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Abstract: The estimation and model selection of conditional autoregressive value at
risk (CAViaR) model may be computationally intensive and even impractical when
the true order of the quantile autoregressive components or the dimension of the other
regressors are high. On the other hand, automatic variable selection methods cannot
be directly applied to this problem because the quantile lag components are latent.
In this paper, we propose to identify the optimal CAViaR model using a two-step
approach. The estimation procedure consists of an approximation of the conditional
quantile in the first step, followed by an adaptive Lasso penalized quantile regression
of the regressors as well as the estimated quantile lag components in the second step.
We show that under some mild regularity conditions, the proposed adaptive Lasso
penalized quantile estimators enjoy the oracle properties. Finally, the proposed method
is illustrated by Monte Carlo simulation study and applied to analyzing the daily data
of the S&P500 return series.

Keywords: CAViaR model; Adaptive Lasso; Model selection; Tail risk.

JEL classification: C32, C51, C58

1 Introduction

To find an effective risk measure which is both responsive to financial or political news

and easy to grasp even in the complex situations, Engle and Manganelli (2004) proposed

the conditional autoregressive value at risk (CAViaR) model. Since then, the CAViaR

model has soon become popular for its simplicity and the capability to specify the

evolution of the quantile over time and it has been applied to various fields. As for
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financial risk management, for example, Kuester et al. (2006) shown that an extension to a

particular CAViaR model outperforms the other alternative strategies in the value at risk

(VaR) prediction. Recently, Laporta et al. (2018) investigated different VaR forecasts for

daily energy commodities returns, and found that the CAViaR model and dynamic

quantile regression model perform relatively better than other approaches such as GARCH,

EGARCH, and GJR-GARCH, while Gao et al. (2022) proposed a regime-switching

CAViaR model to jointly forecast the VaR and expected shortfall (ES) of Bitcoin series.

Especially, from theoretical perspectives, the CAViaR model was extended to multivariate

case by White et al. (2015). Besides, it was incorporated into the unobserved components

model by Harvey (2013) and the generalized autoregressive score model by Creal et al.

(2013), respectively. To overcome the problem of “elicitability” for ES, Taylor (2019) and

Patton et al. (2019) considered using the loss function proposed by Fissler and Ziegel

(2016) to jointly estimate the CAViaR model along with the dynamic ES model.

Although CAViaR model has attracted a great deal of research attention, the inclusion

of autoregressive components may bring new challenge to the estimation of the model with

appropriate orders. To alleviate the heavy computation burden in the optimization routines,

Taylor (2008) proposed using the expectile regression to estimate the CAViaR model by

the one-to-one relationship between quantile and expectile. Meanwhile, an iterative Kalman

filter method introduced by De Rossi and Harvey (2009) can also be applied to calculate

the CAViaR model. By establishing the relationship between the linear GARCH model of

Taylor (1986) and the CAViaR model, Xiao and Koenker (2009) proposed a robust and

easy-to-implement two-step approach for quantile regression on GARCH models.

However, none of the aforementioned papers addresses the issue about the model selection

of CAViaR model. When the true orders of quantile lags or the dimension of the other

regressors are high, the implementing of the CAViaR model can be computationally intensive.

On the other hand, the traditional variable selection method such as adaptive Lasso in Zou

(2006) for mean regression and in Wu and Liu (2009) for quantile regression cannot be

directly applied because of the latent variable. In this paper, we propose a two-step procedure

to fill this gap. Our estimation procedure consists of an approximation of the conditional

quantiles in the first step, followed by an adaptive Lasso penalized quantile regression of the

regressors as well as the estimated quantile lag components.

The rest of this paper is organized as follows: Section 2 introduces the CAViaR model

and our two-step estimation and model selection procedures. Section 3 investigates the

asymptotic properties of the two-step CAViaR estimators, and the Oracle properties of

the adaptive Lasso penalized quantile regression estimators are also studied. Monte Carlo

experiment and empirical analysis results of a real data example are reported in Sections 4

and 5, respectively. Section 6 concludes the paper. All technical proofs are deferred to the

supplementary file.
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2 Model Framework

Assume that (Yt,Xt,Mt), t = 1, 2, . . . , T , is a sequence of strictly stationary random

vectors, where Yt is a scalar variable of interest, Xt ∈ Rp is a vector of covariates defining

the risk factors, and Mt ∈ Rd denotes the tail risk drivers, which may contain lagged

macroeconomic state variables, lagged firm-specific characteristics and lagged returns. Let

Ft = σ{(Y1,X1,M1), . . . , (Yt−1,Xt−1,Mt−1)} be the information set available at time t, Mτ

denote a model of the τth conditional quantile of Yt, Mτ ≡ {qτ (Wt,θ
∗
τ )}, in which Wt ≡

h(Xt, . . . ,Xt−n0) : Ω → Rl with h(·) denoting a measurable random vector for some finite

number n0, θ
∗
τ be an unknown parameter in the parameter space Θ, and qτ (Wt, ·) : Θ → R

denote some real function. The τth conditional quantile of Yt given Wt = wt is defined as

qτ (wt,θ
∗
τ ) = argmin

u∈R
E{Qτ (Yt − u)|Wt = wt},

where Qτ (Yt − u) = (τ − I(Yt ≤ u))(Yt − u) with I(·) denoting the indicator function. To

specify the evolution of the quantile over time using an autoregressive process, Engle and

Manganelli (2004) considered a class of CAViaR(p, q) models as

qτ (wt,θ
∗
τ ) ≡ qt,τ = α0,τ +

p

i=1

αi,τXt,i +

q

j=1

βj,τqt−j,τ = α0,τ +α⊤
τ Xt +B(L)qt,τ , (1)

where θ∗
τ = (α0,τ ,α1,τ , . . . ,αp,τ , β1,τ , . . . , βq,τ )

⊤ ∈ Rp+q+1 with p > 0, q > 0 and βj,τ ≥ 0 for

j = 1, . . . , q, ατ = (α1,τ , . . . ,αp,τ )
⊤, qt−j,τ is the conditional quantile of {Yt}Tt=m at time t− j

with a finite number m ≡ max(p, q) + 1, and B(L) =
q

j=1

βj,τL
j with L denoting the lag

operator. Here, Xt is allowed to include the past returns of Yt. Note that for simplicity of

notation, τ is dropped from θ∗
τ , αi,τ , i = 0, . . . , p and βj,τ , j = 1, . . . , q, if doing so does not

cause confusion.

The key issue of implementing this method is how to select an appropriate and

parsimonious model, which is similar to choose an appropriate orders p and q in an

ARMA(p, q) model. Here, we propose using the adaptive Lasso for the model selection

purpose. The two-step estimation procedures are introduced below. In the first step, we

model the conditional quantile of Yt using an approximately parametric quantile regression

model of the tail risk drivers Mt as follows:

qt,τ ≈ a⊤
τ Mt,

where aτ = (a0,τ , a1,τ , . . . , ad,τ )
⊤ and Mt is an known function of Mt. To capture possible

nonlinearity, we recommend using B-spline (for such a case, Mt is the B-spline functions of

the tail risk drivers Mt) or other type of parametric approximation approaches in the above

approximation. For simplicity of exposition, Mt is taken to be Mt = (1,M⊤
t )

⊤. Then, the
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conditional quantiles can be approximated using the following equation:

qt,τ ≈ a0,τ +
d

j=1

aj,τMt,j.

In the second step, given Zt,τ = (1, Xt,1, . . . , Xt,p, qt−1,τ , . . . , qt−q,τ )
⊤, then the optimal

subset CAViaR model can be selected by the adaptive Lasso penalized quantile regression

of Yt on Zt = (1, Xt,1, . . . , Xt,p, qt−1,τ , . . . , qt−q,τ )
⊤ and the adaptive Lasso penalized quantile

regression estimator of θ∗ can be estimated by:

θ(T ) = min
θ∈Rp+q+1

1

T

T

t=m

Qτ


Yt − α0 −

p

i=1

αiXt,i −
q

j=1

βjqt−j,τ


+ λT

p+q+1

i=1

wi|θi|, (2)

where λT ∈ (0,∞) is the regularization parameter, w ≡ ( w1, . . . , wp+q+1) = |θ|−η consists

of p + q + 1 data-driven weights with some appropriately chosen η > 0, and θ denotes the

quantile regression estimator of θ∗. Specifically, the estimation procedures in the second step

are formulated in the following algorithm.

Algorithm:

1. Calculate the initial value of adaptive weights 1

|θs|
(s = 1, . . . , p+ q+1) by least square

regression of Yt on Zt.

2. Update the adaptive weights 1

|θs|
(s = 1, . . . , p+ q + 1) by adaptive Lasso regression of

Yt on Zt.

3. Find the solution path of the adaptive Lasso regression.

4. The optimal λT is selected using the cross validation technique.

5. Keep iterating 2-4 until convergence achieved.

3 Asymptotic Theory

In this section, the oracle property of the adaptive Lasso penalized quantile regression

estimator is derived.

3.1 Notations and Assumptions

Now, the assumptions for deriving asymptotic results are listed below. Note that these

assumptions given in this paper are sufficient conditions but not necessarily the weakest.

Assumptions:
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A1. For the true system (1), the polynomial B(z) ∕= 0 for |z| ≤ 1.

A2. Conditional on the random vector Wt = wt, the error term εt,τ ≡ Yt − qt,τ form a

stationary process, with continuous conditional density ht(ε|wt) ≥ h for some h > 0

and for all t. Further, for some constant N and for any t, ht(ε|wt) ≤ N < ∞.

A3. ht(ε|wt) satisfies Lipschitz condition, i.e., |ht(λ1|wt)−ht(λ2|wt)| ≤ L|λ1−λ2| for some

constant L < ∞ and for any t;

A4. Mt ≤ A(wt) for all t, where A(wt) is some stochastic function of variables that

belong to the information set wt, such that E(|A2(wt)|) < ∞; Xt ≤ C(wt) where

C(wt) is some stochastic function of variables that belong to the information set wt,

such that E(|C2(wt)|) < ∞ and E(|A(wt)C(wt)|) < ∞; qt,τ ≤ H(wt) where H(wt) is

some stochastic function of variables that belong to the information set wt, such that

E(|H2(wt)|) < ∞ and E(|C(wt)H(wt)|) < ∞;

A5. Let BT = E

T−1

T
t=m ht(0|wt)MtM

⊤
t


, DT = E


T−1

T
t=m ht(0|wt)Zt,τZ

⊤
t,τ


and

ΨT = E

T−1

T
t=m


Zt,τ − ΓB−1

T Mt

 
Zt,τ − ΓB−1

T Mt

⊤
, and assume that their

inverse functions are uniformly bounded.

A6.
√
T (aτ − aτ ) = Op(1), i.e., the estimators in the first step are consistent and the usual

normalized difference is stochastically bounded.

Remark 1. Assumption A1 is an invertibility condition which ensures that qt,τ is a

stationary process and that appropriate limiting theory can be applied. Assumptions A2-A3

are equivalent to Assumption AN2 in Engle and Manganelli (2004). Assumptions A4-A5

are used to establish the asymptotic normality of the quantile regression estimator in the

second step, which is similar to Assumptions AN1(a) and AN3 in Engle and Manganelli

(2004). Assumption A6 is a standard condition in the literature of two-step estimation

method, e.g., Powell (1983) and Hautsch et al. (2015). Note that the minimum distance

estimator of Xiao and Koenker (2009) satisfies this condition.

3.2 Oracle Properties

The asymptotic normality and model selection consistency of the adaptive Lasso estimators

are provided in this subsection. To simplify the presentation, we only describe the asymptotic

results here, with all technical details relegated to the supplementary file. Next, we present

the asymptotic representation of the quantile regression estimator θ and the oracle property

of θ(T ) in Theorems 1 and 2, respectively, as follows.

Theorem 1. Recall that θτ is the estimator of the quantile regression of Yt on Zt for the

quantile level τ . Under Assumption A, one has
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1. Asymptotic representation:

√
T (θτ − θ∗

τ ) = D−1
T


1√
T

T

t=m

ψτ (Yt − Z⊤
t,τθ

∗)Zt,τ


−D−1

T Γ
√
T (aτ − aτ ) + op(1),

where Γ ≡
q

i=1 E(ht(0|wt)Zt,τM
⊤
t−i)β

∗
i .

2. Asymptotic normality:
√
T (θτ − θ∗

τ )
L−→N(0, τ(1− τ)Ω), where Ω ≡ D−1

T ΨTD
−1
T .

To establish the model selection consistency of θ(T ), some notations are provided. To

this end, let A = {j : θ∗j ∕= 0} and Ac = {j : θ∗j = 0}. Suppose C is a matrix, then CAB

is defined as the sub-matrix of C whose rows and columns are chosen from C according to

the row index set A and column index set B. For simplicity, we may write CAA = CA when

C is a square matrix. For a vector C, CA denotes the sub-vector of C whose elements are

chosen from C with index set A. Then, we have the following theorem.

Theorem 2. (Oracle) Suppose that Assumptions A1-A6 are satisfied. If λTT
(η−1)/2 → ∞

and λT/
√
T → 0, then one has

1. Asymptotic normality:
√
T

θ(T )
A − θ∗

A


L−→N(0, τ(1− τ)ΩA).

2. Sparsity: θ(T )
Ac

= 0.

Remark 2. If the
√
T -consistent estimator in the first step is difficult to obtain in

practical applications, it is easy to use a quantile autoregressive approximation such as

qt,τ =
n

i=1 γ⊤
i,τXt−i, where n is the truncation parameter usually set to be a sufficiently

large constant n = log(T ). Xiao and Koenker (2009) proved that γτ − γτ2 = Op(n/T ) in

the Theorem 1 of their paper. Under this condition, it is easy to show that the convergence

rate of θ(T ) is


n/T with the asymptotic representation of the Theorem 1 here. However,

although θ(T ) is not
√
T -consistent, the sparsity property of the penalized estimator is

maintained. The same situation for adaptive Lasso in mean regression has been discussed

in Remark 1 in Zou (2006).

4 Monte Carlo Simulation Study

In this section, a simulated example is used to illustrate the finite sample performance of

the proposed model and the penalized CAViaR estimators. We consider sample sizes of

T = 400 and 800, and simulations are repeated M = 500 times for each of the given sample

sizes. Different quantile levels τ = 0.01, 0.05, and 0.1 are considered. When generating the

series of Yt, the initial value is set to zero, and the first 200 observations are dropped to

reduce the impact of the initial value. To measure the performance, the median and the
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standard deviation (SD) of the absolute deviation of errors (ADE) are reported, where

ADE
(k)
θj

≡
θ(k)j − θj

 for 1 ≤ j ≤ (p+ q + 1), and θ(k)j is the estimator in the k-th simulation

replication. Further, the positive rate PR is also reported, which is defined as the relative

frequencies of picking the correct model.

Example 1. The DGP is given by

Yt = qt,τ + εt,τ , and qt,τ = α0 + α1Xt−1 + α6Xt−6 + β3qt−3,τ , t = 1, . . . , T,

where α0 = −0.2, α1 = 0.2, α6 = −0.2, β3 = 0.6, and εt,τ follows an i.i.d. tick-exponential

family of τ with density function:

f(εt,τ ) =
1

σεt,τ

exp


εt,τ
τσεt,τ

I(εt,τ ≤ 0)− εt,τ
(1− τ)σεt,τ

I(εt,τ > 0)


,

and σεt,τ = 1, which can be found in Komunjer (2005). Clearly, the τth quantile of εt,τ

equals 0, which satisfies the model identification condition. We then use the two-step

estimation procedures introduced in Section 2 to estimate the parameters of the model. To

save time, here, we use the quantile autoregressive approximation discussed in Remark 2.

The truncation parameter n is chosen to be 10 log10(T ), and the maximum of the order

(p, q) is pre-determined as p = 10 and q = 3, respectively. The median and SD (in

parentheses) of the ADE values of the corresponding penalized CAViaR estimators α0

(ADEα0), α1 (ADEα1), α6 (ADEα6), and
β3 (ADEβ3) in all cases are reported in Table 1.

Table 1 also reports the accuracy of the proposed method for selecting the correct model.

Table 1: Median(SD) of the ADE values and PR values under three quantiles.
τ = 0.01 τ = 0.05 τ = 0.1

T 400 800 400 800 400 800
ADEα0 0.0766 0.0326 0.0581 0.0323 0.0537 0.0299

(0.0409) (0.0175) (0.0290) (0.0158) (0.0448) (0.0166)
ADEα1 0.0158 0.0074 0.0149 0.0123 0.0169 0.0153

(0.0167) (0.0076) (0.0172) (0.0096) (0.0230) (0.0127)
ADEα6 0.0169 0.0088 0.0168 0.0142 0.0216 0.0174

(0.0197) (0.0087) (0.0165) (0.0114) (0.0262) (0.0142)
ADEβ3 0.0503 0.0195 0.0512 0.0287 0.0713 0.0370

(0.0509) (0.0207) (0.0416) (0.0226) (0.0636) 0.0263
PR 0.962 1.000 0.994 1.000 0.972 1.000

First, we find that the median and SD of ADE values for all the penalized CAViaR

estimators decrease as the sample size increases. For example, when T = 400, the median

and SD of the ADEα1 are 0.0158 and 0.0167 under the quantile level τ = 0.01, and they

decrease to 0.0074 and 0.0076, respectively, when the sample size increases to 800. Clearly,

the same pattern for ADEα6 can also be observed. Indeed, when τ = 0.1 and the sample

size is 400, the median and the corresponding SD are 0.0216 and 0.0262. When the sample

size increases to 800, the median and the corresponding SD decrease to 0.0174 and 0.0142,
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respectively. Finally, when the sample size is 400, the median and SD of ADEβ3 are 0.0512

and 0.0416 under the quantile level τ = 0.05, and they decrease to 0.0287 and 0.0226 as the

sample size doubled.

Under all quantile levels considered, we find that the accuracy of the method for selecting

the true model increases with the sample size. For example, when T = 400, the accuracy for

selecting the correct model are 96.2% under the quantile level τ = 0.01, and they increase

to 100%, when the sample size increases to 800. Under the quantile level τ = 0.05 and 0.1,

the accuracy for selecting the correct model when T = 400 are 99.4% and 97.2%, and when

the sample size is doubled, they increase to 100% and 100%, respectively.

5 Empirical Example

To illustrate the practical usefulness of the application of our proposed model, we consider

the daily data of S&P500 from April 19, 2017, to March 31, 2023, with 1500 observations

in total. Note that the first 1000 observations are used for in-sample model fitting, and

the remaining 500 observations are for out-of-sample forecasting. The data are downloaded

from CSMAR Database, and the daily returns are computed as the difference of the log

transformation of the index; that is, Yt = log(pt/pt−1), where pt is the daily price. Table 2

reports the summary statistics of the return series. It clearly shows that, for the S&P500

Table 2: Summary statistics of return series.

Mean Min Median Max S. Dev. Skew. Kurt.

0.0004 −0.1277 0.0008 0.0897 0.0129 −0.8312 14.4950

return series, the sample mean is close to zero but the distribution is slightly negatively

skewed and has fat tail. Figure 1 presents the histogram (left panel) and time series plot (right

panel) for the series, and it shows that extreme values mainly occur during the beginning of

2020, the period of the outbreak of the Covid-19 epidemic. However, the return series is less

volatile from 2017 to 2019.

Here, a study is conducted by comparing the accuracy of VaR predictions calculated by

our new model with those calculated by some established methods. The benchmark models

include the most popular techniques in both academia and industry: RiskMetrics (RM),

the GARCH(1, 1) model with Gaussian innovations (GGARCH), the GARCH(1, 1) model

with student’s t(4) innovations (TGARCH), the Gaussian GARCH(1, 1)-EVT model with the

threshold as the 100τ% unconditional quantile for the lower tail (GGARCH-EVT), student’s

t(4) GARCH(1, 1)-EVT model with the threshold as the 100τ% unconditional quantile for

the lower tail (TGARCH-EVT), the quantile autoregressive model as qt,τ = α0,τ + α1,τYt−1,

and the symmetric absolute value CAViaR(1,1) model as qt,τ = α0,τ + α1,τ |Yt−1|+ β2,τqt−1,τ .
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Figure 1: Time series and histogram plot of stock return series: S&P500.

Finally, we consider using the CAViaR(p, q) model with Xt,i = |Yt−i|, i = 1, . . . , p, i.e.,

qt,τ = α0,τ +

p

i=1

αi,τ |Yt−i|+
q

j=1

βj,τet−j,τ .

It is worthy noting that we set p = 10 and q = 5, and the model is selected through the

estimation procedures introduced in Section 2.

To compare the relative performance of these methods in terms of predictive ability,

all considered models are estimated on a rolling window of length 1000. For each of the

windows, the day-ahead post-sample VaR predictions are computed from every method as

the basis for our comparison purposes. Finally, the coverage ratio for each of the methods

is computed, where the coverage ratio assesses the proportion of observations falling below

the VaR predictions. Ideally, for estimation of the conditional τ quantile, the coverage ratio

should be τ . Therefore, the significant difference from the ideal case could be examined by

implementing a test based on a binomial distribution. Besides, we also report the results

of out-of-sample dynamic quantile (DQ) test proposed in Engle and Manganelli (2004) for

validation.

Table 3 reports the coverage ratio and p-value (in parentheses) for post-sample predictions

of conditional quantiles under three quantile levels, τ = 1%, 5%, and 10%, in which the p-

value is computed based on the significance test with perfect coverage ratio as null percentage.

As shown in this table, the TGARCH model performs well for the 1% quantile, while the

CAViaR(p, q) model outperforms all the other models for the cases of τ = 5% and τ = 10%.

In all cases, only the QAR model, the CAViaR(1,1) model and the CAViaR(p, q) model are

not rejected by the binomial test for the 5% significance level. The DE test results validates
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Table 3: Coverage ratio(p-value) and p-value of DQ test statistics for 500 post-sample

predictions of different levels of conditional quantiles

Coverage ratio test DQ test

VaR% 1% 5% 10% 1% 5% 10%

RM 2.2% (0.0118) 7.8% (0.0038) 12.6% (0.0525) 0.0000 0.0015 0.0458
GGARCH 2.4% (0.0085) 6.8% (0.0646) 11.8% (0.1811) 0.0071 0.3609 0.4108
TGARCH 1.0% (1.0000) 7.4% (0.0132) 12.8% (0.0366) 0.7545 0.0329 0.2904
GGARCH-EVT 0.4% (0.1905) 1.2% (0.0001) 4.4% (0.0000) 0.8889 0.0142 0.0056
TGARCH-EVT 0.2% (0.0709) 1.2% (0.0001) 4.4% (0.0000) 0.7244 0.0142 0.0015
QAR 0.4% (0.1905) 4.8% (0.8400) 12.6% (0.0525) 0.8553 0.0990 0.2388
CAViaR(1,1) 0.4% (0.1905) 5.8% (0.4174) 11.8% (0.1811) 0.9087 0.3945 0.0519
CAViaR(p,q) 0.4% (0.1905) 5.0% (1.0000) 11.6% (0.2350) 0.9361 0.7636 0.2161

the result of the coverage ratio test, with the CAViaR(p, q) model being the only model which

is not rejected by the out-of-sample DE test for the 10% significance level. The empirical

results suggest the usefulness of our method for the given dataset.

6 Conclusion

In this paper, we introduce a two-step approach for the model selection of the

conditional autoregressive value at risk model. In the first step, the quantile lag

components are approximated by a linear quantile regression model of the tail risk drivers.

Then, the optimal CAViaR model can be selected by the adaptive Lasso penalized quantile

regression. The asymptotic normality and oracle properties of the penalized CAViaR

estimators are established. Finally, the proposed method is applied to the prediction of

VaR for a real empirical example. The empirical results demonstrate that the CAViaR

model with adaptive Lasso outperforms other benchmark models based on coverage ratio

test and dynamic quantile test.
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