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Abstract

For a heterogeneous agent model with aggregate shocks, the seminal paper by Krusell

and Smith (1998) provides an equilibrium framework depending only on the (condi-

tional) mean wealth rather than the wealth distribution of all agents, which is referred

to as approximate aggregation for their prototype model. Their result can be obtained

through the analysis of a forward-backward system consisting of the Hamilton-Jacobi-

Bellman equation, the Fokker-Planck equation, and some constraint. Different from

the existing literature, this paper proposes a statistical method to verify whether a het-

erogeneous agent model features approximate aggregation in the scenario that only one

agent’s wealth together with the aggregate shocks is observable over time. Our main

approach lies in studying a model specification testing problem for the evolution of the

wealth (i.e. the Fokker-Planck equation) in some appropriate parametric family fea-

turing approximate aggregation. The key challenge stems from the partially observed

information where the wealth distribution of all agents is infeasible. To overcome this

difficulty, first, a novel two-step estimate is proposed for estimating the parameter in

the parametric family. Then, several testing statistics are constructed and their asymp-

totic properties are established, which in turn provides several testing rules. Finally,

some Monte Carlo simulations are conducted to illustrate the finite sample performance

of the proposed tests.
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1 Introduction

The heterogeneous agent model (HAM) has been one of the key developments in macroe-

conomics in the last four decades since Bewley (1986), Huggett (1993), and Aiyagari (1994),

which is called Aiyagari-Bewley-Huggett (ABH) model in the macroeconomics literature.

Compared to the general equilibrium macroeconomic theory, where it is assumed that the

economy behaves as if it is inhabited by a single (type of) consumer, the HAM is intro-

duced to extend the standard macroeconomic model to include substantial heterogeneity in

income and wealth. Such a model allows macroeconomists to empirically discipline macroe-

conomic theories from micro-data. Generally speaking, in the HAM, each agent aims to find

a strategy to maximize a reward subject to the corresponding wealth process under some

constraints. More specifically, the HAM can be formulated as a forward-back system con-

sisting of three perspectives: (1) the backward Hamilton-Jacobi-Bellman (HJB) equation to

determine the (optimal) decision rule; (2) the forward Fokker-Planck (FP) equation describ-

ing the evolution of agent’s wealth; (3) the constraint restricting the admissible actions. If

the HJB-FP system is solved, a corresponding decision rule, namely an equilibrium, can be

obtained simultaneously.

As a benchmark model, Aiyagari (1994) initiated a computational scheme that the

infinite-dimensionality of the heterogeneity can be reduced to some finite moments only

so that its dynamic can be computed numerically. Based on this spirit, Krusell and Smith

(1998) generalized the model to the case that aggregate shocks exist. Also, Krusell and Smith

(1998) pointed out that “our main finding is that, in the stationary stochastic equilibrium,

the behavior of the macroeconomic aggregates can be almost perfectly described by using

only the mean of the wealth distribution”, and “by approximate aggregation, we mean that,

in equilibrium, all aggregate variables’ consumption, the capital stock, and relative prices can

be almost perfectly described as a function of two simple statistics: the mean of the wealth

distribution and the aggregate productivity shock”. To summarize, the key of their results

is that the equilibrium depends on the total wealth distribution through its (conditional)

mean only, which is referred to as approximate aggregation. It is worth mentioning that

Krusell and Smith (1998) obtained this result for their prototype model, which is essentially
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a forward-backward HJB-FP system as mentioned above. The current paper is motivated

by answering the following question: Is it possible to verify the approximate aggregation

property for the HAM statistically if only one agent’s wealth together with the shocks is

observable over time (i.e. partial information)? More explicitly, in this paper, the HAM

is investigated in the following scenario: The HAM has attained its stationary equilibrium

over an infinite time horizon, and only the wealth of one particular agent together with the

aggregate shocks is observable to us along time. To tackle the problem, we study a model

specification testing problem whether the wealth evolution (i.e. the FP equation) falls into

some parametric family P featuring the approximate aggregation. Once the P is specified,

the approximate aggregation is verified. Moreover, with the specified model, one can further

study the dynamic behavior of the total wealth distribution.

A comprehensive review on the early developments for the HAM can be found in the

papers by, for instance, Rios-Rul and Rios-Rull (1995), Ŕıos-Rull and José-Vı́ctor (2001),

Hommes (2006), Heathcote et al. (2009), and references therein. More recently, there have

been several new developments in monetary and fiscal policies and their distributional impli-

cations, see, for example, Hedlund et al. (2017) and Kaplan et al. (2018). Moreover, Achdou

et al. (2022) provided a continuous-time approach for heterogeneous agent models by focus-

ing on income and wealth distribution. On the other hand, several econometric methods are

used to examine the quantitative properties of the HAM. For example, several efforts are

made by Benhabib et al. (2019) and Abbott et al. (2019) with their focus on HAM without

aggregate shocks. For the HAM with aggregate shocks using full information, the reader

is referred to the recent papers by Reiter (2009), Winberry (2018), Mongey and Williams

(2017), Williams (2017), Han et al. (2021), Parra-Alvarez et al. (2023), Liu and Plagborg-

Moller (2023) and references therein. Furthermore, it is well known that the HAM can be

cast in terms of “Mean Field Games” as in Achdou et al. (2022), which has been intensively

studied in mathematics since the seminal works were completed independently by Huang

et al. (2003, 2007), and Lasry and Lions (2006a,b).

Here, it is worth to mention that the recent paper by Parra-Alvarez et al. (2023) provides

the maximum likelihood (ML) estimator for the benchmark ABH model without involving
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aggregate shocks. Under their framework, the mean wealth is constant in the stationary

equilibrium and the maximum likelihood estimator can be computed with the full information

on the income (see equation (18) therein). While for the HAM with aggregate shocks, the

mean wealth turns out to be a conditional mean (on the aggregate shocks), which is not

constant and is unobservable. Therefore, their method is not directly applicable to our

framework. Instead, a two-step method is proposed to estimating the parameters, where

the ML estimator is one step essentially. Moreover, we do not restrict the prototype model

to ABH model in our paper either. Therefore, our newly proposed method generalizes the

maximum likelihood method proposed in Parra-Alvarez et al. (2023), when the aggregate

shocks are involved and the prototype model is possibly latent.

Suppose that a sequence of observations {(Xt, Yt) : t = 1, · · · , T} are observed from in

the HAM with aggregate shocks where Xt is an agent’s wealth process over time and Yt is

the shock process. It is also assumed that the system has attained the stationary equilibrium

over an infinite horizon (for more about the definition of the stationary equilibrium, one is

referred to the papers by Achdou et al. (2022) and Parra-Alvarez et al. (2023)). In this

paper, to tackle the ‘approximate aggregation’, our goal is to test the following parametric

family

P :=
󰁱
b(x, y, u) = b̄(x, y, u; θ), σ(x, y, u) = σ̄(x, y, u; σ) : θ ∈ Θ, σ ∈ Σ

󰁲
,

where both b̄(·) and σ̄(·) are known functions with unknown parameters θ and σ, such that

the observations {(Xt, Yt) : t = 1, · · · , T} satisfy the following Euler equation (discrete-time

version)

Xt+1 −Xt = b(Xt, Yt, Ut)∆+ σ(Xt, Yt, Ut)
√
∆wt, (1)

with a step-constant ∆ > 0, where wt is the unobservable (stationary) income process,

and (Θ,Σ) is the collection of all admissible parameters (θ, σ) to be specified later. The

(conditional) mean wealth

Ut = E[Xt|Y1, · · · , Yt−1]

for t ≥ 1 which is the average wealth of all agents, is unobservable to us too. In fact,

(1) is parallel to the nonlinear system to characterize the model’s aggregate equilibrium
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by adopting the distributional approximation (see (35) in Reiter (2009) or (1) in Liu and

Plagborg-Moller (2023)). For a special linear case when b̄(x, y, u; θ) = A0(θ)x + A1(θ)u +

B(θ)Yt, it follows that

Ut+1 = (A0(θ) + A1(θ) + 1)Ut +B(θ)Yt,

which corresponds to the linear transition equation for the aggregate state in heterogeneous

household model (see (37) in Reiter (2009) or (2) in Liu and Plagborg-Moller (2023)). The

key feature of (1) is that the evolution of one agent’s wealth process depends on the wealth

distribution through its (conditional) mean only, which is consistent to the approximate

aggregation property. Once the parametric family is specified, the approximate aggregation

property is verified.

It is also worth to note that (1) can be generalized to a continuous-time stochastic

differential equation (SDE),

dXt = b(Xt, Yt, Ut)dt+ σ(Xt, Yt, Ut)dWt,

which is an extension of the classical Black-Scholes model to include the shock process Yt

and the mean wealth Ut in the dynamic system. Throughout the paper, the true parameters

are denoted by (θ∗, σ∗) if H0 is true even though their values may not be given.

The model specification problem for conventional stochastic diffusions has been well

studied in the literature since the pioneer work by Ait-Sahalia (1996). There are some

extensions to the method proposed in Ait-Sahalia et al. (2009), Hong and Li (2005), Chen

et al. (2008), Ait-Sahalia et al. (2009), and others. There also exist several works on goodness-

of-fit testing problems for continuous-time stochastic diffusions. For example, one may refer

to the papers by Dachian and Kutoyants (2008), Negri and Nishiyama (2009), Kleptsyna and

Kutoyants (2014), López-Pérez et al. (2022), and references therein. Different from the above

mentioned literature, the system in our paper is partially observed and those approaches

proposed cannot be directly applied to our setting due to the lack of observations on the

mean-wealth process U .

To overcome this challenge, a novel two-step verification procedure is proposed to ob-

taining an appropriate estimator for θ in the parametric family P . Such an estimator is
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called by equilibrium estimator in our paper. To the best of our knowledge, the equilibrium

estimator is new in the literature, which constitutes of the paper’s main contribution in part.

With the help of the equilibrium estimator, we can then construct several testing statistics

and establish their asymptotic properties, which yield some appropriate testing procedures

directly.

The rest of the paper is arranged as follows. Section 2 introduces the equilibrium esti-

mator for general cases and its asymptotic property is investigated. With the help of the

equilibrium estimator, the model specification testing is constructed in Section 3, together

with a Bootstrap procedure for estimating the critical value. Some simulation studies are

conducted in Section 4 to investigate the finite sample performance of our proposed test-

ing procedure. Moreover, Section 5 concludes the paper. Finally, the mathematical proofs

together with necessary lemmas are provided in Section 6.

2 Equilibrium Estimator

2.1 Estimation Procedure

In this subsection, we first introduce the method of the equilibrium estimator for a general

setting. Then, we focus on some special cases in the asymptotic properties. As mentioned

earlier, the key difficulty lies in the missing information on Ut. Our solution is to construct

an auxiliary process (denoted by 󰁨U(ϑ, ς) later) to approximate Ut. It is worth to mention

that (X, Y, U) is not a Markov process in general, and Ut can not be constructed from all

the information {(Xs, Ys, Us) : s ≤ t− 1}.

To gain the Markovian property, define Ξt by the distribution of Xt conditional on the

aggregate shocks up to time t − 1, i.e. {Y1, · · · , Yt−1}, in the sense that for any bounded

continuous function h(·),

E
󰀅
h(Xt)|Y1, · · · , Yt−1

󰀆
=

󰁝

R
h(x)Ξt(dx).

It is straightforward to see that (X, Y,Ξ) is a Markov process with

Ut =

󰁝

R
xΞt(dx).
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Moreover, Ξt+1 satisfies the following equation

󰁝

R
h(x)Ξt+1(dx) =

󰁝

R
h
󰀓
x+ b̄(x, Yt, Ut; θ∗)∆+ σ̄(x, Yt, Ut; σ∗)

√
∆w

󰀔
φ(dw)Ξt(dx) (2)

for any bounded continuous function h(·), where φ(·) is the distribution function of wt given

in (1). From (2), Ξt can be calculated explicitly, depending on the observable (Y1, · · · , Yt−1),

if Ξ1 and (θ∗, σ∗) are given. In fact, (2) is parallel to the FP equation.

Inspired from above, given the observation of {Yt}, we introduce the following auxiliary

process (󰁨Ξt(ϑ, ς), 󰁨Ut(ϑ, ς)) such that

󰁝

R
h(x)󰁨Ξt+1(dx;ϑ, ς) =

󰁝

R
h
󰀓
x+b̄(x, Yt, 󰁨Ut(ϑ, ς);ϑ)∆+σ̄(x, Yt,󰁨Ut(ϑ, ς); ς)

√
∆w

󰀔
φ(dw)󰁨Ξt(dx;ϑ, ς)

for any bounded continuous function h(·), and

󰁨Ut(ϑ, ς) =

󰁝

R
x󰁨Ξt(dx;ϑ, ς).

Such a construction of (󰁨Ξt(ϑ, ς), 󰁨Ut(ϑ, ς)) depends on the parameter (ϑ, ς) and the selection

of the initial value 󰁨Ξ1. Due to the ergodicity, it is natural to see that the construction is

independent of 󰁨Ξ1 if t is large and thus, such dependence in the notations is omitted for the

sake of convenience. Now, it is ready to present our equilibrium estimator (θ̂T , σ̂T ), which

consists of two steps, described as follows.

Step 1: Maximum likelihood method. Given P , let

q(x, y, u, x̃; θ, σ)dx̃ := P
󰀓
X2 ∈ dx̃

󰀏󰀏󰀏X1 = x, Y1 = y, U1 = u; θ, σ
󰀔
.

If Ut was observable, it is straightforward to derive a maximum likelihood estimator

(θ̂MLE, σ̂MLE) = argmax
θ∈Θ,σ∈Σ

T󰁛

t=1

log q(Xt, Yt, Ut, Xt+1; θ, σ), (3)

if it exists. In the sequel, for simplicity, it is assumed that wt is a normal random variable

such that the MLE in (3) admits an explicit form. Here, it should be emphasized that the

idea of equilibrium estimator is applicable to other income processes w. If the distribution

is not close to normal, then, the above MLE is the pseudo-MLE.
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Step 2: Fixed-point procedure. Due to the lack of Ut in the observation, replacing Ut

by 󰁨Ut(ϑ, ς) in (3) leads to a random function ( 󰁥ΘT (·), 󰁥Σ(·)) : Θ×Σ 󰀁→ Θ×Σ defined by

( 󰁥ΘT (ϑ, ς), 󰁥Σ(ϑ, ς)) = argmax
θ∈Θ,σ∈Σ

T󰁛

i=1

log q(Xt, Yt, 󰁨Ut(ϑ, ς), Xt+1; θ, σ).

Observe that 󰁥ΘT (θ∗, σ∗) converges to θ∗ and 󰁥ΣT (θ∗, σ∗) converges to σ∗ as T → ∞. Therefore,

it is natural to expect that the estimator (θ̂T , σ̂T ) can be defined as the fixed point of

( 󰁥ΘT (·), 󰁥ΣT (·)) in Θ×Σ. As the fixed-point may not exist, define the equilibrium estimator

θ̂T by

(θ̂T , σ̂T ) := argmin
ϑ∈Θ,ς∈Σ

󰀓
| 󰁥ΘT (ϑ, ς)− ϑ|+ | 󰁥ΣT (ϑ, ς)− ς|

󰀔
. (4)

At the same time, the minimum error is denoted by γ̂T . If P is true, it should hold that

γ̂T = 0 when T is large, i.e. (θ̂T , σ̂T ) is the true fixed point. Such a result is critical when

deriving the asymptotic normality of θ̂T under the null hypothesis. While if P is not true, it

is natural to expect that the minimum point is not a fixed point (i.e. γ̂T is far away from 0).

In this scenario, P should be rejected. Therefore, it is reasonable that our testing procedure

also involves γ̂T in the future.

Until now, the equilibrium estimator is defined for general cases. Our next goal is to

establish its asymptotic properties, which are necessary for the model specification tests. To

achieve this, the main focus in this paper is on the following special case.

Assumption 1. (1) The income processes {wt} are i.i.d standard normal random variables,

and Yt is a Markov process. The parametric family P satisfies

P :=
󰁱
b(x, y, u) = b0(x, y, u) + 〈θ, b(x, y, u)〉, σ(x, y, u) = σ ∗ σ0(x, y) : (θ, σ) ∈ Θ× R+

󰁲
,

where θ = (θ1, · · · , θm) lies in a compact subset Θ of Rm and both functions b0(·) and σ0(·)

are known.

(2) The drift function b(x, y, u) satisfies bi(x, y, u) = Ai(y)x+Bi(y, u) for i = 0, 1, · · · ,m.

(3) The true θ∗ is an interior point in Θ.

Some remarks are needed for the above assumption. First, if the prototype model is

known to us, the drift coefficients b can be chosen from the prototype model directly. If
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the prototype model is latent, the drift coefficient vector b can be seen as a basis such

that the true drift coefficient can be approximated by b(x, y, u). Second, we assume that

bi(x, y, u) is linear in x so that (Xt, Yt, Ut) is a Markovian system, which is consistent with

the approximate aggregation feature. Finally, the assumption θ∗ being an interior point in

Θ is a general assumption in the model specification problems. In fact, our results can be

extended to the case that Θ = {θ∗} without any essential difficulties.

Under the above assumption, it is easy see that the definition of 󰁨Ut(ϑ, ς) is independent

of ς and the two-step verification procedure applies to θ̂T only. Therefore, we only write

󰁨Ut(ϑ) instead of 󰁨Ut(ϑ, ς), in what follows. After θ̂T is achieved, σ̂T can be achieved by the

MLE step directly. Moreover, the equilibrium estimator admits a closed form, which will be

given explicitly later.

In addition to Assumption 1, another technical assumption (Assumption 2) is assumed as

well in Section 6 concerning the ergodicity of the HAM system. With all those assumptions,

it is ready to study the asymptotic properties of the proposed equilibrium estimator in the

next subsection.

2.2 Asymptotic Theory

In this subsection, our aim is to study the asymptotic theory for our equilibrium estimator

(θ̂T , σ̂T ): consistency and asymptotic normality.

Because of the linearity of bi(·) for all i in x assumed in Assumption 1, it is easy to observe

that 󰁨Ut(ϑ) can be computed through the following recursion directly without introducing the

conditional distribution 󰁨Ξt(ϑ) and ς:

󰁨Ut+1(ϑ) = 󰁨Ut(ϑ) + b0(󰁨Ut(ϑ), Yt, 󰁨Ut(ϑ))∆+ 〈ϑ, b(󰁨Ut(ϑ), Yt, 󰁨Ut(ϑ))〉∆ with 󰁨U1(ϑ) = X1. (5)

Here, we take the feasible initial value 󰁨U1(ϑ) = X1 because the true initial U1 is not observ-

able. We also want to emphasize that such a construction is independent of the parameter

σ. Therefore, ς omitted in the function 󰁥ΘT (ϑ, ς) and the function 󰁥ΣT (ϑ, ς) is not needed.

More specifically, the equilibrium estimator can be rewritten as

θ̂T = argmin
ϑ∈Θ

| 󰁥ΘT (ϑ)− ϑ|,
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and

σ̂2
T =

1

T

T󰁛

t=1

[Xt+1 −Xt −∆b0(Xt, Yt, 󰁨Ut(θ̂T ))−∆〈θ̂T , b(Xt, Yt, 󰁨Ut(θ̂T ))〉]2
σ2
0(Xt, Yt)

;

where

󰁥ΘT (·) = 󰁦M−1
T (ϑ)󰁥ΦT (ϑ), 󰁦MT (ϑ) =

1

T

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(ϑ))b
⊤(Xt, Yt, 󰁨Ut(ϑ))

σ2
0(Xt, Yt)

, (6)

and

󰁥ΦT (ϑ) =
1

T∆

T󰁛

t=1

󰁫Xt+1 −Xt −∆b0(Xt, Yt, 󰁨Ut(ϑ))

σ2
0(Xt, Yt)

b(Xt, Yt, 󰁨Ut(ϑ))
󰁬
. (7)

To study the asymptotic properties of our equilibrium estimator, by the ergodicity of

(Xt, Yt, Ut, 󰁨U(ϑ)) (see Assumption 2 listed in Section 6), it is expected that there exists a

triple (Θ(ϑ),M(ϑ),Φ(ϑ)) such that by (4), (6) and (7), as T → ∞,

( 󰁥ΘT (ϑ), 󰁦MT (ϑ), 󰁥ΦT (ϑ)) → (Θ(ϑ),M(ϑ),Φ(ϑ))

almost surely. Write µ(dx, dy, du, dũ;ϑ) as the ergodic measure of (X, Y, U, 󰁨U(ϑ)). Then,

one has the following

Θ(ϑ) = M(ϑ)−1Φ(ϑ)

with

M(ϑ) =

󰁝
b(x, y, ũ)b⊤(x, y, ũ)

σ2(x, y)
µ(dx, dy, du, dũ;ϑ),

and

Φ(ϑ) =

󰁝
b(x, y, ũ)

󰀅
b0(x, y, u)− b0(x, y, ũ) + 〈θ∗, b(x, y, u)〉

󰀆

σ2(x, y)
µ(dx, dy, du, dũ;ϑ).

Define ∂Θ(·) by the gradient field of Θ(·). Write H∗ = H(θ∗) for H = Θ,M,Φ, ∂Θ. Now, it

is ready to present the asymptotic properties of our equilibrium estimators with their proofs

provided in Section 6.

Theorem 1 (Consistency). Suppose that Assumptions 1 and 2 hold, and P is true. As

T → ∞, it follows that

(θ̂T , σ̂
2
T ) −→ (θ∗, σ

2
∗),

almost surely.
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Theorem 2 (Asymptotic Normality). Suppose that Assumptions 1 and 2 hold, and P is

true. As T → ∞, it follows that

√
T∆

󰀣
θ̂T − θ∗
σ̂2
T − σ2

∗

󰀤
=⇒ N

󰀣
0, σ2

∗

󰀣
[∂Θ∗ − I]−1M−1

∗
󰀅
[∂Θ∗ − I]−1

󰀆⊤
0

0 5∆σ2
∗

󰀤󰀤
,

where “=⇒” denotes the convergence in distribution.

With the asymptotic properties of our proposed equilibrium estimator, we are able to

develop several statistical methods for our model specification test problems in the next

section.

3 Model Specification Tests

3.1 Test Statistic

In this subsection, we construct a testing method using the generator of A and a function

f(·), i.e.

Af(x, y, u; θ, σ2) := E
󰀅
f(X2)

󰀏󰀏X1 = x, Y1 = y, U1 = u; θ, σ2
󰀆
− f(x).

Define the test statistic 󰁥ST (f) by

󰁥ST (f) :=
1√
T∆

T󰁛

t=1

Af(Xt, Yt, 󰁨Ut(θ̂T ); θ̂T , σ̂
2
T ).

We have the following asymptotic normality of 󰁥ST (f).

Theorem 3. Let f(·) be a smooth function such that Af(x, y, u; θ, σ2) are second-order

continuously differentiable with respect to u, θ, σ2 with bounded second-order derivatives and

|∂z(Af)(x, y, u; θ, σ2)| ≤ K(1 + |x|2 + |u|2)

for z = u, θ, σ2, where ∂z(Af) is the derivative of Af with respect to the variable z for

z = u, θ, σ2. If P is true,

󰁥ST (f) =⇒ N(0, ς2(θ∗, σ
2
∗; f))

for some ς2(θ∗, σ
2
∗; f) ≥ 0 being a proper variance depending on f(·) and (θ∗, σ

2
∗).
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Note that above theorem guarantees the asymptotic normality of 󰁥ST (f), while the ex-

plicit form of its asymptotic variance ς2(θ∗, σ
2
∗; f) (or its approximation ς2(θ̂T , σ̂

2
T ; f)) is nearly

impossible to obtain for general f(·) and ∆. Therefore, a Bootstrap method is needed, intro-

duced in the next subsection. The key in the Bootstrap simulation is to find the critical value

ŝb,α/2(θ̂T , σ̂
2
T ; f) to approximate zα/2 · ς(θ∗, σ2

∗; f), where zα/2 is the 100(1 − α/2) percentile

of the standard normal distribution.

3.2 Bootstrap Method and Testing Procedure

In this subsection, a Bootstrap method is proposed to finding the critical value of rejec-

tion. After the Bootstrap approximation is obtained, the corresponding testing method is

concluded directly.

Given a sequence of observations {(Xt, Yt)}Tt=1, following the two-step procedure described

as before, the equilibrium estimator (θ̂T , σ̂
2
T ) can be obtained. Using the parameter (θ, σ2) =

(θ̂T , σ̂
2
T ) in (1), we can construct {(X̃i,t, Ỹi,t) : t = 1, · · · , Tb} for i = 1, · · · , Nb. Here, Tb

is the number of observations, commonly Tb = T , and Nb is the number of the Bootstrap

replications. For each i, we can derive a Bootstrap statistic from the simulated observations

{(X̃i,t, Ỹi,t) : t = 1, · · · , Tb} and the set of all Nb Bootstrap statistics is denoted by

󰁱
󰁥Si,b(θ̂T , σ̂

2
T ; f) : i = 1, · · · , Nb

󰁲
.

Finally, define

ŝb,α/2(θ̂T , σ̂
2
T ; f) = sup

󰁱
s ≥ 0 :

󰂒{i : |󰁥Si,b(θ̂T , σ̂
2
T ; f)| ≥ s}

Nb

≥ α
󰁲
.

It is natural to have the following testing procedure:

Testing Procedure: For those f(·) with ς(θ∗, σ
2
∗; f) ∕= 0, the parametric family P is rejected

if

γ̂T ≥ γ0 or |󰁥ST (f)| ≥ ŝb,α/2(θ̂T , σ̂
2
T ; f)

for some given threshold γ0 ≥ 0. Our asymptotic normality established above together

with Proposition 1 concludes that the probability of falsely rejecting H0 is asymptotically

α as Tb → ∞, Nb → ∞ and T → ∞ sequentially. Note that if Θ = {θ∗} (consequently
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θ̂T = θ∗), the testing procedure as above is also true. Some remarks are needed here for the

applicability of our method.

Remark 1: The additional rejection rule γ̂T ≥ γ0 for some threshold γ0 ≥ 0 is to make our

test powerful. It is with probability 0 asymptotically for larger T , when P is true. If P is

not true, P can be rejected in two scenarios: (i) the equilibrium estimator as a minimum

exists, while there does not exist a fixed point; (ii) the equilibrium estimator exists as a fixed

point, while the test statistic |󰁥ST (f)| ≥ ŝb,α/2(θ̂T , σ̂
2
T ; f). Indeed, one can see that for some

alternative hypotheses, scenario (i) is dominant if P is not true in our simulation study. To

make the proposed test powerful, the additional rejection rule γ̂T ≥ γ0 is necessary. Because

we need to approximate U using ergodicity, it is natural to expect that the method does

not behave as well as the case with full information. Especially, the additional rejection rule

γ̂T ≥ γ0 brings some significant errors for the test sizes when T is small. We will see this in

our simulation study later.

Remark 2: The threshold γ0 is free to select to balance between the power and the accuracy

of test sizes. Note that the larger value of γ0 leads to a more accurate test size but a small

power. Because γ̂T = 0 if T is large and P is true, a small γ0 is recommended to increase the

test power. From Lemma 2, we see that the probability of γT = 0 is asymptotic 1 and thus,

γT does not admit an asymptotic normality. To select an appropriate γ0 in practice, one can

simulate several replications of the estimation error γ̂T and let γ0 be its high (such as 99%)

percentile such that the additional rejection rule has little effect on the empirical test size.

Especially, it is expected that the method leads to γ0 = 0, when T is large enough.

Remark 3: We emphasize that the Bootstrap method is adopted to approximate the 100(1−

α/2) percentile instead of the asymptotic variance ς2(θ∗, σ
2
∗; f). This is because there might

exist some extreme cases in the Bootstrap simulations with a large error γ, when finding

the equilibrium estimator (the fixed point does not exist). The large error might provide an

extremely inaccurate replication of the statistic which dominates the Bootstrap variance. In

contrast, the percentile estimation ŝb,α/2(θ̂T , σ̂
2
T ; f) is stable from those extreme cases.

Remark 4: Of importance it is to select the testing function f(·) such that the following

two requirements should be satisfied.

12



• The asymptotic variance ς2(θ∗, σ
2
∗; f) is not small such that the asymptotic normality

holds. This can be verified using Bootstrap method too by excluding the extreme cases

as mentioned.

• Both of |f(XT )|/
√
T∆ and |f(X1)|/

√
T∆ are negligible compared to 󰁥ST (f). Those

two errors come from the testing function f(·), which can be checked explicitly (see

(17) for details).

Finally, it would be interesting to explain the importance of aggregate shocks to under-

stand the effect of mean wealth in the wealth evolution. Suppose that the HAM does not

involve aggregate shocks, i.e., Yt is a constant process. In this case, the mean wealth Ut

becomes a mean instead of a conditional mean, which turns out to be a constant m in a

long time range due to the ergodicity. Consequently, the mean term m is not distinguishable

from the parameters in the HAM. The verification of approximate aggregation is impossi-

ble because a conventional recursion perfectly describes the evolution of the wealth process.

This explains why the observations on aggregate shocks Yt are critical here.

3.3 Extension to Continuous-Time Case

Now, we want to show how our proposed procedure can be applied to another important

case: the continuous-time HAM. In this scenario, it is to test whether the continuous-time

observation {(Xt, Yt) : t ≥ 0} follows from the following mean-field SDE

dXt = [b0(Xt, Yt, Ut) + 〈θ, b0(Xt, Yt, Ut)〉]dt+ σ ∗ σ0(Xt, Yt)dWt

with Ut = E[Xt|,FY
t− ], where FY

· is the natural filtration of Y and Wt is a standard Brownian

motion. Then, the equilibrium estimators are

θ̂T = argmin
ϑ∈Θ

| 󰁥ΘT (ϑ)− ϑ| and σ̂2
T =

1

T

󰁝 T

0

(dXt)
2

σ2
0(Xt, Yt)

,

where 󰁥ΘT (ϑ) = 󰁦M−1
T (ϑ)󰁥ΦT (ϑ),

󰁦MT (ϑ) =
1

T

󰁝 T

0

b(Xt, Yt, 󰁨Ut(ϑ))b
⊤(Xt, Yt, 󰁨Ut(ϑ))

σ2
0(Xt, Yt)

dt,

󰁥ΦT (ϑ) =
1

T

󰁝 T

0

b(Xt, Yt, 󰁨Ut(ϑ)

σ2
0(Xt, Yt)

󰀓
dXt − b0(Xt, Yt, 󰁨Ut(ϑ))dt

󰀔
,

13



and

d󰁨Ut(ϑ) = [b0(󰁨Ut(ϑ), Yt, 󰁨Ut(ϑ)) + 〈ϑ, b0(󰁨Ut(ϑ), Yt, 󰁨Ut(ϑ))〉]dt.

Here, the linearity in x for the drift coefficients is used when calculating 󰁨Ut(ϑ). Applying a

testing function f(·), the test statistic is defined as

󰁥ST (f) =
1√
T

󰁝 T

0

Af(Xt, Yt, 󰁨Ut(θ̂T ); θ̂T , σ̂
2
T )dt.

Similar to the discrete-time case, one can verify the asymptotic normality through Taylor’s

expansion. Under some regularity conditions, as expected, the asymptotic variance of 󰁥ST (f)

can be derived, given by

ς2(θ, σ2; f) = σ2

󰁝 󰁫
f ′σ0 + p⊤[∂Θ(θ)− I]−1M−1(θ)

b(x, y, u)

σ0(x, y)

󰁬2
νθ(dx, dy, du, dv)

where νθ(dx, dy, du, dv) is the ergodic measure of (X, Y, U, V ) for V = ∂ϑU and p =
󰁕
f ′[b+

v(∂ub0 + 〈θ, ∂ub〉)]νθ(dx, dy, du, dv). With all the information above, a testing procedure can

be constructed in the same manner.

4 Monte Carlo Simulation Study

In this section, we conduct a Monte Carlo simulation to illustrate the finite sample

performance of our proposed tests. The model used can be seen as a generalized version of

the discrete-time Vasicek model with mean-field interaction in a switching environment.

Let Y be a Markov Chain with state space {0, 1} and transition matrix Q for which

the different values of Y represent the state of the environment in practice. Consider the

following linear recursion:

Xt+1−Xt =
󰁫
θ1 + θ2Yt +Xt(θ3 + θ4Yt) + Ut(θ5 + θ6Yt)

󰁬
∆+ σ

√
∆wt

with Ut = E[Xt|Y1, · · · , Yt−1]. Now, write b(x, y, u) = (1, y, x, xy, u, uy)⊤, σ ∈ R+, and

θ = (θ1, θ2, θ3, θ4, θ5, θ6)
⊤ ∈ Θ ⊂ R6. By (5), 󰁨Ut(ϑ) can be constructed through

󰁨Ut+1(ϑ) = 󰁨Ut(ϑ) +
󰀓
ϑ1 + ϑ2Yt + 󰁨Ut(ϑ)[ϑ3 + ϑ5 + (ϑ4 + ϑ6)Yt]

󰀔
∆

14



with 󰁨U1(ϑ) = X1.

Next, let us present a concrete example to justify our theory. Suppose

∆ = 1 and Q =

󰀕
1/2 1/2

1/2 1/2

󰀖
.

Here, we take a fixed Q because the model specification test for a Markov chain is well-known

and our focus is on that of X only. The test function is taken by f(x) = x2 and the test

statistic becomes

󰁥ST (f) =
1√
T∆

T󰁛

t=1

󰁫󰀓
Xt +∆〈θ̂T , b(Xt, Yt, 󰁨U(θ̂T ))〉

󰀔2

−X2
t +∆σ̂2

T

󰁬
.

Recall that P is rejected if

γ̂T (θ̂T ) ≥ γ0 or |󰁥ST (f)| ≥ ŝb,α/2(θ̂T , σ̂
2
T ; f),

where we take γ0 = 0.01 in the simulation. For each simulation, 500 replications are

performed. A replication is called a “failure” if the equilibrium estimator is such that

γ̂T = | 󰁥ΘT (θ̂T ) − θ̂T | > γ0 = 0.01, i.e. the additional rejection rule is applied. The pro-

portion of failures is listed to justify the necessity of the additional rejection rule.

Tables 1 and 2 report the test sizes for different numbers of sample size (i.e. T = 100 and

500) for (θ∗, σ∗) = (0.5, 0.3,−0.8, 0.1, 0.1, 0.1, 0.3) and (0.5, 0.3,−0.8, 0.1, 0, 0, 0.3), respec-

tively. Note that the latter selection of the true parameter corresponds to the conventional

stochastic systems independent of Ut. From Tables 1 and 2, it is clear that the test sizes

converge to the nominal size as the sample size becomes large. Such a simulation result

justifies that our tests perform well for not only mean-field systems but also for conventional

stochastic systems. We also see that the number of failures decreases when T gets larger,

which is in line with our asymptotic theory. Moreover, we see that γ0 = 0.01 is a good choice

for the case of T = 500 because the probability of falsely rejecting H0 due to the additional

rejection rule γ̂T ≥ γ0 is at most 0.2%. For the case T = 100, the false rejection from the

additional rejection rule has a proportion 3% and 5.2%, respectively, which is significant to

the nominal size α. Therefore, the choice of γ0 = 0.01 is not good for the case T = 100

considering the test sizes. Note that the way to select an appropriate threshold γ0 in practice

is presented in Section 3.2.
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Table 1: The test sizes for different significance levels α and sample size T with

θ∗ = (0.5, 0.3,−0.8, 0.1, 0.1, 0.1) and σ∗ = 0.3.

α 0.10 0.05 0.01 󰂒 of failures/500

T=100 0.0920 0.0640 0.0380 0.0300

T=500 0.1040 0.0580 0.0080 0.0020

Table 2: The test sizes for different significance levels α and sample size T with

θ∗ = (0.5, 0.3,−0.8, 0.1, 0, 0) and σ∗ = 0.3.

α 0.10 0.05 0.01 󰂒 of failures/500

T=100 0.1140 0.0900 0.0520 0.0520

T=500 0.0940 0.0580 0.0180 0.0000

In Tables 3 and Table 4, we consider two hypotheses, H0 : b(x, y, u) = 〈θ, b(x, y, u)〉 and

σ(x, y, u) = σ versus H1 : b(x, y, u) = 〈θ, b(x, y, u)〉 and σ(x, y, u) = σ(1 + λ
󰁳

|x|), and

H0 : b(x, y, u) = 〈θ, b(x, y, u)〉 and σ(x, y, u) = σ versus H1 : b(x, y, u) = 〈θ, b(x, y, u)〉 +

λh(x) and σ(x, y, u) = σ, respectively, where λ ≥ 0 is a varying constant and h(x) = sin(x).

Tables 3 and 4 summarize the test powers for θ∗ = (0.5, 0.3,−0.8, 0.1, 0.1, 0.1) and σ∗ = 0.3.

From Tables 3 and 4, one can see clearly that when λ departures from 0, the test power

tends to one quickly because the number of failures increases rapidly which dominates the

power. This justifies the power of our tests and the necessity of the additional rejection rule

γ̂T ≥ γ0 in our testing procedure.

Table 3: The test powers for different values of λ under H0 : b(x, y, u) =

〈θ, b(x, y, u) and σ(x, y, u) = σ versus H1 : b(x, y, u) = 〈θ, b(x, y, u)〉 and

σ(x, y, u) = σ(1 + λ
󰁳

|x|) with θ∗ = (0.5, 0.3,−0.8, 0.1, 0.1, 0.1), σ∗ = 0.3,

α = 0.05 and T = 500.

λ 0 1 3 5

Power 0.0580 0.0573 0.5480 0.9440

󰂒 of failures/500 0.0020 0.0220 0.5120 0.9440

5 Conclusion

To test whether the HAM features approximate aggregation, we propose a model-

specification testing problem for the evolution of one agent’s wealth under partial infor-
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Table 4: The test powers for different values of λ under H0 : b(x, y, u) =

〈θ, b(x, y, u)〉 and σ(x, y, u) = σ versus H1 : b(x, y, u) = 〈θ, b(x, y, u)〉 + λh(x)

and σ(x, y, u) = σ with θ∗ = (0.5, 0.3,−0.8, 0.1, 0.1, 0.1), σ∗ = 0.3, α = 0.05

and T = 500.

λ 0 1 2 3

Power 0.0580 0.0460 0.1000 0.8760

󰂒 of failures/500 0.0020 0.0000 0.0500 0.8620

mation. The main difficulty of our problem lies in the lack of observations on the total

wealth of all agents. To overcome this challenge, we propose a novel two-step verification to

derive an equilibrium estimator if the null hypothesis is true. We see that our method gener-

alizes the ML method proposed in Parra-Alvarez et al. (2023) for the HAM without shocks.

Also, we establish the consistency and asymptotic normality of the proposed equilibrium

estimator. Then, through the generator of the observations, we construct a testing statistic

and establish its asymptotic theory. Consequently, a testing rule is obtained. Different from

the testing rules for conventional diffusion models as in Ait-Sahalia (1996), Hong and Li

(2005), Chen et al. (2008), and Ait-Sahalia et al. (2009), our testing rule consists of two

parts: the estimating error γ̂T and the test statistic. To the best of our knowledge, the first

part involving γ̂T is new in the literature which is necessary to make our tests powerful. The

simulation study shows that indeed, our tests have good test sizes and are powerful.

This paper is the first attempt to study the model specification testing problems for

partially observed HAMs with aggregate shocks. The idea introduced has great potential

for those generalized model specification testing problems for mean-dependent stochastic

processes. We admit that the theory developed here is just an infant. For example, it is

assumed that the income processes are normally distributed (they may be allowed other

distributions such as Bernoulli distribution which is used in Krusell and Smith (1998) and

Parra-Alvarez et al. (2023)) such that the equilibrium estimator has an explicit form. Also, it

is assumed that the diffusion coefficient involves a one-dimensional parameter only such that

the two-step verification only applies to those parameters in the drifts. Those assumptions

might restrict the application of the developed theory here to more general HAMs. Despite

those restrictive assumptions in the paper, there is no doubt that the idea of an equilibrium
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estimator is applicable to similar problems with more general P . Hopefully, more results on

these issues can be obtained and reported in the future.

6 Mathematical Proofs

In this section, we present the mathematical proofs of the main results. For the sake

of convenience, we only deal with m = 1 in the proof, because the proof for other m’s is

similar. First, note that Op(1) stands for a term which is bounded in probability, and op(1)

means that it converges to 0 in probability. Now, recall the parametric family P satisfies

b(x, y, u) = A0(y)x+B0(y, u) + θ
󰀅
A(y)x+B(y, u)

󰀆
.

Define the auxiliary processes {(󰁨Ut(ϑ), 󰁨Vt(ϑ),󰁩Wt(ϑ))}Tt=1 by

󰁨Ut+1(ϑ) = 󰁨Ut(ϑ) +∆
󰀅
A0(Yt)󰁨Ut(ϑ) +B0(Yt, 󰁨Ut(ϑ))

󰀆
+∆ϑ

󰀅
A(Yt)󰁨Ut(ϑ) +B(Yt, 󰁨Ut(ϑ))

󰀆

with 󰁨U1(ϑ) = X1,

󰁨Vt+1(ϑ) = 󰁨Vt(ϑ)
󰁫
1 +∆

󰀓
A0(Yt) + ∂uB0(Yt, 󰁨Ut(ϑ)) + ϑ

󰀅
A(Yt) + ∂uB(Yt, 󰁨Ut(ϑ))

󰀆󰀔󰁬

+∆
󰀅
A(Yt)󰁨Ut(ϑ) +B(Yt, 󰁨Ut(ϑ))

󰀆
(8)

with V1(ϑ) = 0, and

󰁩Wt+1(ϑ) = 󰁩Wt(ϑ)
󰁫
1 +∆

󰀓
A0(Yt) + ∂uB0(Yt, 󰁨Ut(ϑ)) + ϑ

󰀅
A(Yt) + ∂uB(Yt, 󰁨Ut(ϑ))

󰀆󰀔󰁬

+ 󰁨Vt(ϑ)
󰁫
󰁨Vt(ϑ)

󰀓
∂2
uB0(Yt, 󰁨Ut(ϑ)) + ϑ∂2

uB(Yt, 󰁨Ut(ϑ))
󰀔
+ A(Yt) + ∂uB(Yt, 󰁨Ut(ϑ))

󰁬
∆,

+∆
󰀅
A(Yt) + ∂uB(Yt, 󰁨Ut(ϑ))

󰀆󰁨Vt(ϑ)

with 󰁩W1(ϑ) = 0. In fact, 󰁨V (ϑ) and 󰁩W (ϑ) are defined such that 󰁨Vt(ϑ) = ∂ϑ 󰁨Ut(ϑ)and 󰁩Wt(ϑ) =

∂ϑ󰁨Vt(ϑ).

The following is one of our main assumptions.

Assumption 2. (A1) The coefficients B(y, u) are second-order differentiable with respect

to u with bounded Lipschitz derivatives and satisfy

|Bi(y, u)|+ |σ(x, y)| ≤ L(1 + |x|+ |u|), |Ai(y)| ≤ L, and |σ(x, y)| > ε

for some L, ε > 0.
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(A2) The stochastic process (X(θ), Y (θ), U(θ), 󰁨U(ϑ)) is ergodic and satisfies

sup
θ∈Θ

sup
t

E|Xt(θ)|4 < ∞, E|X(1)
t (θ)−X

(2)
t (θ)|2 ≤ Leλ0tE|X(1)

0 −X
(2)
0 |2, (9)

and

sup
ϑ

E|󰁨U (1)
t (ϑ)− 󰁨U (2)

t (ϑ)|2 ≤ Le−λ0tE|󰁨U (1)
0 − 󰁨U (2)

0 |2 (10)

for some L,λ0 > 0 independent of ϑ ∈ Θ, where (X
(i)
t (θ), U

(i)
t (θ), 󰁨U (i)

t (ϑ)) satisfies (1)

with initial value (X
(i)
0 , U

(i)
0 , 󰁨U (i)

0 ) and parameter (θ,ϑ, σ∗). Moreover, the ergodic mea-

sure νθ(dx, dy, du) of (X(θ), Y (θ), U(θ)) is continuous in Wasserstein-2 metric (see, for

example, Villani (2009) for details) with respect to θ. We also write µθ(dx, dy, du, dũ;ϑ)

by the ergodic measure of (X(θ), Y (θ), U(θ), 󰁨U(ϑ)).

(A3) The true parameter θ∗ is the unique solution to Θ(ϑ) = ϑ in Θ and infϑ∈Θ det[M(ϑ)] >

0.

(A4) It follows that

lim sup
T→∞

1

T

T󰁛

t=1

󰀅
sup
ϑ∈Θ

|󰁨Ut(ϑ)|2 + sup
ϑ∈Θ

|󰁨Vt(ϑ)|2 + sup
ϑ∈Θ

|󰁩Wt(ϑ)|2
󰀆
< ∞. (11)

(A5) Θ(·) is continuously differentiable in Θ with det[I − ∂Θ(θ∗)] ∕= 0 where ∂Θ(·) is the

gradient field of Θ(·).

Now, let us discuss the aforementioned assumptions. (A1) distinguishes our concern

from the trivial case when Θ = {θ∗}. The exponential ergodicity in (A2) and the uniform

boundedness in (A4) can be verified through the well-known Lyapunov method if some

appropriate conditions are imposed on the coefficients. The readers are referred to Mao

(2007) for more details on such a method. (A3) is a necessary assumption such that Θ(·; ·)

is well defined on Θ and θ∗ is the unique a fixed point. Note that θ∗ is always a solution

if M(θ∗) is invertible. The uniqueness is the essence here. From above, it seems that (A1)-

(A3) are mild assumptions for model specification problems on stochastic systems. (A4) is

separately verified later (see Proposition 2) under some regularity conditions and (A5) is a

necessary technical assumption needed for the two-step procedure. In the sequel, we always

assume Assumption 2 holds. Then, we proceed with the following several lemmas.
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Lemma 1. It follows that under Assumptions 1 and 2,

lim
T→∞

sup
ϑ∈Θ

| 󰁥ΘT (ϑ)−Θ(ϑ)| = 0, lim
T→∞

sup
ϑ∈Θ

|∂ 󰁥ΘT (ϑ)− ∂Θ(ϑ)| = 0, and sup
ϑ∈Θ

|∂ϑi
∂ϑj

󰁥ΘT (ϑ)| ≤ L0

(12)

almost surely, for some finite random variable L0 > 0.

Proof. Recall the definition of 󰁦MT (ϑ) in (6), we have

|∂ϑ󰁦MT (ϑ)| =
󰀏󰀏󰀏
1

T

T󰁛

t=1

2[A(Yt) +B(Yt, 󰁨Ut(ϑ)]∂uB(Yt, 󰁨Ut(ϑ)Vt(ϑ)

σ2
0(Xt, Yt)

󰀏󰀏󰀏

≤ K

Tε

T󰁛

t=1

(|Ut(ϑ)|2 + |Vt(ϑ)|2) → L0

for some L0 > 0. This implies that ∂ϑ󰁦MT (ϑ) is uniformly bounded in T on almost all sample

paths. Therefore with probability 1, 󰁦MT (ϑ) → M(ϑ) uniformly for θ ∈ Θ. Similarly, one

can show that 󰁥ΦT (ϑ) uniformly converges to Φ(ϑ) uniformly for θ ∈ Θ for almost all sample

paths. By (A4) in Assumption 2, we have

inf
ϑ∈Θ

det
󰀅󰁦MT (ϑ)

󰀆
≥ inf

ϑ∈Θ
det

󰀅
M(ϑ)

󰀆
− sup

ϑ∈Θ

󰀏󰀏󰀏 det
󰀅󰁦MT (ϑ)

󰀆
−det

󰀅
M(ϑ)

󰀆󰀏󰀏󰀏 → inf
ϑ∈Θ

det
󰀅
M(ϑ)

󰀆
> 0

almost surely. By writing the adjugate matrix of 󰁦MT (·) by 󰁦M †
T (·), then,

󰁥ΘT (ϑ) =
󰀓
det

󰀅󰁦MT (ϑ)
󰀆󰀔−1󰁦M †

T (ϑ)
󰁥ΦT (ϑ),

which yields the first assertion in (12). The proofs for the second and third results in (12)

are similar, omitted.

Next, it is ready to prove the consistency result in Theorem 1.

Proof of Theorem 1 . Note that

|Θ(θ̂T )− θ̂T | ≤ sup
ϑ∈Θ

| 󰁥ΘT (ϑ)−Θ(ϑ)|+ | 󰁥ΘT (θ̂T )− θ̂T |

= sup
ϑ∈Θ

| 󰁥ΘT (ϑ)−Θ(ϑ)|+ inf
ϑ∈Θ

| 󰁥ΘT (ϑ)− ϑ|

≤ 2 sup
ϑ∈Θ

| 󰁥ΘT (ϑ)−Θ(ϑ)|+ inf
ϑ∈Θ

|Θ(ϑ)− ϑ| = 2 sup
ϑ∈Θ

| 󰁥ΘT (ϑ)−Θ(ϑ)| → 0,
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almost surely. As θ∗ is the unique solution to Θ(ϑ) = ϑ in Θ, therefore, θ̂T → θ∗ almost

surely. Let 󰁨Ut(θ∗) satisfy (5) with 󰁨U1(θ∗) = X1. Note that 󰁨Ut(θ∗) and the true Ut are both

calculated from (5) with the same parameter θ∗ while with different initial values. Then, it

follows that

σ̂2
T =

1

T

T󰁛

t=1

[Xt+1 −Xt −∆b0(Xt, Yt, 󰁨Ut(θ̂T ))−∆〈θ̂T , b(Xt, Yt, 󰁨Ut(θ̂T ))〉]2
∆σ2

0(Xt, Yt)
=

σ∗
2

T

T󰁛

t=1

w2
t

+
∆

T

T󰁛

t=1

󰀓
b0(Xt, Yt, Ut) + 〈θ∗, b(Xt, Yt, Ut)〉 − b0(Xt, Yt, 󰁨Ut(θ̂T ))− 〈θ̂T , b(Xt, Yt, 󰁨Ut(θ̂T ))〉

󰀔2

σ2
0(Xt, Yt)

+
2σ∗

√
∆

T

T󰁛

t=1

b0(Xt, Yt, Ut) + 〈θ∗, b(Xt, Yt, Ut)〉 − b0(Xt, Yt, 󰁨Ut(θ̂T ))− 〈θ̂T , b(Xt, Yt, 󰁨Ut(θ̂T ))〉
σ0(Xt, Yt)

wt

=
σ∗

2

T

T󰁛

t=1

w2
t +Op(1)

∆

T

T󰁛

t=1

󰀓
|󰁨Ut(θ̂T )− Ut|2 + |θ̂T − θ∗|2(1 + |Xt|2 + sup

ϑ
|󰁨U(ϑ)|2)

󰀔

+Op(1)
2σ∗

√
∆

T
|θ̂T − θ∗|

T󰁛

t=1

|wt| sup
ϑ

|Vt(ϑ)|. (13)

Note that for some uniform K > 0, one has

E(|Xt|2 + sup
ϑ

|󰁨Ut(ϑ)|2) < K, E|󰁨Ut(θ̂T )− 󰁨Ut(θ∗)|2 ≤ KE|θ̂T − θ∗|,

and E|󰁨Ut(θ∗) − Ut|2 ≤ KE|X1 − U1|2e−λ0t. By Lemma 1 and the consistency of θ̂T (in the

compact set Θ), so that σ̂2
T = σ∗

2 + op(1). The proof is complete.

To prove Theorem 2 , we need the following two lemmas.

Lemma 2. It follows that γ̂T = 0 when T is large.

Proof. Let h(ϑ) = Θ(ϑ)−ϑ and hT (ϑ) = 󰁥ΘT (ϑ)−ϑ. Without loss of generality, it is assumed

that ∂h(θ∗) = I. Otherwise, we perform a local linear transformation on ϑ. Then, around

θ∗, h(ϑ) = ϑ − θ∗ + o(|ϑ − θ∗|). Therefore, it can be easily seen that the conditions for the

well-known Poincaré-Miranda Theorem hold. By the uniform convergence of hT to h on each

sample path, the Poincaré-Miranda theorem is applicable for hT , which yields hT admits a

solution in Θ, i.e. γ̂T = 0. The proof is complete.

Lemma 3. If ξt → 0 in probability and supt E|ηt| < ∞, then ξtηt → 0 in probability.
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Proof. For any ε > 0 and δ > 0, it follows that

lim sup
t→∞

P(|ξtηt| ≥ ε) ≤ lim sup
t→∞

󰀓
P(|ξt| ≥ δ) + P(|ηt| ≥ ε/δ)

󰀔
≤ δ/ε sup

t
E|ηt|.

By the arbitrariness of δ > 0, then, lim supt→∞ P(|ξtηt| ≥ ε) = 0. Therefore, this concludes

the lemma.

Proof of Theorem 2. By the definitions of 󰁦MT (ϑ) and 󰁥ΘT (ϑ) and the Lipschitz continuity of

B(y, u) with respect u, it follows that

󰁦MT (θ∗)( 󰁥ΘT (θ∗)− θ∗) = 󰁥ΦT (θ∗)− 󰁦MT (θ∗)θ∗

=
1

T∆

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ2
0(Xt, Yt)

󰀅
Xt+1 −Xt − b0(Xt, Yt, 󰁨Ut(θ∗))∆− θ∗b(Xt, Yt, 󰁨Ut(θ∗))∆

󰀆

=
1

T
√
∆

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt +O(1)× ∆

T

T󰁛

t=1

|Ut − 󰁨Ut(θ∗)|,

which concludes that

√
T∆[ 󰁥ΘT (θ∗)− θ∗] =

1√
T
M−1(θ∗)

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt

+ (󰁦M−1
T (θ∗)−M−1(θ∗)) ·

1√
T

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt +O(1)× 󰁦M−1

T (θ∗)
1

T

T󰁛

t=1

|Ut − 󰁨Ut(θ∗)|.

(14)

This together with Lemma 3 yields that

(󰁦M−1
T (θ∗)−M−1(θ∗)) ·

1√
T

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt = op(1). (15)

An application of (14) and (15) implies that

√
T∆[ 󰁥ΘT (θ∗)− θ∗] =

1√
T
M−1(θ∗)

T󰁛

t=1

b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt + op(1).

By (12), using the Taylor expansion, one has

√
T∆[θ∗ − 󰁥ΘT (θ∗)] =

√
T∆[ 󰁥ΘT (θ̂T )− 󰁥ΘT (θ∗)] +

√
T∆γ̂T −

√
T∆[θ̂T − θ∗]

= [∂ 󰁥Θ(θ∗)− I]
√
T∆(θ̂T − θ∗) +

1

2
Op(1)

√
T (θ̂T − θ∗)

2 + op(1) +
√
T∆γ̂T .
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As ∂ 󰁥Θ(θ∗) → ∂Θ(θ∗) almost surely and
√
T∆γ̂T = op(1) by Lemma 2, we have

√
T∆(θ̂T − θ∗) = op(1) +

1√
T
[I − ∂Θ(θ∗)]

−1M−1(θ∗)
T󰁛

t=1

󰁫b(Xt, Yt, 󰁨Ut(θ∗))

σ0(Xt, Yt)
wt

󰁬
. (16)

Together with (13), the asymptotic normality holds. The proof is complete.

Proof of Theorem 3. Note that

󰁥S(f) = 1√
T∆

T󰁛

t=1

Af(Xt, Yt, 󰁨Ut(θ̂T ); θ̂T , σ̂
2
T )−

1√
T∆

T󰁛

t=1

Af(Xt, Yt, 󰁨Ut(θ
∗); θ∗, σ

2
∗) (17)

+
1√
T∆

T󰁛

t=1

Af(Xt, Yt, 󰁨Ut(θ
∗); θ∗, σ

2
∗)−

1√
T∆

T󰁛

t=1

Af(Xt, Yt, Ut; θ∗, σ
2
∗)

+
1√
T∆

T󰁛

t=1

Af(Xt, Yt, Ut; θ∗, σ
2
∗)

= Op(1)
1√
T∆

T󰁛

t=1

|󰁨Ut(θ̂T )− 󰁨Ut(θ
∗)|

+
√
T∆(θ̂T − θ∗)

1

T∆

T󰁛

t=1

󰀓
∂uAf(Xt, Yt, Ut; θ∗, σ

2
∗)Vt + ∂θAf(Xt, Yt, Ut; θ∗, σ

2
∗)
󰀔

+
√
T∆(σ̂2

T − σ2
∗)

1

T∆

T󰁛

t=1

∂σ2Af(Xt, Yt, Ut; θ∗, σ
2
∗) +

O(1)√
T∆

T󰁛

t=1

󰀓
|θ̂T − θ∗|2 + |σ̂2 − σ2

∗|2
󰀔

+
1√
T∆

󰀓
f(XT+1)− f(X1)

󰀔
− 1√

T∆

T󰁛

t=1

󰁫
f(Xt+1)− f(Xt)−Af(Xt, Yt, Ut; θ∗, σ

2
∗)
󰁬
.

By (9) and (10) and the representation of θ̂T , σ̂
2
T in (16) and (13), the CLT for martingales

yields that 󰁥ST (f) converges to a normal distribution whose variance is written by ς2(θ∗, σ
2
∗; f).

Proposition 1. Suppose that ς2(θ, σ2; f) is continuous of (θ, σ2) ∈ Θ × R+. As Tb → ∞,

Nb → ∞ and T → ∞ sequentially, it follows that

lim
T→∞

lim
Nb→∞

lim
Tb→∞

P
󰀓
|󰁥ST (f)| ≥ ŝ(θ̂T , σ̂

2
T ; f)

󰀔
= α/2.

Proof. Given θ̂T , σ̂
2
T , by the CLT of the test statistics in Theorem 3, we know that

lim
Nb→∞

lim
Tb→∞

ŝ(f ; θ̂T , σ̂
2
T ) = zα/2 · ς(θ̂T , σ̂2

T ; f)
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almost surely. Therefore, by the continuity of σ(·; f) and the almost sure consistency of

(θ̂T , σ
2
T ), we have

lim
T→∞

lim
Nb→∞

lim
Tb→∞

P
󰀓
|󰁥ST (f)| ≥ ŝ(θ̂T , σ̂

2
T ; f)

󰀔
≥ lim

T→∞
P
󰀓
|󰁥ST (f)| > zα/2 · ς(θ̂T , σ̂2

T ; f)
󰀔
= α/2,

and

lim
T→∞

lim
Nb→∞

lim
Tb→∞

P
󰀓
|󰁥ST (f)| ≥ ŝ(θ̂T , σ̂

2
T ; f)

󰀔
≤ lim

T→∞
P
󰀓
|󰁥ST (f)| ≥ zα/2 · ς(θ̂T , σ̂2

T ; f)
󰀔
= α/2.

The proof is complete.

Finally, let us present a proposition to verify (A4) in Assumption 2.

Proposition 2. Suppose that either of the following hold:

• Bi(y, 0) are uniformly bounded and

−λ1 < A0(y) + ∂uB0(y, u) +
m󰁛

i=1

ϑi[Ai(y) + ∂uBi(y, u)] < −λ0,

or all (y, u,ϑ) and some constants λ1 > λ0 > 0.

• Y is a finite-state Markov Chain with state space Y and Bi(y, u) = Ci(y) + Di(y)u.

Let

K(y) = 1 +∆
󰀓
A0(y) +D0(y) + sup

ϑ∈Θ

m󰁛

i=1

ϑi[Ai(y) +Di(y)]
󰀔
.

There exists a positive function G on Y such that

󰁛

ȳ∈Y

qy,ȳG(ȳ)K2(ȳ) < λ0G(y) (18)

for some 0 < λ0 < 1 where (qy,ȳ) is the transition matrix of Y .

Then, when ∆ is small, the tuple (supϑ∈Θ
󰁨Ut(ϑ), supϑ∈Θ

󰁨Vt(ϑ), supϑ∈Θ
󰁩Wt(ϑ)) satisfies

lim sup
T→∞

1

T

T󰁛

t=1

󰀅
sup
ϑ∈Θ

|󰁨Ut(ϑ)|2 + sup
ϑ∈Θ

|󰁨Vt(ϑ)|2 + sup
ϑ∈Θ

|󰁩Wt(ϑ)|2
󰀆
< ∞.

Proof. Let us prove (11) holds for those two cases.

(1) By the recursion of 󰁨U(ϑ) in (8), using mean-value theorem, we have

sup
ϑ

|󰁨Ut+1(ϑ)|
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≤ sup
ϑ

|󰁨Ut(ϑ)| · sup
ϑ

󰁫
1 +∆

󰀓
A0(Yt) +

m󰁛

i=1

ϑiAi(Yt) + ∂uB0(Yt, ·) +
m󰁛

i=1

ϑi∂uBi(Yt, ·)
󰀔󰁬

+ |B(Yt, 0)|+ sup
ϑ

m󰁛

i=1

|ϑiBi(Yt, 0)|

≤ λ0 sup
ϑ

|󰁨Ut(ϑ)|+ |B(Yt, 0)|+ sup
ϑ

m󰁛

i=1

|ϑiBi(Yt, 0)|

for some λ0 ∈ (0, 1), when ∆ is small. This says that 󰁨Ut(ϑ) are uniformly bounded. Similarly,

one can prove that 󰁨Vt(ϑ) and 󰁩Wt(ϑ) are uniformly bounded as well.

(2) In this case, we have

sup
ϑ

|󰁨Ut+1(ϑ)|

= sup
ϑ

󰀏󰀏󰀏󰀏󰀏
󰁨Ut(ϑ)

󰁫
1 +∆

󰀓
A0(Yt) +D0(Yt) +

m󰁛

i=1

ϑi[Ai(Yt) +Di(Yt)
󰀔󰁬

+∆
󰀓
C0(Yt) +

m󰁛

i=1

ϑiCi(Yt)
󰀔󰀏󰀏󰀏󰀏󰀏

≤ K(Yt) sup
ϑ

|󰁨Ut(ϑ)|+ L(Yt), (19)

where L(y) = supϑ |C0(y) +
󰁓m

i=1 ϑiCi(y)|. This motivates us to consider Ut satisfying

Ut+1 = K(Yt)Ut + L(Yt). For any δ > 0, it follows that

E
󰁫
G(Yt)U2

t+1

󰁬
≤ E

󰁫
(1 + δ)[G(Yt)K

2(Yt)U2
t ] + (1 + δ−1)G(Yt)L

2(Yt)
󰁬

= (1 + δ)λ0E
󰀅
G(Yt−1)U2

t

󰀆
+ (1 + δ−1)E[G(Yt)L

2(Yt)]. (20)

Picking δ small such that (1+δ)λ0 < 1, by Grownwall’s inequality, it follows that E[G(Yt)U2
t ] <

L0 for some L0 > 0. Since G(y) > ε for some ε > 0, then, EU2
t+1 ≤ ε−1E[G(Yt)U2

t ] < L0ε
−1.

Because (Ut, Yt) is a Markov process and Ut satisfies a linear recursion with the uniform

bounded second moments, it is ergodic with

lim
T→∞

T−1

T󰁛

t=1

U2
t < ∞

almost surely. Similar to (19) and (20), we have

sup
ϑ

|󰁨Vt+1(ϑ)|2 ≤ λ sup
ϑ

|󰁨Vt(ϑ)|2 + LU2
t .

Grownwall’s inequality implies that

lim
T→∞

T−1

T󰁛

t=1

sup
ϑ

|󰁨Vt+1(ϑ)| ≤ lim
T→∞

LT−1

T󰁛

t=1

(T − t)e−λ(T−t)U2
t ≤ L lim

T→∞
T−1

T󰁛

t=1

U2
t < ∞.
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The proof for 󰁩Wt(ϑ) is same given the linear structure assumed.

Now, let us discuss the two cases dealt with in Proposition 2. The first case requires

the system to be uniform dissipative for all of Y . Such a condition is fairly strong on

the dissipativity but weak in the form of stochastic process Y . To weaken the uniform

dissipativity condition, (18) is assumed, when Y is a finite-state Markov chain and the drift

coefficients are linear with respect u. Such a condition is parallel to the Lyapunov condition

for stochastic switching systems (see Yin and Zhu (2010) for more details). We admit that

those conditions are far from necessary for (12), while how to get a better condition is beyond

the scope of this paper and thus is omitted here.
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