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Abstract

We examine nonparametric panel data regression models with fixed effects and

cross-sectional dependence through a diverse collection of machine learning tech-

niques. We add cross-sectional averages and time averages as regressors to the

model to account for unobserved common factors and fixed effects respectively.

Additionally, we utilize the debiased machine learning method by Chernozhukov

et al. (2018) to estimate parametric coefficients followed by the nonparametric

component. We comprehensively investigate three commonly used machine learn-

ing techniques - LASSO, random forests, and neural network - in finite samples.

Simulation results demonstrate the effectiveness of our proposed method across dif-

ferent combinations of the number of cross-sectional units, time dimension sample

size, and the number of regressors, irrespective of the presence of fixed effects and

cross-sectional dependence. In the empirical part, we employ the proposed machine

learning-based panel data model to estimate the total factor productivity (TFP) of

public companies of Chinese mainland and find that the proposed machine learning

methods are comparable to other competitive methods.
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1 Introduction

Machine learning-based panel data models have garnered considerable attention in re-

cent times and found extensive applications in empirical economics and finance, ranging

from demand estimation (Bajari et al., 2015) to labor markets (Dube et al., 2020), audit

quality (Yang et al., 2020), and empirical asset pricing (Gu et al., 2020; Leippold et al.,

2022). Despite their increasing popularity, the unobservable nature of individual effects

and common factors poses a significant challenge. Most researchers, as a result, gravi-

tate towards pooled methods, inadvertently overlooking the joint consideration of these

latent variables. Panel data models, known for their distinctive capability to mitigate

endogeneity concerns by incorporating both individual effects and unobserved common

factors, present a crucial aspect that should not be ignored. Consequently, employing a

machine learning-based panel data model with a pooled dataset may yield biased esti-

mators, particularly when individual effects, unobserved common factors, or both exhibit

correlations with the regressors.

In this study, we aim to establish a comprehensive framework for panel data models

by leveraging machine learning techniques. Our proposed method exhibits generality, as

it accommodates a wide range of machine learning algorithms, including LASSO, ran-

dom forests, boosted trees, deep neural networks, and ensembles or aggregated versions

thereof. This stands in contrast to existing research, which often confines itself to specific

machine learning tools for panel data models, such as sparse-group LASSO (Babii et al.,

2022) and deep neural networks (Chronopoulos et al., 2023). Additionally, our approach

explicitly addresses both fixed effects and cross-sectional dependence to mitigate endo-

geneity concerns. This is a difference from other works that either concentrate solely on

pooled data (Gu et al., 2020; Leippold et al., 2022) or, at most, incorporate fixed effects

as the predictors (Babii et al., 2022; Chronopoulos et al., 2023).

In the absence of a predetermined functional form, we employ diverse machine learning

techniques to estimate a nonparametric panel data regression model encompassing both

fixed effects and cross-sectional dependence. Our approach involves incorporating cross-

sectional averages and time averages as regressors to respectively capture unobservable

common factors and fixed effects, aligning with the methodology proposed by Huang

(2013). To address concerns related to overfitting and regularization-induced bias arising

from the machine learning techniques’ plug-in nuisance function estimators, we adopt the
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debiased machine learning method introduced by Chernozhukov et al. (2018). This entails

initially estimating parametric coefficients, followed by the nonparametric component.

Under the assumptions of a large number of cross-sectional units (N −→ ∞), a substantial

time dimension (T −→ ∞), and a fixed number of regressors (d fixed), the estimators for

parametric coefficients maintain unbiasedness, and the nonparametric estimators exhibit

consistency.

We conduct a comprehensive investigation into the performance of three commonly

utilized machine learning techniques - LASSO, random forests, and neural networks— in

finite samples. In scenarios where the data generating process adheres to a sparse linear

model, LASSO consistently demonstrates reasonably good in-sample estimation with

favorable mean squared error and R2, regardless of the presence of fixed effects or cross-

sectional dependence. However, both random forests and neural networks tend to exhibit

an overfitting issue in these settings. Conversely, when the data generating process takes

a nonlinear form, random forests and neural networks outshine LASSO, yielding superior

in-sample accuracy. An assessment of the three models’ out-of-sample goodness-of-fit

reveals that our proposed machine learning-based panel data model provides enhanced

robustness and higher R2 values across various scenarios. In summary, the simulation

results underscore the effectiveness of our proposed method across diverse combinations

of N , T , and d, irrespective of the presence of fixed effects and cross-sectional dependence.

In an empirical application, we employ the proposed machine learning-based panel

data model to estimate total factor productivity (TFP) of public companies in the Chinese

mainland. We respectively specify the production function as a nonparametric function

and unobserved productivity the addition of fixed effect and unobserved factors. The

empirical results demonstrates that, although our models do not utilize any proxies in

the model specification, our three machine learning methods are comparable to other five

popular existing methods including the pooled model, fixed effect model, and methods

by Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg et al. (2015).

Our contribution to the existing literature is threefold. Firstly, we enhance the non-

parametric panel data literature by integrating various machine learning tools, thereby

enabling the inclusion of a more extensive set of regressors. Prior researchers have pre-

dominantly relied on classical nonparametric methods to estimate unknown functions in

panel data models with cross-sectional dependence. For instance, Su and Jin (2012) ad-
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vocates the use of sieve estimators for nonparametric regression functions, while Huang

(2013) employs kernel-based local linear regression for estimation. Both approaches incor-

porate cross-sectional averages to filter unobserved common factors, akin to the common

correlated effects estimator (CCE) proposed by Pesaran (2006). Nevertheless, classical

nonparametric methods are often constrained to one or two regressors due to the curse

of dimensionality issue. For an in-depth exploration of nonparametric panel data models

with cross-sectional dependence, readers are directed to survey papers such as Sun et al.

(2015) and Xu et al. (2016).

Secondly, we contribute to the machine learning literature by introducing individual

effects and unobserved common factors to simultaneously address issues of heterogeneity,

cross-sectional dependence, and endogeneity. Our proposed method is versatile, as it

accommodates various machine learning tools, in contrast to other studies that often focus

on specific techniques in panel data models. For example, Babii et al. (2022) introduce

a machine learning panel data regression approach for nowcasting price/earnings ratios,

concentrating on fixed effects panel regressions with sparse-group LASSO (sg-LASSO)

regularization. In a different vein, Chronopoulos et al. (2023) proposes a novel machine

learning panel data estimator based on deep neural networks. However, these recent

models are confined to either LASSO or neural networks and do not consider potential

cross-sectional dependence. To the best of our knowledge, there is currently no existing

literature on implementing generic machine learning techniques for panel data regressions

that account for both fixed effects and cross-sectional dependence.

Third, we contribute to TFP estimation by introducing flexibility to the production

function and mitigating endogeneity concerns through the incorporation of fixed effects

and cross-sectional dependence, without reliance on additional proxy variables. Conven-

tional TFP estimation methods, exemplified by Olley and Pakes (1996), Levinsohn and

Petrin (2003), and Ackerberg et al. (2015), typically address endogeneity by introducing

proxy variables into the control functions.

The remaining part of the paper is structured as follows. Section 2 introduces the pro-

posed econometric model. Section 3 reports the finite-sample simulation results. Section

4 applies the proposed machine learning-based panel data model to estimate TFP. We

conclude in Section 5. The technical proofs are provided in the supplementary appendix.
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2 Econometric Model

We consider a nonparametric panel data regression model that encompasses both fixed

effects and cross-sectional dependence (N −→ ∞, T −→ ∞, and d fixed). The model can

be expressed as follows:

yit = f(xit) + αi + uit, uit = γ⊺i λt + εit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (1)

where yit denotes the dependent variable for the i-th cross-sectional unit observed at

time t. The function f(·), representing an unknown nonparametric function, is estimated

using machine learning techniques such as LASSO, random forests, boosted trees, deep

neural networks, or their ensembles. xit = (xit,1, . . . , xit,d)
⊺ represents the d-dimensional

regressors for the i-th cross-sectional unit at time t. The individual-specific fixed ef-

fects αi could exhibit correlation with regressors xit. The error term uit demonstrates

a multifactor structure with λt as unobserved p-dimensional time-varying common fac-

tors accounting for cross-sectional dependence, and γi representing the corresponding

p-dimensional factor loading for the i-th unit. In practical situations, regressor xit and

unobserved common factors λt could be correlated, potentially leading to endogeneity

and inconsistent estimation. The individual-specific (idiosyncratic) error εit is a sequence

of independent and identically distributed (i.i.d.) random variables with zero mean and

finite variance, independent of xit, αi, and λt for all i and t. To ensure identification, we

assume E(αi) = 0 and E(λt) = 0.

Replacing xit with xi(t−1) transforms the model into a predictive panel data regression.

When γi = 0 for all i, the model simplifies to a nonparametric panel data regression with

fixed effects, or a random effects model if αi is uncorrelated with xit. If the function f(·)

is linear with respect to xit, the model aligns with the linear panel data model discussed

by Pesaran (2006). Lastly, if the unknown function f(·) is estimated using sieve methods

or kernel functions, the model becomes a special case studied by Su and Jin (2012) and

Huang (2013).

To obtain the nonparametric estimator f̂(·), we employ cross-sectional averages, de-

noted as ȳt =
1
N

∑N
i=1 yit and x̄t =

1
N

∑N
i=1 xit, following the approach by Pesaran (2006),

to filter the unobserved common factors. Simultaneously, we utilize time averages, de-

noted as ȳi =
1
T

∑T
t=1 yit and x̄i =

1
T

∑T
t=1 xit, following the methodology of Huang (2013),
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to filter the fixed effects. The detailed proofs are provided in Appendix A. The underlying

principle of this procedure is to substitute unobserved factors with observable data in the

panel data model, thereby eliminating the effects of both unobserved common factors and

fixed effects as N and T approach infinity. Notably, this procedure exhibits robustness

concerning the number of unobserved common factors as N and T tend to infinity.

Define ȳ = 1
N

1
T

∑N
i=1

∑T
t=1 yit and x̄ = 1

N
1
T

∑N
i=1

∑T
t=1 x̄it, we rewrite the panel data

model (1) as follows:

yit = f(xit) + β⊺zit + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (2)

where zit = (ȳt − ȳ, (x̄t − x̄)⊺, ȳi − ȳ, (x̄i − x̄)⊺)⊺, and β = (β1, β2, β3, β4)
⊺ is the corre-

sponding (2d + 2)-dimensional coefficient vector. We use the demeaned version here for

identification purpose. The error term eit, which consists of both the idiosyncratic term

εit and the approximated error from the Taylor expansion, is a mean zero residual term

and not correlated with xit and zit. When there are no unobserved common factors, we

alternatively use zit = (ȳi − ȳ, (x̄i − x̄)⊺)⊺.

Model (2) is a semiparametric partial linear model with a parametric component β⊺zit

and a nonparametric component f(xit). We take conditional expectation on both sides

of the model and can obtain

E(y|x = xit) = f(xit) + β⊺E(z|x = xit).

Define g(xit) = E(y|x = xit) and m(xit) = E(z|x = xit). Subtracting this equation from

(2), we have

yit − g(xit) = β⊺(zit −m(xit)) + eit.

For machine learning-based estimators such as ĝ(xit) and m̂(xit), regularization tech-

niques like model selection or parameter shrinkage become necessary when the number of

parameters is relatively large compared to the available sample size. However, while these

regularization methods help reduce the variance of the estimators, they often introduce

significant biases. To mitigate the regularization-induced bias in the plug-in nonpara-

metric estimators ĝ(xit) and m̂(xit), we utilize the debiased machine learning approach

introduced by Chernozhukov et al. (2018) to estimate the parameter β. Specifically, we
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define a score equation

ψ(Wit; β, η) =
(
yit − g(xit)− β⊺(zit −m(xit))

)
(zit −m(xit)), (3)

where the data set Wit = (yit,xit), the coefficients β, and a vector of the nonparametric

nuisance functions η = (g(·),m(·)). The attractive point of above score equation (3) is

that it obeys the Neyman orthogonality condition (Neyman, 1959; Neyman, 1979)

∂ηE [ψ (Wit; β, η)]|η=η0
= 0,

where the derivative ∂η denotes the pathwise (Gateaux) derivative operator.The afore-

mentioned orthogonality condition indicates that the score equation remains unaffected

by minor errors in estimating the nuisance functions η̂ around their actual values η0, pro-

vided that these estimators are of high quality in terms of machine learning techniques.

By construction, we can obtain the estimator β̂ by solving

T∑
t=1

N∑
i=1

ψ
(
Wit; β̂, η̂

)
= 0, (4)

where η̂ is a plug-in nonparametric estimator and can be estimated by a variety of ma-

chine learning methods such as boosting, random forests, ensemble, and hybrid machine

learning methods.

Additionally, we implement the sample splitting strategy proposed by Chernozhukov

et al. (2018) to address the problem of overfitting that often arises in the estimation

of nuisance functions η̂ using machine learning approaches. Specifically, we divide the

time indices {1, · · · , T} evenly into K-fold partition {Pk}Kk=1, with the size of each fold

Pk being N × T0 = N × [T/K] and [·] the integer operator. For each k ∈ {1, · · · , K},

we leave the kth fold out to obtain a high-quality machine learning estimator η̂(−k) =

η̂(−k)(Wit : t /∈ Pk). And we can obtain the estimator β̂ as the solution to the equation1

N∑
i=1

K∑
k=1

∑
t∈Pk

ψ
(
Wit; β̂, η̂

(−k)
)
= 0. (5)

1An alternative estimator is to obtain the estimator β̂ via aggregation β̂ = 1
K

∑K
k=1 β̃

(k) with each

estimator β̃(k) being the solution to the equation 1
NT0

∑
t∈Pk

ψ
(
Wit; β̃

(k), η̂(−k)
)

= 0. However, this

estimator is not as stable as that obtained by (5). See Bach et al. (2022) .
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As the score ψ
(
Wit; β̂, η̂

(−k)
)

can be written as a linear form ψ
(
Wit; β̂, η̂

(−k)
)

=

−
(
zit − m̂(−k)(xit)

) (
zit − m̂(−k)(xit)

)⊺
β̂+

(
zit − m̂(−k)(xit)

) (
yit − ĝ(−k)(xit)

)
, we can find

the estimator as

β̂ =

[
N∑
i=1

K∑
k=1

∑
t∈Pk

(
zit − m̂(−k)(xit)

) (
zit − m̂(−k)(xit)

)⊺]−1

×

N∑
i=1

K∑
k=1

∑
t∈Pk

(
zit − m̂(−k)(xit)

) (
yit − ĝ(−k)(xit)

)
(6)

where ĝ(−k)(xit) is the predicted value at the sample point xit by performing machine

learning-based regression of yit on xit without the kth fold Pk. And m̂(−k)(xit) repre-

sents the predicted values at the sample point xit by performing machine learning-based

regression of zit on xit without the kth fold Pk.

We employ the following regularity conditions to derive the asymptotic limit of the

estimators.

(C1) Assume the data {yit,xit; i = 1, · · · , N, t = 1, · · · , T} is a stationary process. The

number of cross-sectional units N −→ ∞, the time dimension T −→ ∞, and the numbers

of regressors d and unobserved common factors p are fixed.

(C2) The individual-specific (idiosyncratic) error εit is a sequence of independent and

identically distributed (i.i.d.) random variables with zero mean and finite variance, in-

dependent of xit, αi, and λt for all i and t. The unobserved p-dimensional time-varying

common factors λt are covariance stationary and independent of the individual-specific

error εit, but can be correlated with the regressors xit. The unobserved p-dimensional

factor loadings γi are i.i.d with finite mean and finite variance, and independent of xit, the

common factors λt, and the individual-specific error εit. We further assume E(αi) = 0

and E(λt) = 0 for the identification purpose. And γ̄γ̄⊺ has the full rank so that it is

invertible.

(C3) The nuisance parameters η̂ are high-quality machine learning estimators such that

η̂ − η = op((NT )
−1/4).

(C4) Define the neighborhood sample points set N (x, ν) = {(i, t)|∥xit − x∥2 < ν} with

∥·∥2 being the Euclidean norm and ν some positive constant. As N −→ ∞, T −→ ∞, ν −→ 0

and the number of sample points in the set N (x, ν), i.e. |N (x, ν)| −→ ∞. The functions
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f(·), g(·) and m(·) are continuous, bounded and has bounded second order derivatives.

And assume E
{
z
∣∣x} = Op(1).

Remark 1. The stationarity condition in (C1) is critical in proof for equation (2). We

assume N −→ ∞ and T −→ ∞ so that the cross-sectional averages and time averages are

valid instruments for unobserved common factors and fixed effects, respectively. Condition

(C2) is classical in panel data model with cross-sectional dependence. Conditions (C3)

and (C4) are for Theorems 1 and 2. The number of regressors d can be large as long

as condition (C3) holds. The condition |N (x, ν)| −→ ∞ in (C4) implies that there are

enough sample points in the neighborhood of given point x as N −→ ∞ and T −→ ∞.

Theorem 1. Suppose that conditions (C1) ∼ (C4) hold, this double/debiased machine

learning estimator β̂ is
√
NT consistent, and the estimation error

√
NT

(
β̂ − β

)
is ap-

proximately a normal distribution as:

√
NT

(
β̂ − β

)
∼ N

(
0,Σ−1V Σ−1

)
,

where Σ = E [(zit −m(xit)) (zit −m(xit))
⊺] and V = E [ψ (Wit; β, η)ψ (Wit; β, η)

⊺] with

η = (g(·),m(·)).

Remark 2. Theorem 1 is a special case in Chernozhukov et al. (2018), so we skip the

detailed proof here.

In real application, we choose K = 5 as suggested by Bach et al. (2022). By construc-

tion, as long as the nuisance parameters η̂ are high-quality machine learning estimators

in the senses that in the worst cases, they are estimated at the rate op((NT )
−1/4) when

the number of regressors d is fixed, this double/debiased machine learning estimator β̂

is
√
NT consistent, and the estimation error

√
NT

(
β̂ − β

)
is approximately a normal

distribution with zero mean and finite variance. On the contrary, in the absence of

both the Neyman orthogonality condition for the score function and the sample-splitting

procedure, the estimator is likely to exhibit substantial bias.

Finally, given β̂ from the equation (6), we compute the estimators f̂(xit) by performing

machine learning-based regression of yit − β̂⊺zit on xit. And the fitted value for yit is

ŷit = f̂(xit) + β̂⊺zit.
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Theorem 2. Suppose that conditions (C1)∼(C4) hold and β̂ − β = Op((NT )
−1/2). The

machine learning based nonparametric estimator f̂(x) is consistent in the sense that

f̂(x)
p−→ f(x) as N −→ ∞ and T −→ ∞.

Remark 3. We don’t present the asymptotic distribution of the nonparametric estimator

f̂(x) as many machine learning estimators such as random forest and neural network

neither.

When implementing out of sample forecasting, the fitted value for yi(t+1) at given

point xi(t+1) is ŷi(t+1) = f̂
(
xi(t+1)

)
+ β̂1(ȳt+1− ȳ)+ β̂⊺

2(x̄t+1− x̄)+ β̂3(ȳi− ȳ)+ β̂⊺
4(x̄i− x̄).

As ȳt+1 are not observed, we estimate ȳt+1 by conducting linear regression or machine

learning-based regression ȳs on x̄s(s ≤ t), and evaluate at point x̄t+1.

3 Numerical Studies

In this section, we assess the finite sample performance of our method through Monte

Carlo simulations. The data generating process follows

yit = c1 × αi + c2 × γiλt + f(xit) + εit, (7)

where i = 1, 2, · · · , N with N ∈ {10, 20}, and t = 1, 2, · · · , T with T ∈ {100, 200, 400}.

αi measures the magnitude of the fixed effects of unit i, and is distributed to N(0, 1). λt

denotes a sequence of time-varying common factors which are also distributed to N(0, 1),

and γi = 0.5 denotes the associated factor loading of unit i. We use demeaned version of

αi and λt, so that
∑N

i=1 αi = 0 and
∑T

t=1 λt = 0 hold. The idiosyncratic error term εit is

assumed to be independent across i and t, and distributed to N(0, 1). xit denotes a d-

dimensional vector which represents the potential predictors with d ∈ {5, 10} throughout

this section. For k = 1, · · · , d, to allow xit,k to be correlated with the i-th entity’s fixed

effect and the time-varying factors at time t, we define xit,k = 0.3αi +0.3λt + ηit,k, where

ηit,k ∼ N(0, 1).

In model (7), the function f(·) is assumed to have the following two specifications:

Type 1: f(xit) = 0.2xit,1 + 0.2xit,2 + 0.2xit,3;

Type 2: f(xit) = 0.4xit,1 + 0.3xit,1xit,2 + 0.12sgn(xit,3), where sgn(·) denotes the

sign function.
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Here, Type 1 represents a sparse and simple linear model, while Type 2 contains both

nonlinear and interacted terms. Additionally, regardless of the dimension of xit (i.e.,

d = 5 or d = 10), only the first three predictors contribute to the outcome variable yit. c1

and c2 can be regarded as switches that determine the presence of individual fixed effects

and cross-sectional dependence: (i) when c1 = c2 = 0, neither individual fixed effects nor

cross-sectional dependence exist, (ii) when c1 = 1 and c2 = 0, only individual fixed effects

exist while cross-sectional dependence does not exist, and (iii) when c1 = c2 = 1, both

individual fixed effects (FE) and cross-sectional dependence exist.

For each Monte Carlo experiment, we divide the generated series into three consecu-

tive subsamples – training (T1), validation (T2), and testing (T3) – with each subsample

respectively accounts for the 30%, 20%, and 50% of the whole sample. Specifically, we

estimate each of the two aforementioned types in the training set using several widely

used machine learning methods, then choose tuning parameters for each method in the

validation set, and calculate the prediction errors in the testing set.

In this study, to conserve space, we do not attempt to exhaustively consider all dif-

ferent machine learning techniques but simply adopt three widely used ones: LASSO,

random forests (RF), and neural network (NN) with three hidden layers of 32, 16, and 8

neurons, respectively, as Gu et al. (2020) find that this architecture exhibits better perfor-

mance in their monthly return setting.2 We first assess the performance of these methods

in estimating f(xit). Specifically, the estimation accuracy is proxied by the mean squared

errors defined as MSE(f) = 1
N

1
T1

∑N
i=1

∑T1

t=1

(
f̂(xit)− f(xit)

)2

, where (i, t) ∈ T1. Ta-

ble 1 presents the results across a variety of combinations of N, T, d and (c1, c2) when f(·)

adopts the Type 1 specification. In panel A when the true specification contains neither

cross-sectional dependence nor individual FE (i.e., c1 = c2 = 0), the machine learning

method by pooling all data (Pooled) yields the lowest MSEs in LASSO, and increasing

N or T can effectively lower the MSEs for all three methods. That is, pooling the whole

data and applying a single machine learning model will yield satisfactory results when

individual FE and cross-sectional dependence do not exist. Such a pattern in more pro-

nounced for LASSO, which also yields the the lowest MSEs compared with RF and NN.

This result should not be surprising because f(·) in Type 1 is sparse and linear in the

predictors. On the other hand, the more advanced algorithms such as RF and NN tend to

2We also examine NNs with 1, 2, 4, and 5 hidden layers, as defined in Gu et al. (2020), and find quite
similar outcomes. The results are available upon request.
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overfit, yielding poorer in-sample performance. When individual FE and cross-sectional

dependence are added to the true specification, the performance of pooled regression

becomes remarkably deteriorated, while the machine learning based panel data model

with individual FE or both cross-sectional dependence and FE (CR + FE) yields the

lowest MSEs, as displayed by panels B and C, respectively. This finding indicates that

the pooled regression method can generate large estimation error when individual FE or

cross-sectional dependence indeed presents. Additionally, in each panel, increasing the

number of predictors from d = 5 to d = 10 will notably increase the MSEs for all three

methods. This should also be expected given the increased complexity caused by the

higher dimension. When f(c)̇ adopts the Type 2 specification which is nonlinear, LASSO

becomes dominated by RF and NN regardless of the combinations of c1 and c2 and the

presence of individual FE and cross-sectional dependence, as displayed by Table 2. When

d = 5, RF performs slightly better than NN when N = 10 and T is small. However, when

the dimension increases to 10, NN tends to yield lower estimation errors than RF. Overall,

the proposed machine learning based panel data model still exhibits robust performance

regardless of the presence of individual FE and cross-sectional dependence.

[Insert Tables 1 and 2 About Here.]

Next, we report the averages of both in-sample (IS) and out-of-sample (OOS) R2s

for each type and each method. Here, we follow Gu et al. (2020) and define R2
IS =

1 −
∑

(i,t)∈T1
(ŷit−yit)

2∑
(i,t)∈T1

y2it
and R2

OOS = 1 −
∑

(i,t)∈T3
(ŷit−yit)

2∑
(i,t)∈T3

y2it
, where ŷit = f̂ (xit) + β̂1(ȳt − ȳ) +

β̂⊺
2(x̄t− x̄)+ β̂3(ȳi− ȳ)+ β̂⊺

4(x̄i− x̄) with f̂(·), β̂1, β̂2, β̂3 and β̂4 estimated by the training

set. As ȳt are not observed, we estimate ȳt by regressing ȳs on x̄s, (i, s) ∈ T1, and then

evaluate at the point x̄t, where (i, t) ∈ T3.

Tables 3 and 4 document the comparison of IS R2s under Types 1 and 2, respectively.

For all three models, the IS R2s tend to increase as d increases from 5 to 10, regardless of

the combination of N , T and (c1, c2). A comparison of the IS R2s of the three competing

models indicate that RF yields the best IS performance, as its IS R2s are the highest

across all different combinations. Particularly, regardless of the presence of individual

FE or cross-sectional dependence, the RF-based panel data model with both individual

FE and cross-sectional dependence (i.e., FE + CR) provides robust and highest IS R2s

when compared with the other two specifications (i.e., Pooled and FE).
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Table 5 further compares the OOS performance of the three methods under Type

1. In panel A, when neither individual FE nor cross-sectional dependence exists, pooled

regression yields the highest OOS R2s. Under panels B and C, when individual FE

and cross-section dependence are added, Pooled is outperformed by FE and CR + FE

methods. Across the three panels, the LASSO-based model exhibits the best performance,

which is not surprising given the linearity of Type 1. We can observe similar patterns

in Table 6, although the LASSO-based models become outperformed by the RF- and

NN-based models due to the complexity and nonlinearity in Type 2.

[Insert Tables 3 - 6 About Here.]

By tuning the value of c1 and c2, we could further visualize the comparison of per-

formance. For example, in the first scenario, we fix c2 = 0 and then allow c1 ∈

{0, 0.1, 0.2, · · · , 0.9, 1} so that the cross-section dependence does not exist, while the

magnitude of individual FE gradually increases. Results in Figure 1(a) indicate two

observations. First, for all three machine learning methods, pooled regression yields

reasonably good results when c1 = 0, but its MSEs increase substantially when c1 devi-

ates from zero. That is, when individual FE indeed presents, the fitting performance of

pooled regression becomes severely deteriorated. Second, if individual FE is effectively

addressed, the proposed methods yield better fitting performance as the corresponding

MSEs are not only smaller but also stable to the magnitude of FE, as their MSE paths

are quite flat along the value of c1. We can observe similar results in Figure 2(a) where

f(·) is nonlinear. For the remaining panels in Figures 1 and 2, we consider other three

scenarios of c1 and c2, and find that the proposed panel data model with both individual

FE and cross-sectional dependence always outperforms the other two methods, as its

MSEs are lower and robust to c1 and c2. Figures 3 - 6 display the comparison of IS and

OOS R2s under Types 1 and 2, and show that the proposed panel data model with both

individual FE and cross-sectional dependence exhibits higher and robust R2 across the

four scenarios.

[Insert Figures 1 and 6 About Here.]
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4 Estimation of Total Factor Productivity

In this empirical illustration, we apply the proposed machine learning-based panel data

model to estimate the total factor productivity (TFP) of public companies in mainland

China. The estimation of TFP is a critical aspect of economic growth with significant

policy implications. Traditionally, a firm’s TFP is estimated through the classical Cobb-

Douglas regression (Cobb and Douglas, 1928):

yit = γ0 + γL lnLit + γK lnKit + ωit + εit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (8)

where yit represents the logarithm of the value-added of firm i in year t. Two crucial inputs

for value-added, labor (lnL) and capital (lnK), serve as regressors. The coefficients γL

and γK denote the elasticities of labor and capital, respectively. The term ωit represents

the unobserved productivity or technical efficiency, while εit is an idiosyncratic output

shock following a white noise distribution. The TFP of firm i can then be estimated as

T̂FP i = yit − γ̂L lnLit − γ̂K lnKit.

In practice, two issues arise when estimating TFP. The first is about the functional

form of the production function. The Cobb-Douglas specification in (8) could be po-

tentially stringent as it assumes a constant elasticity of the value-added. An alternative

specification is the translog production function, which does not require the assumption of

smooth substitution between production factors, see Gandhi et al. (2020) and De Loecker

and Warzynski (2012). The second issue is the endogeneity of input choice arising from

the the positive correlation between the observed input levels and the unobserved pro-

ductivity shocks which leads to biased estimation for the production function. To fix the

second issue, over the past two decades researchers have tried to alleviate the concern of

endogeneity by specifying ωit = h(·) with h(·) being some control functions. Olley and

Pakes (1996) were the first to propose a consistent two-step estimation procedure for (8).

They exploit firm investment level ln I as a proxy variable in the control function. As

many firms’ investment levels are zeros, Levinsohn and Petrin (2003) use intermediate in-

put level lnM as a proxy variable in the control function. These two studies take lnK as

endogenous variable, while Ackerberg et al. (2015) additionally take lnL as endogenous

and employ the lagged terms lnLi,t−1 and lnMi,t−1 as instrument variables to conduct

the GMM estimation.
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In this analysis, we specify the production function as a nonparametric function and

estimate it via three popular machine learning methods: LASSO, random forests, and

neural networks. Meanwhile, we assume the unobserved productivity ωit is separable

and can be decomposed as ωit = αi + γ⊺i λt. By construction, the endogeneity of the

unobserved productivity ωit can be characterized by either αi, or λt, or both. Therefore,

we can estimate the production function via the proposed machine learning-based panel

data model as

yit = f(lnLit, lnKit) + αi + γ⊺i λt + εit, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (9)

The extensive simulations in the previous section have already demonstrated the effec-

tiveness of the proposed estimation procedure. A distinctive point of our setting is that

we do not utilize any additional proxies or instrument variables. We present the summary

of the above model specifications along with both pooled panel and fixed effects panel in

Table 7.

We collect all non-financial companies in Chinese mainland that are publicly traded

on the A-share market from 2001 to 2020. All data are from the China Stock Market

& Accounting Research (CSMAR), developed by GTA Information Technology, one of

the providers of Chinese data. After excluding firms with missing data, our final sample

consists of 459 firms across 20 years and total of 9180 observations.

To assess the performance of the proposed methods in comparison to five existing

models, we employ investment (ln I) and material input (lnM) as two instruments for a

firm’s unobserved productivity. Subsequently, we compute the correlations between these

instruments and the residuals obtained from the three machine learning-based panel data

models and five existing methods. Ideally, in a correctly specified model, the correlation

between the two instruments (either ln I or lnM) and the regression residuals (ε̂it) from

the eight models should be close to zero.

Table 8 presents the estimated correlation coefficients. For the method following

Olley and Pakes (1996), we exclude the correlation between ln I and ε̂it, as ln I is already

utilized in the control function h(·). Similar adjustments are made when implementing

the methods of Levinsohn and Petrin (2003) and Ackerberg et al. (2015) with lnL as an

instrument. The results in Table 8 indicate that the proposed machine learning-based

methods outperform the pooled model, fixed effect model, and methods by Olley and
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Pakes (1996) and Ackerberg et al. (2015) when lnM is used. Furthermore, the machine

learning-based methods demonstrate performance comparable to Levinsohn and Petrin

(2003) and Ackerberg et al. (2015) when ln I serves as an instrument, as our models do

not incorporate any proxies in the model specification.

5 Conclusion

The primary task of this study is to introduce a comprehensive framework for construct-

ing machine learning-based panel data models. Following the methodology outlined in

Huang (2013), we utilize cross-sectional averages and time averages as instrumental vari-

ables to capture unobserved common factors and fixed effects, respectively. The resultant

nonparametric panel data model, accommodating fixed effects and cross-sectional depen-

dence, is formulated as a partial linear semiparametric panel data model. To ensure the

robustness of our estimation procedure in the presence of nuisance parameters estimated

using diverse machine learning methods, we adopt the double/debiased machine learning

technique developed by Chernozhukov et al. (2018). Throughout this paper, we operate

under the assumption of a substantial number of cross-sectional units (N), a large time

dimension (T ), and a fixed number of regressors (d). Consequently, we directly apply

the theory outlined in Chernozhukov et al. (2018). Extensive simulations corroborate

the estimation accuracy of our method in scenarios where both fixed effects and cross-

sectional dependence are present. When applying the method to estimate the total factor

productivity (TFP) of public companies in mainland China, we find that the proposed

machine learning-based methods are comparable to other prevalent methods in the lit-

erature. Additionally, we acknowledge the challenge posed by high-dimensional datasets

(i.e., large d), where both the number of parametric coefficients and nuisance parameters

becomes substantial. As of our current knowledge, there exists no established theory to

comprehensively address this issue, and we recognize it as an area for future research.
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Figure 1: MSE under Type 1
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Notes. This figure presents the average mean squared errors over 1,000 Monte Carlo repetitions for f(xit) = 0.2xit,1 +
0.2xit,2 + 0.2xit,3 using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and 8 neurons,
respectively. The number of predictors d = 5, the number of entities N = 10, and the length of sample size T = 100.
“Pooled” stands for using the machine learning method by pooling all data. “FE” stands for using the proposed machine
learning based panel data model with fixed effects. “CR + FE” stands for using the proposed machine learning panel data
model with both fixed effects and cross-sectional dependence.
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Figure 2: MSE under Type 2
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Notes. This figure presents the average mean squared errors over 1,000 Monte Carlo repetitions for f(xit) = 0.4xit,1 +
0.3xit,1xit,2 + 0.12sgn(xit,3) using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and
8 neurons, respectively. The number of predictors d = 5, the number of entities N = 10, and the length of sample size
T = 100. “Pooled” stands for using the machine learning method by pooling all data. “FE” stands for using the proposed
machine learning based panel data model with fixed effects. “CR + FE” stands for using the proposed machine learning
panel data model with both fixed effects and cross-sectional dependence.
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Figure 3: In-sample R2 under Type 1
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Notes. This figure presents the average R2s over 1,000 Monte Carlo repetitions for f(xit) = 0.2xit,1 + 0.2xit,2 + 0.2xit,3

using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and 8 neurons, respectively. The
number of predictors d = 5, the number of entities N = 10, and the length of sample size T = 100. “Pooled” stands for
using the machine learning method by pooling all data. “FE” stands for using the proposed machine learning based panel
data model with fixed effects. “CR + FE” stands for using the proposed machine learning panel data model with both
fixed effects and cross-sectional dependence.
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Figure 4: In-sample R2 under Type 2
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(c) c1 = 0, c2 ∈ {0, 0.1, 0.2, ..., 1}

LASSO RF NN

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

IS
S

 R
−

S
qu

ar
e

CR + FE FE Pooled

(d) c1 = 1, c2 ∈ {0, 0.1, 0.2, ..., 1}

Notes. This figure presents the average R2s over 1,000 Monte Carlo repetitions for f(xit) = 0.4xit,1 + 0.3xit,1xit,2 +
0.12sgn(xit,3) using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and 8 neurons,
respectively. The number of predictors d = 5, the number of entities N = 10, and the length of sample size T = 100.
“Pooled” stands for using the machine learning method by pooling all data. “FE” stands for using the proposed machine
learning based panel data model with fixed effects. “CR + FE” stands for using the proposed machine learning panel data
model with both fixed effects and cross-sectional dependence.
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Figure 5: Out-of-sample R2 under Type 1
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Notes. This figure presents the average R2s over 1,000 Monte Carlo repetitions for f(xit) = 0.2xit,1 + 0.2xit,2 + 0.2xit,3

using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and 8 neurons, respectively. The
number of predictors d = 5, the number of entities N = 10, and the length of sample size T = 100. “Pooled” stands for
using the machine learning method by pooling all data. “FE” stands for using the proposed machine learning based panel
data model with fixed effects. “CR + FE” stands for using the proposed machine learning panel data model with both
fixed effects and cross-sectional dependence.
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Figure 6: Out-of-sample R2 under Type 2
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Notes. This figure presents the average R2s over 1,000 Monte Carlo repetitions for f(xit) = 0.4xit,1 + 0.3xit,1xit,2 +
0.12sgn(xit,3) using LASSO, random forests, and neural networks with three hidden layers of 32, 16, and 8 neurons,
respectively. The number of predictors d = 5, the number of entities N = 10, and the length of sample size T = 100.
“Pooled” stands for using the machine learning method by pooling all data. “FE” stands for using the proposed machine
learning based panel data model with fixed effects. “CR + FE” stands for using the proposed machine learning panel data
model with both fixed effects and cross-sectional dependence.
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Table 1: MSE under Type 1: f(xit) = 0.2xit,1 + 0.2xit,2 + 0.2xit,3

LASSO Random Forests Neural Networks
N T Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE
Panel A: c1 = c2 = 0
d = 5
10 100 0.0109 0.0116 0.0146 0.0558 0.0558 0.0566 0.0312 0.0233 0.0252

200 0.0054 0.0055 0.0070 0.0461 0.0457 0.0443 0.0175 0.0133 0.0143
400 0.0028 0.0030 0.0037 0.0378 0.0377 0.0368 0.0123 0.0074 0.0079

20 100 0.0061 0.0066 0.0075 0.0463 0.0460 0.0461 0.0147 0.0148 0.0154
200 0.0030 0.0032 0.0037 0.0382 0.0384 0.0374 0.0104 0.0078 0.0084
400 0.0013 0.0014 0.0016 0.0318 0.0319 0.0311 0.0104 0.0042 0.0044

d = 10
10 100 0.0155 0.0178 0.0227 0.1140 0.1151 0.1192 0.0938 0.0437 0.0496

200 0.0088 0.0091 0.0112 0.1028 0.1036 0.1016 0.0831 0.0246 0.0268
400 0.0040 0.0042 0.0052 0.0926 0.0918 0.0892 0.0889 0.0132 0.0180

20 100 0.0085 0.0085 0.0104 0.1012 0.1030 0.1031 0.1299 0.0279 0.0251
200 0.0040 0.0043 0.0051 0.0916 0.0913 0.0897 0.1158 0.0135 0.0141
400 0.0019 0.0021 0.0024 0.0803 0.0805 0.0795 0.0829 0.0074 0.0075

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.2269 0.0111 0.0145 0.2627 0.0560 0.0562 0.2430 0.0238 0.0254

200 0.2300 0.0064 0.0074 0.2705 0.0454 0.0444 0.2519 0.0133 0.0150
400 0.2251 0.0034 0.0038 0.2667 0.0389 0.0373 0.2528 0.0079 0.0085

20 100 0.2374 0.0060 0.0070 0.2780 0.0455 0.0455 0.2672 0.0141 0.0141
200 0.2305 0.0029 0.0036 0.2699 0.0383 0.0374 0.2562 0.0076 0.0082
400 0.2197 0.0016 0.0018 0.2593 0.0322 0.0315 0.2412 0.0044 0.0044

d = 10
10 100 0.3081 0.0175 0.0223 0.4225 0.1184 0.1174 0.4448 0.0480 0.0477

200 0.2942 0.0091 0.0117 0.3992 0.1010 0.1015 0.4295 0.0235 0.0296
400 0.2687 0.0043 0.0055 0.3787 0.0926 0.0897 0.4203 0.0133 0.0140

20 100 0.2868 0.0083 0.0097 0.3920 0.0991 0.1003 0.4301 0.0236 0.0250
200 0.3051 0.0047 0.0055 0.4168 0.0910 0.0915 0.4452 0.0133 0.0139
400 0.3015 0.0023 0.0027 0.4160 0.0803 0.0801 0.4525 0.0081 0.0084

Panel C: c1 = c2 = 1
d = 5
10 100 0.5601 0.1182 0.0164 0.5900 0.1575 0.0591 0.5725 0.1279 0.0270

200 0.4714 0.1022 0.0086 0.5133 0.1417 0.0463 0.4892 0.1109 0.0169
400 0.5477 0.1058 0.0047 0.5816 0.1409 0.0373 0.5752 0.1126 0.0092

20 100 0.4964 0.1058 0.0113 0.5319 0.1425 0.0500 0.5053 0.1131 0.0197
200 0.4905 0.1009 0.0050 0.5251 0.1352 0.0393 0.5158 0.1105 0.0091
400 0.5267 0.1009 0.0024 0.5637 0.1340 0.0322 0.5452 0.1066 0.0052

d = 10
10 100 0.6585 0.1804 0.0265 0.7669 0.2940 0.1282 0.7302 0.2026 0.0531

200 0.6864 0.1811 0.0112 0.7968 0.2863 0.1034 0.7545 0.1988 0.0269
400 0.6847 0.1719 0.0069 0.8025 0.2751 0.0911 0.8099 0.1856 0.0161

20 100 0.7064 0.1826 0.0130 0.8262 0.2866 0.1046 0.7832 0.1983 0.0330
200 0.6936 0.1732 0.0067 0.8091 0.2671 0.0897 0.7606 0.1831 0.0210
400 0.6804 0.1737 0.0035 0.7974 0.2752 0.0808 0.7700 0.1826 0.0089

Notes. This table presents the average mean squared errors (MSEs) over 1,000 Monte Carlo repetitions
for f(xit) = 0.2xit,1 + 0.2xit,2 + 0.2xit,3 using LASSO, random forests, and neural networks with three
hidden layers of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the number
of entities N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates the
true model contains neither fixed effectss nor cross-sectional dependence. c1 = 1, c2 = 0 indicates the
true model contains fixed effectss. c1 = c2 = 1 indicates the true model contains both fixed effects and
cross-sectional dependence. “Pooled” stands for using the machine learning method by pooling all data.
“FE” stands for using the proposed machine learning based panel data model with fixed effects. “CR
+ FE” stands for using the proposed machine learning panel data model with both fixed effects and
cross-sectional dependence.
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Table 2: MSE under Type 2: f(xit) = 0.4xit,1 + 0.3xit,1xit,2 + 0.12sgn(xit,3)

LASSO Random Forests Neural Networks
N T Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE
Panel A: c1 = c2 = 0
d = 5
10 100 0.1425 0.1429 0.1448 0.0716 0.0727 0.0740 0.0999 0.1231 0.1320

200 0.1362 0.1364 0.1379 0.0574 0.0578 0.0586 0.0580 0.1016 0.0941
400 0.1322 0.1325 0.1332 0.0453 0.0458 0.0459 0.0353 0.0414 0.0517

20 100 0.1372 0.1377 0.1385 0.0573 0.0579 0.0587 0.0483 0.0890 0.0889
200 0.1341 0.1341 0.1346 0.0472 0.0472 0.0474 0.0349 0.0497 0.0494
400 0.1329 0.1330 0.1333 0.0375 0.0375 0.0378 0.0317 0.0255 0.0295

d = 10
10 100 0.1378 0.1393 0.1416 0.1330 0.1357 0.1339 0.2005 0.1388 0.1516

200 0.1339 0.1341 0.1357 0.1151 0.1160 0.1142 0.2024 0.0902 0.1029
400 0.1337 0.1341 0.1351 0.0986 0.0993 0.0964 0.1396 0.0502 0.0520

20 100 0.1391 0.1394 0.1405 0.1149 0.1177 0.1163 0.2090 0.0916 0.0936
200 0.1336 0.1336 0.1345 0.0975 0.0973 0.0969 0.1567 0.0519 0.0540
400 0.1334 0.1335 0.1337 0.0629 0.0635 0.0658 0.1159 0.0318 0.0299

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.3580 0.1428 0.1447 0.3007 0.0730 0.0736 0.3303 0.1342 0.1375

200 0.3511 0.1369 0.1378 0.2801 0.0590 0.0604 0.3097 0.0908 0.0956
400 0.4048 0.1369 0.1374 0.3221 0.0464 0.0467 0.3547 0.0427 0.0480

20 100 0.3701 0.1378 0.1389 0.3012 0.0578 0.0582 0.3269 0.0887 0.0937
200 0.3599 0.1331 0.1334 0.2819 0.0465 0.0466 0.2979 0.0492 0.0453
400 0.3707 0.1353 0.1355 0.2812 0.0370 0.0373 0.2801 0.0234 0.0216

d = 10
10 100 0.4095 0.1451 0.1495 0.4246 0.1357 0.1386 0.5153 0.1415 0.1623

200 0.4046 0.1352 0.1371 0.4148 0.1192 0.1166 0.5101 0.0984 0.1005
400 0.4246 0.1338 0.1348 0.4237 0.0928 0.0930 0.5953 0.0462 0.0511

20 100 0.4526 0.1361 0.1376 0.4543 0.1191 0.1181 0.5945 0.1065 0.1038
200 0.4631 0.1346 0.1357 0.4704 0.0991 0.0996 0.5834 0.0492 0.0553
400 0.4252 0.1335 0.1340 0.4029 0.0589 0.0610 0.5189 0.0261 0.0313

Panel C: c1 = c2 = 1
d = 5
10 100 0.6462 0.2423 0.1484 0.5676 0.1773 0.0792 0.5994 0.2213 0.1390

200 0.6376 0.2408 0.1366 0.5599 0.1673 0.0611 0.5773 0.1914 0.0992
400 0.6484 0.2348 0.1353 0.5609 0.1505 0.0484 0.5775 0.1524 0.0515

20 100 0.6419 0.2389 0.1391 0.5581 0.1597 0.0609 0.5769 0.1940 0.1019
200 0.6598 0.2377 0.1375 0.5806 0.1520 0.0483 0.5773 0.1520 0.0477
400 0.6535 0.2362 0.1358 0.5612 0.1430 0.0388 0.5591 0.1315 0.0267

d = 10
10 100 0.7583 0.2808 0.1486 0.7697 0.2994 0.1441 0.8301 0.2894 0.1573

200 0.8442 0.3110 0.1407 0.8441 0.3085 0.1223 0.8556 0.2735 0.0981
400 0.7585 0.3001 0.1348 0.7527 0.2808 0.0936 0.7912 0.2280 0.0560

20 100 0.8179 0.3058 0.1425 0.8183 0.2958 0.1203 0.8236 0.2661 0.1062
200 0.7957 0.3040 0.1365 0.7973 0.2868 0.0987 0.8082 0.2268 0.0637
400 0.8639 0.3081 0.1368 0.8501 0.2727 0.0638 0.8619 0.2073 0.0292

Notes. This table presents the average mean squared errors (MSEs) over 1,000 Monte Carlo repetitions
for f(xit) = 0.4xit,1 + 0.3xit,1xit,2 + 0.12sgn(xit,3) using LASSO, random forests, and neural networks
with three hidden layers of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the
number of entities N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates
the true model contains neither fixed effects nor cross-sectional dependence. c1 = 1, c2 = 0 indicates
the true model contains fixed effects. c1 = c2 = 1 indicates the true model contains both fixed effects
and cross-sectional dependence. “Pooled” stands for using the machine learning method by pooling all
data. “FE” stands for using the proposed machine learning based panel data model with fixed effects.
“CR + FE” stands for using the proposed machine learning panel data model with both fixed effects
and cross-sectional dependence.
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Table 3: Comparison of in-sample R2s under Type 1: f(xit) = 0.2xit,1+0.2xit,2+0.2xit,3

LASSO Random Forests Neural Networks
N T Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE
Panel A: c1 = c2 = 0
d = 5
10 100 0.2981 0.3109 0.3797 0.4746 0.4840 0.5398 0.2992 0.3088 0.3772

200 0.2914 0.2976 0.3688 0.4600 0.4647 0.5221 0.2935 0.2956 0.3673
400 0.2899 0.2932 0.3644 0.4506 0.4526 0.5102 0.2926 0.2923 0.3634

20 100 0.2908 0.3038 0.3377 0.4574 0.4683 0.4949 0.2952 0.3016 0.3353
200 0.2907 0.2975 0.3318 0.4486 0.4536 0.4810 0.2934 0.2965 0.3308
400 0.2939 0.2973 0.3323 0.4453 0.4483 0.4774 0.2992 0.2971 0.3317

d = 10
10 100 0.3011 0.3135 0.3830 0.6097 0.6201 0.6595 0.3509 0.3194 0.3814

200 0.2941 0.3011 0.3707 0.6040 0.6075 0.6547 0.3512 0.3030 0.3714
400 0.2927 0.2961 0.3668 0.5876 0.5927 0.6376 0.3521 0.2980 0.3682

20 100 0.2953 0.3084 0.3423 0.5927 0.6057 0.6284 0.3581 0.3073 0.3448
200 0.2907 0.2975 0.3329 0.5856 0.5918 0.6172 0.3471 0.2996 0.3347
400 0.2916 0.2947 0.3296 0.5748 0.5774 0.6039 0.3541 0.2955 0.3306

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.4021 0.6390 0.6766 0.5569 0.7275 0.7567 0.4053 0.6373 0.6747

200 0.3951 0.6373 0.6743 0.5427 0.7212 0.7510 0.4024 0.6362 0.6732
400 0.3906 0.6311 0.6674 0.5325 0.7138 0.7431 0.3968 0.6307 0.6670

20 100 0.3933 0.6445 0.6626 0.5406 0.7283 0.7423 0.3947 0.6437 0.6621
200 0.3989 0.6451 0.6632 0.5381 0.7245 0.7396 0.4043 0.6447 0.6627
400 0.3906 0.6359 0.6541 0.5256 0.7139 0.7287 0.3956 0.6357 0.6538

d = 10
10 100 0.4318 0.6436 0.6803 0.6876 0.7997 0.8239 0.4565 0.6440 0.6789

200 0.4164 0.6260 0.6640 0.6744 0.7877 0.8140 0.4664 0.6282 0.6647
400 0.4162 0.6293 0.6667 0.6722 0.7828 0.8089 0.4605 0.6303 0.6671

20 100 0.4253 0.6479 0.6653 0.6838 0.8018 0.8136 0.4827 0.6479 0.6664
200 0.4285 0.6503 0.6673 0.6786 0.7992 0.8113 0.4861 0.6509 0.6680
400 0.4226 0.6401 0.6582 0.6683 0.7859 0.8002 0.4741 0.6391 0.6583

Panel C: c1 = c2 = 1
d = 5
10 100 0.4828 0.6226 0.7083 0.6182 0.7194 0.7803 0.4813 0.6191 0.7052

200 0.4920 0.6458 0.7283 0.6186 0.7331 0.7924 0.4939 0.6439 0.7275
400 0.4879 0.6289 0.7148 0.6102 0.7168 0.7798 0.4936 0.6280 0.7142

20 100 0.5060 0.6624 0.7254 0.6310 0.7469 0.7905 0.5056 0.6607 0.7246
200 0.4982 0.6492 0.7158 0.6175 0.7320 0.7806 0.5030 0.6483 0.7153
400 0.5001 0.6496 0.7166 0.6120 0.7281 0.7777 0.5043 0.6491 0.7164

d = 10
10 100 0.5499 0.6592 0.7275 0.7677 0.8204 0.8529 0.5629 0.6554 0.7259

200 0.5469 0.6545 0.7245 0.7630 0.8157 0.8485 0.5867 0.6532 0.7238
400 0.5490 0.6537 0.7251 0.7584 0.8111 0.8465 0.5788 0.6529 0.7256

20 100 0.5490 0.6658 0.7186 0.7644 0.8214 0.8433 0.5801 0.6654 0.7181
200 0.5550 0.6651 0.7186 0.7615 0.8175 0.8390 0.5797 0.6644 0.7178
400 0.5482 0.6584 0.7129 0.7518 0.8098 0.8285 0.5726 0.6578 0.7131

Notes. This table presents the average in-sample R2s over 1,000 Monte Carlo repetitions for f(xit) =
0.2xit,1 + 0.2xit,2 + 0.2xit,3 using LASSO, random forests, and neural networks with three hidden layers
of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the number of entities
N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates the true model
contains neither fixed effects nor cross-sectional dependence. c1 = 1, c2 = 0 indicates the true model
contains fixed effects. c1 = c2 = 1 indicates the true model contains both fixed effects and cross-sectional
dependence. “Pooled” stands for using the machine learning method by pooling all data. “FE” stands
for using the proposed machine learning based panel data model with fixed effects. “CR + FE” stands
for using the proposed machine learning panel data model with both fixed effects and cross-sectional
dependence.
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Table 4: Comparison of in-sample R2s under Type 2: f(xit) = 0.4xit,1 + 0.3xit,1xit,2 +
0.12sgn(xit,3)

N T LASSO Random Forests Neural Networks
Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE

Panel A: c1 = c2 = 0
d = 5
10 100 0.1623 0.1783 0.2623 0.4472 0.4568 0.5065 0.2437 0.1989 0.2721

200 0.1619 0.1701 0.2534 0.4420 0.4475 0.4971 0.2616 0.2231 0.2932
400 0.1586 0.1632 0.2470 0.4342 0.4368 0.4856 0.2681 0.2414 0.3014

20 100 0.1637 0.1805 0.2223 0.4452 0.4541 0.4778 0.2741 0.2198 0.2598
200 0.1585 0.1672 0.2097 0.4330 0.4375 0.4625 0.2721 0.2406 0.2727
400 0.1589 0.1638 0.2066 0.4152 0.4156 0.4403 0.2701 0.2494 0.2829

d = 10
10 100 0.1673 0.1806 0.2677 0.5806 0.5924 0.6306 0.3558 0.2244 0.2846

200 0.1585 0.1670 0.2516 0.5847 0.5970 0.6323 0.3707 0.2212 0.2925
400 0.1584 0.1625 0.2480 0.5413 0.5391 0.5879 0.3882 0.2371 0.3131

20 100 0.1660 0.1821 0.2232 0.5834 0.5970 0.6187 0.4134 0.2363 0.2725
200 0.1595 0.1682 0.2117 0.5481 0.5515 0.5755 0.3443 0.2424 0.2779
400 0.1604 0.1653 0.2078 0.4609 0.4604 0.4897 0.3465 0.2520 0.2861

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.2623 0.5294 0.5777 0.4893 0.6904 0.7184 0.3064 0.5409 0.5840

200 0.2658 0.5240 0.5729 0.4866 0.6818 0.7102 0.3236 0.5499 0.5906
400 0.2622 0.5210 0.5692 0.4757 0.6743 0.7022 0.3357 0.5630 0.5996

20 100 0.2712 0.5549 0.5768 0.4887 0.7043 0.7165 0.3316 0.5805 0.5972
200 0.2667 0.5412 0.5647 0.4819 0.6910 0.7038 0.3344 0.5821 0.5997
400 0.2735 0.5521 0.5748 0.4740 0.6840 0.6981 0.3373 0.5973 0.6140

d = 10
10 100 0.3116 0.5415 0.5895 0.6452 0.7740 0.7970 0.4289 0.5585 0.6027

200 0.2888 0.5250 0.5739 0.6348 0.7620 0.7854 0.4480 0.5491 0.5969
400 0.2877 0.5225 0.5703 0.6295 0.7368 0.7659 0.4450 0.5643 0.6037

20 100 0.3113 0.5601 0.5831 0.6508 0.7848 0.7936 0.4487 0.5868 0.6064
200 0.3153 0.5640 0.5864 0.6473 0.7741 0.7907 0.4491 0.6027 0.6215
400 0.3016 0.5483 0.5714 0.6241 0.6997 0.7194 0.4296 0.5940 0.6129

Panel C: c1 = c2 = 1
d = 5
10 100 0.3763 0.5449 0.6446 0.5777 0.6989 0.7638 0.4168 0.5559 0.6517

200 0.3697 0.5326 0.6338 0.5640 0.6851 0.7527 0.4157 0.5573 0.6522
400 0.3718 0.5326 0.6353 0.5576 0.6794 0.7490 0.4249 0.5692 0.6623

20 100 0.3836 0.5660 0.6388 0.5731 0.7096 0.7600 0.4266 0.5894 0.6564
200 0.3826 0.5568 0.6353 0.5629 0.6951 0.7483 0.4294 0.5903 0.6664
400 0.3899 0.5659 0.6429 0.5620 0.6971 0.7483 0.4394 0.6042 0.6758

d = 10
10 100 0.4520 0.5786 0.6566 0.7308 0.7954 0.8271 0.5013 0.5873 0.6671

200 0.4432 0.5654 0.6491 0.7317 0.7929 0.8248 0.5437 0.5875 0.6715
400 0.4385 0.5587 0.6440 0.7199 0.7822 0.7980 0.5351 0.5874 0.6720

20 100 0.4341 0.5670 0.6304 0.7268 0.7929 0.8160 0.5367 0.5872 0.6529
200 0.4446 0.5724 0.6352 0.7231 0.7894 0.7980 0.5304 0.6057 0.6685
400 0.4395 0.5635 0.6288 0.7157 0.7807 0.7573 0.5198 0.6026 0.6630

Notes. This table presents the average in-sample R2s over 1,000 Monte Carlo repetitions for f(xit) =
0.4xit,1 + 0.3xit,1xit,2 + 0.12sgn(xit,3) using LASSO, random forests, and neural networks with three
hidden layers of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the number
of entities N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates the
true model contains neither fixed effects nor cross-sectional dependence. c1 = 1, c2 = 0 indicates the
true model contains fixed effects. c1 = c2 = 1 indicates the true model contains both fixed effects and
cross-sectional dependence. “Pooled” stands for using the machine learning method by pooling all data.
“FE” stands for using the proposed machine learning based panel data model with fixed effects. “CR
+ FE” stands for using the proposed machine learning panel data model with both fixed effects and
cross-sectional dependence. 27



Table 5: Comparison of out-of-sample R2s under Type 1: f(xit) = 0.2xit,1 + 0.2xit,2 +
0.2xit,3

LASSO Random Forests Neural Networks
N T Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE
Panel A: c1 = c2 = 0
d = 5
10 100 0.2801 0.2653 0.2564 0.2577 0.2429 0.2351 0.2687 0.2566 0.2472

200 0.2862 0.2803 0.2763 0.2682 0.2625 0.2594 0.2794 0.2745 0.2705
400 0.2877 0.2851 0.2834 0.2727 0.2700 0.2694 0.2819 0.2816 0.2797

20 100 0.2852 0.2713 0.2678 0.2670 0.2528 0.2495 0.2744 0.2654 0.2618
200 0.2892 0.2822 0.2801 0.2736 0.2667 0.2651 0.2838 0.2785 0.2769
400 0.2910 0.2876 0.2865 0.2783 0.2748 0.2741 0.2837 0.2854 0.2842

d = 10
10 100 0.2736 0.2589 0.2358 0.2410 0.2267 0.2067 0.2107 0.2370 0.2167

200 0.2825 0.2761 0.2675 0.2571 0.2510 0.2434 0.2154 0.2644 0.2572
400 0.2873 0.2844 0.2808 0.2665 0.2638 0.2615 0.2186 0.2775 0.2742

20 100 0.2799 0.2652 0.2563 0.2546 0.2400 0.2318 0.2040 0.2492 0.2431
200 0.2879 0.2816 0.2775 0.2672 0.2611 0.2573 0.2232 0.2756 0.2710
400 0.2885 0.2855 0.2833 0.2708 0.2678 0.2661 0.2156 0.2818 0.2796

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.3806 0.6144 0.6102 0.3665 0.6048 0.6015 0.3721 0.6102 0.6054

200 0.3879 0.6260 0.6240 0.3760 0.6174 0.6163 0.3813 0.6231 0.6214
400 0.3845 0.6236 0.6225 0.3737 0.6156 0.6150 0.3801 0.6217 0.6207

20 100 0.3838 0.6234 0.6211 0.3684 0.6141 0.6120 0.3781 0.6200 0.6181
200 0.3934 0.6367 0.6356 0.3807 0.6288 0.6278 0.3874 0.6349 0.6339
400 0.3866 0.6298 0.6294 0.3767 0.6231 0.6229 0.3831 0.6287 0.6283

d = 10
10 100 0.4048 0.6161 0.6046 0.3875 0.6006 0.5899 0.3727 0.6039 0.5932

200 0.3999 0.6105 0.6059 0.3837 0.5976 0.5936 0.3473 0.6041 0.5993
400 0.4124 0.6217 0.6196 0.3980 0.6101 0.6087 0.3684 0.6178 0.6163

20 100 0.4103 0.6306 0.6256 0.3941 0.6176 0.6124 0.3427 0.6236 0.6184
200 0.4154 0.6383 0.6361 0.4010 0.6276 0.6255 0.3528 0.6344 0.6325
400 0.4188 0.6370 0.6360 0.4068 0.6278 0.6269 0.3634 0.6337 0.6341

Panel C: c1 = c2 = 1
d = 5
10 100 0.4817 0.6082 0.6440 0.4657 0.5945 0.6338 0.4704 0.6007 0.6387

200 0.4968 0.6410 0.6776 0.4836 0.6311 0.6704 0.4892 0.6367 0.6750
400 0.4872 0.6246 0.6647 0.4765 0.6160 0.6587 0.4805 0.6220 0.6632

20 100 0.4961 0.6414 0.6852 0.4828 0.6321 0.6776 0.4879 0.6373 0.6825
200 0.4919 0.6378 0.6816 0.4808 0.6298 0.6755 0.4844 0.6352 0.6800
400 0.4955 0.6437 0.6875 0.4868 0.6370 0.6824 0.4911 0.6421 0.6866

d = 10
10 100 0.5267 0.6282 0.6551 0.5072 0.6117 0.6420 0.5034 0.6129 0.6455

200 0.5369 0.6386 0.6688 0.5219 0.6252 0.6580 0.4888 0.6313 0.6626
400 0.5451 0.6484 0.6803 0.5323 0.6370 0.6714 0.5136 0.6443 0.6775

20 100 0.5408 0.6447 0.6788 0.5252 0.6315 0.6675 0.4977 0.6382 0.6716
200 0.5516 0.6569 0.6912 0.5387 0.6461 0.6822 0.5230 0.6531 0.6873
400 0.5480 0.6548 0.6905 0.5374 0.6456 0.6832 0.5221 0.6525 0.6889

Notes. This table presents the average out-of-sample R2s over 1,000 Monte Carlo repetitions for f(xit) =
0.2xit,1 + 0.2xit,2 + 0.2xit,3 using LASSO, random forests, and neural networks with three hidden layers
of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the number of entities
N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates the true model
contains neither fixed effects nor cross-sectional dependence. c1 = 1, c2 = 0 indicates the true model
contains fixed effects. c1 = c2 = 1 indicates the true model contains both fixed effects and cross-sectional
dependence. “Pooled” stands for using the machine learning method by pooling all data. “FE” stands
for using the proposed machine learning based panel data model with fixed effects. “CR + FE” stands
for using the proposed machine learning panel data model with both fixed effects and cross-sectional
dependence. 28



Table 6: Comparison of out-of-sample R2s under Type 2: f(xit) = 0.4xit,1+0.3xit,1xit,2+
0.12sgn(xit,3)

N T LASSO Random Forests Neural Networks
Pooled FE CR + FE Pooled FE CR + FE Pooled FE CR + FE

Panel A: c1 = c2 = 0
d = 5
10 100 0.1487 0.1333 0.1222 0.2121 0.1982 0.1857 0.1810 0.1393 0.1227

200 0.1554 0.1481 0.1434 0.2275 0.2212 0.2147 0.2137 0.1893 0.1815
400 0.1592 0.1561 0.1537 0.2358 0.2330 0.2297 0.2318 0.2262 0.2118

20 100 0.1533 0.1387 0.1341 0.2263 0.2142 0.2086 0.2045 0.1691 0.1696
200 0.1550 0.1476 0.1461 0.2339 0.2274 0.2255 0.2253 0.2148 0.2100
400 0.1602 0.1568 0.1559 0.2404 0.2371 0.2355 0.2348 0.2374 0.2353

d = 10
10 100 0.1397 0.1241 0.0996 0.1805 0.1650 0.1409 0.0519 0.1222 0.0901

200 0.1474 0.1400 0.1287 0.2052 0.1981 0.1867 0.0830 0.1657 0.1545
400 0.1534 0.1505 0.1456 0.2184 0.2151 0.2091 0.0742 0.2054 0.2069

20 100 0.1545 0.1399 0.1288 0.2132 0.1996 0.1880 0.0457 0.1670 0.1580
200 0.1553 0.1482 0.1429 0.2213 0.2142 0.2088 0.1315 0.2067 0.2033
400 0.1568 0.1536 0.1512 0.2326 0.2289 0.2254 0.1387 0.2328 0.2311

Panel B: c1 = 1, c2 = 0
d = 5
10 100 0.2522 0.5013 0.4950 0.2799 0.5343 0.5284 0.2681 0.5044 0.4974

200 0.2485 0.5004 0.4975 0.2827 0.5383 0.5357 0.2708 0.5191 0.5124
400 0.2609 0.5161 0.5146 0.2988 0.5578 0.5557 0.2888 0.5520 0.5463

20 100 0.2655 0.5326 0.5299 0.2979 0.5721 0.5690 0.2871 0.5524 0.5480
200 0.2625 0.5282 0.5268 0.3004 0.5698 0.5682 0.2918 0.5652 0.5623
400 0.2737 0.5486 0.5480 0.3128 0.5908 0.5898 0.3084 0.5923 0.5899

d = 10
10 100 0.2751 0.5105 0.4955 0.2964 0.5327 0.5193 0.2040 0.5061 0.4928

200 0.2796 0.5137 0.5080 0.3076 0.5458 0.5393 0.1891 0.5247 0.5221
400 0.2810 0.5173 0.5144 0.3160 0.5533 0.5500 0.2157 0.5490 0.5458

20 100 0.2929 0.5357 0.5296 0.3191 0.5660 0.5594 0.2303 0.5465 0.5429
200 0.3076 0.5535 0.5508 0.3372 0.5878 0.5853 0.2536 0.5831 0.5811
400 0.2967 0.5425 0.5412 0.3340 0.5825 0.5804 0.2588 0.5844 0.5836

Panel C: c1 = c2 = 1
d = 5
10 100 0.3657 0.5201 0.5608 0.3896 0.5497 0.5903 0.3753 0.5225 0.5631

200 0.3603 0.5184 0.5625 0.3895 0.5500 0.5951 0.3833 0.5362 0.5768
400 0.3691 0.5249 0.5697 0.4026 0.5601 0.6056 0.4002 0.5584 0.5993

20 100 0.3786 0.5412 0.5915 0.4051 0.5720 0.6237 0.3965 0.5592 0.6057
200 0.3778 0.5453 0.5943 0.4074 0.5782 0.6286 0.4087 0.5759 0.6263
400 0.3877 0.5611 0.6097 0.4205 0.5963 0.6456 0.4207 0.5979 0.6447

d = 10
10 100 0.4277 0.5398 0.5694 0.4471 0.5622 0.5901 0.4173 0.5341 0.5657

200 0.4309 0.5469 0.5799 0.4553 0.5736 0.6071 0.3949 0.5597 0.5943
400 0.4322 0.5501 0.5870 0.4598 0.5805 0.6171 0.4077 0.5736 0.6142

20 100 0.4278 0.5430 0.5818 0.4489 0.5680 0.6081 0.3923 0.5526 0.5945
200 0.4393 0.5598 0.6005 0.4656 0.5895 0.6299 0.4285 0.5877 0.6300
400 0.4335 0.5553 0.5966 0.4638 0.5886 0.6306 0.4349 0.5905 0.6303

Notes. This table presents the average out-of-sample R2s over 1,000 Monte Carlo repetitions for f(xit) =
0.4xit,1 + 0.3xit,1xit,2 + 0.12sgn(xit,3) using LASSO, random forests, and neural networks with three
hidden layers of 32, 16, and 8 neurons, respectively. The number of predictors d ∈ {5, 10}, the number
of entities N ∈ {10, 20}, and the length of sample size T ∈ {100, 200, 400}. c1 = c2 = 0 indicates the
true model contains neither fixed effects nor cross-sectional dependence. c1 = 1, c2 = 0 indicates the
true model contains fixed effects. c1 = c2 = 1 indicates the true model contains both fixed effects and
cross-sectional dependence. “Pooled” stands for using the machine learning method by pooling all data.
“FE” stands for using the proposed machine learning based panel data model with fixed effects. “CR
+ FE” stands for using the proposed machine learning panel data model with both fixed effects and
cross-sectional dependence. 29



Table 7: Summary of model specifications

Models Production Function ωit

LASSO f(lnLit, lnKit) αi + γ⊺i λt
Random Forest f(lnLit, lnKit) αi + γ⊺i λt
Neural Network f(lnLit, lnKit) αi + γ⊺i λt

Pooled γL lnLit + γK lnKit 0
Fixed Effects γL lnLit + γK lnKit αi + ζt

Olley and Pakes (1996) γL lnLit + γK lnKit h(ln Iit, lnKit)
Levinsohn and Petrin (2003) γL lnLit + γK lnKit h(lnMit, lnKit)

Ackerberg et al. (2015) γL lnLit + γK lnKit h(lnMit, lnKit, lnLit)
Ackerberg et al. (2015) γL lnLit + γK lnKit h(ln Iit, lnKit, lnLit)

Notes. This table presents the specifications of eight models. The proposed three machine learning-based
panel data models assume that the main part of production function is an unknown form and formulated
as f(lnLit, lnKit), while the other five existing methods are in the linear form, i.e., γL lnLit+γK lnKit.
The proposed three machine learning-based panel data models assume that the unobserved productivity
ωit = αi+γ

⊺
i λt, where both fixed effects αi and common factor λt may be endogenous. The pooled panel

assumes ωit = 0. The fixed effect panel assumes ωit is the sum of individual fixed effects and time fixed
effects. The other three methods assume ωit can be replaced by some control function which depends on
a proxy either ln I or lnM .

Table 8: Comparison of model performance by Cor(proxy, ε̂it)

Models lnM ln I
LASSO 0.066 0.073

Random Forests 0.084 0.074
Neural Networks 0.088 0.077

Pooled 0.258 0.095
Fixed Effects 0.244 0.090

Olley and Pakes (1996) 0.218 -
Levinsohn and Petrin (2003) - 0.065

Ackerberg et al. (2015) - 0.065
Ackerberg et al. (2015) 0.212 -

Notes. This table presents the correlation coefficient between the instrument variable, i.e., lnL or lnK,
and the estimated residuals, i.e., ε̂it. The correlation between ln I and ε̂it is not applicable for the models
in Olley and Pakes (1996) and Ackerberg et al. (2015), while the correlation between lnM and ε̂it is
not applicable for the models in Levinsohn and Petrin (2003) and Ackerberg et al. (2015), as both have
already been utilized in their control function h(·).
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Technical Appendix

A Proof for equation (2)

Model (1) can be rewritten as

yit = f(xit) + αi + γ⊺i λt + εit, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (A1)

Define the neighborhood sample points set N (x, ν) = {(i, t)|∥xit − x∥2 < ν} with ∥ · ∥2
being the Euclidean norm and ν some positive constant. As N −→ ∞, T −→ ∞, ν −→ 0

and the number of sample points in the set N (x, ν), i.e. |N (x, ν)| −→ ∞. By the first

order Taylor expansion at the sample point xit = x, we have

y∗it = f(x) + (x∗
it − x)⊺θ(x) +R(x∗

it,x) + αi + γ⊺i λt + ε∗it, (i, t) ∈ N (x, ν), (A2)

where θ(x) is the first order derivative of y with respect to x, R(x∗
it,x) = 1

2
(x∗

it −

x)Ω(x)(x∗
it−x)⊺+r(x∗

it,x) with Ω(x) = ∂f(x)/∂x∂x⊺, and r(x∗
it,x) being the remainder.

Then, averaging (A2) over i at time t yields

ȳ∗t = f(x) + (x̄∗
t − x)⊺θ(x) + R̄∗

t + γ̄⊺λt + ε̄∗t , (·, t) ∈ N (x, ν), (A3)

where ȳ∗t = 1
|N (x,ν)|

∑
{·,t}∈N (x,ν) y

∗
it, x̄

∗
t =

1
|N (x,ν)|

∑
{·,t}∈N (x,ν) x

∗
it, R̄

∗
t =

1
|N (x,ν)|

∑
{·,t}∈N (x,ν)R(x

∗
it,x),

γ̄∗ = 1
|N (x,ν)|

∑
{·,t}∈N (x,ν) γ

∗
i , and ε̄

∗
t = 1

|N (x,ν)|
∑

{·,t}∈N (x,ν) ε
∗
it. By condition (C4) in Sec-

tion B, f(x) has bounded second order derivatives so that Ω(x) is bounded. Meanwhile,

R(x∗
it,x) −→ 0 holds as {i, t} ∈ N (x, ν). Therefore, the order of R̄∗

t is op(1). Moreover,

the data {yit,xit} and factor loadings γi are stationary processes by conditions (C1) and

(C2), we replace the above sample means of the neighborhood points of x by more efficient

estimators, i.e., the sample means of the full sample ȳt =
1
N

∑N
i=1 yit, x̄t =

1
N

∑N
i=1 xit,

γ̄ = 1
N

∑N
i=1 γi, and ε̄t =

1
N

∑N
i=1 εit, respectively. We observe ε̄i = op(1) by the law of

large number. Therefore, λt can be written as a linear combination of 1, ȳt and x̄t, i.e.,

λt = (γ̄γ̄⊺)−1γ̄ (ȳt − f(x)− (x̄t − x)⊺θ(x)) + op(1).
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In the same manner, averaging (A2) over t for unit i yields

ȳ∗i = f(x) + (x̄∗
i − x)⊺θ(x) + R̄i + αi + ε̄∗i , (i, ·) ∈ N (x, ν), (A4)

where ȳ∗i = 1
|N (x,ν)|

∑
{i,·}∈N (x,ν) y

∗
it, x̄

∗
i =

1
|N (x,ν)|

∑
{i,·}∈N (x,ν) x

∗
it, R̄

∗
i =

1
|N (x,ν)|

∑
{i,·}∈N (x,ν)R(x

∗
it,x),

and ε̄∗i =
1

|N (x,ν)|
∑

{i,·}∈N (x,ν) ε
∗
it. Here, we can similarly show R̄∗

i = op(1). And we replace

the above sample means of the neighborhood points of x by more efficient estimators, i.e.,

the sample means of the full sample ȳi =
1
T

∑T
t=1 yit, x̄i =

1
T

∑T
t=1 xit, and ε̄i =

1
T

∑T
t=1 εit.

We observe ε̄i = op(1) by the law of large numbers. Therefore, αi can be written as a

linear combination of 1, ȳi and x̄i, i.e.,

αi = ȳi − f(x)− (x̄i − x)⊺θ(x) + op(1).

In sum, we can add cross-sectional averages (ȳt and x̄t) and time averages (ȳi and x̄i) as

regressors to model (1) to account for the unobserved common factors and fixed effects,

respectively. That is,

yit = f(xit) + β⊺zit + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T,

where zit = (ȳt − ȳ, (x̄t − x̄)⊺, ȳi − ȳ, (x̄i − x̄)⊺)⊺, and β is the corresponding (2d +

2)-dimensional coefficient vector. We use the demeaned version here for identification

purpose. The error term eit, which consists of both the idiosyncratic term εit and the

approximated error from the Taylor expansion, is a mean zero residual term and not

correlated with xit and zit.

B Proof of theorem 2:

We rewrite the model (2) as

yit − β̂⊺zit = f(xit)−
(
β̂ − β

)⊺
zit + eit.

It follows β̂ − β = Op((NT )
−1/2) and zit = Op(1) that

yit − β̂⊺zit = f(xit) + eit +Op((NT )
−1/2).
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The conditional expectation estimator on both sides of above equation is

f̂(x) = E
(
yit − β̂⊺zit|x

)
= f(x) +Op((NT )

c) +Op((NT )
−1/2),

where −1/2 ≤ c < −1/4 is the convergence rate for a given machine learning estimator.

Therefore, f̂(x)
p−→ f(x) as N −→ ∞ and T −→ ∞.

33


	Introduction
	Econometric Model
	Numerical Studies
	Estimation of Total Factor Productivity
	Conclusion
	Proof for equation (2)
	Proof of theorem 2:

