielding ĉτ at τ by minimizing (11), qτ,t can be estimated

by q̂τ,t = Π⊤
t ĉτ .

Third-step: With q̂τ,t and X̂ t = (1, q̂τ,t−1,1, . . . , q̂τ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)⊤ in place, gτ (·)

in (2) is estimated by a local linear estimation method; see Cai and Xu (2008) for details. In

particular, under smoothness condition of coefficient functions gτ (·) presented in Assumption A4

in Appendix A, for any given grid point z0 ∈ [a, b], when Zt is in a neighborhood of z0, gτ (Zt)

can be approximated by a polynomial function as gτ (Zt) ≈
󰁓ς

r=0 g
(r)
τ (z0)(Zt − z0)

r/r!, where

≈ denotes the approximation by ignoring the higher orders and g
(r)
τ (·) is the rth derivative of

12



gτ (·). Hence, minimize the following locally weighted loss function Q2(Θ) at any given grid point

z0 ∈ [a, b] to obtain the local linear estimate Θ̂, where

Q2(Θ) =
n󰁛

t=1

ρτ

󰀫
Yt −

1󰁛

r=0

X̂
⊤
t Θr,τ (Zt − z0)

r

󰀬
Kh(Zt − z0). (12)

Here, Θr,τ = g
(r)
τ (·)/r!, K(·) is a kernel function, Kh(u) = K(u/h)/h, and h = h(n) is a sequence

of positive numbers tending to zero and controls the amount of smoothing used in estimation.

2.3 Large Sample Theory

We study the asymptotic distribution of the proposed nonparametric estimator in this sec-

tion. In the first and second stages of our estimation procedure, the coefficient functionals are

approximated by a tensor-product B-spline bases. Recently, Tang et al. (2013) considered B-

spline approximation and variable selection in ultra-high-dimensional quantile varying coefficient

models, with i.i.d. assumption being imposed on observations. To prove Theorems 1 and 2 in

this paper, we follow a similar proof strategy as in Tang et al. (2013), but substantially extend

their results to allow strictly stationary and α-mixing data setting.

Suppose that each Zt takes values in a compact interval [a, b]. For l = 1, . . . ,m, letZ l = [a, b]l

be the Cartesian product of [a, b]. Given a l-tuple nonnegative integers, w = (w0, . . . , wl−1), set

|w| = w0 + · · ·+wl−1 and let Dw denote the differential operator defined by Dw = ∂|w|

∂Z
w0
t ...∂Z

wl−1
t−l+1

.

Let υ ∈ (0, 1] be such that d ≡ |w| + υ ≥ 2 and Hl be the class of functions ατ on Z l whose

Dwατ exists and satisfies a Lipschitz condition of order υ:

|Dwατ (zl)−Dwατ (z̃l)| ≤ C󰀂zl − z̃l󰀂υ, for zl, z̃l ∈ Z l and some constant C > 0.

In (9), for 0 ≤ j ≤ κ, we assume that αlj,τ (·) ∕= 0 for 1 ≤ l ≤ rn; αlj,τ (·) = 0 for rn +

1 ≤ l ≤ m. Let Tl,n = {u : |clu,τ | > 0, u = 1, . . . , (1 + κ)K l} be a sparse support of cl,τ ,

having card(Tl,n) = Rl,n nonzero components and Rn =
󰁓rn

l=1 Rl,n. In addition, recall that

Mn = (1 + κ)
󰁓m

l=1 K
l and denote Ar

Mn
= {δ ∈ RMn : 󰀂δ󰀂2 = 1, 󰀂δ󰀂0 ≤ r} as the r-sparse

unit sphere in RMn . Define the r-sparse maximal eigenvalue and r-sparse minimal eigenvalue of
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E[ΠtΠ
⊤
t ] as ϕ̃(r) = sup

δ∈Ar
Mn

E[(δ⊤Πt)
2] and 󰂄(r) = inf

δ∈Ar
Mn

E[(δ⊤Πt)
2], respectively. Similarly, define

ϕ(r) = sup
δ∈Ar

Mn

δ⊤
󰀕
n−1

󰁓n
t=m+1 ΠtΠ

⊤
t

󰀖
δ, ϑ(r) = inf

δ∈Ar
Mn

E[|δ⊤Πt|2]/E[|δ⊤Πt|3]. Let q = q(m̆) be a

sequence of positive numbers that characterize the strength of identification in the population,

which is defined as

q(m̆) = (󰂄(m̆)f/4)min{1, (f/2f̄ ′)ϑ(m̆)}.

Here, m̆ = 󰀂c̃τ󰀂0, f and f̄ ′ are defined in Assumption A6. Let µ = µ(m̆) ≥ q(m̆) be a sequence

of positive constants, defined as µ(m̆) =
󰁳

ϕ(m̆)(f̄
󰁳

ϕ(m̆) ∨ 1).

Finally, let Gt = (. . . , Ut−1, Ut) ⊂ Ft be an information set up to time t with {Ut} being

sequence of i.i.d. standard uniform random variables and Ft being defined in Section 2.1. Let

Vit ≡ {(Yit, Zt)} be strictly stationary process admitting the following representation forms: Vit =

L(Gt), where L(·) is a measurable function. Now, let U0 be replaced by an i.i.d. copy of U∗
0 and

V ∗
it = L(. . . , U∗

0 , . . . , Ut−1, Ut). For p ≥ 1, define 󰀂Vi·󰀂p,0 ≡
󰁓∞

t=0(E|Vit−V ∗
it |p)1/p, which measures

the cumulative effect of U0 on {Vit}t≥0. Based on the dependence adjusted norm 󰀂·󰀂p,0, we further

define 󰀂Vi·󰀂ψν ,0 = supp≥2 p
−ν󰀂Vi·󰀂p,0, for some ν ≥ 0. Let ψτ (Vit, c) ≡ {I(Yt ≤ Π⊤

t c) − τ}Πt

be the score function of the tth observation. Similarly, define ψ0
τ,t ≡ ψτ (Vit,ατ (Zt)) ≡ {I(Yt ≤

α⊤
τ (Zt)Wt)− τ}Πt.

Note that since Zt is exogenous, the data generating process (7) can be written in the form

of L(. . . , Ui(t−1), Uit), with L(·) being a measurable function and {Uit} being sequence of i.i.d.

standard uniform random variables. Therefore, under a stronger moment condition related to

dependence adjusted norm (see Assumption A10 in Appendix A), one can apply the exponential

tail bounds proposed in Lemma B.4 of Chernozhukov, Härdle, Huang and Wang (2021) to

obtain the error bound of c̃τ and corresponding oracle properties in Theorem 1. In Appendix A,

some necessary conditions are provided, though they might not the weakest possible with some

discussions on assumptions.

By Assumption A3 in Appendix A, there exists a nonzero spline coefficient vector c̄l,τ such
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that αlj,τ (Zt,l) = B⊤
lt c̄lj,τ + dlj(Zt,l), 1 ≤ l ≤ m, with sup

l,j,t
|dlj(Zt,l)| = O(K−d). Let c̄τ =

(c̄⊤1,τ , . . . , c̄
⊤
rn,τ , 0

⊤
Mn−Rn

)⊤ and denote ĉτ = (ĉ⊤1,τ , . . . , ĉ
⊤
m,τ )

⊤ as the minimizer of (11).

Theorem 1. Suppose Assumptions A1–A13 given in Appendix A hold, let

m0 = Mn ∧
󰀕

n

log(n ∨Mn)

q2

µ2

󰀖
and λn,0 = ℵ

󰁳
n log(n ∨Mn)ϕ(m0 +Rn)(m0 log(n ∨Mn))

ν µ

q

for some 0 ≤ ν < 1/2, where ℵ → ∞ is a sequence of positive numbers, possibly data-dependent.

Then, (a) ζ̃n = 󰀂c̃τ − c̄τ󰀂2 ≲p
λn,0

√
Rn

nq
, and (b) 󰀂c̃τ󰀂0 ≲p

µ2

q2
Rn.

In order to get a consistent estimator in the first stage, Theorem 1 suggests that Mn, the

dimension of Πt, satisfies Rn(log(Mn))
1+ν/n → 0, for some 0 ≤ ν < 1/2. Next, Theorem 2

presents the asymptotic properties of the second-stage estimator, including the oracle properties

and the convergence rate of q̂τ,t.

Theorem 2. Let α̂lj,τ (Zt,l) = B⊤
lt ĉlj,τ be the estimate of coefficient function αlj,τ (Zt,l), for

1 ≤ l ≤ m and 0 ≤ j ≤ κ, where ĉlj,τ is the jth component of ĉl,τ = (ĉ⊤l0,τ , . . . , ĉ
⊤
lκ,τ )

⊤. Suppose

Assumptions A1–A13 given in Appendix A hold and R
1/2
n ζ̃n → 0. Then, (a) α̂lj,τ (Zt,l) = 0,

for l = rn + 1, . . . ,m, with probability approaching 1, (b) 󰀂ĉτ − c̄τ󰀂2 = Op((Rn/n)
1/2), and (c)

max
m+1≤t≤n

|q̂τ,t − qτ,t| = Op(Rn/n
1/2).

Before stating the asymptotic behavior of ĝτ (z0) in the following theorem, for notational sim-

plicity, it needs to define some notations. Define Ω∗(z0) ≡ E
󰀅
X tX

⊤
t fY |Z,X(qτ (z0,X t))|Zt = z0

󰀆

with qτ (z0,X t) = g⊤
τ (z0)X t and fY |Z,X(·) = fY |Z,W (·). In addition, let Πa,t = (P⊤

1t, . . . ,P
⊤
rnt)

⊤

be the submatrix consisting of the first rn compositions ofΠt = (P⊤
1t, . . . ,P

⊤
mt)

⊤ corresponding to

the active covariates. Define Φa = E[fY |Z,W (qτ (Zt,W t))Πa,tΠ
⊤
a,t], D(z0) ≡ E[Πa,tΠ

⊤
a,t|Zt = z0]

and let Γ(z0) ≡ E

󰀝
fY |Z,X(qτ (z0,X t))X tg

⊤
τ (z0)Υa,t

󰀏󰀏󰀏󰀏Zt = z0

󰀞
be a (2κ + 1) × Rn matrix,

with Υ⊤
a,t = (0⊤1×Rn

,Πa,t, . . . ,Πa,t, 0
⊤
κ×Rn

). Finally, let Ξ(z0) ≡ τ(1 − τ)ν0[Ω(z0) − H1(z0) +

H2(z0)], where H1(z0) = E[X tΠ
⊤
a,t|Zt = z0]Φ

−1
a Γ⊤(z0) + Γ(z0)Φ

−1
a E[Πa,tX

⊤
t |Zt = z0], H2(z0) =

Γ(z0)Φ
−1
a D(z0)Φ

−1
a Γ⊤(z0) and Ω(z0) ≡ E[X tX

⊤
t |Zt = z0]. Now, the asymptotic normality of

ĝτ (z0) is presented in the following theorem with its detailed proof relegated to Appendix C.
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Theorem 3. Under Assumptions A1–A13 provided in Appendix A, we have

√
nh

󰀗
ĝτ (z0)− gτ (z0)−

h2µ2

2
g(2)
τ (z0) + op(h

2)

󰀘
d→ N (0,Στ (z0)),

where Στ (z0) = (Ω∗(z0))
−1Ξ(z0)(Ω

∗(z0))
−1/fz(z0).

Note that the detailed proofs of Theorem 1 and 2 are provided in Appendix B and Appendix

C is devoted to the proof for Theorem 3.

Remark 5. Since ĝτ (z0) is based on generated regressors X̂ t, it is not surprising to see that

the asymptotic variance term of ĝτ (z0) contains additional two terms H1(z0) and H2(z0), which

involve Πa,t in the second step. Similar results of asymptotic variance were also obtained by

Xiao and Koenker (2009), which can be seen as a nature of any multi-stage approach; see, for

example, Cai, Das, Xiong and Wu (2006) for more discussions.

2.4 Covariance Estimate

For constructing confidence intervals for the estimated functional coefficients in the empirical

study, it turns to discussing how to obtain consistent estimator of the asymptotic covariance

matrix Στ (z0). To this end, one needs to estimate D(z0), Φa, Γ(z0), H1(z0), H2(z0), Ω(z0) and

Ω∗(z0) consistently. The procedure of estimating covariance matrix and constructing confidence

interval is summarized as follows:

Step 1: Given any grid point z0 ∈ [a, b], use the proposed three-stage procedure to obtain Πa,t,

Υa,t, X̂ t and ĝτ (z0).

Step 2: Obtain estimators D̂(z0) =
󰁓n

t=1 Πa,tΠ
⊤
a,tKh(Zt − z0)/n, Φ̂a =

󰁓n
t=m+1 w1tΠa,tΠ

⊤
a,t/n

and Exw(z0) =
󰁓n

t=1 X̂ tΠ
⊤
a,tKh(Zt − z0)/n, where w1t = I(q̂τ,t − δ1n < Yt ≤ q̂τ,t + δ1n)/(2δ1n) for

any δ1n → 0 as n → ∞.

Step 3: Construct estimators Ĥ1(z0) = Exw(z0)Φ̂
−1

a Γ̂⊤(z0) + Γ̂(z0)Φ̂
−1

a (Exw(z0))
⊤,

Ĥ2(z0) = Γ̂(z0)Φ̂
−1

a D̂(z0)Φ̂
−1

a Γ̂⊤(z0), Γ̂(z0) =
󰁓n

t=1 w2tX̂ tĝ
⊤
τ (z0)Υa,tKh(Zt − z0)/n,

Ω̂(z0) =
󰁓n

t=1 X̂ tX̂
⊤
t Kh(Zt − z0)/n and Ω̂∗(z0) =

󰁓n
t=1 w2tX̂ tX̂

⊤
t Kh(Zt − z0)/n, where w2t =
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I(ĝ⊤
τ (z0)X̂ t − δ2n < Yt ≤ ĝ⊤

τ (z0)X̂ t + δ2n)/(2δ2n) for any δ2n → 0 as n → ∞.

Step 4: Obtain estimator Ξ̂(z0) = τ(1 − τ)ν0[Ω̂(z0) − Ĥ1(z0) + Ĥ2(z0)]. Then, Σ̂τ (z0) =

(Ω̂∗(z0))
−1Ξ̂(z0)(Ω̂

∗(z0))
−1 is a consistent estimate of Στ (z0).

Step 5: With Σ̂τ (z0) at hand, let se(ĝj,τ (z0)) =
󰁫
󰁧V ar(ĝj,τ (z0))/nh

󰁬1/2
, where 󰁧V ar(ĝj,τ (z0)) is

the jth diagonal element of Σ̂τ (z0), with ĝj,τ (z0) being the jth element of ĝτ (z0).

Then, for given 0 < α < 1, the 100(1 − α)% confidence interval for gj,τ (z0) without the

asymptotic bias correction can be constructed by [ĝj,τ (z0) − cα/2 × se(ĝj,τ (z0)), ĝj,τ (z0) + cα/2 ×

se(ĝj,τ (z0))], where cα/2 is the upper α/2-percentile of standard normal random variables.

Finally, note that similar to the proof in Cai and Xu (2008), one can show that D̂(z0) =

fz(z0)D(z0) + op(1) and Φ̂a = Φa + op(1), respectively. Also, in Appendix C, it shows that the

above estimators are consistent; that is, Γ̂(z0) = fz(z0)Γ(z0) + op(1), Ĥ1(z0) = fz(z0)H1(z0) +

op(1), Ĥ2(z0) = fz(z0)H2(z0) + op(1), Ω̂(z0) = fz(z0)Ω(z0) + op(1), and Ω̂∗(z0) = fz(z0)Ω
∗(z0) +

op(1). The proof of these results relies on the uniform consistency (in probability) of the estimator

q̂τ,t, which is guaranteed by Theorem 2(c). Therefore, it shows in Appendix C that indeed,

Σ̂τ (z0) = (Ω̂∗(z0))
−1Ξ̂(z0)(Ω̂

∗(z0))
−1 is a consistent estimate of Στ (z0).

2.5 Practical Implementations

In real application, we need to know how to choose the smoothing variable Zt, the truncation

parameter m = mn, and the bandwidth h. To this end, some suggestions are provided below.

First, it is important to choose an appropriate smoothing variable Zt in applying functional-

coefficient VAR model for dynamic quantiles in (2). Knowledge on physical background or

economic theory of the data may be very helpful, as we have witnessed in modeling the real data

in Section 4 by choosing Zt to be the first difference of daily log series of the U.S. dollar index.

Without any prior information, it is pertinent to choose Zt in terms of some data-driven methods

such as the Akaike information criterion, cross-validation, and other criteria. Ideally, Zt can be

selected as a linear function of given explanatory variables according to some optimal statistical
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selection criterion such as LASSO type methods, or an economic index based on some economic

theory; see, for instance, Cai, Juhl and Yang (2015). Nevertheless, here we would recommend

using a simple and practical approach proposed by Cai, Fan and Yao (2000) or Cai et al. (2015)

in practice.

Second, with the help of the first stage, the truncation parameter m can be set such that

the dimension of Πt (Mn = (1 + κ)
󰁓m

l=1 K
l) becomes much larger than the sample sizes n.

Under Assumption A2 in Appendix A, it suffices to select a truncation m such that m ≥ rn.

Here, the rate of rn is given in Assumption A2. In practice, one may apply the forward selection

method introduced by Cheng, Honda and Zhang (2016) to select m. Of course, other data-driven

methods such as the Akaike information criterion, cross-validation, and other criteria can also be

considered for selecting m. To reduce computational burden, we choose m as a sufficiently large

constant multiple of n1/8, which is used in our simulation study in Section 3 and the empirical

analysis in Section 4.

Finally, we would like to address how to select the bandwidth h at the third step. It is well

known that the bandwidth plays an essential role in the trade-off between reducing bias and

variance. In view of (12), it is about selecting the bandwidth in the context of estimating the

coefficient functions in the quantile regression. Therefore, we recommend the method proposed

in Cai and Xu (2008) for selecting h in (12), which is used in our simulation study in Section 3

and empirical example in Section 4.

3 A Monte Carlo Simulation Study

In this section, we provide a simulation example to exam the finite sample performance

of the proposed three-stage estimation for functional coefficients. In the first stage of esti-

mation, we choose the tuning parameter λn,0 by a data-driven pivotal. In particular, define

Λ =

󰀐󰀐󰀐󰀐
󰁓n

t=1 Πt{τ − I(ut ≤ τ)}
󰀐󰀐󰀐󰀐
∞
, where {ut}nt=1 are i.i.d. Uniform [0, 1] random variables, in-
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dependently distributed from the regressors Πt. Then, λn,0 is set as λn,0 = c ·Λ(1−α|Π), where

Λ(1 − α|Π) is the (1 − α)-quantile of Λ conditional on Π = (Π1, . . . ,Πn)
⊤, and the constant

c > 1 depends on the design. In this study, we set c = 1.1 and 1− α = 0.9, similar to the choice

for least squares in Chernozhukov et al. (2021). Using the the exponential tail bounds as in

Lemma B.4 in Chernozhukov et al. (2021), one can obtain the asymptotic bound for Λ(1−α|Π).

The proof is omitted, because it is similar to that of Lemmas B.4 and B.6 in Appendix B. In the

second stage, we select the parameter λn,1 by the generalized information criterion (GIC) as in

Fan and Tang (2013) and Zheng, Peng and He (2015), defined as

GIC(λ) = log

󰀕 n󰁛

t=1

ρτ (Yt −Π⊤
t ĉλ)

󰀖
+ dfλ ·

log(card(T̃n)) · log(log(n))
n

,

where ĉλ is the minimizer of (11) given λn,1 = λ, and the degrees of freedom dfλ is defined as the

number of nonzero estimated components of ĉλ conditional on λ. At Step 3, we choose optimal

bandwidth ĥ by the nonparametric Akaiki information criterion (AIC) as in Cai and Xu (2008).

Finally, the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ≤ 1) is used, m = ⌊0.8n1/8⌋ and

K = ⌊1.5n1/5⌋.

In this example, for 1 ≤ i ≤ 4, the data generating process (DGP) is given by Yit = σitεit

with σit = γi0(Zt) + γi1,󰂃it(Zt)σ1(t−1) + γi2,χit
(Zt)σ2(t−1) + γi3,󰂃it(Zt)σ3(t−1) + γi4,χit

(Zt)σ4(t−1) +

βi1(Zt)|Y1(t−1)| + βi2(Zt)|Y2(t−1)| + βi3(Zt)|Y3(t−1)| + βi4(Zt)|Y4(t−1)|, where γ10(z) = γ30(z) =

1.5 exp(−3(z +1)2) + exp(−8(z− 1)2), γ20(z) = γ40(z) = 1.5 exp(−3(z− 1)2) + exp(−8(z +1)2),

󰂃it = 0.2U2
it + 0.8 and χit = 0.2 exp(Uit) + 0.8 with Uit ∼ iid Uniform [0, 1]. In addition,

let γij,󰂃it(z) = γij(z) · 󰂃it, γij,χit
(z) = γij(z) · χit. Then, γij,󰂃it(z), γij,χit

(z) and βij(z) for

1 ≤ i, j ≤ 4 are defined as follows. For i = 1, γi1,󰂃it(z) = 0.15 {1 + exp(−4z)}−1 󰂃it, γi2,χit
(z) =

(0.04z2)χit, γi3,󰂃it(z) = (0.15 exp(−4z) {1 + exp(−4z)}−1)󰂃it, γi4,χit
(z) = (0.1 cos2(z))χit. For

i = 2, γi1,󰂃it(z) = γi3,󰂃it(z) = (0.1 sin(−0.8πz) + 0.1)󰂃it, γi2,χit
(z) = 0.15 {1 + exp(−4z)}−1 χit,

γi4,χit
(z) = (0.15 exp(−4z) {1 + exp(−4z)}−1)χit. For i = 3, γi1,󰂃it(z) = γi3,󰂃it(z) = (0.1 sin(0.8πz)+

0.1)󰂃it, γi2,χit
(z) = γi4,χit

(z) = (0.1 cos(0.8πz) + 0.1)χit. For i = 4, γi1,󰂃it(z) = γi3,󰂃it(z) =
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(0.1 cos(0.8πz) + 0.1)󰂃it, γi2,χit
(z) = γi4,χit

(z) = (0.1 sin(0.8πz) + 0.1)χit. As for βij(z), we set

βij(z) = γij(z) for 1 ≤ i, j ≤ 4. Finally, εit are mutually iid from N (0, 1).

Thus, for 1 ≤ i ≤ 4, the quantile function of our DGP is given by the model in (1) with κ = 4,

Yt = (|Y1t|, |Y2t|, |Y3t|, |Y4t|)T , q = p = 1 and Zit = Zt, where Zt is generated from Uniform [−2, 2]

independently. Also, note that γi0,τ (·) = γi0(·)Φ−1(τ), γi1,τ (·) = γi1(·)(0.2τ 2 + 0.8), γi3,τ (·) =

γi3(·)(0.2τ 2 + 0.8), while γi2,τ (·) = γi2(·)(0.2 exp(τ) + 0.8), γi4,τ (·) = γi4(·)(0.2 exp(τ) + 0.8) and

βij,τ (·) = βij(·)Φ−1(τ) for 1 ≤ i, j ≤ 4, with Φ(·) being the distribution function of the standard

normal. Therefore, γi0,τ (·), γij,τ (·) and βij,τ (·) are functions of τ , suggesting different covariate

effects at different levels of τ .

It is worthwhile to note that the DGP used in this Monte Carlo study is a multivariate

GARCH model with functional coefficients, which is closely related to our real example in Section

4 for following reasons. First, as discussed in Remark 1, the conditional quantile function of

GARCH process has a representation of dynamic quantile model, which is naturally suitable

to describe interdependences among conditional VaRs in our new financial network. Second,

the types of functional coefficients in this simulation seem to be rich enough to cover different

classes of variation of tail dependence in the real application. Third, since GARCH-type models

have been proven to be highly successful in financial applications, data that are generated from

GARCH-type models may be appropriate to simulate the real example in this paper.

To assess the finite sample performance of the proposed nonparametric estimators, we utilize

the mean absolute deviation error (MADE) for γi0,τ (·), γij,τ (·) and βij,τ (·), defined as

MADE(γ) =
1

n0

n0󰁛

k

|γ̂τ (zk)− γτ (zk)|, and MADE(βij,τ ) =
1

n0

n0󰁛

k

|β̂ij,τ (zk)− βij,τ (zk)|,

where γτ (·) can be either γij,τ (·) or γi0,τ (·), both γ̂τ (·) and β̂ij,τ (·) are local linear quantile es-

timates of γτ (·) and βij,τ (·), respectively, and {zk = 0.1(k − 1) − 1.75 : 1 ≤ k ≤ n0 = 36} are

the grid points. Also note that in this example, qτ,t,i = σitF
−1
ε (τ) = 0 when τ = 0.5, which

leads the quantile regression problem to be ill-posed so that the results for τ = 0.5 are omitted.
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Therefore, we only consider τ ’s level to be 0.05, 0.15, 0.85 and 0.95 and the sample sizes are

n = 500, 1500 and 4000. For each setting, we replicate simulation 500 times and compute the

median and standard deviation (in parentheses) of 500 MADE values. Finally, the results are

reported in Tables 1 - 4 only for τ = 0.05, 0.15 and 0.95 but the results for τ = 0.85 are omitted

due to the space limitation, available upon request. One can see clearly from Tables 1 - 4 that

both median and standard deviation of 500 MADE values steadily decrease as the sample size

increases for all four values of τ .

Table 1: Simulation results for γ10,τ (·), γ20,τ (·), γ30,τ (·), γ40,τ (·), and γij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20)

0.05 0.666 (0.120) 0.748 (0.202) 0.456 (0.059) 0.599 (0.087) 0.347 (0.042) 0.501 (0.043)

0.15 0.357 (0.074) 0.415 (0.091) 0.245 (0.047) 0.330 (0.046) 0.202 (0.030) 0.234 (0.043)

0.95 0.694 (0.109) 0.715 (0.165) 0.484 (0.066) 0.603 (0.094) 0.328 (0.045) 0.492 (0.047)

MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40)

0.05 0.742 (0.160) 0.690 (0.203) 0.545 (0.102) 0.655 (0.090) 0.455 (0.072) 0.500 (0.066)

0.15 0.455 (0.083) 0.442 (0.093) 0.337 (0.061) 0.325 (0.080) 0.264 (0.042) 0.260 (0.049)

0.95 0.707 (0.204) 0.693 (0.205) 0.557 (0.120) 0.555 (0.121) 0.439 (0.070) 0.469 (0.066)

MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12)

0.05 0.182 (0.074) 0.137 (0.058) 0.106 (0.032) 0.094 (0.033) 0.087 (0.029) 0.061 (0.018)

0.15 0.165 (0.074) 0.135 (0.060) 0.108 (0.040) 0.081 (0.046) 0.092 (0.036) 0.075 (0.026)

0.95 0.176 (0.082) 0.140 (0.063) 0.112 (0.034) 0.084 (0.030) 0.107 (0.032) 0.071 (0.020)

MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14)

0.05 0.157 (0.067) 0.141 (0.060) 0.086 (0.031) 0.071 (0.027) 0.070 (0.027) 0.068 (0.023)

0.15 0.148 (0.062) 0.127 (0.052) 0.100 (0.041) 0.084 (0.030) 0.069 (0.025) 0.069 (0.023)

0.95 0.152 (0.071) 0.129 (0.063) 0.101 (0.032) 0.083 (0.028) 0.088 (0.031) 0.075 (0.022)

MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22)

0.05 0.214 (0.095) 0.175 (0.071) 0.109 (0.044) 0.111 (0.047) 0.088 (0.027) 0.074 (0.032)

0.15 0.206 (0.085) 0.171 (0.062) 0.113 (0.050) 0.101 (0.045) 0.105 (0.039) 0.096 (0.032)

0.95 0.201 (0.088) 0.184 (0.080) 0.120 (0.054) 0.115 (0.042) 0.102 (0.040) 0.101 (0.031)

MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24)

0.05 0.169 (0.075) 0.164 (0.064) 0.099 (0.035) 0.098 (0.033) 0.080 (0.029) 0.077 (0.028)

0.15 0.177 (0.073) 0.165 (0.067) 0.108 (0.049) 0.102 (0.038) 0.094 (0.030) 0.086 (0.026)

0.95 0.183 (0.080) 0.176 (0.072) 0.111 (0.042) 0.122 (0.040) 0.099 (0.033) 0.091 (0.033)

Finally, we illustrate the finite sample performance for the consistent covariance estimation
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Table 2: Simulation results for γij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32)

0.05 0.194 (0.083) 0.165 (0.063) 0.132 (0.036) 0.134 (0.042) 0.090 (0.028) 0.084 (0.026)

0.15 0.187 (0.083) 0.153 (0.069) 0.121 (0.058) 0.107 (0.059) 0.110 (0.038) 0.101 (0.036)

0.95 0.257 (0.087) 0.220 (0.071) 0.142 (0.045) 0.134 (0.040) 0.115 (0.039) 0.109 (0.029)

MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34)

0.05 0.161 (0.066) 0.162 (0.065) 0.110 (0.035) 0.116 (0.034) 0.095 (0.030) 0.081 (0.025)

0.15 0.171 (0.073) 0.154 (0.061) 0.109 (0.046) 0.105 (0.045) 0.088 (0.030) 0.092 (0.031)

0.95 0.215 (0.069) 0.196 (0.070) 0.124 (0.045) 0.126 (0.035) 0.115 (0.037) 0.102 (0.026)

MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42)

0.05 0.235 (0.099) 0.191 (0.076) 0.108 (0.041) 0.106 (0.036) 0.084 (0.032) 0.083 (0.026)

0.15 0.187 (0.086) 0.176 (0.077) 0.133 (0.066) 0.123 (0.059) 0.110 (0.034) 0.103 (0.038)

0.95 0.234 (0.084) 0.210 (0.078) 0.156 (0.040) 0.152 (0.048) 0.105 (0.037) 0.119 (0.035)

MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44)

0.05 0.201 (0.076) 0.176 (0.064) 0.086 (0.043) 0.100 (0.042) 0.083 (0.037) 0.078 (0.030)

0.15 0.160 (0.073) 0.153 (0.072) 0.125 (0.064) 0.123 (0.044) 0.088 (0.028) 0.093 (0.031)

0.95 0.204 (0.072) 0.197 (0.075) 0.139 (0.040) 0.148 (0.049) 0.094 (0.038) 0.090 (0.032)

Table 3: Simulation results for βij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β11) MADE(β12) MADE(β11) MADE(β12) MADE(β11) MADE(β12)

0.05 0.232 (0.088) 0.165 (0.068) 0.130 (0.050) 0.105 (0.036) 0.092 (0.025) 0.071 (0.020)

0.15 0.140 (0.059) 0.116 (0.047) 0.103 (0.033) 0.077 (0.028) 0.065 (0.024) 0.048 (0.018)

0.95 0.206 (0.086) 0.164 (0.069) 0.124 (0.043) 0.105 (0.033) 0.091 (0.027) 0.071 (0.022)

MADE(β13) MADE(β14) MADE(β13) MADE(β14) MADE(β13) MADE(β14)

0.05 0.155 (0.071) 0.161 (0.065) 0.109 (0.036) 0.101 (0.040) 0.068 (0.028) 0.074 (0.024)

0.15 0.115 (0.047) 0.116 (0.046) 0.086 (0.030) 0.082 (0.028) 0.052 (0.018) 0.052 (0.018)

0.95 0.173 (0.071) 0.155 (0.068) 0.107 (0.038) 0.096 (0.031) 0.080 (0.024) 0.068 (0.022)

MADE(β21) MADE(β22) MADE(β21) MADE(β22) MADE(β21) MADE(β22)

0.05 0.257 (0.103) 0.194 (0.077) 0.159 (0.063) 0.122 (0.053) 0.106 (0.042) 0.078 (0.033)

0.15 0.180 (0.075) 0.139 (0.053) 0.112 (0.045) 0.083 (0.034) 0.082 (0.029) 0.063 (0.021)

0.95 0.260 (0.101) 0.195 (0.092) 0.155 (0.062) 0.114 (0.050) 0.116 (0.042) 0.072 (0.034)

MADE(β23) MADE(β24) MADE(β23) MADE(β24) MADE(β23) MADE(β24)

0.05 0.215 (0.094) 0.196 (0.084) 0.140 (0.055) 0.103 (0.044) 0.087 (0.028) 0.080 (0.029)

0.15 0.145 (0.056) 0.134 (0.053) 0.091 (0.034) 0.082 (0.032) 0.064 (0.024) 0.065 (0.021)

0.95 0.197 (0.089) 0.195 (0.084) 0.136 (0.051) 0.108 (0.044) 0.095 (0.032) 0.076 (0.026)
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Table 4: Simulation results for βij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β31) MADE(β32) MADE(β31) MADE(β32) MADE(β31) MADE(β32)

0.05 0.249 (0.110) 0.193 (0.082) 0.192 (0.059) 0.141 (0.047) 0.113 (0.038) 0.089 (0.030)

0.15 0.163 (0.068) 0.142 (0.057) 0.118 (0.043) 0.087 (0.039) 0.088 (0.028) 0.067 (0.020)

0.95 0.302 (0.111) 0.238 (0.079) 0.190 (0.056) 0.158 (0.051) 0.119 (0.038) 0.097 (0.030)

MADE(β33) MADE(β34) MADE(β33) MADE(β34) MADE(β33) MADE(β34)

0.05 0.191 (0.076) 0.178 (0.075) 0.150 (0.049) 0.145 (0.052) 0.101 (0.034) 0.096 (0.026)

0.15 0.137 (0.054) 0.133 (0.057) 0.092 (0.031) 0.094 (0.039) 0.071 (0.021) 0.069 (0.024)

0.95 0.246 (0.076) 0.230 (0.078) 0.149 (0.047) 0.135 (0.041) 0.098 (0.033) 0.092 (0.030)

MADE(β41) MADE(β42) MADE(β41) MADE(β42) MADE(β41) MADE(β42)

0.05 0.291 (0.107) 0.242 (0.086) 0.167 (0.053) 0.149 (0.062) 0.119 (0.045) 0.096 (0.034)

0.15 0.172 (0.075) 0.145 (0.057) 0.127 (0.044) 0.104 (0.034) 0.082 (0.028) 0.069 (0.024)

0.95 0.283 (0.107) 0.243 (0.075) 0.206 (0.058) 0.169 (0.059) 0.109 (0.040) 0.095 (0.032)

MADE(β43) MADE(β44) MADE(β43) MADE(β44) MADE(β43) MADE(β44)

0.05 0.234 (0.086) 0.235 (0.073) 0.134 (0.049) 0.149 (0.057) 0.092 (0.035) 0.100 (0.036)

0.15 0.147 (0.059) 0.134 (0.053) 0.107 (0.039) 0.110 (0.038) 0.067 (0.024) 0.071 (0.025)

0.95 0.224 (0.074) 0.221 (0.089) 0.160 (0.056) 0.172 (0.049) 0.091 (0.033) 0.093 (0.029)

given in Section 2.4 via evaluating the pointwise confidence intervals (CI) with the asymptotic

bias ignored. To do this, define 󰁧V ar(·) as the asymptotic variance calculated by the estimators

presented in Section 2.4. Then, we compute the average of empirical coverage rates (AECR) of

95% pointwise CI of γij,τ (·) and βij,τ (·) without the asymptotic bias correction for 1 ≤ i, j ≤ 4,

defined as,

AECR(γij,τ ) =
1

n0B

n0󰁛

k

B󰁛

b=1

Ib{γij,τ (zk) ∈ γ̂ij,τ (zk)± 1.96× se(γ̂ij,τ (zk))},

where se(γ̂ij,τ (·)) =
󰁫
󰁧V ar(γ̂ij,τ (·))/nh

󰁬1/2
, Ib{γij,τ (·) ∈ γ̂ij,τ (·)±1.96×se(γ̂ij,τ (·))} is an indicator

function which equals to 1 if γij,τ (·) is covered by the interval γ̂ij,τ (·)± 1.96× se(γ̂ij,τ (·)) in the

bth time of replication (equals to 0, otherwise), and the number of replication times is B = 500.

Similarly, AECR(βij,τ ), se(β̂ij,τ (·)), and Ib{βij,τ (·) ∈ β̂ij,τ (·)± 1.96× se(β̂ij,τ (·))} can be defined

in the same fashion. The simulation results are presented in Table 5, for n = 4000 and τ = 0.05,

0.15 and 0.95. From Table 5, one can see basically that for each setting, AECRs of 95% pointwise

CIs are close to the nominal level 95% for all settings. In general, the results of this simulated
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experiment demonstrate that the proposed procedure is reliable and works fairly well.

Table 5: Average of empirical coverage rates (AECR) of 95% pointwise confidence intervals for γij,τ (·) and
βij,τ (·) without the asymptotic bias correction, for 1 ≤ i, j ≤ 4 and n = 4000.

τ Coverage Rates of γ̂ij,τ (·) Coverage Rates of β̂ij,τ (·)

γ̂11,τ γ̂12,τ γ̂13,τ γ̂14,τ β̂11,τ β̂12,τ β̂13,τ β̂14,τ

0.05 0.945 0.951 0.945 0.967 0.976 0.976 0.972 0.976

0.15 0.940 0.942 0.921 0.931 0.965 0.951 0.954 0.957

0.95 0.944 0.903 0.949 0.935 0.971 0.965 0.967 0.964

γ̂21,τ γ̂22,τ γ̂23,τ γ̂24,τ β̂21,τ β̂22,τ β̂23,τ β̂24,τ

0.05 0.946 0.963 0.955 0.969 0.976 0.980 0.977 0.973

0.15 0.950 0.944 0.905 0.930 0.959 0.960 0.959 0.961

0.95 0.969 0.934 0.963 0.939 0.978 0.985 0.979 0.977

γ̂31,τ γ̂32,τ γ̂33,τ γ̂34,τ β̂31,τ β̂32,τ β̂33,τ β̂34,τ

0.05 0.973 0.954 0.965 0.972 0.981 0.978 0.984 0.977

0.15 0.963 0.957 0.939 0.940 0.965 0.968 0.964 0.949

0.95 0.965 0.902 0.961 0.950 0.974 0.974 0.976 0.975

γ̂41,τ γ̂42,τ γ̂43,τ γ̂44,τ β̂41,τ β̂42,τ β̂43,τ β̂44,τ

0.05 0.972 0.948 0.959 0.973 0.982 0.973 0.978 0.977

0.15 0.959 0.951 0.934 0.929 0.961 0.967 0.966 0.958

0.95 0.979 0.903 0.961 0.956 0.969 0.981 0.968 0.975

4 An Empirical Example

4.1 Empirical Models

In this section, the proposed model and estimation methods are applied to constructing and

estimating a new class of dynamic financial networks in international equity markets. Different

from the existing literature, the interdependences of this class of networks vary with a smoothing

variable of general economy. Motivated by White et al. (2015), we consider the dependence

between current and one-day lagged VaR. In particular, we define each linkage in our network

as the dependence between VaR of return of one market index at time t and that of another at

time t− 1. Therefore, our network can be written as following equation system:

VaRit = γ⊤
i,τ (Zt−1)VaRt−1, i = 1, 2, . . . ,κ, (13)
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where VaRt−1 = (VaR1(t−1), . . . ,VaRκ(t−1))
⊤ is a vector of VaRs for all market index returns at

time t− 1 and VaRit is the VaR of the ith market index return at time t, which is described as

follows VaRit = − inf{Y ∈ R : P (Yit > Y |Ft−1) ≤ 1 − τ} = − inf{Y ∈ R : F (Y |Ft−1) > τ} for

i = 1, 2, · · · ,κ at a given τ ∈ (0, 1). Here, Ft−1 is the information set to present all information

of the ith return available at time t − 1 and F (·|Ft−1) represents the conditional distribution

function of Yit given Ft−1. In addition, Zt−1 is a smoothing variable of general economy and

γi,τ (·) = (γi1,τ (·), . . . , γiκ,τ (·))T is a κ × 1 vector of functional coefficients. Then, we extract

the quantile estimation of functional coefficients from equation system (13) and construct the

matrix |Γ̂1,τ (Zt−1)| = (|γ̂ij,τ (Zt−1)|)κ×κ as our financial network, in which, |γ̂ij,τ (Zt−1)| represents

the strength of dependence between VaR of return for the market index i at time t and that for

the index j at time t−1, under τ -th quantile level, and is driven by the smoothing variable Zt−1.

Here, taking absolute value on each γ̂ij,τ (Zt−1) enables us to calculate and analyze indicators

of connectedness, and details are reported in Section 4.3 later. Thus, matrix |Γ̂1,τ (Zt−1)| is

useful to capture risk interdependence and how it changes with a smoothing variable Zt−1. Note

that entries |Γ̂1,τ (Zt−1)| correspond to the absolute value of the estimated values of {γij,τ (·)} in

the network model in (3). Therefore, our three-stage procedures can be applied here for direct

estimation of the interdependence among VaRs of returns for the market indices.

It is necessary to mention that we restrict our attention to the time-varying interdependence

between VaRs of four financial market indices’ returns at time t and those at time t−15, though

Xu, Wang, Shin and Zheng (2022) detected significant contemporaneous effect of connected nodes

on the conditional quantile function of financial return in the common shareholder network and

the headquarter location based network. Different from the predetermined networks studied

in Xu et al. (2022), the proposed financial network in our real example is constructed by tail

5Note that because of volatility persistence, the VaR of financial return may have a long memory behavior.
However, according to the empirical results in Engle and Manganelli (2004) and White et al. (2015), the specifi-
cation of autoregressive for dynamic quantile with lag one seems to perform well in out-of-sample testing. Thus,
to simplify the implementation of our methodology, we follow White et al. (2015) and only consider modeling
the dynamic pattern between VaR at time t and its one-period lag in this empirical study.
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dependence among unobserved VaRs of financial indices’ returns, where observable information

of relationship among nodes (e.g., binary network data) can hardly be found. Thus, it still

remains unclear to us whether contemporaneous interaction among VaRs of financial indices is

significant in our real example or not. A rigorous study of this important issue is left as a future

research.

4.2 Data

Our dataset includes the daily series between January 5, 2006 and February 10, 2021 for four

major world equity market indices: the U.K. FTSE 100 Index, the Japanese Nikkei 225 Index,

the U.S. S&P 500 Composite Index and the Chinese Shanghai Composite Index (SSE). We model

the ith index’s return series Yit = 50 log(πit/πi(t−1)), where i = 1, 2, 3, and 4 corresponds to the

four aforementioned market indices in turn and πit is ith index level at the tth day. The time

range of data includes the financial crisis in the U.S. in 2008, the European sovereign debt crisis

of 2011-2012, and the COVID-19 pandemic starting from 2019. The daily series of four market

indices are downloaded in Yahoo Finance and the estimation sample sizes n = 3254. Thus, we

take m = ⌊0.8n1/8⌋ and K = ⌊1.5n1/5⌋ in this empirical study. Similar to the example in Monte

Carlo simulation study, ĥ is selected by the nonparametric AIC criterion as in Cai and Xu (2008)

and the Epanechnikov kernel is used. Although it is feasible to introduce more kinds of market

index into the equation system (13), due to the computational burdens, we only consider risk

co-dependences among four major markets’ indices.

As for the smoothing variable Zt, we choose Zt = 50 log(Dt/Dt−1), where Dt is the U.S. dollar

index on the tth day and can be downloaded from the Federal Reserve Bank of St. Louis. The

U.S. dollar index measures value of U.S. dollar against the currencies of a broad group of major

U.S. trading partners, higher values of the index indicate a stronger U.S. dollar. This choice of

smoothing variable is reasonable, because the exchange rate has been regarded as an important

factor associated with international transmission of risk in many empirical studies. For instance,
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Menkhoff, Sarno, Schmelling and Schrimpf (2012) discussed the relation between innovations

in global foreign exchange volatility and excess returns arising from strategies of carry trade,

through which the risk spillover transmits from one country to others. In addition, Yang and

Zhou (2017) showed that volatility spillover intensity increases with U.S. dollar depreciation.

We do not claim that the U.S. dollar index is the only choice for smoothing variable, but we

choose the U.S. dollar index because it contains more information about risk transmission among

international equity markets. It is desirable to consider other variables of economic status as the

smoothing variable and this may be left in a future study.

4.3 Empirical Results

The empirical analysis in this section includes two steps: First, we estimate γij,τ (Zt−1) for

each market index in the equation system in (13) under τ = 0.05. Second, we use the estimated

value of γij,τ (Zt−1) to construct the matrix |Γ̂1,τ (Zt−1)|, and do network analysis based on this

matrix.

Before exploring the matrix |Γ̂1,τ (Zt−1)|, it is important to exam whether each γij,τ (Zt−1)

in (13) varies significantly with Zt−1 or not. To this end, we estimate each γij,τ (Zt−1) and

corresponding 95% pointwise confidence intervals with the asymptotic bias ignored. Figure 1

depicts the corresponding estimation results, in which ij-th panel represents the result for γij,τ (·),

respectively. The black solid line in each panel of Figure 1 represents the estimates of the γij,τ (·)

for 1 ≤ i, j ≤ 4 in (13) along various values of Zt−1 under τ = 0.05, and the red dashed lines

are 95% pointwise confidence intervals for each estimate without the asymptotic bias correction.

From Figure 1, we clearly see that most of coefficient functions vary significantly over the interval

[−0.75, 0.75], which means that we can not use fixed-coefficient dynamic quantiles models to fit

the data.

Next, we consider analyzing the matrix |Γ̂1,τ (Zt−1)|, in which each entry is |γij,τ (Zt−1)|.

To simplify notation, Zt−1 and τ are dropped from |γ̂ij,τ (Zt−1)| and |γ̂ji,τ (Zt−1)| in the matrix
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Figure 1: Plots of the estimated coefficient functions γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 in (13) in the main
article under τ = 0.05 (black solid lines), in which ij-th panel represents the result for γij,τ (·), respectively. The
red dashed lines in each panel indicate the 95% pointwise confidence interval for the estimate with the asymptotic
bias ignored.
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|Γ̂1,τ (Zt−1)|, in what follows. Then, |γ̂ji| in the matrix |Γ̂1,τ (Zt−1)| represents the magnitude

of dependence between the risk of market index i at time t − 1 and that of market index j at

time t. For the purpose of visualization, by following Härdle et al. (2016), we first define the

levels of connectedness. The connectedness with respect to incoming links (CIL) is defined as

󰁓4
i=1 |γ̂ji|, which measures the risk spillover that was emitted from all four market indices one

day ago and is received currently by a certain market index. Analogously, the connectedness

with respect to outgoing links (COL) is defined as
󰁓4

i=1 |γ̂ij|, which measures the risk spillover

emitted from a certain market index one day ago and is received currently by all market indices.

Here, i, j = 1, 2, 3, 4 correspond to the four aforementioned market indices in turn. Intuitively,

the CIL measures exposures of individual indices to systemic shocks from the financial network,

while the COL measures contributions of individual indices for risk events in the network. Other

than the CIL and COL, we also analyze the total connectedness in the global market, which is

equal to
󰁓4

j=1

󰁓4
i=1 |γ̂ij| and indicates the total risk spillover in the global market, see Härdle et

al. (2016) for more applications about these types of connectedness.

Figures 2 and 3 display the corresponding results along the same values of Zt−1, under

τ = 0.05, respectively. In Figure 2, each panel displays the CIL and COL subject to the U.S.

dollar change. The solid line in each panel represents values of COL and the dashed line indicates

values of the CIL. For Figure 3, the vertical axis measures the total connectedness appeared in

international equity markets and the horizontal axises in both figures are the same as those in

each panel of Figure 1.

Figure 2 shows that the curves of all four major market indices vary greatly over the interval

[−0.75, 0.75] and become larger when there is either appreciation (Zt−1 > 0) or depreciation

(Zt−1 < 0) of U.S. dollar. In particular, when the U.S. dollar experiences appreciation and during

the “bad times” of the market (when Zt−1 > 0 and τ = 0.05), domestic prices of commodity

in Europe, Japan and China may increase, which pose risks on domestic companies. Then, all

investors who invested corporations in the European, Japanese and Chinese markets suffer from
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Figure 2: Connectedness with respect to outgoing links and connectedness with respect to incoming links for
four market indices with τ = 0.05. The solid line in each panel represents values of connectedness with respect
to outgoing links and the dashed line in each panel indicates values of connectedness is for incoming link.

loss of returns, causing both CIL and COL to go up in all three markets. For the U.S. market,

U.S. assets may become favorable among global investors during the U.S. dollar appreciation,

while investors in the U.S. market who invested corporations in the rest of the world face loss of

returns. These two forces lead the U.S. market to be both more important to the global market

and to be more vulnerable to risk events in the global market, respectively. Thus, both curves

in the panel of S&P 500 index increase.

As for the case when U.S. dollar depreciated (Zt−1 < 0), profits of investment on domestic

corporations in European, Japanese and Chinese markets may increase, which encourage in-

vestors to give leverage in investing corporations in these three markets. Therefore, both types

of curves in all three markets, as well as the CIL in the U.S. market increase. Nevertheless, global

investors who invested assets in the U.S. market subject to adverse situation, which results in

an upward movement of COL of S&P 500 index. In addition, due to the increase of leverage,
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European and Japanese markets can affect the global market more easily, causing COL to dom-

inate CIL in these two markets and CIL to dominate COL in the U.S. market. In the Chinese

market, corporations associated with export subject to harmful impact. Under this unfavorable

environment, investors in China may be more willing to invest assets from outside of the Chinese

market. This trend makes the Chinese market become more vulnerable to global risk events,

causing CIL to dominate COL.

It is interesting that in the European and Japanese markets, during the U.S. dollar appre-

ciation (Zt−1 > 0.5), the COL dominates CIL. These dynamic patterns in the European and

Japanese markets may be explained by the so called “carry trade”. The carry trade refers to

borrowing a low-yielding asset and buying a higher-yielding foreign asset to earn the interest rate

differential plus the expected foreign currency appreciation. Due to the relatively lower interest

rate in the European and Japanese markets within our time span of study, as Zt−1 > 0.5, carry

traders who borrowed low-yielding assets from the Japanese or European markets and bought

assets from the U.S. market enjoy the increase of excess returns to carry trade. As a result,

these two markets become less vulnerable to risk events caused by carry traders, which makes

the CIL become smaller than COL in these two markets. While in the U.S. market, since the

price of risky assets relies heavily on the demand of carry trade during U.S. dollar appreciation,

it becomes much easier for the U.S. market to be affected by the global market. Therefore, the

CIL dominates the COL in the U.S. market.

Figure 3 sheds light on the variation of risk spillover in the global financial market. Observed

that in Figure 3, the total connectedness of all four market indices demonstrates an U-shaped

pattern. It means that total risk spillover in the four major markets decreases when Zt−1 becomes

larger within the interval [−0.75, 0]. As Zt−1 exceeds 0, the risk spillover intensity is magnified.

In general, Figure 3 shows that the relationship between total risk spillover and the U.S. dollar

change switches its pattern at a certain threshold of the U.S. dollar change, which is a relatively

new result in literature.
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Figure 3: Total connectedness in international equity markets with τ = 0.05.

5 Conclusion

In this paper, we investigate a functional coefficient VAR model for conditional quantiles,

which is new to the literature. A three-stage procedure is proposed to estimate coefficients func-

tionals and the properties of asymptotic normality for the proposed estimators are established.

The simulation results show that our new estimation methods work fairly well. In addition,

there is little literatures regarding the relationship between the variation of financial network

and the general state of economy. Based on our approaches, the proposed framework allows to

study how the network characteristics of risk spillover in a financial system vary with the state

of economy.

There are several issues still worth of further studies. First, it is interesting to visualize the

topological change of our financial network and to measure the transition of risk spillover among

different market indices when the general economy is shifting. Technically, these studies can be

realized by our econometric model. Second, the asymptotic properties of functional coefficients

in our model provide solid theory to test the abnormal variation of financial network. Third, it is

meaningful to allow for cross-sectional dependence in the current model. Although some methods

have been developed to deal with cross-sectional dependence in the literature of conditional mean
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models, due to the nature of conditional quantile model, it is not obvious to extend these under

the quantile setting. Finally, if Zt in (2) is time, then the model in (2) provides a good start for

studying conditional quantile estimation of ARCH- and GARCH-type models with time-varying

parameters; see, for example, the papers by Dahlhaus and Subba Rao (2006) and Chen and Hong

(2016) for the time-varying GARCH type models. We leave these important issues, together with

some possible extensions as mentioned earlier in the paper, as future research topics.
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Appendix to “A Functional-Coefficient VAR
Model for Dynamic Quantiles and Its

Application to Constructing Nonparametric
Financial Network”

Appendix

Appendix A: Notation and Assumptions

Notation

Throughout this article, 0a×b stands for the (a×b) matrix of zeros and Ia is the (a×a) identity

matrix. For a vector v = (v1, . . . , vp)
⊤, let "v"∞ ≡ max1≤j≤p |vj| and "v"s ≡ (

!p
j=1 |vj|s)1/s,

s ≥ 1. Specifically, let "v"2 ≡ "v" be the Euclidean norm. For a set of vectors {vl}ml=1, let

"m
l=1 vl ≡ v1 ⊗ · · · ⊗ vm. Given two sequences of positive numbers an and bn, write an ≲ bn

if there exists constant C > 0 (does not depend on n) such that an/bn ≤ C. For a sequence

of random variables xn, we use the notation xn ≲p bn to denote xn = Op(bn). For a set A, we

denote card(A) as the number of elements contained in A. For any finitely discrete measure Q

on a measurable space, let Lq(Q) denote the space of all measurable functions f : X → R such

that "f"Q,q ≡ (Q|f |q)1/q < ∞, where Qf ≡
#
fdQ. For a class of measurable functions F ,

the !-covering number with respect to the Lq(Q)-semi-metric is denoted as N (!,F , " · "Q,q), and

let ent(!,F) = log supQ N (!"F̄"Q,q,F , " · "Q,q) with F̄ = supf∈F |f | (the envelope) denote the

uniform entropy number. Detailed discussions about the uniform entropy number can be found

in the Section 2.6 of Van Der Vaart and Wellner (1996).
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Assumptions

First, some necessary conditions are provided for the theoretical proofs of Theorems 1, 2 and

3 as well as the consistency of the estimated covariance matrix, together with some discussions

on the assumptions. Note that the same notation is used as in the main text.

Assumption A.

A1: For all z ∈ [a, b], let Aτ (x) = Γβ,1,τ (z)x and Bτ (x) = Iκ − Γ1,τ (z)x, where Γβ,1,τ (z) and

Γ1,τ (z) are defined in (4) of the main text. Suppose that Aτ (x) and Bτ (x) have no common

factors so that Aτ (x) ∕= 0, for |x| ≤ 1 and Bτ (x) ∕= 0, for |x| ≤ 1.

A2: For d ≥ 2 defined in Section 2.3 of the main text, K = O(nc1) and Rn = O(nc2) for some

c2 < 1/3 and 3c2
2(1+d)

< c1 ≤ c2. In addition, the number of nonzero components rn satisfies

rn = O(nc2−c1).

A3: There are vectors c0,i,τ ∈ RK, cγ,ij,τ ∈ RK and cβ,ij,τ ∈ RK such that supz∈[a,b] |γi0,τ (z) −

bK⊤(z)c0,i,τ | = O(K−d), supz∈[a,b] |γij,τ (z) − bK⊤(z)cγ,ij,τ | = O(K−d) and supz∈[a,b] |βij,τ (z) −

bK⊤(z)cβ,ij,τ | = O(K−d), for 1 ≤ i, j ≤ κ.

A4: For 1 ≤ l ≤ rn and 0 ≤ j ≤ κ, αlj,τ (·) ∈ Hl, where Hl is defined in Section 2.3 of the main

text. Each entry in the vector gτ (·) is (ς+1)th order continuously differentiable in a neighborhood

of z0 for any z0 ∈ [a, b]. Here, ς is defined in Section 2.2 of the main text.

A5: fz(z) is a continuously marginal density of Z and fz(z0) > 0.

A6: The distribution of Y given Z and W has an everywhere positive conditional density

fY |Z,W (·), which is bounded from below by f and above by f̄ , and satisfies the Lipschitz con-

tinuity condition. Here, W t is defined in (10) of the main text. In addition,
$$f (1)

Y |Z,W (·)
$$ ≤ f̄ ′,

where f
(1)
Y |Z,W (·) is the first derivative of fY |Z,W (·). Finally, the kernel function K(·) is a bounded,

symmetric density with a bounded support region. Let µ2 =
#
ν2K(ν)dν and ν0 =

#
K2(ν)dν.

A7: {(Yit, Zt)} in model (2) is a strictly stationary sequence with α-mixing coefficient α(t) which

satisfies
!∞

t=1 t
ια(δ−2)/δ(t) < ∞ for some positive real number δ > 2 and ι > (δ − 2)/δ.

A8: There exist (small) positive constants ϖ1 > 0 and ϖ2 > 0 such that P{max1≤t≤n Y
2
t >
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nϖ1} ≤ exp(−nϖ2).

A9: E[W tW
⊤
t |Zt = z0] and E[W tW

⊤
t fY |Z,W (qτ (z0,W t))|Zt = z0] is positive-definite and con-

tinuous in a neighborhood of z0. In addition, E"Yt"2δ
∗
< ∞ with δ∗ > δ. Finally, there exists

postive constants C1, C2, c1 and c2, such that ϕ̃(r) ≤ C1, ϕ(r) ≤ C2, ,(r) ≥ c1 and ϑ(r) ≥ c2 for

any r ≤ n.

A10: The class of function Fc = {v ,→ ψτ (v, c), "c"0 ≤ r, 1 ≤ r ≤ n} is pointwise mea-

surable and satisfies the entropy condition ent(!,Fc) ≤ Cr log((n ∨ Mn)/!) for some constant

C > 0 and for all 0 < ! ≤ 1. In addition, for some ν ≥ 0, maxf∈Fc "f(v·)"ψν ,0 < ∞

and "ψ0
τ,·"ψν ,0 < ∞. The map c ,→ E{ψτ (Vt, c)|Ft} is twice continuously differentiable and

Φc
ψν ,0

≡ "maxc∈C ∂cE{ψτ (V·, c)|F·}"ψν ,0 < ∞, for some fixed and closed interval C.

A11: λn,0R
1/2
n n−1 → 0, n−1/2λn,1 → 0 and R

−1/2
n λn,1 → ∞. The bandwidth h satisfies

h = O(n−1/5), h → 0, nh → ∞.

A12: f(w,ω|Y 0,Y ℓ; ℓ) ≤ H < ∞ for ℓ ≥ 1, where f(w,ω|Y 0,Y ℓ; ℓ) is the conditional density

of (Z0, Zℓ) given (Y0 = Y 0,Yℓ = Y ℓ).

A13: n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1).

Remark A.1. Assumptions A1 is a condition for the functional coefficients to be well-defined,

which is similar to that in Chen and Hong (2016). The assumption on Rn in A2 is for the

minimum signal strength of the coefficients in the true active set, which is also used in Sherwood

and Wang (2016). Assumptions A3-A6 are common in literature of spline approximation and

nonparametric estimation. A7 is a standard assumption for α-mixing. A8 can be implied when

the maximum of Y 2
t follows a generalized extreme value distribution, which is generally satisfied

for weakly dependent data; see also Xiao and Koenker (2009). The first and second parts of

A9 is commonly required for the model identification, when W t is α-mixing. By Lemma 7 of

Tang et al. (2013), the last part of A9 can be satisfied under the construction of tensor-product

B-spline bases proposed in Section 2.2. The first part of A10 is adopted from Chernozhukov et al.

(2021), which requires ψτ (v, c) not to increase entropy too much. The finite moment conditions
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in the second and the last part of A10 can be implied by some primitive assumptions provided

in Chernozhukov et al. (2021). The divergence of λn,0 and λn,1 in A11 are necessary to derive

Theorems 1 and 2, which are similar to the setting in Tang et al. (2013). A12 is very standard

and used for the proof under mixing conditions. A13 allows one to verify standard Lindeberg-

Feller conditions for asymptotic normality of the proposed estimators in the proof of Theorem

3; see Cai and Xu (2008) for details on nonparametric quantile regressions models for α-mixing

time series.

A4



Appendix B: Mathematical Proofs of Theorems 1 and 2

In this section, we give certain lemmas with their detailed proofs that are useful for proving

Theorems 1 and 2 in the paper. Of course, notations and assumptions that are used here are

the same as those in the main article. Also note that C and M are denoted as generic constants

that may vary across occurrences. Recall that Ar
Mn

= {δ ∈ RMn : "δ"2 = 1, "δ"0 ≤ r} is the

r-sparse unit sphere in RMn and we use the notation Et to represent the conditional expectation

E{·|Z,W } ≡ E{·|Ft−1}. In proofs of all lemmas and theorems, τ is dropped from cτ for

simplicity.

B.1 Some Lemmas

Lemma B.1. Let β̂ be the minimizer of the function
!n

t=1 ρτ (Yt−X⊤
t β). Then, "

!n
t=1 Xtψτ (Yt−

X⊤
t β̂)" ≤ dim(X)maxt≤n "Xt".

Proof. The proof follows from that of Lemma A.2 in Ruppert and Carroll (1980).

Lemma B.2. Suppose Assumption A1–A13 hold. Let Qτ (c) = E[ρτ{Yt − Π⊤
t c}]. For each

c ∈ RMn, satisfying "c− c̄"2 = ζn ≥ CrnK
−d and "c− c̄"0 ≤ m̆, we have

Qτ (c)−Qτ (c̄) ≥ Cq(m̆)(ζ2
n ∧ ζn)

for some constant C > 0.

Proof. Using Knight’s identity as in Knight (1998), the law of iterated expectations and mean
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value theorem, we have, for z̃ ∈ [0,Π⊤
t (c− c̄)],

Qτ (c)−Qτ (c̄)− E[−Π⊤
t (c− c̄)ψτ (Yt −Π⊤

t c̄)]

=E

%& Π⊤
t (c−c̄)

0

FY |Z,W (Π⊤
t c̄+ z|Z,W )− FY |Z,W (Π⊤

t c̄|Z,W )dz

'

=E

%& Π⊤
t (c−c̄)

0

zfY |Z,W (Π⊤
t c̄|Z,W ) +

z2

2
f
(1)
Y |Z,W (Π⊤

t c̄+ z̃|Z,W )dz

'

≥E

%
1

2
{Π⊤

t (c− c̄)}2fY |Z,W (Π⊤
t c̄|Z,W )

'
− f̄ ′

6
E
(
|Π⊤

t (c− c̄)|3
)

≥
f

2
E[(Π⊤

t δ)
2]ζ2

n −
f̄ ′

6
E[|Π⊤

t δ|3]ζ3
n,

(B.1)

where δ = c−c̄
ζn

∈ Am̆
Mn

and f̄ ′ is defined in Assumption A6. Meanwhile, by Assumption A3, there

exists a constant C > 0 such that supZt∈[a,b]rn(rn+1)/2 |α⊤
τ (Zt)Wt−Π⊤

t c̄| ≤
!rn

l=1 supzl∈Zl
|αlj,τ (zl)−

B⊤
lt c̄lj,τ | ≤ CrnK

−d. Then, we have

$$E[−Π⊤
t (c− c̄)ψτ (Yt −Π⊤

t c̄)]
$$ =

$$$E
*
Π⊤

t (c− c̄)E[ψτ (Yt −Π⊤
t c̄)|Z,W]

+$$$

≤f̄CrnK
−dζn

$$$E[Π⊤
t (c− c̄)/ζn]

$$$

≤Cf̄ζ2
n

$$$E[Π⊤
t (c− c̄)/ζn]

$$$ ≤ Cf̄ζ2
n

,
ϕ̃(m̆).

(B.2)

By Assumption A9, ϕ̃(m̆) is bounded from above. Thus, combining (B.1) and (B.2) yields

Qτ (c)−Qτ (c̄) ≥
f

2
E[(Π⊤

t δ)
2]ζ2

n −
f̄ ′

6
E[|Π⊤

t δ|3]ζ3
n − Cf̄ζ2

n

,
ϕ̃(m̆)

≥
f

3
E[(Π⊤

t δ)
2]ζ2

n −
f̄ ′

6
E[|Π⊤

t δ|3]ζ3
n

=
f

4
E[(Π⊤

t δ)
2]ζ2

n +
f

12
E[(Π⊤

t δ)
2]ζ2

n −
f̄ ′

6
E[|Π⊤

t δ|3]ζ3
n.

(B.3)

Next, define

ζm̆ = sup
*
ζ : Qτ (c̄+ ζd)−Qτ (c̄) ≥

f

4
ζ2E[(Π⊤

t d)
2], for all d ∈ Am̆

Mn

+
.
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By construction of ζm̆ and the convexity of Qτ (·), for any c such that "c− c̄"0 ≤ m̆, we have

Qτ (c)−Qτ (c̄) ≥
f

4
E[(Π⊤

t (c− c̄))2] ∧
-
ζn

infd∈Am̆
Mn

Qτ (c̄+ ζm̆d)−Qτ (c̄)

ζm̆

.
.

Since

ζn

infd∈Am̆
Mn

Qτ (c̄+ ζm̆d)−Qτ (c̄)

ζm̆

≥ ζn

f,(m̆)ζm̆

4

and

f

4
E[(Π⊤

t (c− c̄))2] ≥ ζ2
n

f,(m̆)

4
,

we have

Qτ (c)−Qτ (c̄) ≥ ζn

f,(m̆)ζm̆

4
∧ ζ2

n

f,(m̆)

4
. (B.4)

Note that for any ζ, if

ζ ≥
f

2f̄ ′ inf
δ∈Am̆

Mn

E[|Π⊤
t δ|2]

E[|Π⊤
t δ|3]

=
f

2f̄ ′ϑ(m̆),

it follows that

f

12
E[(Π⊤

t δ)
2]ζ2

n −
f̄ ′

6
E[|Π⊤

t δ|3]ζ3
n > 0.

Then, by (B.3) and the definition of ζm̆, we have ζm̆ ≥ ζ ≥ f

2f̄ ′ϑ(m̆). This, in conjunction with

(B.4), implies that

Qτ (c)−Qτ (c̄) ≥ C1

f,(m̆)

4

-
1 ∧

f

2f̄ ′ϑ(m̆)

.
(ζ2

n ∧ ζn) = C1q(m̆)(ζ2
n ∧ ζn).

These complete the proof of Lemma B.2.

To obtain an upper bound for m̆ = "c̃τ"0, we focus on the following optimization problem,
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which is the dual problem of the linear programming problem of (10) in the main text:

max
a∈Rn

n−1

n/

t=1

Ytat

s.t.

$$$$n
−1

n/

t=1

Plutat

$$$$ ≤
λn,0

n
, l = 1, . . . ,m, u = 1, . . . , (1 + κ)K l,

(τ − 1) ≤ at ≤ τ, t = 1, . . . , n,

(B.5)

where a = (a1, . . . , an)
⊤ and Plut is the uth element of P lt.

Lemma B.3. Suppose Assumption A1–A13 hold. The number m̆ = "c̃τ"0 of nonzero components

in c̃τ satisfies

m̆ = "c̃τ"0 ≤ n ∧Mn ∧
n2ϕ̃(m̆)

λ2
n,0

.

Suppose that Y1, . . . , Yn are absolutely continuous conditional on W 1, . . . ,W n, Z1, . . . , Zn, then

the number of interpolated points, card({t : Yt = Π⊤
t c̃}) is equal to m̆ with probability approaching

to 1.

Proof. The proof follows directly from that of Lemma 6 in Belloni and Chernozhukov (2011).

Based on the rough upper bound of m̆ = "c̃τ"0 in Lemma B.3, one can further refine the

upper bound of m̆. Indeed, by the complementary slackness condition of linear programming in

Theorem 4.5 of Bertsimas and Tsitsiklis (1997), we have

c̃lu > 0 iff n−1

n/

t=1

Plutãt,τ =
λn,0

n
,

and

c̃lu < 0 iff n−1

n/

t=1

Plutãt,τ = −λn,0

n
, (B.6)

for 1 ≤ l ≤ m and 1 ≤ u ≤ (1 + κ)K l, where Plut is the uth component of P lt and ãτ =

(ã1,τ , . . . , ãn,τ )
⊤ solves the dual problem (B.5).

Let ψτ (Vt, c) ≡ {I(Yt ≤ Π⊤
t c) − τ}Πt be the score function of the tth observation, where
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Vt ≡ {Yt,Πt}. Similarly, let ψτ (Vt,ατ (Zt)) ≡ {I(Yt ≤ α⊤
τ (Zt)Wt) − τ}Πt, where ατ (Zt) =

(α⊤
1,1,τ (Zt,1), . . . ,α

⊤
1,m,τ (Zt,m))

⊤ and Wt = (W⊤
t−1, . . . ,W

⊤
t−m)

⊤. Then, define

Sn(c) ≡ n−1

n/

t=1

ψτ (Vt, c) = n−1

n/

t=1

{I(Yt ≤ Π⊤
t c)− τ}Πt

and

S0 ≡ n−1

n/

t=1

ψτ (Vt,ατ (Zt)) = n−1

n/

t=1

{I(Yt ≤ α⊤
τ (Zt)Wt)− τ}Πt.

In addition, define the set of m̆-sparse vectors near c̄ as R(ζ̃n, m̆) = {c ∈ RMn : "c"0 ≤

m̆, CrnK
−d ≤ "c−c̄"2 ≤ ζ̃n} and the sparse sphere associated with a given vector c = (cs)1≤s≤Mn

as S(c) = {δ ∈ RMn : "δ"2 ≤ 1, support(δ) ⊆ support(c)}, where support(δ) = {ȷ : δȷ ∕= 0, 1 ≤

ȷ ≤ Mn, δ = (δȷ)1≤ȷ≤Mn} and support(c) = {s : cs ∕= 0, 1 ≤ s ≤ Mn, c = (cs)1≤s≤Mn}. Also,

define

ε0(m̆, n,Mn) ≡ sup
δ∈Am̆

Mn

n1/2
$$δ⊤[S0 − E{S0}]

$$,

ε1(m̆, n,Mn) ≡ sup
δ∈Am̆

Mn

n1/2
$$δ⊤[Sn(c̄)− E{Sn(c̄)}− (S0 − E{S0})]

$$,

ε2(ζ̃n, m̆, n,Mn) ≡ sup
c∈R(ζ̃n,m̆),δ∈S(c)

n1/2
$$δ⊤[Sn(c)− E{Sn(c)}− Sn(c̄) + E{Sn(c̄)}]

$$,

and

ε3(ζ̃n, m̆, n,Mn) ≡ sup
c∈R(ζ̃n,m̆),δ∈S(c)

n1/2
$$δ⊤[E{Sn(c)}− E{Sn(c̄)}]

$$,

where Am̆
Mn

≡ {δ ∈ RMn : "δ"2 = 1, "δ"0 ≤ m̆}.

Lemma B.4. Suppose that Assumption A1–A13 hold. Then, for any 0 < ! ≤ 1 and for some

0 ≤ ν < 1/2, we have

ε0(m̆, n,Mn) ≲p (log((n ∨Mn)/!))
ν+1/2"ψ0

τ,·"ψν ,0.

where ψ0
τ,· is presented in Section 2.3 of the main text.
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Proof. Similar to the proof of Lemma B.10 in Chernozhukov et al. (2021), since

ε0(m̆, n,Mn) = sup
δ∈Am̆

Mn

n−1/2

n/

t=1

δ⊤[ψτ (Vt,ατ (Zt))− E{ψτ (Vt,ατ (Zt))}],

consider the class of function Fα = {v ,→ δ⊤ψτ (v,ατ (Zt)), δ ∈ Am̆
Mn

}, the cardinality of the

set is card(Fα) = n ∨ Mn. Then, for any 0 < ! ≤ 1, the corresponding covering number

is given by supQ N (!"F̄α"Q,2,Fα, " · "Q,2) = (n ∨ Mn)/!, with F̄α = supf∈Fα
|f |. Recall that

ψ0
τ,t ≡ ψτ (Vt,ατ (Zt)) and applying the tail probability bounds in Lemma B.4 in Chernozhukov

et al. (2021), we have

ε0(m̆, n,Mn) ≲ (log((n ∨Mn)/!))
ν+1/2 max

f∈Fα

"f(v.)"ψν ,0 ≤ C(log((n ∨Mn)/!))
ν+1/2"ψ0

τ,·"ψν ,0.

Then, we complete the proof of Lemma B.4.

Lemma B.5. Under Assumption A1–A13, we have

ε1(m̆, n,Mn) ≲p

,
m̆(ϕ̃(m̆) ∨ ϕ(m̆)).

Proof. First, write ε1(m̆, n,Mn) as

ε1(m̆, n,Mn) = sup
δ∈Am̆

Mn

n1/2δ⊤[Sn(c̄)− S0 − E{Sn(c̄)− S0}]
$$

≡ sup
δ∈Am̆

Mn

n−1/2

$$$$
n/

t=1

Vnt(δ)− E(Vnt(δ))

$$$$

≤ sup
δ∈Am̆

Mn

n−1/2

$$$$
n/

t=1

Vnt(δ)− Et(Vnt(δ))

$$$$+ sup
δ∈Am̆

Mn

n−1/2

$$$$
n/

t=1

Et(Vnt(δ))− E(Vnt(δ))

$$$$

≡Bn1 +Bn2

where Vnt(δ) ≡ [ψτ (Yt −Π⊤
t c̄)− ψτ (Yt −α⊤

τ (Zt)Wt)]δ
⊤Πt.

Now, we derive the upper bound of Bn1. For any 0 < ! ≤ 1, covering the ball Am̆
Mn

with cubes
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C = {Cı}, where Cı is a cube with center δı and side length 1/n, we have that card(C) = nm̆ =

N(n) and for δ ∈ Cı, "δ − δı" ≤ m̆1/2/n. Thus,

Bn1 ≡ sup
δ∈Am̆

Mn

n−1/2

$$$$
n/

t=1

Vnt(δ)− Et(Vnt(δ))

$$$$

≤ max
1≤ı≤N(n)

n−1/2

$$$$
n/

t=1

Vnt(δı)− Et(Vnt(δı))

$$$$

+ m̆1/2n−3/2

n/

t=1

0
[ψτ (Yt −Π⊤

t c̄)− ψτ (Yt −α⊤
τ (Zt)Wt)]

− Et{ψτ (Yt −Π⊤
t c̄)− ψτ (Yt −α⊤

τ (Zt)Wt)}
1

≡Bn11 +Bn12.

We only focus on Bn11, since Bn12 can be bounded in the same way. Notice that for any 6 > 0,

|ψτ (Yt − Π⊤
t c̄) − ψτ (Yt − α⊤

τ (Zt)Wt)|- = I(u3t < Yt ≤ u4t), where u3t = min(q2t, q3t) and

u4t = max(q2t, q3t) with q2t = Π⊤
t c̄ and q3t = α⊤

τ (Zt)Wt. Therefore, by Assumption A6, there

exists a constant C > 0 such that

E{|ψτ (Yt −Π⊤
t c̄)− ψτ (Yt −α⊤

τ (Zt)Wt)|-|Zt,W t} = FY |Z,W (u4t)− FY |Z,W (u3t)

≤ C|Π⊤
t c̄−α⊤

τ (Zt)Wt|,
(B.7)

which implies by Assumption A3 and A9 that

Et|Vnt(δ)|2 ≤ C|Π⊤
t c̄−α⊤

τ (Zt)Wt|
2
1

n

n/

t=m+1

δ⊤ΠtΠ
⊤
t δ

3
≤ CrnK

−dϕ(m̆).

Thus, we have

W 2
n =

n/

t=m+1

Et[Vnt(δı)− Et(Vnt(δı))]
2 ≤

n/

t=m+1

Et[Vnt(δı)]
2 = O(rnnK

−dϕ(m̆))
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and

U2
n =

n/

t=m+1

[Vnt(δı)− Et(Vnt(δı))]
2 = Op(rnnK

−dϕ(m̆)).

Also, notice that ηnt(δı) ≡ {Vnt(δı)−Et(Vnt(δı))} is a martingale difference sequence. Therefore,

let L = rnnK
−dϕ(m̆) and M =

,
m̆ϕ(m̆). Thus, we have

P

%
max

1≤ı≤N(n)

$$$$$
1√
n

n/

t=m+1

{Vnt(δı)− Et(Vnt(δı))}

$$$$$ > M

'

≤ N(n)max
ı

P

%$$$$$
1√
n

n/

t=m+1

{Vnt(δı)− Et(Vnt(δı))}

$$$$$ > M

'

≤ N(n)max
ı

P

%$$$$$

n/

t=m+1

ηnt(δı)

$$$$$ >
√
nM,W 2

n + U2
n ≤ L

'

+N(n)max
ı

P

%$$$$$

n/

t=m+1

ηnt(δı)

$$$$$ >
√
nM,W 2

n + U2
n > L

'
≡ Dn,1 +Dn,2. (B.8)

For Dn,1, by exponential inequality for martingale difference sequences (see, e.g., Bercu and

Touati, 2008), we have

N(n)max
ı

P

%$$$$$

n/

t=m+1

ηnt(δı)

$$$$$ >
√
nM,W 2

n + U2
n ≤ L

'

≤2N(n) exp

4
− nM2

2L

5
.

For Dn,2, because P [W 2
n + U2

n > L] ≤ P [W 2
n > L/2] + P [U2

n > L/2] and each term can be

bounded exponentially under Assumptions A1, A7 and A8. Thus, Bn11 = Op(
,
m̆ϕ(m̆)). Simi-

larly, one can show that Bn12 = op(
,
m̆ϕ(m̆)). Therefore, Bn1 = Op(

,
m̆ϕ(m̆)).

Next, we consider Bn2. Similar to the proof of Lemma B.4, define the class of function Fαc̄ =

{v ,→ δ⊤[ψτ (v,ατ (Zt))−ψτ (v, c̄)], δ ∈ Am̆
Mn

}, the cardinality of the set is card(Fαc̄) = n∨Mn. For

any 0 < ! ≤ 1, the corresponding covering number of Fαc̄ is given by supQ N (!"F̄αc̄"Q,2,Fαc̄, " ·

"Q,2) = (n ∨ Mn)/!, with F̄αc̄ = supf∈Fαc̄
|f |. Therefore, for any f ∈ Fαc̄, there exists a set
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Fαc̄,n such that minf ′∈Fαc̄,n "f − f ′"Q,2 ≤ !̃, where !̃ ≡ !"2F̄αc̄"Q,2, and the cardinality of Fαc̄,n is

card(Fαc̄,n) = (n∨Mn)/!. Let φt ≡ f(vt) = (φs,t)1≤s≤card(Fαc̄,n) be the vector of length card(Fαc̄,n)

and denote φ̆s,t = E(φs,t|Ft−1)− E(φs,t). Then,

Bn2 ≤ max
1≤s≤card(Fαc̄,n)

n−1/2

$$$$
n/

t=1

φ̆s,t

$$$$.

Thus, applying the tail probability bounds in Lemma B.4 in Chernozhukov et al. (2021) to the

vector φ̆s,t, we have with probability greater than 1− o(1),

max
1≤s≤card(Fαc̄,n)

n−1/2

$$$$
n/

t=1

φ̆s,t

$$$$ ≲p (log((n ∨Mn)/!))
ν+1/2"φ̆s,·"ψν ,0. (B.9)

To bound "φ̆s,·"ψν ,0 in (B.9), notice that by (B.7),

E|φ̆s,t|2 ≤ C|Π⊤
t c̄−α⊤

τ (Zt)Wt|2E{δ⊤ΠtΠ
⊤
t δ} ≤ C(rnK

−d)2ϕ̃(m̆).

Following Wu (2005), the definition of "φ̆s,·"2,0 implies that "φ̆s,·"2,0 ≤ 2(E|φ̆s,t|2)1/2. Since

(E|φ̆s,t|p)1/p ≤ (E|φ̆s,t|2)1/2 when p ≥ 2, we have "φ̆s,·"ψν ,0 = supq≥2 q
−1/2"φ̆s,·"q,0 ≤ "φ̆s,·"2,0 ≤

C(rnK
−d)

,
ϕ̃(m̆). Thus, (B.9) becomes to

Bn2 ≤ max
1≤s≤card(Fαc̄,n)

n−1/2

n/

t=1

φ̆s,t ≲p (log((n ∨Mn)/!))
ν+1/2(rnK

−d)
,
ϕ̃(m̆) ≤ C

,
m̆ϕ̃(m̆).

As P (Bn1 + Bn2 ≥ x) ≤ P (Bn1 ≤ x/2) + P (Bn2 ≤ x/2), we complete the proof of Lemma

B.5.

Lemma B.6. Under Assumption A1–A13, for any 0 < ! ≤ 1 and for some 0 ≤ ν < 1/2, we

have

ε2(ζ̃n, m̆, n,Mn) ≲p (m̆ log((n ∨Mn)/!))
ν+1/2

*
(ϕ̃(m̆))1/2 + " max

c∈R(ζ̃n,m̆)
∂cE{ψτ (V·, c)|F·}"ψν ,0

+
.
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Proof. The proof of Lemma B.6 is similar to that of Lemma B.9 in Chernozhukov et al. (2021).

In particular, consider the class of function F̃c = {v ,→ δ⊤[ψτ (v, c)−ψτ (v, c̄)], c ∈ R(ζ̃n, m̆), δ ∈

S(c)}. By Assumption A10, the entropy of the function set F̃c is given by ent(!, F̃c) ≤

Cm̆ log((n∨Mn)/!), for some C > 0. Therefore, for any f ∈ F̃c, there exists a set Fc,n such that

minf ′∈Fc,n "f − f ′"Q,2 ≤ !̄, where !̄ ≡ !"2F̄c"Q,2, F̄c = supf∈F̄c
|f | and the cardinality of Fc,n is

card(Fc,n) = ((n ∨Mn)/!)
Cm̆. Then, we have

sup
f∈F̃c

$$$$
1

n

n/

t=1

[f − χ(f)− E{f − χ(f)}]
$$$$ ≤ 2!̄,

where χ(f) ≡ arg min
f ′∈F̃c

"f − f ′"Q,2. Define En(f) = En(f(vt)) ≡ n−1
!n

t=1 f(vt). Hence, with

probability 1− o(1),

ε2(ζ̃n, m̆, n,Mn) = sup
c∈R(ζ̃n,m̆),δ∈S(c)

n1/2
$$δ⊤[Sn(c)− Sn(c̄)− E{Sn(c)− Sn(c̄)}]

$$

=n1/2 sup
f∈F̃c

$$[En(f)− En{π(f)}− E(f) + E{π(f)}] + [En{π(f)}− E{π(f)}]
$$

≤2n1/2!̄+ n1/2 max
f∈Fc,n

$$En(f)− E(f)
$$

≤2n1/2!̄+ n1/2 max
f∈Fc,n

$$En(f)− En(E(f |Ft−1))
$$

+ n1/2 max
f∈Fc,n

$$En(E(f |Ft−1))− E(f)
$$

≡2n1/2!̄+ Cn,1 + Cn,2.

(B.10)

Now, we look for the bounds for Cn,1. Consider the function set Fc,n, for each f ∈ Fc,n, let

ϕt ≡ f(vt) = (ϕs,t)1≤s≤card(Fc,n) and ϕ̃t ≡ (ϕ̃s,t)1≤s≤card(Fc,n) be vectors with length card(Fc,n) =

((n ∨Mn)/!)
Cm̆, where ϕ̃s,t ≡ ϕs,t − E(ϕs,t|Ft−1) form martingale differences. Again, following

Wu (2005), the definition of "ϕ̃s,·"2,0 implies that "ϕ̃s,·"2,0 ≤ 2(E|ϕ̃s,t|2)1/2 ≲ 8(E|ϕs,t|2)1/2.

Moreover, by |δ⊤[ψτ (v, c)−ψτ (v, c̄)]| ≤ C|δ⊤Πt| for sufficiently large C > 0, we have E|ϕs,t|2 ≤

supδ∈Am̆
Mn

E[(δ⊤Πt)
2] = ϕ̃(m̆). Since (E|ϕ̃s,t|p)1/p ≤ (E|ϕ̃s,t|2)1/2 when p ≥ 2, we have "ϕ̃s,·"ψν ,0 =

supq≥2 q
−1/2"ϕ̃s,·"q,0 ≤ "ϕ̃s,·"2,0 ≤ C

,
ϕ̃(m̆). Then, applying the tail probability bounds in
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Lemma B.4 in Chernozhukov et al. (2021) to the vector ϕ̃s,t, we have with probability greater

than 1− o(1),

Cn,1 ≲p (m̆ log((n ∨Mn)/!))
ν+1/2"ϕ̃s,·"ψν ,0 ≤ C(m̆ log((n ∨Mn)/!))

ν+1/2(ϕ̃(m̆))1/2. (B.11)

Next, we handle the term Cn,2. Again, for each f ∈ Fc,n, let ϕ̆s,t = E(ϕs,t|Ft−1) − E(ϕs,t).

Then,

Cn,2 ≤ max
1≤s≤card(Fc,n)

n−1/2

$$$$
n/

t=1

ϕ̆s,t

$$$$.

Moreover, for 1 ≤ s ≤ card(Fc,n), there is a function g corresponding to each f ∈ Fc,n such

that ϕ̆s,t = g(vt, c), where c ∈ R(ζ̃n, m̆). By the mean value theorem and the continuity of the

function g, we have

g(vt, c) = ∂cg(vt, c
∗)(c− c̄),

where c∗ is the corresponding point which joins the line segment between c and c̄. Then,

max
1≤s≤card(Fc,n)

n−1/2

n/

t=1

ϕ̆s,t = max
c∗∈F c

c,n

n−1/2

n/

t=1

∂cg(vt, c
∗)(c− c̄),

where F c
c,n collects all the points of c according to Fc,n. Thus, we have

max
1≤s≤card(Fc,n)

n−1/2

n/

t=1

ϕ̆s,t ≲p(m̆ log((n ∨Mn)/!))
ν+1/2"∂cg(vt, c∗)"ψν ,0

≲(m̆ log((n ∨Mn)/!))
ν+1/2" max

c∈R(ζ̃n,m̆)
∂cE{ψτ (V·, c)|F·}"ψν ,0

(B.12)

As P (Cn,1 + Cn,2 ≥ x) ≤ P (Cn,1 ≤ x/2) + P (Cn,2 ≤ x/2) and collecting the results from (B.11)

and (B.12), we complete the proof of Lemma B.6.

Lemma B.7. Under Assumption A1–A13, we have

ε3(ζ̃n, m̆, n,Mn) ≲p

,
nϕ̃(m̆)(

,
ϕ̃(m̆)f̄ ζ̃n ∧ 1).
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Proof. The proof is the same as that of Lemma 4 in Tang et al. (2013). We omit the proof

here.

Lemma B.8. Let Φc
ψν ,0

≡ "maxc∈R(ζ̃n,m̆) E{ψτ (V·, c)|F·}"ψν ,0 and µ(m̆) =
,
ϕ(m̆)(f̄

,
ϕ(m̆)∨1).

Suppose that Assumption A1–A13 hold and Y1, . . . , Yn are absolutely continuous conditional on

Z1, . . . , Zn, W1, . . . ,Wn. Then, for some 0 ≤ ν < 1/2, we have

√
m̆ ≲p µ(m̆)

n

λn,0

(ζ̃n ∧ 1) +
√
m̆

,
n log((n ∨Mn)/!)){(ϕ̃(m̆))1/2 + Φc

ψν ,0
}

λn,0

(m̆ log((n ∨Mn)/!))
ν .

Proof. Similar to Tang et al. (2013), four vectors of rank scores (dual variables) are defined to

derive the proof:

1. the true rank scores, a∗t,τ = τ − I(Yt < α⊤
τ (Zt)Wt) for t = 1, . . . , n;

2. the oracle rank scores, āt,τ = τ − I(Yt < Π⊤
t c̄) for t = 1, . . . , n;

3. the estimated rank scores, at,τ = τ − I(Yt < Π⊤
t c̃) for t = 1, . . . , n;

4. the dual optimal rank scores, ãt,τ , t = 1, . . . , n, that solve the dual program (B.5).

Let T̃ = support(c̃), and let ΠtT̃ and c̃T̃ be the corresponding sub-vectors of Πt and c̃,

respectively. From (B.6), we have that

√
m̆ = "sign(c̃T̃ )"2 =

66666

!n
t=1 ΠtT̃ ãt,τ
λn,0

66666
2

. (B.13)

Using the triangle inequality on (B.13),

λn,0

√
m̆ ≤

6666
n/

t=1

ΠtT̃{ãt,τ − at,τ}
6666
2

+

6666
n/

t=1

ΠtT̃{at,τ − āt,τ}
6666
2

+

6666
n/

t=1

ΠtT̃{āt,τ − a∗t,τ}
6666
2

+

6666
n/

t=1

ΠtT̃a
∗
t,τ

6666
2

(B.14)

To bound the first component, following the proof of Lemma 5 in Tang et al. (2013), we observe

that ãt,τ ∕= at,τ only if Yt = Π⊤
t c̃. By Lemma B.3, the penalized quantile regression fit can

interpolate at most m̆ points with probability one. This implies that n−1
!n

t=1{ãt,τ − at,τ}2 ≤
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m̆/n. Thus, by Cauchy–Schwarz inequality,

6666
n/

t=1

ΠtT̃{ãt,τ − at,τ}
6666
2

≤n sup
δ∈Am̆

Mn

n−1

n/

t=1

|δ⊤Πt||ãt,τ − at,τ |

≤n

2
sup

δ∈Am̆
Mn

n−1

n/

t=1

|δ⊤Πt|2
31/22

n−1

n/

t=1

|ãt,τ − at,τ |2
31/2

≤n

2
ϕ(m̆)

m̆

n

31/2

=
,
nm̆ϕ(m̆).

(B.15)

For the second component, note that by Lemma B.6 and B.7,

6666
n/

t=1

ΠtT̃{at,τ − āt,τ}
6666
2

≤
6666

n/

t=1

2
ΠtT̃{at,τ − āt,τ}− E[ΠtT̃{at,τ − āt,τ}]

36666
2

+

6666
n/

t=1

E[ΠtT̃{at,τ − āt,τ}]
6666
2

≤n1/2ε2(ζ̃n, m̆, n,Mn) + n1/2ε3(ζ̃n, m̆, n,Mn)

≤
,
nm̆ log((n ∨Mn)/!)(m̆ log((n ∨Mn)/!))

ν{(ϕ̃(m̆))1/2 + Φc
ψν ,0}

+ n
,
ϕ̃(m̆)(

,
ϕ̃(m̆)f̄ ζ̃n ∧ 1).

(B.16)

To bound the third component, following the same argument as in the proof of Lemma 5 in Tang

et al. (2013) and by Lemma B.5, we have

6666
n/

t=1

ΠtT̃{āt,τ − a∗t,τ}
6666
2

≤
6666

n/

t=1

2
ΠtT̃{āt,τ − a∗t,τ}− E[ΠtT̃{āt,τ − a∗t,τ}]

36666
2

+

6666
n/

t=1

E[ΠtT̃{āt,τ − a∗t,τ}]
6666
2

≤n1/2ε1(m̆, n,Mn) + n sup
δ∈Am̆

Mn

$$δ⊤[E{Mn(c̄)}− E{M0}]
$$

≲p

,
nm̆(ϕ̃(m̆) ∨ ϕ(m̆)).

(B.17)
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As for the last part, we use lemma B.4 to obtain

6666
n/

t=1

ΠtT̃a
∗
t,τ

6666
2

≤ n1/2ε0(m̆, n,Mn)

≲p

,
nm̆ log((n ∨Mn)/!)(log((n ∨Mn)/!))

νm̆−1/2"ψ0
τ,·"ψν ,0.

(B.18)

Then, combining (B.15)-(B.18), we have

√
m̆ ≲pµ(m̆)

n

λn,0

(ζ̃n ∧ 1) +
√
m̆

,
n log((n ∨Mn)/!)){(ϕ̃(m̆))1/2 + Φc

ψν ,0
}

λn,0

(m̆ log((n ∨Mn)/!))
ν ,

which gives us the result in lemma B.8.

Lemma B.9. Suppose that Assumption A1–A13 hold. Let Qτ (c) = E{ρτ (Yt −Π⊤
t c)}, Q̂τ (c) =

n−1
!n

t=1 ρτ (Yt −Π⊤
t c). Then, we have

$$Q̂τ (c)−Qτ (c)−
7
Q̂τ (c̄)−Qτ (c̄)

8$$

≲p
ζ̃n√
n
((m̆+Rn) log((n ∨Mn)/!))

ν+1/2{(ϕ̃(m̆+Rn))
1/2 + Φc

ψν ,0}
(B.19)

uniformly over c ∈ R(ζ̃n, m̆).

Proof. Note that − (c−c̄)⊤

ζ̃n
Sn

2
ζ̃n−z

ζ̃n
c + z

ζ̃n
c̄

3
is the sub-gradient of Q̂τ

2
ζ̃n−z

ζ̃n
c + z

ζ̃n
c̄

3
, where

ζ̃n ≥ "c− c̄"2 and "c− c̄"0 ≤ m̆+Rn. Therefore, we have

$$Q̂τ (c)−Qτ (c)−
7
Q̂τ (c̄)−Qτ (c̄)

8$$ ≤ b1 + b2,

where

b1 ≡

$$$$$

& ζ̃n

0

(c− c̄)⊤

ζ̃n

4
Sn

4
ζ̃n − z

ζ̃n

c+
z

ζ̃n

c̄

5
−E

-
Sn

4
ζ̃n − z

ζ̃n

c+
z

ζ̃n

c̄

5.
−[Sn(c̄)−E{Sn(c̄)}]

5
dz

$$$$$,
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and

b2 ≡ ζ̃n

$$$$$
(c− c̄)⊤

ζ̃n

[Sn(c̄)− E{Sn(c̄)}]

$$$$$.

By Lemma B.6,

b1 ≤n−1/2

& ζ̃n

0

ε2(ζ̃n, m̆+Rn, n,Mn)dz =
ζ̃n√
n
ε2(ζ̃n, m̆+Rn, n,Mn)

≲p
ζ̃n√
n
((m̆+Rn) log((n ∨Mn)/!))

ν+1/2{(ϕ̃(m̆+Rn))
1/2 + Φc

ψν ,0}.

As for b2, define the class of function F ′
c̄ = {v ,→ δ⊤ψτ (v, c̄), δ ∈ Am̆+Rn

Mn
}. Then, similar to the

proof of Lemma B.4, one can easily show that

b2 ≲p
ζ̃n√
n
(log((n ∨Mn)/!))

ν+1/2 max
f∈F ′

c̄

"f(v.)"ψν ,0 = o(b1).

Then, Lemma B.9 is proved.

B.2 Proof of Theorem 1:

Proof. Recall that ζ̃n = "c̃− c̄"2, m̆ = "c̃"0 and m0 = Mn ∧
2

n
log(n∨Mn)

q2

µ2

3
.

(I) We first show that m̆ ≤ m0 if ℵ ≥
√
2. Since m̆ ≤ Mn is trivial, we only need to verify the

result for m0 =
n

log(n∨Mn)
q2

µ2 .

By Lemma B.3, we have

m̆ ≤ m̄ = max

-
m : m ≤ n ∧Mn ∧

n2ϕ(m)

λ2
n,0

.
.

Suppose that m̄ > m0 when ℵ ≥
√
2. Therefore, we have m̄ = ℓm0 for some ℓ > 1. By definition,

m̄ satisfies the inequality

m̄ ≤ n2ϕ(m̄)

λ2
n,0

. (B.20)

Since λn,0 = ℵ
,
n log(n ∨Mn)ϕ(m0 +Rn)(m0 log(n ∨Mn))

ν µ
q
for some 0 ≤ ν < 1/2 and ϕ(m0)
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is bounded, it is clear that λn,0 ≥ ℵ
,
n log(n ∨Mn)ϕ(m0)

µ
q
. Inserting this bound on λn,0,

m0 =
n

log(n∨Mn)
q2

µ2 , and m̄ = ℓm0 into (B.20), one can obtain that when ℵ ≥
√
2,

m̄ = ℓm0 ≤
n2

ℵ2n log(n ∨Mn)

ϕ(ℓm0)

ϕ(m0)

q2

µ2
<

n

ℵ2 log(n ∨Mn)
2ℓ

q2

µ2
=

2

ℵ2
ℓm0 ≤ ℓm0,

which is a contradiction.

(II) We now prove that ζ̃n = op(1).

Define T̄ ≡ {l : "c̄l,τ"1 > 0, l = 1, . . . ,m} = {1, 2, . . . , rn}. Let c̃T̄ denote a vector whose T̄

groups agree with that of c̃, and whose remaining groups equal zero.

By definition of c̃ and since "c̃T̄"1 ≤ "c̃"1, we have

Q̂τ (c̃)− Q̂τ (c̄) ≤
λn,0

n
("c̄"1 − "c̃"1) ≤

λn,0

n
("c̄"1 − "c̃T̄"1)

≤λn,0

n

$$$$"c̄"1 − "c̃T̄"1
$$$$ ≤

λn,0

n
"c̄− c̃T̄"1

≤λn,0

n

9::;
rn/

l=1

Rl,n"c̄− c̃T̄"2 ≤
λn,0

n

,
Rnζ̃n.

Applying (B.19) yields

Qτ (c̃)−Qτ (c̄) ≲p
λn,0

n

,
Rnζ̃n +

ζ̃n√
n
((m̆+Rn) log((n ∨Mn)/!))

ν+1/2{(ϕ̃(m̆+Rn))
1/2 + Φc

ψν ,0}.

By Lemma B.2 and by the definition of ζ̃n, we obtain,

q(ζ̃
2

n ∧ ζ̃n) ≲p
λn,0

n

,
Rnζ̃n +

ζ̃n√
n
((m̆+Rn) log((n ∨Mn)/!))

ν+1/2{(ϕ̃(m̆+Rn))
1/2 + Φc

ψν ,0}

(B.21)

By Assumption A9, A11 and by the construction of λn,0, one can obtain that

(i)

λn,0

√
Rn

n
= op(q),
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(ii)

(Rn log((n ∨Mn)/!))
ν+1/2{(ϕ̃(m̆+Rn))

1/2 + Φc
ψν ,0

}
√
n

µ

q
≤ Cλn,0

√
Rn

nℵ

2
Rn

m0

3ν

o(ℵ) = op(q)

(iii)

µ

,
n log((n ∨Mn)/!){(ϕ̃(m̆+Rn))

1/2 + Φc
ψν ,0

}
λn,0

(m̆ log((n ∨Mn)/!))
ν = op(q).

for some constant C > 0 and by choosing ! such that

2
log((n∨Mn)/!)/ log(n∨Mn)

3ν+1/2

= o(ℵ).

Result (iii), the fact that µ ≥ q, m̆ ≤ n∧Mn, and the empirical sparseness in Lemma B.8 imply

that

√
m̆ ≲p µ

n

λn,0

(ζ̃n ∧ 1) +
√
m̆op(1), (B.22)

which implies

√
m̆ ≲p µ

n

λn,0

, (B.23)

Using (B.23), m̆ ≤ n ∧Mn and m̆ > Rn in (B.21) gives

I(m̆ > Rn)q(ζ̃
2

n ∧ ζ̃n)

≲p
λn,0

n

,
Rnζ̃n + ζ̃nµ

,
n log((n ∨Mn)/!){(ϕ̃(m̆+Rn))

1/2 + Φc
ψν ,0

}
λn,0

(m̆ log((n ∨Mn)/!))
ν

=ζ̃nop(q),

(B.24)

where the last equality follows by results (i) and (ii). On the other hand, when m̆ ≤ Rn, (B.21)

yields

I(m̆ ≤ Rn)q(ζ̃
2

n ∧ ζ̃n) ≲p
λn,0

n

,
Rnζ̃n + ζ̃n

(Rn log((n ∨Mn)/!))
ν+1/2{(ϕ̃(m̆+Rn))

1/2 + Φc
ψν ,0

}
√
n

=ζ̃nop(q),

(B.25)

where the last equality follows by results (i) and (ii) and µ ≥ q. Adding both sides of (B.24)
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and (B.25), we have

q(ζ̃
2

n ∧ ζ̃n) = ζ̃nop(q). (B.26)

Dividing both sides of (B.26) by q and by ζ̃n, we have I(ζ̃n > 0)(ζ̃n ∧ 1) ≲p I(ζ̃n > 0)op(1),

which implies that ζ̃n = op(1).

(III) Finally, we derive the rate of convergence of ζ̃n and the final bound of m̆. Using the

result ζ̃n = op(1) and (B.22), we have

√
m̆ ≲p µ

nζ̃n

λn,0

. (B.27)

When m̆ ≤ Rn, the final bound of m̆ is found. Otherwise, plugging (B.27) into (B.21), we have

ζ̃n√
n
((m̆+Rn) log((n ∨Mn)/!))

ν+1/2{(ϕ̃(m̆+Rn))
1/2 + Φc

ψν ,0}

≲pζ̃
2

nµ

,
n log((n ∨Mn)/!){(ϕ̃(m̆+Rn))

1/2 + Φc
ψν ,0

}
λn,0

(m̆ log((n ∨Mn)/!))
ν = ζ̃

2

nop(q).

This, in conjunction with ζ̃n = op(1) and (B.21), gives that

qζ̃
2

n ≲p
λn,0

n

,
Rnζ̃n + ζ̃

2

nop(q),

or equivalently,

ζ̃n ≲p
λn,0

√
Rn

nq
. (B.28)

Finally, inserting (B.28) into (B.27), we obtain the final bound of "c̃"0, which is "c̃"0 = m̆ ≲p

(µ/q)2Rn.

B.3 Proof of Theorem 2:

We obtain from Theorem 1 that ζ̃n = op(1), m̆ = "c̃"0 ≲p Rn, and all the nonzero c̄l,

1 ≤ l ≤ rn, are selected with probability approaching one. Recall that T̃n = {l : "c̃l" > 0, l =
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1, . . . ,m}. Since "c̃"0 ≲p Rn, we conclude that card(T̃n) is bounded by mA < CRn, for some

positive constant C. Without loss of generality, we define ΠA,t = (P⊤
1t, . . . ,P

⊤
mAt)

⊤ and denote

cA = (c⊤1 , . . . , c
⊤
mA

)⊤ and c̄A = (c̄⊤1 , . . . , c̄
⊤
mA

)⊤ as the corresponding sub-vectors. Therefore, we

rewrite (11) in the main text as

Q1(cA) =
1

n

n/

t=m+1

ρτ
<
Yt −Π⊤

A,tcA
=
+

λn,1

n

mA/

l=1

ω̃l"cl"1. (B.29)

Denote ĉA as the minimizer of Q1(cA). The definition of ω̃l and the consistency of the first-stage

estimator together indicate that there exists two positive constants C1 and C2 such that ω̃l ≤ C1

for 1 ≤ l ≤ rn, and ω̃l ≥ C2ζ̃
−1

n for rn+1 ≤ l ≤ mA. By Assumption A9, one can verify that, the

eigenvalues of n−1
!n

t=m+1 ΠA,tΠ
⊤
A,t are uniformly bounded away from zero and from infinity,

with probability approaching one.

(I) Proof of part (a)

Proof. To show the variable selection consistency, we only need to verify ĉl = 0, for l = rn +

1, . . . ,mA, which suffices to prove that

>
?@

?A

∂Q1(cA)
∂clu

< 0, if clu < 0

∂Q1(cA)
∂clu

> 0, if clu > 0

for u = 1, . . . , (1 + κ)K l and l = rn + 1, . . . ,mA. To this end, denote ΠA,ıt as the ıth element of

ΠA,t for ı ∈ {1, . . . , (1 + κ)
!mA

l=rn+1 K
l}, we need to show that

6666
n/

t=m+1

ψτ (Yt −Π⊤
A,tĉA)ΠA,ıt

6666 ≤ λn,1ω̃l

for l ∈ {rn + 1, . . . ,mA}. Indeed, by Lemma B.1, we have

6666
n/

t=m+1

ψτ (Yt −Π⊤
A,tĉA)ΠA,ıt

6666 ≤Rn max
m+1≤t≤n

|ΠA,ıt| = O(Rn).
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Then, with ζ̃nR
1/2
n → 0 and by Assumption A11, one has

(λn,1ω̃l)
−1

6666
n/

t=m+1

ψτ (Yt −Π⊤
A,tĉA)ΠA,ıt

6666 ≤ CRnλ
−1
n,1ζ̃n = Cζ̃nR

1/2
n (R−1/2

n λn,1)
−1 = o(1),

where the first inequality follows from ω̃l ≥ C2ζ̃
−1

n , for rn+1 ≤ l ≤ mA. Thus,

6666
!n

t=m+1 ψτ (Yt−

Π⊤
A,tĉA)ΠA,ıt

6666 is dominated by λn,1ω̃l, for l = rn + 1, . . . ,mA. These complete the proof of part

(a).

(II) Proof of part (b)

Proof. Define Cn = {cA : "cA − c̄A"2 = C(Rn/n)
1/2} for some sufficiently large C > 0. Using

Knight’s identity, we have

n{Q1(cA)−Q1(c̄A)} =
n/

t=m+1

[ρτ{Yt −Π⊤
A,tcA}− ρτ{Yt −Π⊤

A,tc̄A}]

+ λn,1

mA/

l=1

ω̃l("cl"1 − "c̄l"1)

≡Ln1 + Ln2 + Ln3 + Ln4,

where

Ln1 ≡
n/

t=m+1

Π⊤
A,t(cA − c̄A)ψτ (Yt −Π⊤

A,tc̄A) ≡
n/

t=m+1

L
(1)
nt ,

Ln2 ≡
n/

t=m+1

E

%& Π⊤
A,t(cA−c̄A)

0

I(Yt −Π⊤
A,tc̄A ≤ z)− I(Yt −Π⊤

A,tc̄A ≤ 0)dz

'
,

Ln3 ≡
n/

t=m+1

-& Π⊤
A,t(cA−c̄A)

0

I(Yt −Π⊤
A,tc̄A ≤ z)− I(Yt −Π⊤

A,tc̄A ≤ 0)dz

− E

%& Π⊤
A,t(cA−c̄A)

0

I(Yt −Π⊤
A,tc̄A ≤ z)− I(Yt −Π⊤

A,tc̄A ≤ 0)dz

'.
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and

Ln4 ≡ λn,1

mA/

l=1

ω̃l("cl"1 − "c̄l"1).

First, we derive the upper bound of Ln1. Notice that

E(Ln1)
2 =

n/

t=m+1

V ar(L
(1)
nt ) + 2

n−1/

ℓ=1

(1− ℓ

n
)Cov(L

(1)
n1 , L

(1)
n(ℓ+1))

≤ nV ar(L
(1)
n1 ) + 2n

dn−1/

ℓ=1

|Cov(L
(1)
n1 , L

(1)
n(ℓ+1))|+ 2n

∞/

ℓ=dn

|Cov(L
(1)
n1 , L

(1)
n(ℓ+1))|

≡ J1 + J2 + J3,

with dn → ∞ specified later. First, we consider the last term, J3, in the above equation. To this

end, using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)), one has

|Cov(L
(1)
n1 , L

(1)
n(ℓ+1))| ≤ Cα1−2/δ(ℓ)[E|L(1)

n1 |δ]2/δ. (B.30)

Notice that for any k > 0, |ψτ (Yt −Π⊤
A,tc̄A)|k = |τ − I(Yt < Π⊤

A,tc̄A)|k = |I(Yt < α⊤
τ (Zt)Wt) −

I(Yt < Π⊤
A,tc̄A)|k. Therefore, by Assumption A6, there exists a C > 0 such that

E[|ψτ (Yt −Π⊤
A,tc̄A)|k|Zt,W t] =E[|I(Yt < α⊤

τ (Zt)Wt)− I(Yt < Π⊤
A,tc̄A)|k|Zt,W t]

≤FY |Z,W (α⊤
τ (Zt)Wt|Z,W )− FY |Z,W (Π⊤

A,tc̄A|Z,W ) ≤ CrnK
−d,

which implies that

E|L(1)
n1 |δ = E[|Π⊤

A,t(cA − c̄A)|δ|ψτ (Yt −Π⊤
A,tc̄A)|δ] ≤ C(Rn/n

1/2)δrnK
−d.
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This, in conjunction with (B.30), gives that

J3 ≤Cn((Rn/n
1/2)δrnK

−d)2/δ
∞/

ℓ=dn

α1−2/δ(ℓ) ≤ Cn(R2
n/n)r

2/δ
n K−2d/δd−w

n

∞/

ℓ=dn

ℓwα1−2/δ(ℓ)

=Rn · o(Rn(rnK)−1K−2d/δr1−2/δ
n d−w

n ) = o(Rn)

by choosing dn to satisfy dwn r
2/δ−1
n = c and by Assumption A2. As for J2, again by choosing

sufficiently large C > 0, we use Assumptions A2 and A6 to obtain

|Cov(L
(1)
n1 , L

(1)
n(ℓ+1))| ≤ E|L(1)

n1L
(1)
n(ℓ+1)|+ E|L(1)

n1 |E|L(1)
n(ℓ+1)| ≤ C(Rn/n)

It follows that J2 = O(dnRn) with dn = o(Rn). Analogously,

J1 ≤ nE(L
(1)
n1 )

2 =nE[Π⊤
A,t(cA − c̄A)ψτ (Yt −Π⊤

A,tc̄A)]
2

=nE[(cA − c̄A)
⊤ΠA,tΠ

⊤
A,t(cA − c̄A)(ψτ (Yt −Π⊤

A,tc̄A))
2]

=O(R2
nrnK

−d) = o(Rn),

where the last equality holds due to Assumption A2 for d ≥ 2. Thus, Ln1 = Op((dnRn)
1/2) =

op(Rn). Second, we derive the lower bound of Ln2. Indeed, let bR,A,t ≡ Π⊤
A,tc̄A −α⊤

τ (Zt)Wt, we

have

Ln2 =
n/

t=m+1

& Π⊤
A,t(cA−c̄A)

0

FY |Z,W (α⊤
τ (Zt)Wt + bR,A,t + z|Z,W )

− FY |Z,W (α⊤
τ (Zt)Wt + bR,A,t|Z,W )dz

=
n/

t=m+1

& Π⊤
A,t(cA−c̄A)

0

fY |Z,W (0|Z,W )zdz(1 + op(1))

≥C
n/

t=m+1

1

2
{Π⊤

A,t(cA − c̄A)}2 = C
1

2
(cA − c̄A)

⊤
n/

t=m+1

ΠA,tΠ
⊤
A,t(cA − c̄A)

≥Cn"cA − c̄A"22 = O(Rn),

where the second equality follows from mean value theorem and Assumption A3.
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Furthermore, we derive the upper bound of Ln3. Notice that

V ar(Ln3) ≤E

%4
n/

t=m+1

& Π⊤
A,t(cA−c̄A)

0

I(Yt −Π⊤
A,tc̄A ≤ z)− I(Yt −Π⊤

A,tc̄A ≤ 0)dz

52'

≤E

B2 n/

t=m+1

(Π⊤
A,t(cA − c̄A)

32C
.

Then, similar to the derivation of bounding Ln1, one can show that Ln3 = op(Rn). We omit the

detailed proof here. Finally, we consider Ln4. Clearly,

Ln4 ≥λn,1

rn/

l=1

ω̃l("cl"1 − "c̄l"1) ≥ −λn,1

rn/

l=1

ω̃l("cl − c̄l"1)

≥− Cλn,1R
1/2
n

rn/

l=1

"cl − c̄l" ≥ −Cλn,1R
1/2
n "cA − c̄A"

=CRnn
−1/2λn,1 = o(Rn)

by Assumption A11. Combining the above results yields P (infcA∈Cn n{Q1(cA) − Q1(c̄A)} >

CRn) → 1. By the convexity of Q1(cA) − Q1(c̄A), we have that for any ! > 0, there exists a

constant C > 0 such that P
7
"ĉA − c̄A" ≤ C(Rn/n)

1/2
8
> 1 − !. Therefore, the proof of (b) is

completed.

(III) Proof of part (c)

Proof. The proof of part (c) follows by combining part (b) with maxm+1≤t≤n "ΠA,t" = O(R
1/2
n ),

because

max
m+1≤t≤n

|q̂τ,t − qτ,t| ≤ max
m+1≤t≤n

"ΠA,t""ĉA − c̄A" = Op(Rn/n
1/2).
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Appendix C: Mathematical Proofs of Theorem 3

In this section, we give certain lemmas with their detailed proofs that are useful for proving

the Theorem 3 in the main article. Of course, notations and assumptions that are used here are

the same as those in the main article. Also note that C and M are denoted as generic constants

that may vary across occurrences.

C.1 Some Lemmas for Proving Theorem 3:

Lemma C.1. Let β̂ be the minimizer of the function
!n

t=1 ωtρτ (Yt−X⊤
t β), where ωt > 0. Then,

"
!n

t=1 ωtXtψτ (Yt −X⊤
t β̂)" ≤ dim(X)maxt≤n "ωtXt".

Proof. The proof follows from that of Lemma A.2 in Ruppert and Carroll (1980). See also

Lemma A.2 in Cai and Xu (2008).

To obtain Bahadur results given in Lemma C.8 (below), we need to introduce some notations.

In Lemmas C.2 - C.7, τ is dropped from cτ for simplicity and we use the notation Et to repre-

sent the conditional expectation E{·|Z,W } ≡ E{·|Ft−1}. Let Πa,t = (P⊤
1t, . . . ,P

⊤
rnt)

⊤ be the

submatrix consisting of the first rn compositions of Πt = (P⊤
1t, . . . ,P

⊤
mt)

⊤ corresponding to the

active covariates. Without loss of generality, we set the first rn compositions of ĉA be non-zero,

that is, ĉA = (ĉ⊤1 , . . . , ĉ
⊤
rn ,0

⊤)⊤ ≡ (ĉ⊤a ,0
⊤)⊤. Similarly, let c̄A = (c̄⊤1 , . . . , c̄

⊤
rn ,0

⊤)⊤ ≡ (c̄⊤a ,0
⊤)⊤

have the same definition as that in the Appendix B. In addition, let Y ∗
t ≡ Yt − α⊤

τ (Zt)Wt and

bR,t ≡ α⊤
τ (Zt)Wt −Π⊤

a,tc̄a. The oracle property in Theorem 2 implies that ĉA = (ĉ⊤a ,0
⊤)⊤ is a

minimizer of (B.29) in the Appendix B. Then, define

Gn(ca) =
1

n

n/

t=m+1

{τ − I(Y ∗
t < Π⊤

a,t(ca − c̄a)− bR,t)}Πa,t +
λn,1,ω(ca)

n

≡G0n(ca) +
λn,1,ω(ca)

n
,

A28



where

G0n(ca) =
1

n

n/

t=m+1

{τ − I(Y ∗
t < Π⊤

a,t(ca − c̄a)− bR,t)}Πa,t

and λn,1,ω(ca) = (λn,1ω̃1sgn(c
⊤
1 ), . . . ,λn,1ω̃rnsgn(c

⊤
rn))

⊤. Similarly, define

G∗
n(ca) =

1

n

n/

t=m+1

{τ − FY |Z,W (α⊤
τ (Zt)Wt +Π⊤

a,t(ca − c̄a)− bR,t|Z,W )}Πa,t

and G̃n(ca) = Gn(ca)−G∗
n(ca).

Lemma C.2. Under Assumption A1–A13, we have

"G̃n(c̄a)" = Op((Rn/n)
1/2).

Proof. Notice that by Assumption A11 and by the fact that ω̃l ≤ C for 1 ≤ l ≤ rn and some

constant C > 0, we have "n−1λn,1,ω(c̄a)" = o(n−1/2). Then, by triangle inequality, "G̃n(c̄a)" ≤

"G0n(c̄a)−G∗
n(c̄a)"+ o(n−1/2). Following the proof of Lemma A.3 in Horowitz and Lee (2005),

one can show that "G0n(c̄a)−G∗
n(c̄a)" = Op((Rn/n)

1/2) and the lemma is proved.

Lemma C.3. Under Assumption A1–A13, we have

"Gn(ĉa)" = O(R3/2
n /n).

Proof. Note that

"Gn(ĉa)" ≤"G0n(ĉa)"+ n−1"λn,1,ω(ĉa)"

≤
6666
1

n

n/

t=m+1

{τ − I(Y ∗
t < Π⊤

a,t(ĉa − c̄a)− bR,t)}Πa,t

6666+ n−1"λn,1,ω(ĉa)"

=

6666
1

n

n/

t=m+1

{τ − I(Yt < Π⊤
a,tĉa)}Πa,t

6666+ n−1"λn,1,ω(ĉa)"

≤n−1Rn max
m+1≤t≤n

"Πa,t"+ n−1"λn,1,ω(ĉa)" (by Lemma B.1 in Appendix B)

=O(R3/2
n /n),

where we use the fact that "n−1λn,1,ω(ĉa)" = o(n−1/2).
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Lemma C.4. Under Assumption A1–A13, we have

sup
+ĉa−c̄a+≤(Rn/n)1/2

"G̃n(ĉa)− G̃n(c̄a)" = op((Rn/n)
1/2).

Proof. Define ϑ̂ ≡ ĉa − c̄a and ηt(ϑ̂) = Πa,t{I(Y ∗
t < Π⊤

a,tϑ̂− bR,t)− I(Y ∗
t < −bR,t)}. Clearly,

Et{ηt(ϑ̂)} =Πa,t{FY |Z,W (α⊤
τ (Zt)Wt +Π⊤

a,tϑ̂− bR,t|Z,W )

+ FY |Z,W (α⊤
τ (Zt)Wt − bR,t|Z,W )}.

Notice that

G̃n(ĉa)− G̃n(c̄a) =
1

n

n/

t=m+1

{τ − I(Y ∗
t < Π⊤

a,t(ĉa − c̄a)− bR,t)}Πa,t

− 1

n

n/

t=m+1

{τ − FY |Z,W (α⊤
τ (Zt)Wt +Π⊤

a,t(ĉa − c̄a)− bR,t|Z,W )}Πa,t

− 1

n

n/

t=m+1

{τ − I(Y ∗
t < −bR,t)}Πa,t

+
1

n

n/

t=m+1

{τ − FY |Z,W (α⊤
τ (Zt)Wt − bR,t|Z,W )}Πa,t

+
λn,1,ω(ĉa)

n
− λn,1,ω(c̄a)

n

=
1

n

n/

t=m+1

[ηt(ϑ̂)− Et{ηt(ϑ̂)}] + o(n−1/2),

where the last equality holds due to Assumption A11. To finish the proof, it suffices to show

that, for any a ∈ {a ∈ RRn : "a" = 1},

sup
+ϑ̂+≤(Rn/n)1/2

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂)− Et{ηt(ϑ̂)}]
$$$$ = op((nRn)

1/2).

Similar to the proof in Xiao and Koenker (2009), covering the ball {"ϑ̂" ≤ C(Rn/n)
1/2} with

cubes C = {Ck}, where Ck is a cube with center ϑ̂k and side length C(Rn/n
5)1/2, so that N(n) =

#(C) = (2n2)Rn . Therefore, because for ϑ̂ ∈ Ck, "ϑ̂ − ϑ̂k" ≤ C(Rn/n
5/2) and I(Y ∗

s < x) is

nondecreasing in x,
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sup
+ϑ̂+≤C(Rn/n)1/2

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂)− Et{ηt(ϑ̂)}]
$$$$

≤ max
1≤k≤N(n)

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂k)− Et{ηt(ϑ̂k)}]
$$$$

+ max
1≤k≤N(n)

$$$$
n/

t=m+1

|(a⊤Πa,t)|{bnt(ϑ̂k)− Et(bnt(ϑ̂k))}
$$$$

+ max
1≤k≤N(n)

$$$$
n/

t=m+1

|(a⊤Πa,t)|{Et(dnt(ϑ̂k))}
$$$$

≡M1 +M2 +M3,

where bnt(ϑ̂k) = I(Y ∗
t < Π⊤

a,tϑ̂k−bR,t)−I(Y ∗
t < Π⊤

a,tϑ̂k−bR,t+C(Rn/n
5/2)"Πa,t") and dnt(ϑ̂k) =

I(Y ∗
t < Π⊤

a,tϑ̂k − bR,t + C(Rn/n
5/2)"Πa,t") − I(Y ∗

t < Π⊤
a,tϑ̂k − bR,t − C(Rn/n

5/2)"Πa,t"). The

analyses of M2 and M3 are similar to those in Welsh (1989) and Xiao and Koenker (2009), so

that our focus here is only on M1. Notice, for any 6 > 0, |I(Y ∗
t < Π⊤

a,tϑ̂k − bR,t) − I(Y ∗
t <

−bR,t)|- = I(d3t < Yt ≤ d4t), where d3t = min(c2t, c2t + c3t) and d4t = max(c2t, c2t + c3t) with

c2t = −bR,t and c3t = Π⊤
a,tϑ̂k. Therefore, by Assumption A6, there exists a C > 0 such that

E{|I(Y ∗
t < Π⊤

a,tϑ̂k− bR,t)− I(Y ∗
t < −bR,t)|-|Zt,W t} = FY |Z,W (d4t)−FY |Z,W (d3t) ≤ C|Π⊤

a,tϑ̂k| ≤

C(Rn/n)
1/2"Πa,t", which implies that

Et[a
⊤ηt(ϑ̂k)]

2 =Et[|a⊤Πa,t|2|I(Y ∗
t < Π⊤

a,tϑ̂k − bR,t)− I(Y ∗
t < −bR,t)|2]

≤C(Rn/n)
1/2R1/2

n

B
1

n

n/

t=m+1

a⊤Πa,tΠ
⊤
a,ta

C
≤ C((Rn/n)

1/2R1/2
n ).

where the last inequality holds due to the boundedness of eigenvalues of n−1
!n

t=m+1 Πa,tΠ
⊤
a,t.

Thus, we have

W2
n =

n/

t=m+1

Et[a
⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}]2 ≤

n/

t=m+1

Et[a
⊤ηt(ϑ̂k)]

2 = O((nRn)
1/2R1/2

n )

and
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S2
n =

n/

t=m+1

[a⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}]2 = Op((nRn)
1/2R1/2

n ).

Also, notice that ξt(ϑ̂k) = {ηt(ϑ̂k)−Et(ηt(ϑ̂k))} is a martingale difference sequence. Therefore,

let L = (nRn)
1/2. Thus, we have

P

%
max

1≤k≤N(n)

$$$$
1√
nRn

n/

t=m+1

{a⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}}
$$$$ > !

'

≤ N(n)max
k

P

%$$$$
1√
nRn

n/

t=m+1

{a⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}}
$$$$ > !

'

≤ N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ >
,
nRn!,W2

n + S2
n ≤ L

'

+N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ >
,
nRn!,W2

n + S2
n > L

'
≡ I1 + I2. (C.1)

For I1, by exponential inequality for martingale difference sequences (see, e.g., Bercu and Touati,

2008), we have

N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ >
,
nRn!,W2

n + S2
n ≤ L

'

≤2N(n) exp

4
− (nRn)!

2

2L

5
.

For I2, because P [W2
n + S2

n > L] ≤ P [W2
n > L/2]+P [S2

n > L/2] and each term can be bounded

exponentially under Assumptions A1, A7 and A8. Thus, M1 = op((nRn)
1/2). This implies that

G̃n(ĉa)− G̃n(c̄a) = op(n
−1(nRn)

1/2) = op((Rn/n)
1/2).

Lemma C.5. Under Assumption A1–A13, we have

sup
+ĉa−c̄a+≤(Rn/n)1/2

"Gn(ĉa)−G∗
n(ĉa)" = Op((Rn/n)

1/2).
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Proof. Using triangle inequality, write

sup
+ĉa−c̄a+≤(Rn/n)1/2

"Gn(ĉa)−G∗
n(ĉa)" ≤ sup

+ĉa−c̄a+≤(Rn/n)1/2
"G̃n(ĉa)− G̃n(c̄a)"+ "G̃n(c̄a)".

Then, the desired result follows immediately from Lemma C.2 and Lemma C.4.

Define Φn,a = n−1
!n

t=m+1 fY |Z,W (qτ (Zt,W t))Πa,tΠ
⊤
a,t, Φa = E[fY |Z,W (qτ (Zt,W t))Πa,tΠ

⊤
a,t]

and ζR = maxm+1≤t≤n "Πa,t". Note that ζR = O(R
1/2
n ). In addition, by Assumption A9, the

smallest eigenvalue of Φa is bounded away from 0, and the largest eigenvalue of Φa is bounded

from above. Using Davydov’s inequality and similar to the proof strategy of Lemma 4 in Horowitz

and Mammen (2004), we can argue that the "Φn,a −Φa"2 = Op(R
2
n/n) = op(1).

Lemma C.6. Under Assumption A1–A13, we have

G∗
n(ĉa) = −Φn,a(ĉa − c̄a) +

1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t +R∗
n,

where R∗
n = O(ζR"ĉa − c̄a"2) +O(ζRr

2
nK

−2d).

Proof. Using a first-order Taylor series expansion and by Assumption A9, for sufficiently large

constant C > 0, we have

G∗
n(ĉa) =

1

n

n/

t=m+1

{τ − FY |Z,W (α⊤
τ (Zt)Wt +Π⊤

a,t(ĉa − c̄a)− bR,t|Z,W )}Πa,t

=
1

n

n/

t=m+1

{FY |Z,W (qτ (Zt,W t)|Z,W )− FY |Z,W (qτ (Zt,W t) +Π⊤
a,t(ĉa − c̄a)− bR,t|Z,W )}Πa,t

=−Φn,a(ĉa − c̄a) +
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t

+ C max
m+1≤t≤n

"Πa,t"n−1

n/

t=m+1

{Π⊤
a,t(ĉa − c̄a)− bR,t}2
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=−Φn,a(ĉa − c̄a) +
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t

+ CζR

0
(ĉa − c̄a)

⊤Φn,a(ĉa − c̄a) + max
m+1≤t≤n

b2R,t

1

=−Φn,a(ĉa − c̄a) +
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t

+ CζRλmax(Φn,a)(ĉa − c̄a)
⊤(ĉa − c̄a) + CζR max

m+1≤t≤n
b2R,t

=−Φn,a(ĉa − c̄a) +
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t

+O(ζR"ĉa − c̄a"2) +O(ζRr
2
nK

−2d).

Then, the proof is finished.

Lemma C.7. Under Assumption A1–A13, we have

6666
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t

6666 = O(rnK
−d)

Proof. This can be verified by direct calculation and by Assumption A3.

Lemma C.8. (Bahadur representation) Under Assumptions A1 – A13, one has,

ϑ̂ ≡ ĉa − c̄a =n−1Φ−1
a

n/

t=m+1

ψτ (Y
∗
t )Πa,t

+ n−1Φ−1
a

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t +Rn + op(n
−1/2),

where Rn satisfies

"Rn" = Op((Rn/n)
1/2 +R1/2

n r2nK
−2d).

Proof. Write

Gn(ĉa) = G̃n(c̄a) + [G̃n(ĉa)− G̃n(c̄a)] +G∗
n(ĉa). (C.2)
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By Lemma C.6, (C.2) can be rewritten as

Φn,a(ĉa − c̄a) =−Gn(ĉa) + G̃n(c̄a) + [G̃n(ĉa)− G̃n(c̄a)]

+
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t +R∗
n.

(C.3)

Applying Lemma C.3 and Lemma C.4, we have

Φn,a(ĉa − c̄a) = G̃n(c̄a) +
1

n

n/

t=m+1

fY |Z,W (qτ (Zt,W t))Πa,tbR,t +Rn,

where Rn satisfies

"Rn" ≤ "Gn(ĉa)"+ "G̃n(ĉa)− G̃n(c̄a)"+ "R∗
n" = Op((Rn/n)

1/2 +R1/2
n r2nK

−2d).

Define

Ḡn(c̄a) = n−1

n/

t=m+1

{τ − I(Y ∗
t < 0)}Πa,t ≡ n−1

n/

t=m+1

ψτ (Y
∗
t )Πa,t.

Using arguments similar to those in the proof of Lemma C.2, we have

E["G̃n(c̄a)− Ḡn(c̄a)"2|Z,W ] ≤ Cn−1Rn max
t

|bR,t|+ "n−1λn,1,ω(c̄a)"2.

Hence, by Markov’s inequality,

"G̃n(c̄a)− Ḡn(c̄a)" = op(n
−1/2).

Then, the lemma follows from "Φn,a −Φa"2 = Op(R
2
n/n) = op(1).

Lemma C.9. For some 0 < M < ∞ and let Ln = (Rn/n)
1/2, define KnL = {(θ,ϑ) : "ϑ" ≤

Ln, "θ" ≤ M}, let Vn(ϑ) and Vn(θ,ϑ) be vectors that satisfy (i) −θ⊤Vn(λθ,ϑ) ≥ −θ⊤Vn(θ,ϑ)
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for λ ≥ 1 and "ϑ" ≤ Ln, and (ii)

sup
(θ,ϑ)∈KnL

"Vn(θ,ϑ) + Vn(ϑ) +Dθ − An" = op(1),

where "An" = Op(1) and D is a positive-definite matrix. Suppose that θn and ϑn are vectors

such that "Vn(θn,ϑn)" = op(1) and "Vn(ϑn)" = Op(1). Then, one has "θn" = Op(1) and

θn = D−1(An − Vn(ϑn)) + op(1).

Proof. The proof follows from Koenker and Zhao (1996) and Conditions (i) and (ii) that

Vn(θn,ϑn) + Vn(ϑn) +Dθn − An = op(1). This completes the proof.

To show Lemmas C.10 and C.11 later, τ is dropped from gτ (z0). For the notational conve-

nience again, define bn = (nh)−1/2 and q̂t− qt = Π⊤
a,t(ĉa− c̄a)− bR,t ≡ Π⊤

a,tϑ̂− bR,t. Furthermore,

let θ0 = b−1
n (Θ0 − g(z0)) and θ1 = hb−1

n (Θ1 − g(1)(z0)). Then, θ = b−1
n H

D

EF
Θ0 − g(z0)

Θ1 − g(1)(z0)

G

HI,

where H = diag{I2κ+1, hI2κ+1}. For convenience of analysis, we rewrite X̂ t ≡ X t(ϑ̂) ≡

X t(qt +Π⊤
a,tϑ̂− bR,t) because it contains q̂t. Similarly, X t(ϑ) ≡ X t(qt +Π⊤

a,tϑ− bR,t), X
∗
t (ϑ) ≡

X∗
t (qt +Π⊤

a,tϑ− bR,t) and X̂
∗
t ≡ X∗

t (ϑ̂) ≡ X∗
t (qt +Π⊤

a,tϑ̂− bR,t), where X∗
t (ϑ) =

D

EF
X t(ϑ)

zthX t(ϑ)

G

HI

and X∗
t (ϑ̂) =

D

EF
X t(ϑ̂)

zthX t(ϑ̂)

G

HI and zth = (Zt− z0)/h. Of course, X∗
t (0) ≡ X∗

t =

D

EF
X t

zthX t

G

HI. Hence,

∂X t(ϑ)/∂ϑ = Υa,t, where Υ⊤
a,t = (0⊤1×Rn

,Πa,t, . . . ,Πa,t, 0
⊤
κ×Rn

). Next, denote v∗t (ϑ) = Yt −

X⊤
t (ϑ)[g(z0)+g(1)(z0)(Zt−z0)], v

∗
t (0) = Yt−X⊤

t [g(z0)+g(1)(z0)(Zt−z0)] and v∗nt = v∗nt(θ,ϑ) =

v∗t (ϑ) − bnθ
⊤X∗

t (ϑ). In addition, define Γ∗(Zt) = E[fY |Z,X(qτ (z0,X t))X
∗
tgτ (z0)

⊤Υa,t|Zt] and

Γ(Zt) = E[fY |Z,X(qτ (z0,X t))X tgτ (z0)
⊤Υa,t|Zt]. Again, let Am = {θ : "θ" ≤ M} for some

0 < M < ∞ and Bm = {ϑ : "ϑ" ≤ Ln} for Ln = (Rn/n)
1/2, Therefore,

θ̂ = argmin
θ

n/

t=1

ρτ (v
∗
t (ϑ̂)− bnθ

⊤X∗
t (ϑ̂))K(zth) ≡ argmin

θ
J(θ).
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Now, define vector functions of θ and ϑ

Vn(θ,ϑ) = bn

n/

t=1

ψτ (v
∗
t (ϑ)− bnθ

⊤X∗
t (ϑ))X

∗
t (ϑ)K(zth),

and

Vn(ϑ) = bn

n/

t=1

Γ∗(Zt)ϑK(zth),

where ψτ (x) = τ − I(x < 0). In the next three lemmas, we show that Vn(θ,ϑ) and Vn(ϑ) satisfy

Lemma C.9, so that we can derive the local Bahadur representation for θ̂.

Lemma C.10. Under the assumptions in Theorem 3, one has

sup
ϑ∈Bm,θ∈Am

"Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)− E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)]" = op(1).

Proof. For any θ ∈ Am and for any ϑ ∈ Bm, we have

Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)

=bn

n/

t=1

[ψτ (v
∗
t (ϑ)− bnθ

⊤X∗
t (ϑ))− ψτ (v

∗
t (ϑ))]X

∗
t (ϑ)K(zth)

+ bn

n/

t=1

[ψτ (v
∗
t (ϑ))](X

∗
t (ϑ)−X∗

t )K(zth)

+ bn

n/

t=1

[ψτ (v
∗
t (ϑ))− ψτ (v

∗
t (0))]X

∗
tK(zth) + bn

n/

t=1

Γ∗(Zt)ϑK(zth)

=bn

n/

t=1

Vnt(θ,ϑ) + bn

n/

t=1

Unt(θ,ϑ) + bn

n/

t=1

Wnt(θ,ϑ) + bn

n/

t=1

Rnt(ϑ),

where Vnt(θ,ϑ) = [ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ))]X

∗
t (ϑ)K(zth) =

J
V

(1)⊤
nt , V

(2)⊤
nt

K⊤
, Unt(θ,ϑ) =

[ψτ (v
∗
t (ϑ))](X

∗
t (ϑ)−X∗

t )K(zth) =
J
U

(1)⊤
nt , U

(2)⊤
nt

K⊤
, Wnt(θ,ϑ) = [ψτ (v

∗
t (ϑ))− ψτ (v

∗
t (0))]X

∗
t

×K(zth) =
J
W

(1)⊤
nt ,W

(2)⊤
nt

K⊤
, and Rnt(ϑ) = Γ∗(Zt)ϑK(zth) =

J
R

(1)⊤
nt , R

(2)⊤
nt

K⊤
with V

(1)
nt =

[ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ))]X t(ϑ)K(zth), V

(2)
nt = [ψτ (v

∗
nt)− ψτ (v

∗
t (ϑ))]X t(ϑ)zthK(zth),

U
(1)
nt = [ψτ (v

∗
t (ϑ))](X t(ϑ) − X t)K(zth), and U

(2)
nt = [ψτ (v

∗
t (ϑ))](X t(ϑ) − X t)zthK(zth). In
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addition, W
(1)
nt = [ψτ (v

∗
t (ϑ))− ψτ (v

∗
t (0))]X tK(zth), W

(2)
nt = [ψτ (v

∗
t (ϑ))− ψτ (v

∗
t (0))]X tzthK(zth),

R
(1)
nt = Γ(Zt)ϑK(zth) and R

(2)
nt = Γ(Zt)ϑzthK(zth). Thus,

"Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)− E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)]"

=

6666bn

D

EF

!n
t=1(V

(1)
nt − EV

(1)
nt )

!n
t=1(V

(2)
nt − EV

(2)
nt )

G

HI
6666+

6666bn

D

EF

!n
t=1(U

(1)
nt − EU

(1)
nt )

!n
t=1(U

(2)
nt − EU

(2)
nt )

G

HI
6666

+

6666bn

D

EF

!n
t=1(W

(1)
nt − EW

(1)
nt )

!n
t=1(W

(2)
nt − EW

(2)
nt )

G

HI
6666+

6666bn

D

EF

!n
t=1(R

(1)
nt − ER

(1)
nt )

!n
t=1(R

(2)
nt − ER

(2)
nt )

G

HI
6666

≤bn"
n/

t=1

(V
(1)
nt − EV

(1)
nt )"+ bn"

n/

t=1

(V
(2)
nt − EV

(2)
nt )"

+ bn"
n/

t=1

(U
(1)
nt − EU

(1)
nt )"+ bn"

n/

t=1

(U
(2)
nt − EU

(2)
nt )"

+ bn"
n/

t=1

(W
(1)
nt − EW

(1)
nt )"+ bn"

n/

t=1

(W
(2)
nt − EW

(2)
nt )"

+ bn"
n/

t=1

(R
(1)
nt − ER

(1)
nt )"+ bn"

n/

t=1

(R
(2)
nt − ER

(2)
nt )"

≡V (1)
n + V (2)

n + U (1)
n + U (2)

n +W (1)
n +W (2)

n +R(1)
n +R(2)

n .

As for V
(1)
n , it is easy to see that

V (1)
n ≡bn"

n/

t=1

(V
(1)
nt − EV

(1)
nt )" ≤

2κ+1/

i=1

"bn
n/

t=1

(V
(1i)
nt − EV

(1i)
nt )" =

2κ+1/

i=1

"V (1i)
n ",

where V
(1i)
nt = [ψτ (v

∗
nt)− ψτ (v

∗
t (ϑ))]Xit(ϑ)K(zth), and V

(1i)
n = bn

!n
t=1(V

(1i)
nt − EV

(1i)
nt ). Now, we

consider the variance of V
(1i)
n ; that is,

E(V (1i)
n )2 =

1

nh
E

0 n/

t=1

(V
(1i)
nt − EV

(1i)
nt )

12

=
1

nh

B n/

t=1

V ar(V
(1i)
nt ) + 2

n−1/

ℓ=1

(1− ℓ

n
)Cov(V

(1i)
n1 , V

(1i)
n(ℓ+1))

C

≤ 1

h
V ar(V

(1i)
n1 ) +

2

h

dn−1/

ℓ=1

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))|+

2

h

∞/

ℓ=dn

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))|

≡ J4 + J5 + J6
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with dn → ∞ specified later. First, we consider the last term, J6, in the above equation. To this

end, using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)), one has

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))| ≤ Cα1−2/δ(ℓ)[E|V (1i)

n1 |δ]2/δ. (C.4)

Notice that for any k > 0, |ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ))|k = I(r3t < Yt ≤ r4t), where r3t = min(p2t, p2t +

p3t) and r4t = max(p2t, p2t + p3t) with p2t = [gτ (z0) + g
(1)
τ (z0)(Zt − z0)]

⊤X t(ϑ) and p3t =

1√
nh
θ⊤X∗

t (ϑ). Therefore, by Assumption A6, there exists a C > 0 such that

E{|ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ))|k|Zt,X t} = FY |Z,X(r4t)− FY |Z,X(r3t) ≤ Cbn|θ⊤X∗

t (ϑ)|,

which implies by Assumption A9 that

E[V
(1i)
n1 |δ = E[|ψτ (v

∗
n1)− ψτ (v

∗
1(ϑ))|δ|Xi1(ϑ)|δKδ(z1h)]

≤ CbnE[|θ⊤X∗
t (ϑ)||Xi1(ϑ)|δKδ(z1h)].

Notice that since "ϑ" ≤ Ln, by mean value theorem and triangle inequality, one can choose a

sufficiently large C > 0, such that "X∗
t (ϑ)" ≤ C"X∗

t". Then,

E|V (1i)
n1 |δ = E[|ψτ (v

∗
n1)− ψτ (v

∗
1(ϑ))|δ|Xi1(ϑ)|δKδ(z1h)]

≤ CbnE[|θ⊤X∗
t (ϑ)||Xi1(ϑ)|δKδ(z1h)] ≤ CbnE[|θ⊤X∗

t ||X1i|δKδ(z1h)] ≤ Cbnh.

This, in conjunction with (C.4), gives that

J6 ≤ Cb2/δn h2/δ−1

∞/

ℓ=dn

α1−2/δ(ℓ) ≤ Cb2/δn h2/δ−1d−w
n

∞/

ℓ=dn

ℓwα1−2/δ(ℓ) = o(b2/δn h2/δ−1d−w
n ) = o(1).

As for J5, again by choosing sufficiently large C > 0, we use Assumptions A6 and A12 to obtain

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))| ≤ E|V (1i)

n1 V
(1i)
n(ℓ+1)|+ E|V (1i)

n1 |E|V (1i)
n(ℓ+1)|

≤ CE|X1iX(ℓ+1)i|K(z1h)K(z(ℓ+1)h) + Ch2 ≤ Ch2.

It follows that J5 = o(1) by dnh → 0. Analogously,

J4 = h−1V ar(V
(1i)
n1 ) ≤ h−1E(V

(1i)
n1 )2 = O(bn).
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Thus, V
(1i)
n1 = op(1). So that V

(1)
n = op(1). Similarly, it can be shown that V

(2)
n = op(1). For

U
(1)
n , also notice that

U (1)
n ≡ bn"

n/

t=1

(U
(1)
nt − EU

(1)
nt )" ≤

2κ+1/

i=1

"bn
n/

t=1

(U
(1i)
nt − EU

(1i)
nt )" =

2κ+1/

i=1

"U (1i)
n ",

where U
(1i)
nt = [ψτ (v

∗
t (ϑ))](Xti(ϑ) − Xti)K(zth) and U

(1i)
n = bn

!n
t=1(U

(1i)
nt − EU

(1i)
nt ). By mean

value theorem, there exists ϑ′ ∈ (0,ϑ), such that

E|U (1i)
n1 |δ = E[|ψτ (v

∗
1(ϑ))|δ|X1i(ϑ)−X1i|δKδ(z1h)]

≤ CE[|X1i(ϑ)−X1i|δKδ(z1h)] ≤ CE

B$$$$

2
∂X1i(ϑ)

∂ϑ

$$$$
ϑ=ϑ′

ϑ

3$$$$
δ

Kδ(z1h)

C
≤ C(Rn/n

1/2)δh

by the boundedness of ψτ (·). Then, it can be shown that U
(1i)
n1 = op(1) so that U

(1)
n = op(1).

Similarly, one can also prove that U
(2)
n = op(1). As for W

(1)
nt , notice that for any k > 0,

|ψτ (v
∗
t (ϑ)) − ψτ (v

∗
t (0))|k = I(c3t < Yt ≤ c4t), where c3t = min(d2t, d3t) and c4t = max(d2t, d3t)

with d2t = [gτ (z0)+g
(1)
τ (z0)(Zt−z0)]

⊤X t(ϑ) and d3t = [gτ (z0)+g
(1)
τ (z0)(Zt−z0)]

⊤X t. Therefore,

by Assumption A6, there exists a C > 0 such that

E{|ψτ (v
∗
t (ϑ))− ψτ (v

∗
t (0))|k|Zt,X t} = FY |Z,X(c4t)− FY |Z,X(c3t) ≤ C

$$$$

2
∂X1i(ϑ)

∂ϑ

$$$$
ϑ=ϑ′

3
ϑ

$$$$,

which implies by Assumption A9 that

E|W (1i)
n1 |δ = E[|ψτ (v

∗
t (ϑ))− ψτ (v

∗
t (0))|δ|Xi1|δKδ(z1h)] ≤ C(Rn/n

1/2)δh.

Then, it is not hard to show that W
(1)
nt = op(1) and W

(2)
nt = op(1). Similarly, one can also obtain

that R
(1)
nt = op(1) and R

(2)
nt = op(1). Thus, it follows that for any fixed θ ∈ Am and for any fixed

ϑ ∈ Bm,

"Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)− E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)]" = op(1). (C.5)

Next, to show that the above result holds uniformly in Am and Bm, we use the Bickel’s (1975)
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chaining approach to show that

sup
ϑ∈Bm,θ∈Am

"Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)− E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)]" = op(1).

Now, we decompose Am and Bm into cubes, respectively, based on the grid (j1!M, . . . ,

j2(2κ+1)!M) and (i1kL, . . . , i2(2κ+1)kL), where jk = 0,±1, . . . ,±[1/!]+1, ik = 0,±1, . . . ,±[1/k]+

1, [·] denotes taking integer part of ·, and ! and k are fixed positive small numbers. Denote D(θ)

and D(ϑ) the lower vertex of cubes that contain θ and ϑ, respectively. Then,

sup
ϑ∈Bm,θ∈Am

"Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)− E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)]"

≤ sup
ϑ∈Bm,θ∈Am

"Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]"

+ sup
ϑ∈Bm,θ∈Am

"Vn(D(θ),ϑ)− Vn(D(θ), 0)− E[Vn(D(θ),ϑ)− Vn(D(θ), 0)]"

+ sup
ϑ∈Bm,θ∈Am

"Vn(θ,ϑ)− Vn(D(θ),ϑ)− E[Vn(θ,ϑ)− Vn(D(θ),ϑ)]"

+ sup
ϑ∈Bm

"Vn(ϑ)− E[Vn(ϑ)]"

≡H1 +H2 +H3 +H4.

Notice that following the way in Xu (2005), it is not hard to show that H4 = op(1). We only

need to focus on H1, H2 and H3. To this end, for H1, since X t ≡ X t(0), it follows easily from

(C.5) that

H1 ≡ sup
ϑ∈Bm,θ∈Am

"Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]" = op(1).

As for the first term of H3, notice that

sup
ϑ∈Bm,θ∈Am

"Vn(θ,ϑ)− Vn(D(θ),ϑ)"

=bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(θ,ϑ))− ψτ (v

∗
nt(D(θ),ϑ))]X∗

t (ϑ)K(zth)"

≤bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I(v∗nt(D(θ),ϑ) < 0)− I(v∗nt(D(θ), D(ϑ)) < 0)]X∗
t (ϑ)K(zth)"

+ bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I(v∗nt(D(θ), D(ϑ)) < 0)− I(v∗nt(θ,ϑ) < 0)]X∗
t (ϑ)K(zth)"
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≤2bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]X
∗
t (ϑ)K(zth)"

≤2bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}](X
∗
t (ϑ)−X∗

t (D(ϑ)))K(zth)"

+ 2bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]X
∗
t (D(ϑ))K(zth)"

≤2bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}](X
∗
t (D(ϑ)) + Ln)K(zth)"

≤2Cbn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]

×X∗
t (D(ϑ))K(zth)"

+ 2Cbn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[EI{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]X
∗
t (D(ϑ))K(zth)"

≤2Cbn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]

×X∗
t (D(ϑ))K(zth)"+ (2C/h)max{!, k}"E[X∗

tK(zth)]"

≤2Cbn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]

×X∗
t (D(ϑ))K(zth)"+ 2Cmax{!, k},

(C.6)

where the fourth inequality follows from the Lipschitz continuity. Since the number of the

elements in {D(θ) : "θ" ≤ M} and {D(ϑ) : "ϑ" ≤ Ln} are finite, one can easily show that

2Cbn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]

×X∗
t (D(ϑ))K(zth)" = op(1)

by following the same steps as in (C.5). Let max{!, k} → 0. Then, it follows that the first term

of H3 is op(1). As for the second term of H3, in the same way as in (C.6),

sup
ϑ∈Bm,θ∈Am

"E[Vn(θ,ϑ)− Vn(D(θ),ϑ)]"

= bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

E{[ψτ (v
∗
nt(θ,ϑ))− ψτ (v

∗
nt(D(θ),ϑ))]X∗

t (ϑ)K(zth)}"

≤ 2nbn sup
ϑ∈Bm,θ∈Am

"E[I{|v∗nt(D(θ),D(ϑ))|<C max{!,k}√
nh

}]X
∗
t (ϑ)K(zth)" ≤ Cmax{!, k}.
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When max{!, k} → 0, one has

sup
ϑ∈Bm,θ∈Am

"E[Vn(θ,ϑ)− Vn(D(θ),ϑ)]" = o(1).

Thus, H3 = op(1). For the first term of H2, notice that

sup
ϑ∈Bm,θ∈Am

"Vn(D(θ),ϑ)− Vn(D(θ), 0)]"

=bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ),ϑ))X∗

t (ϑ)− ψτ (v
∗
nt(D(θ), 0))X∗

t ]K(zth)"

≤bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ),ϑ))− ψτ (v

∗
nt(D(θ), D(ϑ)))]X∗

t (ϑ)K(zth)"

+ bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ), D(ϑ)))− ψτ (v

∗
nt(D(θ), 0))]X∗

t (ϑ)K(zth)"

+ bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ)−X∗
t )K(zth)" ≡ H21 +H22 +H23.

It is easy to see that by following the same deduction as in (C.6), one can derive H21 = op(1)

and H22 = op(1). Also, notice that for H23, by mean value theorem,

H23 ≡ bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ)−X∗
t ))K(zth)"

≤ C(Rn/n
1/2)bn sup

ϑ∈Bm,θ∈Am

"
n/

t=1

[ψτ (v
∗
nt(D(θ), 0))]K(zth)",

and the last term can be vanished in probability in the same way as processing U
(1)
n and U

(2)
n .

Therefore, the first term of H2 is op(1). For the second term of H2,

sup
ϑ∈Bm,θ∈Am

"E{Vn(D(θ),ϑ)− Vn(D(θ), 0)}"

=bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

E[ψτ (v
∗
nt(D(θ),ϑ))X∗

t (ϑ)− ψτ (v
∗
nt(D(θ), 0))X∗

t ]K(zth)"

≤bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

E[ψτ (v
∗
nt(D(θ),ϑ))− ψτ (v

∗
nt(D(θ), 0))]X∗

t (ϑ)K(zth)"

+ bn sup
ϑ∈Bm,θ∈Am

"
n/

t=1

E[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ)−X∗
t )K(zth)" ≡ H ′

21 +H ′
22.

Now, we consider H ′
22. Notice that
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H ′
22 ≡ sup

ϑ∈Bm,θ∈Am

"bn
n/

t=1

E{[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ)−X∗
t )K(zth)}"

= sup
ϑ∈Bm,θ∈Am

"bn
n/

t=1

E{[τ − FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

⊤X t

+ bnD(θ)⊤X∗
t |Zt,X t)](X

∗
t (ϑ)−X∗

t )K(zth)}"

= sup
ϑ∈Bm,θ∈Am

"bn
n/

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

⊤X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ)−X∗

t )}

× Π(h, z0, Zt,X t)K(zth)",

where Π(h, z0, Zt,X t) = qτ (Zt,X t)−qτ (z0,X t)−hzthg
(1)
τ (z0)

⊤X t−bnD(θ)⊤X∗
t . An application

of Taylor expansion of qτ (Zt,X t) at (z0,X t) leads to

Π(h, z0, Zt,X t) =
g
(2)
τ (z0 + ζhzth)

⊤

2
h2z2thX t − bnD(θ)⊤X∗

t = Op(h
2).

Therefore, it results in that by mean value theorem, there exists ϑ′ ∈ (0,ϑ), such that

sup
ϑ∈Bm,θ∈Am

"bn
n/

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

⊤X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ)−X∗

t )}Π(h, z0, Zt,X t)K(zth)"

≤ sup
ϑ∈Bm,θ∈Am

"bn
n/

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

⊤X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)]

2
∂X∗

t (ϑ)

∂ϑ

$$$$
ϑ=ϑ′

3
ϑ}

× Π(h, z0, Zt,X t)K(zth)" = o(1).

In the same way as in analyzing (C.6), it can be easily shown that H ′
21 = op(1). So, H2 = op(1).

The proof of Lemma C.10 is completed.

Lemma C.11. Under the assumptions in Theorem 3, one has

sup
ϑ∈Bm,θ∈Am

"E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)] + fz(z0)Ω
∗
1(z0)θ" = o(1),

where Ω∗
1(z0) = diag{Ω∗(z0), µ2Ω

∗(z0)}.
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Proof. Notice that

E[Vn(θ,ϑ)−Vn(0, 0)+Vn(ϑ)] = E[Vn(θ,ϑ)−Vn(θ, 0)+Vn(ϑ)]+E[Vn(θ, 0)−Vn(0, 0)] ≡ R1+R2.

For R2, since the deduction is the same as that in Cai and Xu (2008), we only need to focus on

R1. Indeed,

R1 ≡ bn

n/

t=1

E{[ψτ (v
∗
nt(θ,ϑ))X

∗
t (ϑ)− ψτ (v

∗
nt(θ, 0))X

∗
t ]K(zth)}+ E[Vn(ϑ)]

= bn

n/

t=1

E{[ψτ (v
∗
nt(θ,ϑ))− ψτ (v

∗
nt(0,ϑ))]X

∗
t (ϑ)K(zth)}

+bn

n/

t=1

E{[ψτ (v
∗
nt(0, 0))− ψτ (v

∗
nt(θ, 0))]X

∗
t (ϑ)K(zth)}

+bn

n/

t=1

E{[ψτ (v
∗
nt(0,ϑ))− ψτ (v

∗
nt(0, 0))]X

∗
t (ϑ)K(zth)}

+bn

n/

t=1

E{[ψτ (v
∗
nt(θ, 0))](X

∗
t (ϑ)−X∗

t )K(zth)}+ bn

n/

t=1

E{Γ∗(Zt)ϑK(zth)}

≡ R11 +R12 +R13 +R14 +R15.

Here, R14 can be vanished in the same way as that in proving Lemma C.10. We first consider

R11 as follows

R11 ≡bn

n/

t=1

E{[ψτ (v
∗
nt(θ,ϑ))− ψτ (v

∗
nt(0,ϑ))]X

∗
t (ϑ)K(zth)}

=bn

n/

t=1

E{[FY |Z,X(qτ (z0,X t(ϑ)) + hzthg
(1)
τ (z0)

⊤X t(ϑ)|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ)) + hzthg
(1)
τ (z0)

⊤X t(ϑ)

+ bnθ
⊤X∗

t (ϑ)|Zt,X t)]X
∗
t (ϑ)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ)) + hzthg

(1)
τ (z0)

⊤X t(ϑ)

+ ðbnθ⊤X∗
t (ϑ)|Zt,X t)]θ

⊤X∗
t (ϑ)X

∗
t (ϑ)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ))|Zt,X t)]θ

⊤X∗
tX

∗
t (ϑ)K(zth)}+ o(1).

In the same way, one can easily show by Assumption A6 that
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R11 +R12 =
1

h
E{[fY |Z,X(qτ (z0,X t)|Zt,X t)− fY |Z,X(qτ (z0,X t(ϑ))|Zt,X t)]

× θ⊤X∗
tX

∗
t (ϑ)K(zth)}+ o(1)

≤C
1

h
E{gτ (z0)

⊤(X t −X t(ϑ))θ
⊤X∗

tX
∗
t (ϑ)K(zth)}+ o(1) = o(1).

As for R13 and R15, by applying mean value theorem, there exists ϑ′ ∈ (0,ϑ) such that

R13 ≡bn

n/

t=1

E{[ψτ (v
∗
nt(0,ϑ))− ψτ (v

∗
nt(0, 0))]X

∗
t (ϑ)K(zth)}

=bn

n/

t=1

E{[FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

⊤X t|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ)) + hzthg
(1)
τ (z0)

⊤X t(ϑ)|Zt,X t)]X
∗
t (ϑ)K(zth)}

=− bn

n/

t=1

E{[fY |Z,X(X̃
⊤
t (gτ (z0) + hzthg

(1)
τ (z0))|Zt,X t)]

×X∗
t (ϑ)(X t(ϑ)−X t)

⊤[gτ (z0) + hzthg
(1)
τ (z0)]K(zth)}

=− bn

n/

t=1

E{Γ∗(Zt)ϑK(zth)}+ o(h)

by some simple calculations, where X̃ t ≡ X t + Cϑ. This implies that R13 + R15 = o(1). Thus,

one has

"E[Vn(θ,ϑ)− Vn(0, 0) + Vn(ϑ)] + fz(z0)Ω
∗
1(z0)θ" = o(1). (C.7)

Similar to the proof of Lemma A.3 in Xu (2005), one can prove that (C.7) holds uniformly in

Am and Bm with the details omitted. These complete the proof of Lemma C.11.

Lemma C.12. Let Bt = [ψτ (v
∗
t (0))X

∗
t − ψτ (Y

∗
t )Γ

∗(Zt)Φ
−1
a Πa,t]K(zth). Then, under the as-

sumptions in Theorem 3, one has

E[B1] =
h3fz(z0)

2

D

EF
µ2Ω

∗(z0)g
(2)
τ (z0)

0

G

HI+ o(h3),

and

V ar[B1] = hτ(1− τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗
0
Ω(z0)−H1(z0) +H2(z0)

1
+ o(h),
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where H1(z0) = E[X1Π
⊤
a,1|Z1 = z0]Φ

−1
a Γ⊤(z0) + Γ(z0)Φ

−1
a E[Πa,1X

⊤
1 |Z1 = z0] and H2(z0) =

Γ(z0)Φ
−1
a D(z0)Φ

−1
a Γ⊤(z0). Then,

V ar

0
1√
nh

n/

t=1

Bt

1
=τ(1− τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗
0
Ω(z0)−H1(z0) +H2(z0)

1
+ o(1).

Proof. This proof is similar to the proof of Lemma A.4 in Cai and Xu (2008). First, we calculate

E[B1] to obtain

E[B1] = E{[ψτ (v
∗
1(0))X

∗
1 − ψτ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1]K(z1h)}

= E{ψτ (v
∗
1(0))X

∗
1K(z1h)}− E{ψτ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1K(z1h)} ≡ Q1 +Q2.

Similar to the proof of Lemma 3.5 in Xu (2005), one can easily obtain that

Q1 =
h3

2
fz(z0){

D

EF
µ2

0

G

HI⊗ Ω∗(z0)}g(2)
τ (z0) + o(h3) (C.8)

with the detail omitted. For Q2, recall that Y
∗
t ≡ Yt −α⊤

τ (Zt)Wt. Then,

Q2 ≡ −E{ψτ (Y
∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1K(z1h)} = 0

As for E[B1B
⊤
1 ], we have

E[B1B
⊤
1 ] =E

20
ψ2
τ (v

∗
1(0))X

∗
1X

∗⊤
1 − [ψτ (v

∗
1(0))ψτ (Y

∗
1 )X

∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]

+ ψ2
τ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

1
K2(z1h)

3

=E{ψ2
τ (v

∗
1(0))X

∗
1X

∗⊤
1 K2(z1h)}− E{[ψτ (v

∗
1(0))ψτ (Y

∗
1 )X

∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

+ E{ψ2
τ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)K

2(z1h)}

≡P (1) + P (2) + P (3).

For P (1), one has
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P (1) ≡ τ(1−τ)E{X∗
1X

∗⊤
1 K2(z1h)}+o(h2) = hτ(1−τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗Ω(z0)(1+o(1))+o(h2).

(C.9)
Similarly,

P (3) ≡ E[ψ2
τ (Y

∗
1 )Γ

∗(Z1)Φ
−1
a Πa,1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)K

2(z1h)]

=τ(1− τ)E{Γ∗(Z1)Φ
−1
a Πa,1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)K

2(z1h)}+ o(h2)

=τ(1− τ)E{Γ∗(Z1)Φ
−1
a E[Πa,1Π

⊤
a,1|Z1]Φ

−1
a Γ∗⊤(Z1)K

2(z1h)}+ o(h2)

=h2τ(1− τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗
0
Γ(z0)Φ

−1
a D(z0)Φ

−1
a Γ⊤(z0)

1
(1 + o(1)) + o(h2)

=hτ(1− τ)fz(z0)

0
D

EF
ν0 0

0 ν2

G

HI⊗H2(z0)

1
(1 + o(1)) + o(h2).

(C.10)

As for P (2), one has

P (2) ≡− E{ψτ (v
∗
1(0))ψτ (Y

∗
1 )[X

∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ Γ∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

=− E{[τ − I{v∗1(0)<0}][τ − I{Y ∗
1 <0}][X

∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ Γ∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

=− E{[τ 2 − τ(I{Y ∗
1 <0} + I{v∗1(0)<0}) + I{Y ∗

1 <0}][X
∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ Γ∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

=− E{[(τ − 1)(τ − I{Y ∗
1 <0}) + τ(τ − I{v∗1(0)<0})][X

∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1)

+ Γ∗(Z1)Φ
−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

− τ(1− τ)E{[X∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1) + Γ∗(Z1)Φ

−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

≡P (21) + P (22).
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It can be shown that P (21) = o(h2), using the same idea in proving Lemma 3.5 in Xu (2005). We

now focus on evaluating P (22). A simple algebra gives that

P (22) ≡− τ(1− τ)E{[X∗
1Π

⊤
a,1Φ

−1
a Γ∗⊤(Z1) + Γ∗(Z1)Φ

−1
a Πa,1X

∗⊤
1 ]K2(z1h)}

=− τ(1− τ)E

0
D

EF
X1Π

⊤
a,1Φ

−1
a

z1hX1Π
⊤
a,1Φ

−1
a

G

HI
2
Γ⊤(Z1) z1hΓ

⊤(Z1)

3
K2(z1h)

1

− τ(1− τ)E

0
D

EF
Γ(Z1)

z1hΓ(Z1)

G

HI
2
Φ−1

a Πa,1X
⊤
1 z1hΦ

−1
a Πa,1X

⊤
1

3
K2(z1h)

1

=− τ(1− τ)E

0
D

EF
1 z1h

z1h z21h

G

HI⊗ E[X1Π
⊤
a,1|Z1]Φ

−1
a Γ⊤(Z1)K

2(z1h)

1

− τ(1− τ)E

0
D

EF
1 z1h

z1h z21h

G

HI⊗ Γ(Z1)Φ
−1
a E[Πa,1X

⊤
1 |Z1]K

2(z1h)

1

=− hτ(1− τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗
0
E[X1Π

⊤
a,1|Z1 = z0]Φ

−1
a Γ⊤(z0)

+ Γ(z0)Φ
−1
a E[Πa,1X

⊤
1 |Z1 = z0]

1
(1 + o(1))

=− hτ(1− τ)fz(z0)

0
D

EF
ν0 0

0 ν2

G

HI⊗H1(z0)

1
(1 + o(1)).

Therefore,

P (2) = −hτ(1− τ)fz(z0)

0
D

EF
ν0 0

0 ν2

G

HI⊗H1(z0)

1
(1 + o(1)) + o(h2). (C.11)

Next, it is shown that the last part of lemma holds true. Notice that

V ar

0
1√
nh2

n/

t=1

Bt

1
=

1

h
[V ar(B1) + 2

n−1/

ℓ=1

(1− ℓ

n
)Cov(B1, Bℓ+1)]

≤1

h
V ar(B1) +

2

h

en−1/

ℓ=1

|Cov(B1, Bℓ+1)|+
2

h

∞/

ℓ=en

|Cov(B1, Bℓ+1)| ≡ G1 +G2 +G3.

By (C.8), (C.9), (C.10), (C.11) and Assumption A11,
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G1 → τ(1− τ)fz(z0)

D

EF
ν0 0

0 ν2

G

HI⊗
0
Ω(z0)−H1(z0) +H2(z0)

1
.

Now it remains to show that |G2| = o(1) and |G3| = o(1). First, we consider G3. To this

end, by using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)) and the

boundedness of ψτ (·), one has

|Cov(B1, Bℓ+1)| ≤ Cα1−2/δ(ℓ)[E|B1|δ]2/δ ≤ Ch2/δα1−2/δ(ℓ),

which gives

G3 ≤ Ch2/δ−1

∞/

ℓ=en

α1−2/δ(ℓ) ≤ Ch2/δ−1e−w
n

∞/

ℓ=en

ℓwα1−2/δ(ℓ) = o(h2/δ−1e−w
n ) = o(1),

by choosing en to satisfy ewnh
1−2/δ = c. As for G2, following the proof of Lemma 3.5 in Xu (2005),

one has |G2| = o(1). These prove Lemma C.12.

C.2 Proof of Theorem 3:

Proof. Following Cai and Xu (2008), "Vn(0, 0)" = Op(1). Thus, by Lemmas C.10, C.11 and

C.12, Vn(θ,ϑ) satisfies Condition (ii) in Lemma C.9; that is, "An" = Op(1) and

sup+θ+≤M,+ϑ+≤Ln
"Vn(θ,ϑ)+Vn(ϑ)+Dθ−An" = op(1) with D = fz(z0)Ω

∗
1(z0) and An = Vn(0, 0).

It remains to show that "Vn(ϑ̂)" = Op(1).

First, write "Vn(ϑ̂)" as

"Vn(ϑ̂)" =bn

6666
n/

t=1

Γ∗(Zt)ϑ̂K(zth)

6666 =

6666bn

D

EF

!n
t=1 R

(1)
nt (ϑ̂)

!n
t=1 R

(2)
nt (ϑ̂)

G

HI
6666

≤bn"
n/

t=1

R
(1)
nt (ϑ̂)"+ bn"

n/

t=1

R
(2)
nt (ϑ̂)"

≡R(1)
n (ϑ̂) +R(2)

n (ϑ̂),
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where R
(1)
nt (ϑ̂) = Γ(Zt)ϑ̂K(zth) and R

(2)
nt (ϑ̂) = Γ(Zt)ϑ̂zthK(zth). For R

(1)
n (ϑ̂), by Lemma C.7, for

some constant C > 0,

R(1)
n (ϑ̂) ≡ bn"

n/

t=1

R
(1)
nt (ϑ̂)" =

6666bn
n/

t=1

[Γ(Zt)ϑ̂]K(zth)

6666.

Now, we consider the convergence of "bn
!n

t=1[Γ(Zt)ϑ̂]K(zth)". Recall that Rn = −Gn(ĉa) +

[G̃n(ĉa)− G̃n(c̄a)] +R∗
n, where R∗

n = O(ζR"ĉa − c̄a"2) +O(ζRr
2
nK

−2d). By Lemma C.8,

6666bn
n/

t=1

[Γ(Zt)ϑ̂]K(zth)

6666

≤bn

n/

t=1

Γ(Zt)Φ
−1
a

1

n

n/

s=m+1

ψτ (Y
∗
s )Πa,sK(zth)

+ bn

n/

t=1

Γ(Zt)Φ
−1
a

1

n

n/

s=m+1

fY |Z,W (qτ (Zs,W s))Πa,sbR,sK(zth) + bn

n/

t=1

Γ(Zt)Φ
−1
a RnK(zth)

≡T (1) + T (2) + T (3).

We first focus on T (3). Indeed,

T (3) ≡bn

n/

t=1

Γ(Zt)Φ
−1
a RnK(zth)

=− bn

n/

t=1

Γ(Zt)Φ
−1
a Gn(ĉa)K(zth) + bn

n/

t=1

Γ(Zt)Φ
−1
a [G̃n(ĉa)− G̃n(c̄a)]K(zth)

+ bn

n/

t=1

Γ(Zt)Φ
−1
a R∗

nK(zth)

=T (31) + T (32) + T (33).

For T (32), notice that for some C > 0,

T (32) ≡bn

n/

t=1

Γ(Zt)Φ
−1
a [G̃n(ĉa)− G̃n(c̄a)]K(zth)

≤Cbn max
1≤t≤n

"Πa,t"Φ−1
a

n/

t=1

[G̃n(ĉa)− G̃n(c̄a)]K(zth)

≤ChbnR
1/2
n Φ−1

a

n/

t=m+1

[ηt(ϑ̂)− Et{ηt(ϑ̂)}],
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where the last inequality follows from n−1
!n

t=1 K(zth) = O(h). Similar to the derivation in

proving Lemma C.4, to finish the proof, it suffices to show that, for any a ∈ {a ∈ RRn : "a" = 1},

sup
+ϑ̂+≤(Rn/n)1/2

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂)− Et{ηt(ϑ̂)}]
$$$$ = op((hbnR

1/2
n )−1).

Similar to the proof in Xiao and Koenker (2009), covering the ball {"ϑ̂" ≤ C(Rn/n)
1/2} with

cubes C = {Ck}, where Ck is a cube with center ϑ̂k and side length C(Rn/n
5)1/2, so that N(n) =

#(C) = (2n2)Rn . Therefore, because for ϑ̂ ∈ Ck, "ϑ̂ − ϑ̂k" ≤ C(Rn/n
5/2) and I(Y ∗

t < x) is

nondecreasing in x,

sup
+ϑ̂+≤C(Rn/n)1/2

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂)− Et{ηt(ϑ̂)}]
$$$$

≤ max
1≤k≤N(n)

$$$$
n/

t=m+1

a⊤[ηt(ϑ̂k)− Et{ηt(ϑ̂k)}]
$$$$

+ max
1≤k≤N(n)

$$$$
n/

t=m+1

|(a⊤Πa,t)|{bnt(ϑ̂k)− Et(bnt(ϑ̂k))}
$$$$

+ max
1≤k≤N(n)

$$$$
n/

t=m+1

|(a⊤Πa,t)|{Et(dnt(ϑ̂k))}
$$$$

≡M4 +M5 +M6,

where bnt(ϑ̂k) = I(Y ∗
t < Π⊤

a,tϑ̂k−bR,t)−I(Y ∗
t < Π⊤

a,tϑ̂k−bR,t+C(Rn/n
5/2)"Πa,t") and dnt(ϑ̂k) =

I(Y ∗
t < Π⊤

a,tϑ̂k − bR,t + C(Rn/n
5/2)"Πa,t") − I(Y ∗

t < Π⊤
a,tϑ̂k − bR,t − C(Rn/n

5/2)"Πa,t"). The

analyses of M5 and M6 are similar to those in Welsh (1989) and Xiao and Koenker (2009), so

that our focus here is only on M4. Notice, for any 6 > 0, |I(Y ∗
t < Π⊤

a,tϑ̂k − bR,t) − I(Y ∗
t <

−bR,t)|- = I(d3t < Yt ≤ d4t), where d3t = min(c2t, c2t + c3t) and d4t = max(c2t, c2t + c3t) with

c2t = −bR,t and c3t = Π⊤
a,tϑ̂k. Therefore, by Assumption A6, there exists a C > 0 such that

E{|I(Y ∗
t < Π⊤

a,tϑ̂k− bR,t)− I(Y ∗
t < −bR,t)|-|Zt,W t} = FY |Z,W (d4t)−FY |Z,W (d3t) ≤ C|Π⊤

a,tϑ̂k| ≤

C(Rn/n)
1/2"Πa,t", which implies that

Et[a
⊤ηt(ϑ̂k)]

2 ≤ C((Rn/n)
1/2R1/2

n ).
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where the inequality holds due to the boundedness of eigenvalues of n−1
!n

t=m+1 Πa,tΠ
⊤
a,t. Thus,

we have

W2
n =

n/

t=m+1

Et[a
⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}]2 ≤

n/

t=m+1

Et[a
⊤ηt(ϑ̂k)]

2 = O((n/Rn)
1/2R3/2

n )

and

S2
n =

n/

t=m+1

[a⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}]2 = Op((n/Rn)
1/2R3/2

n ).

Also, notice that ξt(ϑ̂k) = {ηt(ϑ̂k)−Et(ηt(ϑ̂k))} is a martingale difference sequence. Therefore,

let M = (n/Rn)
1/2. Thus, we have

P

%
max

1≤k≤N(n)

$$$$hbnR
1/2
n

n/

t=m+1

{a⊤{ηt(ϑ̂k)− E(ηt(ϑ̂k))}}
$$$$ > !

'

≤ N(n)max
k

P

%$$$$hbnR
1/2
n

n/

t=m+1

{a⊤{ηt(ϑ̂k)− Et(ηt(ϑ̂k))}}
$$$$ > !

'

≤ N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ > (hbnR
1/2
n )−1!,W2

n + S2
n ≤ M

'

+N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ > (hbnR
1/2
n )−1!,W2

n + S2
n > M

'
≡ I1 + I2. (C.12)

For I1, by exponential inequality for martingale difference sequences (see, e.g., Bercu and Touati,

2008), we have

N(n)max
k

P

%$$$$
n/

t=m+1

a⊤ξt(ϑ̂k)

$$$$ > (hbnR
1/2
n )−1!,W2

n + S2
n ≤ M

'

≤2N(n) exp

4
− (hbnR

1/2
n )−2!2

2M

5
= 2N(n) exp

4
− n1/2!2

2R
1/2
n h

5
.

For I2, because P [W2
n + S2

n > M] ≤ P [W2
n > M/2] + P [S2

n > M/2] and each term can be
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bounded exponentially under Assumptions A1, A7 and A8. Thus, M4 = op((hbnR
1/2
n )−1). This

implies that T (32) = op(1). By Lemma C.3 and using Davydov’s inequality, one has T (31) = op(1).

Similarly, T (33) = op(1). These give us T
(3) = op(1). Also, by Lemma C.7 and applying Davydov’s

inequality, it is not hard to show that T (2) = op(1). Now, we restrict our attention on T (1). Notice

that by boundedness of ψτ (·),

T (1) ≡bn

n/

t=1

Γ(Zt)Φ
−1
a

1

n

n/

s=m+1

ψτ (Y
∗
s )Πa,sK(zth)

=bn

n/

t=1

Γ(Zt)Φ
−1
a

1

n

n/

s=m+1

{ψτ (Y
∗
t )Πa,t + ψτ (Y

∗
s )Πa,s − ψτ (Y

∗
t )Πa,t}K(zth)

=bn

n/

t=1

Γ(Zt)Φ
−1
a ψτ (Y

∗
t )Πa,tK(zth) + op(1).

Then, by the definition of Y ∗
t and similar to the proof of Lemma C.12, we have E[T (1)] = 0 and

V ar[T (1)] = O(1). These imply that "Vn(ϑ̂)" = Op(1).

To show "Vn(θ̂, ϑ̂)" = op(1), it follows from Lemma C.1 and mean value theorem that

"Vn(θ̂, ϑ̂)" = bn

66666

n/

t=1

[ψτ (v
∗
t (ϑ̂)− bnθ̂

⊤
X∗

t (ϑ̂))]X
∗
t (ϑ̂)K(zth)

66666

≤ bn dim(X∗(ϑ̂)) max
1≤t≤n

"X∗
t (ϑ̂)K(zth)"

≤ bn dim(X∗) max
1≤t≤n

"X∗
tK(zth)"+ Cbn dim(X∗) max

1≤t≤n

66666

2
∂X∗

t (ϑ̂)

∂ϑ̂

$$$$
ϑ̂=ϑ̂

′

3
K(zth)

66666

= op(1),

where θ̂ is the minimizer of J(θ). Finally, because ψτ (x) is an increasing function of x; then

−θ⊤Vn(λθ,ϑ) = an
!n

t=1 ψτ [v
∗
t (ϑ)+λan(−θ⊤X∗

t (ϑ))](−θ⊤X∗
t (ϑ))K(zth) is an increasing func-

tion of λ. Thus, Condition (i) in Lemma C.9 is satisfied. Then, it follows from Lemma C.8,
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Lemmas C.10 and C.11 that

θ̂ =
(Ω∗

1(z0))
−1

√
nhfz(z0)

n/

t=1

[ψτ (v
∗
t (0))X

∗
t − Γ∗(Zt)ϑ̂]K(zth) + op(1)

=
(Ω∗

1(z0))
−1

√
nhfz(z0)

n/

t=1

B
ψτ (v

∗
t (0))X

∗
t − Γ∗(Zt)Φ

−1
a

1

n

n/

s=m+1

ψτ (Y
∗
s )Πa,s

C
K(zth) + op(1)

=
(Ω∗

1(z0))
−1

√
nhfz(z0)

n/

t=1

B
ψτ (v

∗
t (0))X

∗
t − Γ∗(Zt)Φ

−1
a

× 1

n

n/

s=m+1

{ψτ (Y
∗
t )Πa,t + ψτ (Y

∗
s )Πa,s − ψτ (Y

∗
t )Πa,t}

C
K(zth) + op(1)

=
(Ω∗

1(z0))
−1

√
nhfz(z0)

n/

t=1

B
ψτ (v

∗
t (0))X

∗
t − ψτ (Y

∗
t )Γ

∗(Zt)Φ
−1
a Πa,t

C
K(zth)

− (Ω∗
1(z0))

−1

√
nhfz(z0)

n/

t=1

B
Γ∗(Zt)Φ

−1
a

1

n

n/

s=m+1

{ψτ (Y
∗
s )Πa,s − ψτ (Y

∗
t )Πa,t}

C
K(zth) + op(1).

Here, by using Davydov’s inequality to control the variance, the second part of last equality can

be asymptotically vanished. Then,

θ̂ =
(Ω∗

1(z0))
−1

√
nhfz(z0)

n/

t=1

B
ψτ (v

∗
t (0))X

∗
t − ψτ (Y

∗
t )Γ

∗(Zt)Φ
−1
a Πa,t

C
K(zth) + op(1),

Therefore, following the proof of Theorem 1 in Cai and Xu (2008), the theorem is proved.
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C.3 Proof of Consistency of Σ̂τ(z0)

Proof. We first focus on Γ̂(z0) in Section 2.4 of the main text. Notice that

Γ̂(z0) =
1

n

n/

t=1

w2tX̂ tĝ
⊤
τ (z0)Πa,tKh(Zt − z0)

=
1

n

n/

t=1

w2t(X̂ t −X t)(ĝτ (z0)− gτ (z0))
⊤Πa,tKh(Zt − z0)

+
1

n

n/

t=1

w2tX t(ĝτ (z0)− gτ (z0))
⊤Πa,tKh(Zt − z0)

+
1

n

n/

t=1

w2t(X̂ t −X t)g
⊤
τ (z0)Πa,tKh(Zt − z0) +

1

n

n/

t=1

w2tX tg
⊤
τ (z0)Πa,tKh(Zt − z0)

≡S(1) + S(2) + S(3) + S(4).

We first consider S(3). By Taylor’s expansion and Theorem 2(c), we have

E[w2t|Zt,X t] = (FY |Z,X(ĝ⊤
τ (z0)X̂ t + δ2n)− FY |Z,X(ĝ⊤

τ (z0)X̂ t − δ2n))/(2δ2n)

= fY |Z,X(g⊤
τ (z0)X t) + op(1).

On the other hand, by applying mean value theorem, there exists ϑ̂
′
∈ (0, ϑ̂) such that

X̂ t ≡X t(ϑ̂) = X t +

2
∂X t(ϑ̂)

∂ϑ̂

$$$$
ϑ̂=ϑ̂

′

3
ϑ̂ = X t +Υa,tϑ̂.

Therefore, by Theorem 2(c) and Assumption A2,

E[S(3)] = E

%
fY |Z,X(g⊤

τ (z0)X t)Υa,tϑ̂g
⊤
τ (z0)Πa,tKh(Zt − z0)

'
+ o(1)

= O(R3/2
n /n1/2) = o(1).

Similar to the proof of V ar[B1] in Lemma C.12 and by Theorem 2(c), it can be shown that

V ar[S(3)] = o(1). Therefore, S(3) = op(1). Similarly, we can show that S(1) = op(1) and
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S(2) = op(1). Now, we only need to focus on S(4). Indeed,

E[S(4)] = E[fY |Z,X(g⊤
τ (z0)X t)X tg

⊤
τ (z0)Πa,tKh(Zt − z0)] + o(1)

=

&
fY |Z,X(g⊤

τ (z0)X t)X tg
⊤
τ (z0)Πa,tK(z)fz(z0 + hz)dz + o(1) → fz(z0)Γ(z0).

Again, similar to the proof of V ar[B1] in Lemma C.12, it is shown that V ar[S(4)] = o(1). This

yields that Γ̂(z0) = fz(z0)Γ(z0) + op(1) in Section 2.4. The consistency of Φ̂a, Ω̂(z0), Ω̂
∗(z0),

Ĥ1(z0) and Ĥ2(z0) can be derived in similar ways.
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Appendix D: Mathematical Proof for Stationarity and α-

Mixing

In this section, we show that the model (1) in the main article can generate a strictly sta-

tionary and α-mixing process. Throughout this section, 0a×b stands for a (a× b) matrix of zeros

and Ia is a (a × a) identity matrix. Next, we define ψ(·) = " · ", where " · " is the Euclidean

norm. For a random vector Z and random matrix A, we denote "Z"ψ,2 = [E"Z"2]1/2 and

"A"ψ,2 = supz ∕=0 "Az"ψ,2/"z". In addition, for 1 ≤ i ≤ κ, let F b
i,a be the σ-algebra generated

by {(Yit, Zit)}bt=a. Then, a stationary process {(Yit, Zit)}∞t=−∞ is said to be α-mixing (strongly

mixing) if the mixing coefficient α(t) defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
i,−∞, B ∈ F∞

i,t }

converges to zero as t → ∞.

To study the probabilistic properties of model (1) in the main article, Yt and qτ,t in (1)

need to be jointly introduced in a vector autoregression process. To proceed, for convenience of

presentation, let κ = κ1 and Zt = Zit in (1) in the main article, denote Uit (1 ≤ i ≤ κ, 1 ≤ t ≤ n)

as independent and identically distributed (i.i.d.) standard uniform random variables on the set

of [0, 1]. Then, we consider following equation system of functional-coefficient VAR models for

dynamic quantiles, given by

Yit = γi0(Uit, Zt) +

q/

s=1

γ⊤
i,s(Uit, Zt)qτ,t−s +

p/

l=1

β⊤
i,l(Uit, Zt)Yt−l, (D.1)

and

qτ,t,i = γi0,τ (Zt) +

q/

s=1

γ⊤
i,s,τ (Zt)qτ,t−s +

p/

l=1

β⊤
i,l,τ (Zt)Yt−l (D.2)

for some p and q, where Yit, qτ,t and Yt in (D.1) and (D.2) have the same definition as that in

(1) and equation (D.2) is the same as (1) with Zt = Zit. In addition, γi0(·, ·) in (D.1) is a scalar

and measurable function of Uit and Zt (from R2 to R), both γi,s(·, ·) = (γsi1(·, ·), . . . , γsiκ(·, ·))⊤

and βi,l(·, ·) = (βli1(·, ·), . . . , βliκ(·, ·))⊤ in (D.1) are κ × 1 vectors of measurable functions from

R2 to R. Following the same argument in Koenker and Xiao (2006), by assuming that the right

A58



side of (D.1) is monotonically increasing in Uit, the conditional quantile function of Yit given

(Zt, {qτ,t−s}
q
s=1, {Yt−l}pl=1) becomes (D.2). Note that (D.1) is called a Skorohod representation

for Yit, see Durrett (1996) for the definition of Skorohod representation.

Now, we can rewrite the system formed by (D.1) and (D.2) into an autoregression process of

order 1 as follows

Xt = µ(Zt) +AUt(Zt)Xt−1 +DUt(Zt), (D.3)

where Xt = (Y⊤
t , . . . ,Y⊤

t−p+1, q
⊤
τ,t, . . . , q

⊤
τ,t−q+1)

⊤ and AUt(Zt) is a κ(p + q) × κ(p + q) matrix as

follows:

AUt(Zt) =

D

EEEEEEEEEF

Γβ,Ut(Zt) ΓUt(Zt)

[Iκ(p−1), 0κ(p−1)×κ] 0κ(p−1)×κq

Γβ,τ (Zt) Γτ (Zt)

0κ(q−1)×κp [Iκ(q−1), 0κ(q−1)×κ]

G

HHHHHHHHHI

.

Here, for s = 1, . . . , q and l = 1, . . . , p, Γβ,Ut(Zt) = (Γβ,1,Ut(Zt), . . . ,Γβ,p,Ut(Zt)), where Γβ,l,Ut(Zt)

= (βlij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ × κ matrix. In addition, ΓUt(Zt) = (Γ1,Ut(Zt), . . . ,Γq,Ut(Zt)),

where Γs,Ut(Zt) = (γsij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ×κmatrix. Similarly, Γβ,τ (Zt) = (Γβ,1,τ (Zt), . . . ,

Γβ,p,τ (Zt)), where Γβ,l,τ (Zt) = (βlij,τ (Zt))1≤i≤κ,1≤j≤κ is a κ×κmatrix. Also, Γτ (Zt) = (Γ1,τ (Zt), . . . ,

Γq,τ (Zt)), where Γs,τ (Zt) = (γsij,τ (Zt))1≤i≤κ,1≤j≤κ is a κ × κ matrix. Furthermore, µ(Zt) =

(E⊤
U (γ0(Ut, Zt)), 0, . . . , 0,γ

⊤
0,τ (Zt), 0, . . . , 0)

⊤, where EU(γ0(Ut, Zt)) = (EU(γ10(U1t, Zt)), . . . ,

EU(γκ0(Uκt, Zt)))
⊤ and γ0,τ (Zt) = (γ10,τ (Zt), . . . , γκ0,τ (Zt))

⊤. Here, EU(·) is denoted as taking

expectation on Uit for any fixed Zt, and γi0(Uit, Zt) and γi0,τ (Zt) are defined in a similar way as

foregoing functional coefficients, respectively. Finally, DUt(Zt) = (γ̌10(U1t, Zt), . . . , γ̌κ0(Uκt, Zt),

01×κ(p+q−1))
⊤, where γ̌i0(Uit, Zt) = γi0(Uit, Zt)− EU(γi0(Uit, Zt)).

Remark D.1. Notice that when setting Zt as a smoothing variable, the equations corresponding

to (κp + 1)-th, . . . , (κp + κ)-th rows of (D.3) are exactly (D.2) and the model (1) in the main

article, while the ith row of (D.3) with i = 1, . . . ,κ is equation (D.1). Given these relations, one

can conclude that Yt and qτ,t jointly follow a VAR process of order 1 in (D.3), which is similar
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to the nonparametric additive models in Cai and Masry (2000) and the generalized polynomial

random coefficient autoregressive (RCA) models in Carrasco and Chen (2002).

Now, denote λmax(AUt) as the largest eigenvalue in absolute value of following matrix AUt :

AUt =

D

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEF

Γβ,1,Ut Γβ,2,Ut . . . Γβ,p−1,Ut Γβ,p,Ut Γ1,Ut Γ2,Ut . . . Γq−1,Ut Γq,Ut

Iκ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ Iκ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

...
...

. . .
...

...
...

...
. . .

...
...

0κ×κ 0κ×κ . . . Iκ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

Γβ,1 Γβ,2 . . . Γβ,p−1 Γβ,p Γ1 Γ2 . . . Γq−1 Γq

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ Iκ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ Iκ . . . 0κ×κ 0κ×κ

...
...

. . .
...

...
...

...
. . .

...
...

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . Iκ 0κ×κ

G

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI

,

where

Γβ,l,Ut =

D

EEEEEEEEEF

βl11(U1t) βl12(U1t) . . . βl1κ(U1t)

βl21(U2t) βl22(U2t) . . . βl2κ(U2t)

...
...

. . .
...

βlκ1(Uκt) βlκ2(Uκt) . . . βlκκ(Uκt)

G

HHHHHHHHHI

, Γs,Ut =

D

EEEEEEEEEF

γs11(U1t) γs12(U1t) . . . γs1κ(U1t)

γs21(U2t) γs22(U2t) . . . γs2κ(U2t)

...
...

. . .
...

γsκ1(Uκt) γsκ2(Uκt) . . . γsκκ(Uκt)

G

HHHHHHHHHI

,

Γβ,l =

D

EEEEEEEEEF

βl11,τ βl12,τ . . . βl1κ,τ

βl21,τ βl22,τ . . . βl2κ,τ

...
...

. . .
...

βlκ1,τ βlκ2,τ . . . βlκκ,τ

G

HHHHHHHHHI

, and Γs =

D

EEEEEEEEEF

γs11,τ γs12,τ . . . γs1κ,τ

γs21,τ γs22,τ . . . γs2κ,τ

...
...

. . .
...

γsκ1,τ γsκ2,τ . . . γsκκ,τ

G

HHHHHHHHHI

,

with each entry being defined in the Assumption D later. Then, following assumptions are

needed to guarantee that process {Xt} in model (D.3) is strictly stationary and α-mixing.
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Assumption D.

D1: Let {Xt} be a φ-irreducible and aperiodic Markov chain. For i = 1, . . . ,κ, j = 1, . . . ,κ,

l = 1, . . . , p and s = 1, . . . , q, each entry of Γs,Ut(Zt) and Γβ,l,Ut(Zt) in (D.1) is bounded such that

|γsij(Uit, ·)| ≤ γsij(Uit) and |βlij(Uit, ·)| ≤ βlij(Uit), βlij(Uit) and γsij(Uit) are unknown measurable

functions of Uit from [0, 1] to R; Similarly, each entry of Γs,τ (Zt) and Γβ,l,τ (Zt) in (D.2) is

bounded such that |γsij,τ (·)| ≤ γsij,τ and |βlij,τ (·)| ≤ βlij,τ . Furthermore, E{[λmax(AUt)]
2} < 1.

D2: For i = 1, . . . ,κ, γ̌i0(Uit, Zt) in DUt(Zt) is bounded such that |γ̌i0(Uit, ·)| ≤ γ̌i0(Uit), where

{γ̌i0(Uit)} are i.i.d. random variables with mean 0 and finite variance. In addition, denote

DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
⊤, then, E"DUt"2 < ∞ and E"µ(Zt)" < ∞.

Remark D.2. The φ-irreducibility and aperiodicity in Assumption D1 are key assumptions for

deriving geometric ergodicity and subsequently, α-mixing property. The conditions that imply

φ-irreducibility and aperiodicity of nonlinear time series have been studied extensively in liter-

ature. For example, Chan and Tong (1985) showed that under some mild conditions, a simple

nonparametric autoregressive process is a φ-irreducible and aperiodic Markov chain. In addition,

Pham (1986) obtained conditions for random coefficient autoregressive (RCA) models to be φ-

irreducible. In this article, we simply impose the assumptions of φ-irreducibility and aperiodicity

on {Xt}, which are common settings among literature, see, for example, Chen and Tsay (1993). It

is of particular interest to explore the conditions under which {Xt} is φ-irreducibility and aperiod-

icity and we leave this as a future topic. Moreover, the moment conditions E{[λmax(AUt)]
2} < 1

in Assumption D1 is used to bound the random matrices AUt(Zt), which is similar to the con-

dition in Carrasco and Chen (2002). We stress that we are not seeking to achieve the weakest

possible regularity conditions for probabilistic properties of model (D.3), but instead focusing on

constructing varying interdependences among conditional quantiles.

Proposition D.1. Under Assumption D, if X0 is initialized from the invariant measure, then,

{Xt} defined in (D.3) is a strictly stationary and α-mixing process.

To prove Proposition D.1, we first need to prove following lemma.
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Lemma D.3. Under Assumption D, for any W = (w1, . . . , wκ(p+q))
⊤, we have

"AUt(Zt)W"ψ,2 ≤ "AUt |W|"ψ,2. Here, AUt(Zt) is defined in (D.3), AUt is defined previously and

|W| = (|w1|, . . . , |wκ(p+q)|)⊤.

Proof. Similar to the proof of Lemma A.1 in Chen and Tsay (1993), letAUt(Zt)W = (d1, . . . , dκ(p+q))
⊤

and AUt |W| = (g1, . . . , gκ(p+q))
⊤. Then, for ι = κ+1, . . . ,κp and for ι = κp+κ+1, . . . ,κ(p+ q),

we have |dι| = gι. For ι = 1, . . . ,κ and for ι′ = κp+ 1, . . . ,κp+ κ, by Assumption D,

|dι| = |β1ι1(Uιt, Zt)w1 + · · ·+ βpικ(Uιt, Zt)wκp + γ1ι1(Uιt, Zt)wκp+1 + · · ·+

γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt, Zt)w1|+ · · ·+ |βpικ(Uιt, Zt)wκp|+ |γ1ι1(Uιt, Zt)wκp+1|+ · · ·+

|γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt)w1|+ · · ·+ |βpικ(Uιt)wκp|+ |γ1ι1(Uιt)wκp+1|+ · · ·+ |γqικ(Uιt)wκ(p+q)| = gι,

and

|dι′ | =|β1(ι′−κp)1,τ (Zt)w1 + · · ·+ βp(ι′−κp)κ,τ (Zt)wκp + γ1(ι′−κp)1,τ (Zt)wκp+1 + · · ·+

γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τ (Zt)w1|+ · · ·+ |βp(ι′−κp)κ,τ (Zt)wκp|+ |γ1(ι′−κp)1,τ (Zt)wκp+1|

+ · · ·+ |γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τw1|+ · · ·+ |βp(ι′−κp)κ,τwκp|+ |γ1(ι′−κp)1,τwκp+1|+ · · ·+

|γq(ι′−κp)κ,τwκ(p+q)| = gι′ .

Hence, "AUt(Zt)W"ψ,2 ≤ "AUt |W|"ψ,2.

Proof of Proposition D.1:

Proof. By Proposition 3 in Carrasco and Chen (2002) and Lemma 2 in Pham (1986), Assumption

D1 implies "AUt"ψ,2 < 1 for all Uit ∈ [0, 1]. Then, we can find 0 < δ < 1 and , > 0, such that
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"
L0−1

ȷ=0 AUt+ȷ"ψ,2 < 1− δ. Consequently, by Assumption D2 and Lemma D.3, for some constant

C > 0,

E("Xt+0"|Xt = X) = E

466666

0−1M

ȷ=0

AUt+ȷ(Zt+ȷ)Xt +

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ(Zt+ı)

'
DUt+ȷ(Zt+ȷ)

66666

$$$$Xt = X

5

+ E

466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ(Zt+ı)

'
µ(Zt+ȷ)

66666

$$$$Xt = X

5

≤

N

O
66666

0−1M

ȷ=0

AUt+ȷ |X|

66666
ψ,2

P

Q+ C · E
466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'
|DUt+ȷ |

66666

$$$$Xt = X

5

+ C · E
466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'66666

5

≤

N

O
66666

0−1M

ȷ=0

AUt+ȷ

66666
ψ,2

P

Q "X"+ C · E

66666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'
|DUt+ȷ |

66666

+ C · E
466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'66666

5

≤(1− δ)"X"+ C · E

66666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'
|DUt+ȷ |

66666+ C · E
466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'66666

5
,

where each element of DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
⊤ is defined in Assumption D2

and the first inequality follows from Jensen’s inequality. Notice that E
666
!0

ȷ=1

(L0−1
ı=ȷ AUt+ȷ

)666 is

bounded and by Assumption D2, E"DUt" is bounded, so that E
666
!0

ȷ=1

(L0−1
ı=ȷ AUt+ȷ

)
|DUt+ȷ |

666

is bounded and the bound does not depend on X and Zt. Thus, we can find a sufficiently large

M > 0 such that when "X" > M ,

(1− δ)"X"+ C · E

66666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'
|DUt+ȷ |

66666+ C · E
466666

0/

ȷ=1

%
0−1M

ı=ȷ

AUt+ȷ

'66666

5
≤ (1− δ1)"X",

where 0 < δ1 < 1. Hence, the compact set K = {X : "X" ≤ M} satisfies that when X /∈ K,

E("Xt+0"|Xt = X) < (1 − δ1)"X". By Lemmas 1.1 and 1.2 in Chen and Tsay (1993), {Xt} is

geometrically ergodic. If X0 is initialized from the invariant measure, then, by the results of

Pham (1986), {Xt} is strictly stationary and α-mixing.
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