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Abstract

This study proposes a semiparametric conditional mixture copula model, that al-

lows for unspecified functions of a covariate in both the (conditional) marginal

distributions and the copula dependence and weight parameters. To estimate

this model, we propose a two-step procedure. In the first step, the (conditional)

marginal distributions are nonparametrically estimated using the weighted Nadaraya-

Watson method. In the second step, we apply a penalized local log-likelihood func-

tion with a penalty term to simultaneously estimate the copula parameters and

choose an appropriate copula model. Furthermore, we propose a test of covari-

ate effects for time series data. We establish the large sample properties of both

the penalized and unpenalized estimators based on α-mixing conditions. Monte

Carlo simulations show that the proposed method performs well in selecting and

estimating conditional mixture copulas under various model specifications. Finally,

we apply the proposed method to investigate the dynamic patterns of dependence

among four states’ housing markets along the interest rate path.
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1 Introduction

Knowledge of multivariate distributions plays a crucial role in various economic and fi-

nancial applications, including portfolio selection, risk management, option pricing, and

asset pricing models. The seminal work by Sklar (1959) establishes that any joint dis-

tribution with continuous margins can be decomposed into marginal distributions and

a unique copula, which describes the dependence structure between variables. Copula-

based models provide greater flexibility and accuracy than classical Gaussian modeling,

allowing for the capture of complex dependence structures characterized by features such

as fat-tails, asymmetry, and positive or negative dependence. For a comprehensive survey

of copulas and their applications in economics and finance, see Patton (2012) and Fan

and Patton (2014).

Sklar’s theorem has been extended to conditional distributions by Patton (2006), in-

troducing the concept of conditional copulas. Since then, the study of conditional copulas

has gained significant attention, particularly for modeling time-varying dependence struc-

tures. Various approaches have been proposed in the literature. Patton (2006) considers

a parametric function of lagged terms as the copula parameter, while Giacomini et al.

(2009) assume a constant parameter within a time interval. Hafner and Manner (2012)

and Almeida and Czado (2012) propose dynamic stochastic copula models and stochas-

tic copula autoregressive models, respectively. In recent years, semiparametric methods

have been applied to address potential misspecification issues. Acar et al. (2011) and

Abegaz et al. (2012) assume that the copula parameter varies as an unknown function of

a covariate. Fermanian and Lopez (2018) and Yang et al. (2021) propose a single-index

copula with the parameter as an unknown link function of a univariate index.

Despite the abundance of conditional copula models in the literature, the majority

of the aforementioned works utilize a single copula instead of a mixture copula. Thus,

although the copula dependence parameters that reflect the level of dependence can vary

with a covariate, the copula function that represents the pattern of dependence is still

time-invariant. However, a covariate can affect not only the level but also the pattern of

dependence. For example, international equity markets may exhibit different dependence

patterns along volatility in exchange rate markets (Liu et al. (2022)).

In the literature, Liu et al. (2022) first propose an innovative semiparametric con-

ditional mixture copula model that allows both the copula weight and dependence pa-
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rameters in the mixture copula model to vary with a covariate in a nonparametric way.

However, they assume that the covariate does not impact the marginal distributions and

apply unconditional margins in a conditional mixture copula model. As Patton (2012)

and Fermanian and Wegkamp (2012) point out, for modeling the joint conditional dis-

tribution, the information set used for the marginals and the copula must be the same.

Therefore, the unconditional marginal distribution assumption in Liu et al. (2022) is

fairly restrictive in practice. Furthermore, Liu et al. (2022) do not provide a data-driven

method for choosing a suitable mixed copula model. To address these issues, in this pa-

per, we allow for conditional marginal distributions in the model and estimate them by

Cai (2002)’s weighted Nadaraya-Watson (WNW) conditional distribution method in the

first step. Then, after plugging in the WNW estimators of the conditional marginals, we

conduct parameter estimation and copula selection simultaneously for the semiparametric

conditional mixture copula model under the α-mixing conditions.

Our study makes four primary contributions. First, we introduce a two-step proce-

dure to estimate the components of the copula model and perform copula selection. In

the initial step, we estimate the conditional marginal distributions through the WNW

method in a nonparametric manner. In the second step, we employ a penalized local

log-likelihood function with a SCAD penalty term (Fan and Li, 2001) to simultaneously

estimate the parameters of the mixture copula and select an appropriate mixture copula

model. The weight functions’ functional norms are penalized to enable their shrinkage

to zero in cases where the corresponding copulas contribute minimally. To make the

methodology practical and applicable, we use a semiparametric version of the EM algo-

rithm to estimate the weight and dependence parameters in the penalized local copula

log-likelihood function. We also discuss essential practical issues, including the selection

of the bandwidth and tuning parameter, and the construction of confidence intervals.

Another significant contribution of this paper is establishing the asymptotic proper-

ties of the proposed estimators in nonstandard settings. Of particular interest is the fact

that the convergence rates of the conditional estimators for the marginal distributions are

of order
√
Th, assuming a common bandwidth h for all marginals. These rates are not

necessarily faster than the convergence rates of the copula parameters (including weight

and dependence parameters), which renders the asymptotic properties of copula param-

eters complex, especially in time series data. Additionally, some weight parameters of
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the conditional mixture copula may be situated on the boundary of the parameter space,

presenting another challenge. To address these nonstandard situations, we establish the

large sample properties of the unpenalized estimator and demonstrate the consistency

and oracle properties of the penalized estimator.

The third contribution is constructing a feasible test statistic for the covariate effects.

Because the assumptions underlying the proposed conditional mixture copula model ex-

clude scenarios where the copula parameters are constant and independent of the co-

variate, it is valuable to test the relevance of the covariate. To investigate whether the

copula parameters truly exhibit functional dependencies on the covariate, we propose a

feasible test statistic to assess the covariate effects within the framework of the conditional

mixture copula model for weakly dependent time series data. Notably, the asymptotic

variance of the test statistic mirrors that observed in situations involving independent

data under the null hypothesis. Furthermore, we establish the asymptotic chi-square

distribution of the test statistic under the null hypothesis.

Finally, we conduct simulations to assess the method’s finite-sample performance and

apply it to a real world example. Simulation results show that the proposed method

performs well in selecting an appropriate copula model and in estimating the unknown

copula parameters, when the true model is either an individual copula or a mixture copula.

In the empirical section, we use the proposed method to study the comovement of housing

markets in four states with the highest median home prices in 2020 (California, Colorado,

Massachusetts, and Washington). We consider the interest rate as the covariate. The

empirical results show that the levels of dependence always increase as the interest rate

decreases. For the patterns of dependence, the proposed method chooses a single Gumbel

copula for four pairs, and a mixture of Gumbel and Frank copulas for the other two pairs.

Furthermore, for the mixture copula pairs, the weights associated with the Gumbel copula

increase as the interest rate decreases. Therefore, all pairs of housing markets show

significant upper-tail dependence, and both the upper-tail dependence and the overall

dependence attain higher levels under a lower interest rate.

The remainder of this article is organized as follows. Section 2 introduces the semi-

parametric conditional mixture copula model and the two-step estimating procedure.

This section also includes a test for covariate effects on the mixture copula model. Asymp-

totic properties are given in Section 3. Section 4 discusses practical issues, including a
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semiparametric EM algorithm, the bandwidth and tuning parameter selection, and the

construction of confidence intervals. Section 5 reports the Monte Carlo simulation results.

Section 6 presents a real data example. We conclude the paper in Section 7. Proofs of

the asymptotic properties are presented in Appendix.

2 Theoretical Model and Methodology

2.1 Construction of Conditional Mixture Copula

Let {Xt, Zt}Tt=1 be a series of random vectors with a p-dimensional time series sequence

Xt = (X1t, · · · , Xpt)
⊤ and a 1-dimensional covariate Zt. Denote FX|Z(xt|zt) and FX,Z(xt, zt)

as the conditional joint distribution function of X evaluated at xt given zt and the joint

distribution of (Xt, Zt), respectively. Throughout the paper, for simplicity, we write

FX|zt(xt) ≡ FX|Z(xt|Z = zt). In this article, we aim to estimate the conditional joint

distribution FX|zt(xt). According to the extension of Sklar’s theorem in Patton (2006),

it is clear that

FX|zt(x1t, · · · , xpt) = C
(
FX1|zt(x1t), · · · , FXp|zt(xpt)

)
, (1)

where C(·) is the unknown conditional copula function, and FXj |zt(xjt) = FXj |Z(xjt|zt)

is the marginal cumulative distribution function of Xj evaluated at xjt and conditional

on Z = zt for j = 1, · · · , p. The extension of Sklar’s theorem indicates that there exists

a unique conditional copula function C(·) in (1) to link the conditional joint distribu-

tion function and the conditional marginal distribution functions. To avoid potential

misspecification issues when using a single conditional copula model, which may signifi-

cantly differ from the true conditional copula function, we propose the use of a conditional

mixture copula model. This approach approximates the unknown conditional copula by

a concave combination of infinite individual conditional copulas:

C (u(zt);ω(zt),θ(zt)) =
∞∑
k=1

ωk(zt)Ck (u(zt); θk(zt)) ,

where u(zt) = (FX1|zt(x1t), · · · , FXp|zt(xpt)), {ωk(zt)}∞k=1 is a sequence of unknown weight

parameters, and {Ck(·; ·)}∞k=1 is a set of candidate copula functions with unknown param-
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eters {θk(zt)}∞k=1. Here, {Ck(·; ·)}∞k=1 represents a set of known basis copula functions,

allowing us to express C (u(zt);ω(zt),θ(zt)) as a series expansion using these basis copula

functions. In practical applications, we employ a finite number of d individual conditional

copulas to approximate the true conditional copula:

C (u(zt);ω(zt),θ(zt)) =
d∑

k=1

ωk(zt)Ck (u(zt); θk(zt)) , (2)

where θ(zt) =
(
θ⊤1 (zt), · · · , θ⊤d (zt)

)⊤ ∈ Θ is a (p1+ · · ·+pd)−dimensional vector of copula

dependent parameters, ω(zt) = (ω1(zt), · · · , ωd(zt))
⊤ ∈ [0, 1]d is a vector of nonnegative

weight parameters that satisfies
d∑

k=1

ωk(zt) = 1. For simplicity of presentation, we set

p1 = · · · = pd = 1, that is, θ(zt) is a d×1 vector. It is worth mentioning that the basis cop-

ulas with multi-dimensional dependence parameters are allowed to be selected in (2), and

the parameter estimation method in this section is also applicable to multi-dimensional

dependence parameters. The copula dependence parameters {θk(zt)}dk=1 measure the de-

gree of dependence corresponding to the basis copulas {Ck(·; ·)}dk=1, and weight parame-

ters {ωk(zt)}dk=1 characterize shape of conditional copula. Both are unknown functions of

the covariate. The conditional marginal distributions u(zt) are also unknown functions

of zt to address potential misspecification concerns.

To ensure a comprehensive approximation of the true model without excluding rele-

vant basis copulas, we initially consider a rich set of basis copulas to capture a wide range

of dependence structures. As the mixture model can theoretically utilize an infinite num-

ber of basis copulas to approximate any conditional copula function, this approach allows

for greater flexibility. To achieve an efficient and optimal finite approximation, we employ

the penalized local log-likelihood method described in Section 2.2. This method shrinks

the weight parameters associated with “insignificant” basis copulas toward zero. The

selection process of basis copulas, coupled with the nonparametric specification of copula

parameters and conditional marginal distributions, endows the model in (2) with ample

flexibility to capture various possible dependence structures.

To circumvent the model identification issue, we follow Cai and Wang (2014) and

assume that the conditional mixture copula model is identified throughout this paper. For

the identification assumption, two conditional mixture copulas C (u(zt);ω(zt),θ(zt)) =
d∑

k=1

ωk(zt)Ck (u(zt); θk(zt)) and C
∗ (u(zt);ω

∗(zt),θ
∗(zt)) =

d∗∑
k=1

ω∗
k(zt)C

∗
k (u(zt); θ

∗
k(zt)) are
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considered to be identified if and only if d = d∗, and we can order the summations such

that Ck (u(zt); θk(zt)) = C∗
k (u(zt); θ

∗
k(zt)) and ωk(zt) = ω∗

k(zt) for all possible values of

u(zt) and zt for k = 1, · · · , d. Without loss of generality, the conditional mixture copula

model under investigation is assumed to be identified.

Model (2) extends previous research in several aspects. First, unlike Liu et al. (2022),

we allow for nonparametric variation in the conditional marginal distribution functions

with a covariate and employ a penalized local likelihood approach with shrinkage to

select the optimal conditional mixture copula from a candidate set. This extension is

valuable because it retains the conditional correlation when decomposing the conditional

multivariate distribution into marginal distributions (Patton, 2006). Second, Hu (2006),

Cai and Wang (2014), and Liu et al. (2019) consider invariant mixture copulas, assuming

known parametric forms for all marginal distributions of independent random variables.

However, these assumptions may be challenging to apply in practice, as the specific

form of the marginal distributions is often unknown and covariates can strongly influence

the dependence structures. Third, compared to the semiparametric conditional copula

models proposed by Acar et al. (2011), Abegaz et al. (2012), and Yang et al. (2021),

our conditional mixture copula accommodates different copula families and enhances

flexibility by integrating nonparametric conditional marginal distributions. Finally, we

provide a test statistic for weakly dependent data to examine the null hypothesis of no

effect from the covariate. The omnibus test by Gijbels et al. (2021) is applicable to

independent data only, making it crucial to develop a suitable test for dependent data.

Notably, while the conditional mixture copula model in this study accommodates

multidimensional covariates, the inclusion of a large number of covariates can lead to the

curse of dimensionality. To address this issue, we recommend employing a mixture single

index copula model, an extension of the single index copula proposed by Fermanian and

Lopez (2018) and Yang et al. (2021). The estimation and selection procedures for such a

model merit further investigation as a separate study in the future.

2.2 Estimating Steps

To estimate the unknown copula dependent and weight parameters in Model (2), we

propose a two-step semiparametric method to avoid inconsistent estimates due to mis-

specification of the functional forms of the unknown functions ω(zt),θ(zt) and u(zt). In
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the first step, we use the WNW conditional distribution function method proposed by Cai

(2002) to estimate the unknown conditional marginal distribution functions FXj |zt(xjt)

for j = 1, · · · , p. Notably, the nonparametric estimation procedure in the first step dif-

fers from that in Acar et al. (2011), Abegaz et al. (2012) and Liu et al. (2022). In the

second step, we incorporate the estimated conditional marginal distributions into the

mixture copula and use a penalized local log-likelihood function with a shrinkage opera-

tor to simultaneously estimate the unknown copula parameters and select an appropriate

mixture copula. To accomplish the aforementioned procedures, we develop a feasible

expectation-maximization (EM) algorithm for the penalized local pseudo log-likelihood

function, which is presented in Section 4.1.

Step 1. In the first step, our target is to estimate the unknown conditional marginal

distributions based on the available observations. We use the WNW estimator proposed

by Cai (2002) to estimate FXj |z(xj). That is,

F̂Xj |z(xj) =

T∑
t=1

ϑjt(z)Khj
(Zt − z)I(Xjt ≤ xj)

T∑
t=1

ϑjt(z)Khj
(Zt − z)

, (3)

where Khj
(·) = K(·/hj)/hj and K(·) is a kernel function and hj is the bandwidth. The

sequence of weights {ϑjt(z)}Tt=1 is smoothed over the covariate space with the constraint
n∑

t=1

ϑjt(z) = 1. Cai (2002) shows that this constraint can be expressed as

ϑjt(z) =
1

T
[
1 + λj(Zt − z)Khj

(Zt − z)
] (4)

by maximizing the sum of ln (ϑjt(z)) directly, and

λj = argmax
λj

1

Thj

T∑
t=1

ln
(
1 + λj(Zt − z)Khj

(Zt − z)
)
. (5)

We use the nonparametric Akaike information criterion, proposed by Cai and Tiwari

(2000), to select the optimal bandwidths hj for j = 1, · · · , p as suggested by Cai (2002).

The WNW estimator F̂Xj |z(xj) not only possesses desirable properties in terms of feasi-

bility and eligibility, but also is first-order equivalent to a local linear estimator, which

has ideal sampling properties both at the interior and boundary points of the support of

7



design density (Cai, 2002). Therefore, F̂Xj |z(xj) is sufficient for the purpose of conditional

marginal distribution estimation.

Step 2. The second step aims to estimate the copula dependent and weight parameters

via the penalized local log-likelihood function. Suppose both the (q + 1)th derivatives

of functions θk and ωk exist at point z for k = 1, · · · , d. Applying the Taylor expan-

sion to ω(zt) = (ω1(zt), · · · , ωd(zt))
⊤ and θ(zt) = (θ1(zt), · · · , θd(zt))⊤ at z which is the

neighborhood of data point zt, we obtain

ωk(zt) ≈ ωk(z) + ω
(1)
k (z)(zt − z) + · · ·+ ω

(q)
k (z)

q!
(zt − z)q ≡ ν1,k, (6)

and

θk(zt) ≈ θk(z) + θ
(1)
k (z)(zt − z) + · · ·+ θ

(q)
k (z)

q!
(zt − z)q ≡ ν2,k. (7)

By using the estimates F̂X|z(xt) of conditional marginal distributions in the first step,

and then when zt is close to z and q = 1, the local kernel-weighted pseudo penalized

log-likelihood function takes the following form with a Lagrangian multiplier

Q(η(z)) =
T∑
t=1

{
ln

[
d∑

k=1

(
ωk(z) + ω

(1)
k (z)(zt − z)

)
ck

(
F̂X|z(xt); θk(z) + θ

(1)
k (z)(zt − z)

)]

×Kh(zt − z)
}
−

{
T

d∑
k=1

PγT (ωk(z))− ρ

(
1−

d∑
k=1

ωk(z)

)}

≡
T∑
t=1

[ℓ(η(z); û(z))Kh(zt − z)]− L̃(ω(z))

≡
T∑
t=1

Lt(η(z))− L̃(ω(z)), (8)

where ck(·) is the density of Ck(·), and η(z) =
(
ω⊤(z);θ⊤(z);ω(1)⊤(z);θ(1)⊤(z)

)⊤
=(

ω1(z), · · · , ωd(z); θ1(z), · · · , θd(z);ω(1)
1 (z), · · · , ω(1)

d (z); θ
(1)
1 (z), · · · , θ(1)d (z)

)⊤
. The penalty

function PγT (·) with tuning parameter γT accommodates various penalization methods,

including the classical L1 penalty (Tibshirani, 1996), and the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li, 2001). The SCAD penalty function is chosen be-

cause of its desirable properties (unbiasedness, sparsity and continuity). The first-order
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derivative P
′
γT
(t) of the SCAD penalty function is given by

P
′

γT
(t) = γT I(t ≤ γT ) +

max(aγT − t, 0)

a− 1
I(t > γT )

with indicator function I(·) for a > 2, t > 0 and PγT (0) = 0. For simplicity, we assume

that the penalty function used is the same across all weight parameters, and we let a = 3.7

for the SCAD penalty following Fan and Li (2001). The selection procedure of tuning

parameter γT is discussed in Section 4.2. Because the penalized local maximum likelihood

estimator η̂(z) may not have a closed form, an iterative EM algorithm is introduced in

Section 4.1 to find the numerical solution. Note that there are p+1 different bandwidths

h1, · · · , hp and h, where {hj}pj=1 can be selected by the nonparametric Akaike information

criterion in Step 1, the bandwidth h is a component of the kernel weight of the local log-

likelihood in (8), and the selection procedure of h is given in Section 4.2.

Notably, there are interior and boundary points for the penalized estimator ω̂(z). To

investigate its asymptotic behavior at the boundary, we partition ω(z) = (ω1(z), · · · , ωd(z))
⊤

into ω†(z) and ω∗(z), where ω†(z) is in the interior of weight parameter space, and ω∗(z)

is on the boundary of the weight parameter space. That is, the d†×1 vector ω†(z) consists

entirely of non-zero elements of ω(z), while the (d−d†)×1 vector ω∗(z) is exclusively com-

posed of zero elements from ω(z). We also denote
(
ω(1)†(z),θ†(z),θ(1)†(z)

)
correspond-

ing to ω†(z), and
(
ω(1)∗(z),θ∗(z),θ(1)∗(z)

)
corresponding to ω∗(z). Furthermore, we

denote η(z) =
(
η†⊤(z),η∗⊤(z)

)⊤
, where η†(z) =

(
ω†⊤(z),θ†⊤(z),ω(1)†⊤(z),θ(1)†⊤(z)

)⊤
and η∗(z) =

(
ω∗⊤(z),θ∗⊤(z),ω(1)∗⊤(z),θ(1)∗⊤(z)

)⊤
. It is clear that the estimates of the

copula dependent parameters θ∗(z) can be arbitrary, because their corresponding weight

parameters are zero.

2.3 Test of Covariate Effects

The conditional mixture copula model in (2) allows for variation in the copula dependent

and weight parameters with a covariate, which enhances the flexibility of the model.

However, in some cases, empirical practitioners may assume that the conditional copula

does not depend on covariates, known as the “simplifying assumption” (Derumigny and

Fermanian, 2017). This assumption is commonly used in vine models. Our conditional

mixture copula model excludes the scenario where the copula parameters are constant
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and independent of the covariate. When the covariate is irrelevant, the inclusion of

nonparametric functions of the covariate becomes unnecessary. Therefore, it is crucial to

test whether the copula parameters are constant and do not vary with the covariate.

In this section, we propose a feasible hypothesis testing procedure, which belongs

to the generalized likelihood ratio test (GLRT), to test the impact of the covariate on

copula parameters for the weakly dependent data. Specifically, we follow Acar et al.

(2013) and test the linear function on covariate Z, which encompasses not only constant

scenarios but also frequently employed parametric structures. More precisely, we assume

ΘL = {η†(·) : ∃η†
0,η

†
1 ∈ R4d† such that η†(Z) = η†

0 + η†
1Z for any Z} which constitutes

the collective of all linear functions within its domain. We are interested in testing

H0 : η†(·) ∈ ΘL against H1 : η†(·) /∈ ΘL. Note that when η†
1 under H0 is set to 0, the

null hypothesis becomes a constant vector that is independent of the covariate.

Based on the estimator F̂Xj
(xjt) of conditional marginal distribution for j ∈ {1, · · · , p},

and the maximum likelihood estimator η̃†(Z) under H0, we construct the GLRT statistic

MT =
T∑
t=1

Lt

(
η̂†(Zt)

)
−

T∑
t=1

Lt

(
η̃†(Zt)

)
, (9)

which is the difference between the kernel-weighted log-likelihood of the full model and

the kernel-weighted log-likelihood of the linear restricted model. We reject H0 when the

value of MT is sufficiently large. The asymptotic distribution of the test statistic MT is

established in Theorem 3 in Section 3.

3 Asymptotic Theory

3.1 Notations

We first introduce some useful notations. For a generic n × 1 vector a = (a1, · · · , an)⊤,

∥a∥2 denotes the Euclidean norm (L2 norm) and is equal to
√
a21 + a22 + · · ·+ a2n. Let

In be the n × n identity matrix and 1n be an n × 1 vector where all the elements are

equal to 1. Furthermore, we define U(zt) = (FX1|zt(X1t), · · · , FXp|zt(Xpt)), the derivative

function F
(i)
X|z(x) = (∂/∂z)iFX|z(x), and µ2 =

∫
v2K(v)dv. We use V to denote the

random variable V = (Z − z)/h. For the sake of simplicity in presenting the derivation
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process, we rewrite the function ℓ(η(z);u(z)) as

ℓ(η(z);u(z)) = ln
d∑

k=1

ν1,kck
(
FX|z(xt); ν2,k

)
≡ ℓ(ν1,ν2;u(z)),

where ν1,k and ν2,k are defined in (6) and (7), and ν1 = (ν1,1, · · · , ν1,d)⊤ and ν2 =

(ν2,1, · · · , ν2,d)⊤. Define ν =
(
ν⊤
1 ,ν

⊤
2

)⊤
, then the derivative functions can be represented

by

ℓi(η;u) = ℓi(ν1,ν2;u) =
∂i

∂(ν̃)i
ℓ(ν1,ν2;u), ℓi,j(ν1,ν2;u) =

∂

∂uj
ℓi(ν1,ν2;u), (10)

where ν̃ = 12 ⊗ ν and uj is the jth element of vector u. Further, we define a matrix

function H(x, y) = diag(x, y) ⊗ I2d† , where ⊗ is the Kronecker product. Let Ωz =

E
{
H (K(V ), V 2K(V )) (−2ℓ2(η

†(Zt);U(Zt)))
∣∣∣Zt = z

}
.

3.2 Regularity Conditions

To study the asymptotic properties of the estimators, we set the following regularity

conditions:

A1. For the identified conditional copula model C(u(z);ω(z),θ(z)), the true weight

parameter satisfies ωk(z) ∈ [0, 1] and
d∑

k=1

ωk(z) = 1 for all k ∈ {1, · · · , d} and

z ∈ Φz, and there is an open subset Θ̃k of Θk that contains the true parameter

θk(z) such that for all θk(z) ∈ Θ̃k and u(z), the density ck(u(z); θk(z)) admits all

third derivatives with respect to the parameter θk(z).

A2. The distribution FZ of covariate Z is twice differentiable and continuous on Φz. The

conditional marginal distribution FXj |z(xj) has continuous second order derivatives

with respect to z for j = 1, · · · , p.

A3. The continuous quantities ℓi(η;u) defined in (10) are Liptschitz for all η and i ∈

{0, 1, 2} such that E(ℓ2(η(Z);U(Z))) < 0 and Ωz is invertible for true η(Z) and

U(Z). Moreover, each Liptschitz continuous quantity is bounded by a function,

and the bound function has a finite second moment.

A4. The symmetric bounded kernel function K(·) is twice continuously differentiable on

the compact support [−1, 1].
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A5. As T → ∞, h → 0, hj → 0, Th2+1/κ → ∞, Th
1+2/κ
j → ∞ for some κ > 0 and

j ∈ {1, · · · , p}.

A6. The strictly stationary process {Xt, Zt} is α-mixing with the mixing coefficient

satisfies
∞∑
t=1

α(t)
ς

4+ς <∞ for some positive constant ς such that

∫ (
v2K(v)

) 4+ς
2 hdFX,Z(x, hv + z) <∞. (11)

Conditions A1 - A3 are standard for conditional copula models. They are necessary

to ensure the existence of asymptotic properties and to obtain suitable solutions for the

dependent parameters and weight parameters. Condition A3 requires that the partial

derivatives of L(η(z)), which is the sum of Lt(η(z)), as shown in Equation (8), are dom-

inated by a function with a finite second moment. However, Fisher’s information matrix

is not equal to E(−ℓ2(η(z);U(z))). The reason is that the Fisher’s information matrix is

calculated based on the penalized log-likelihood function Q(η(z)), rather than L(η(z)).

Condition A4 is common in the nonparametric literature. Condition A5 allows the con-

ditional copula model to work with different bandwidths of the conditional marginal

distribution functions, and guarantees the automatic good behavior of the WNW esti-

mator at boundaries, as well as consistency. A similar condition can also be found in Cai

(2002).

Condition A6 establishes the α-mixing condition for weakly dependent data, which is

commonly found in financial econometric models of time series processes, such as ARMA

and ARCH models (Pham and Tran, 1985). The finite summation of mixing coefficients

in Condition A6 is critical to the asymptotic normality (Pham and Tran, 1985; Fan and

Yao, 2003), and it is not contradictory to α(t) = O(t−(2+κ)) which is Assumption B3 in

Cai (2002). In addition, the finite integration (11) in the last condition implies that the

fourth moment of variable Zt is finite, since

E
(
|Zt|4+ς

)
=

∫
|hv + z|4+ςdFX,Z(x, hv + z)

for the bandwidth h = o(1) specified in Condition A5, and

∫
|hv2|

4+ς
2 hdFX,Z(x, hv + z) ≤

∫
(v2K(v))

4+ς
2 hdFX,Z(x, hv + z) <∞
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follows from Condition A4. Therefore, the finite fourth moment of Zt, Assumption A8 in

Yang et al. (2021), and Assumption C7 in Liu et al. (2022), can be derived for a finite z.

3.3 Asymptotic Properties

We first establish the consistency property of the penalized local log-likelihood estimator

η̂(z) to η(z) in Theorem 1.

Theorem 1. Under Conditions A1 - A6, if max
1≤k≤d

{|∂2PγT (ωk(z)) /∂ω
2
k(z)|} → 0 holds,

then η̂(z) is consistent for estimating η(z).

Remark 1. We can partition η(z) as an identified subset
(
η†⊤(z),ω∗⊤(z)

)⊤
and an

unidentified subset
(
θ∗⊤(z),ω(1)∗⊤(z),θ(1)∗⊤(z)

)⊤
. There exists a unique vector of true

parameters, and the estimator is consistent in the identified subset. For the unidentified

subset, the true values of parameters can be arbitrary because the corresponding weights

are equal to zero.

We next present Theorem 2, which establishes the oracle properties of the penalized

local likelihood estimator.

Theorem 2. Under Conditions A1 - A6, if lim inf
T→∞

lim inf
πk→ω∗

k(z)+

P
′
γT

(πk)

γT
is positive and

√
ThγT → ∞, we have

(a) Sparsity: ω̂∗(z) = 0.

(b) Asymptotic normality:

DT

(
η̂†(z)− η†(z)−Ω−1

z Ξ∗
z

) d−→ N
(
0,Ω−1

z Γ∗
zΩ

−1
z

)
,

where matrix Γ∗
z = E

{
H (K2(V ), V 2K2(V )) ℓ1(η

†(Zt);U(Zt))ℓ
⊤
1 (η

†(Zt);U(Zt))
∣∣∣Zt = z

}
with the random variable V and the 4d† × 4d† matrix DT = H

(√
Th,

√
Th3

)
, Ξ∗

z =

E

{
H(K(V ), V K(V ))

(
h2ℓ1(η

†(Zt);U(Zt)) +
µ2

2

p∑
j=1

h2jF
(2)
Xj |Zt

(Xj)ℓ1,j(η
†(Zt);U(Zt))

)∣∣∣Zt = z

}
,

and Ωz = E
{
H (K(V ), V 2K(V )) (−2ℓ2(η

†(Zt);U (Zt)))
∣∣∣Zt = z

}
.

In Theorem 2, the sparsity result is a desired property for high-dimensional models.

Thus, the proposed penalized local likelihood estimator can reduce the complexity of

the mixture model by correctly estimating some weight parameters as zeros with prob-

ability one when T → ∞. For the asymptotic normality result, the asymptotic bias
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term Ω−1
z Ξ∗

z can be decomposed into Ω−1
z , which originates essentially from the esti-

mation of parameter function η̂†(z), and Ξ∗
z, which is derived from the estimation of

both η̂†(z) and the conditional marginal distributions. The sample versions of Ωz,Ξ
∗
z

and Γ∗
z can be used to estimate the covariance, for example, Ωz can be estimated by

Ω̂z = T−1
T∑
t=1

{
H (K(Vt), V

2
t K(Vt)) (−2ℓ2(η

†(z);U(z)))
}
. We also provide a feasible ap-

proach to construct the confidence intervals via bootstrap technique in Section 4.3.

Next, to establish the asymptotic variance of the test statistic, we define

M(Zt, Zs) = ℓ⊤1
(
η†(Zt),U (Zt)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
×

H
(
h, (Zt − Zs)

2
)
ℓ1
(
η†(Zs),U(Zs)

)
K2

(
Zt − Zs

h

)(
1 +

1√
Th5

)
,

where t ̸= s, and

µT = 1⊤
4d†E

[
ℓ1
(
η†(Z),U(Z)

)
ℓ⊤1
(
η†(Z),U (Z)

)]
H (h, 0)×

E−1
[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
14d†K

2 (0)

(
1 +

1√
Th5

)
.

Let
{
Z̃t

}T

t=1
be a sequence of independent and identically distributed variables that share

the same marginal distribution as that of {Zt}Tt=1.

Theorem 3. Under Conditions A1 - A6, we have, for the GLRT statistic in (9),

rTMT
d−→ χ2 (rTµT )

under H0, where rT = T 2µT/E
(
M2(Z̃1, Z̃2)

)
as T → ∞.

Theorem 3 shows the asymptotic chi-square distribution of the GLRT statistic. Based

on the maximum likelihood estimators derived from the restricted and unrestricted mod-

els, H0 can be rejected if the test statistic exceeds a critical value by the theorem above.

To obtain a feasible test statistic, our primary task is to derive a consistent estimator

for the quantity rTµT . Given that Z̃t shares the same distribution as Zt, we follow Gijbels
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et al. (2021) and consider the following consistent estimators

M̂(Z̃t, Z̃s) = ℓ⊤1

(
η̂†(Zt), Û (Zt)

)[ T∑
t=1

H(K(Vt), (Vt)
2K(Vt))(−2ℓ2(η̂

†(Zt), Û(Zt)))

]−1

×

H
(
h, (Zt − Zs)

2
)
ℓ1

(
η̂†(Zs), Û(Zs)

)
K2 (Vt − Vs)

(
T +

√
T

h5

)
,

where Vt =
Zt−z
h

, and

µ̂T = 1⊤
4d†

[
T∑
t=1

ℓ1

(
η̂†(Zt), Û(Zt)

)
ℓ⊤1

(
η̂†(Zt), Û(Zt)

)]
H (h, 0)×[

T∑
t=1

H(K(Vt), (Vt)
2K(Vt))(−2ℓ2(η̂

†(Zt), Û(Zt)))

]−1

14d†K
2 (0)

(
1 +

1√
Th5

)
,

r̂T = T 2µ̂T

[
1

T (T − 1)

T∑
t=1

T∑
s=1,s ̸=t

M̂2
(
Z̃t, Z̃s

)]−1

.

4 Practical Issues

4.1 EM Algorithm

Of significant interest is the application of the conditional mixture copula model to prac-

tical cases and obtaining precise estimates. However, the penalized local maximum like-

lihood estimator for the local kernel-weighted pseudo penalized log-likelihood function

(8) cannot be explicitly expressed in mathematical terms. Hence, we adopt a numerical

optimization method, the EM algorithm proposed by Dempster et al. (1977), to solve this

computational issue and obtain the numerical maximum likelihood estimates. The EM

algorithm decomposes the process of finding the maximum likelihood estimator into two

steps: first, for each k ∈ {1, · · · , d}, the expectation step computes and updates ω̂k(z)

for each candidate copula, and second, the maximization step maximizes the local kernel-

weighted pseudo penalized log-likelihood function to estimate the remaining parameters

ω
(1)
k (z), and θ̃k(z) =

(
θk(z), θ

(1)
k (z)

)⊤
.
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We take the first derivative of Q(η(z)) with respect to ωk(z) and let it equal zero:

T∑
t=1


(
ωk(z) + ω

(1)
k (z)(zt − z)

)
ck

(
F̂X|z(xt); θk(z) + θ

(1)
k (z)(zt − z)

)
Kh(zt − z)

d∑
k=1

[(
ωk(z) + ω

(1)
k (z)(zt − z)

)
ck

(
F̂X|z(xt); θk(z) + θ

(1)
k (z)(zt − z)

)]


= TP
′

γT
(ωk(z))− ρ. (12)

For the sake of brevity, we use Bk to denote the left hand side of Equation (12). By

multiplying by ωk(z) on both sides of (12), we have

ωk(z)Bk = TP
′

γT
(ωk(z))ωk(z)− ρωk(z). (13)

Then, taking summation on both sides for all k, we obtain

ρ =
d∑

k=1

ωk(z)
[
TP

′

γT
(ωk(z))−Bk

]
. (14)

At the expectation step, letting η̂[0](z) be the initial values, we can compute the

corresponding ρ[0] by Equation (14) at a given point z. Then, we can update ω̂
[0]
k (z) to

ω̂
[1]
k (z) =

ω̂
[0]
k (z)

ρ[0]

(
TP

′

γT

(
ω̂
[0]
k (z)

)
−B

[0]
k

)
by plugging ρ[0] back into Equation (13) for k = 1, · · · , d.

At the maximization step, we aim to estimate the remaining parameters in the condi-

tional mixture copula model (2). With ω̂
[1]
k (z) updated from the expectation step above

for k = 1, · · · , d, we can update
(
ω̂
(1)
k (z)

)[0]
to

(
ω̂
(1)
k (z)

)[1]
=
(
ω̂
(1)
k (z)

)[0]
−
Q

′

ω
(1)
k (z)

(
ω̂
[1]
k (z),

(
ω̂
(1)
k (z)

)[0]
,
ˆ̃
θ
[0]

k (z)

)
Q

′′

ω
(1)
k (z)

(
ω̂
[1]
k (z),

(
ω̂
(1)
k (z)

)[0]
,
ˆ̃
θ
[0]

k (z)

) (15)

by the Newton-Raphson algorithm, where Q
′

ω
(1)
k (z)

(·) and Q
′′

ω
(1)
k (z)

(·) are the first and

second derivative functions of Q(·) with respect to ω
(1)
k (z) respectively, and

ˆ̃
θ
[0]

k (z) =(
θ̂
[0]
k (z),

(
θ̂
(1)
k (z)

)[0])⊤

. Due to the presence of several basis copulas, the second deriva-
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tive of Q(η(z)) with respect to θ̃k(z) may not have an explicit expression. Hence, we

adopt the gradient ascent method to find the numerical solution

ˆ̃
θ
[1]

k (z) =
ˆ̃
θ
[0]

k (z) + sk · ▽Qθ̃k(z)

(
ω̂
[1]
k (z),

(
ω̂
(1)
k (z)

)[1]
,
ˆ̃
θ
[0]

k (z)

)
, (16)

where sk is the learning rate (step size), and ▽Qθ̃k(z)
is a gradient vector of Q(η(z)) with

respect to θ̃k(z). Note that we can use backtracking line search to adaptively choose sk.

4.2 Selection of Bandwidth and Tuning Parameter

The selection of the bandwidth h and the tuning parameter γT is crucial in the estimation

of copula parameters as the bandwidth h plays a key role in balancing the trade-off be-

tween the bias and the variance of nonparametric estimators, while the tuning parameter

γT regulates the weight of the penalty term. However, traditional methods such as mul-

tifold cross-validation, information criterion, and plug-in methods may not perform well

for weakly dependent data. To address this issue, we recommend using the forward leave-

one-out cross-validation method, proposed by Yang et al. (2022), to select the optimal

bandwidth h∗ and suitable tuning parameter γ∗T simultaneously.

Specifically, we define η̂(zt;h, γT ) as the estimates for the penalized conditional mix-

ture copula model with known bandwidth h and tuning parameter γT . We use the data

{x1t, · · · , xpt, zt : t < t∗} to construct the estimates η̂(zt∗ ;h, γT ) and û(zt∗) at the cor-

responding sample point {x1t∗ , · · · , xpt∗ , zt∗} for each t0 + 1 ≤ t∗ ≤ T , where t0 is the

minimum window size used to estimate η̂(zt0+1;h, γT ). By employing the forward recur-

sive approach, the sequential estimators {η̂(zt∗ ;h, γT )}Tt∗=t0+1 can be constructed. There-

fore, the forward leave-one-out cross-validation estimators of the optimal bandwidth and

tuning parameter can be obtained by maximizing the objective function

(h∗, γ∗T ) = arg max
(h,γT )

T∑
t∗=t0+1

(
ℓ (η̂(zt∗ ;h, γT ); û(zt∗))

∣∣∣h, γT) . (17)

In practice, we can choose the initial bandwidth h = cT−1/5 for some constant c by the

rule of thumb when maximizing the objective functions above, and Condition A5 is still

satisfied as long as κ > 1
3
.
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4.3 Construction of Confidence Intervals

As economic or financial series data are time series, the traditional independent and

identically distributed bootstrap technique may not yield accurate results in practice. To

address this issue, we adopt the block bootstrap method in this article to construct the

pointwise confidence intervals of the copula weight and dependent parameters for serially

dependent data. This method preserves the original time series dependence within each

block by partitioning the series data into several blocks (Politis and Romano, 1994).

The block bootstrap method has also been employed in previous studies, such as Patton

(2013) and Yang et al. (2022).

We first describe a stationary bootstrap resampling method to generate sample series

from observations. Specifically, we define the block Bt,b = {yt,yt+1, · · · ,yt+b−1}, where

{yt}Tt=1 ≡ {x1t, · · · , xpt, zt}Tt=1 is a strictly stationary and weakly dependent time series.

In the case j > T , yj is defined as yt, where t = j(mod T ) and y0 = yT . To construct

the blocks, let {ϖk}∞k=1 be a sequence of i.i.d. random variables from the geometric distri-

bution with probability p = T−1/3. Independent of both {yt}Tt=1 and ϖk, let {ϖ
′

k}∞k=1 be a

sequence of i.i.d. random variables from the discrete uniform distribution on {1, · · · , T}.

A pseudo time series {y∗
t }Tt=1 can be generated through the following process. Sample

a sequence of blocks of random length by the prescription
{
Bϖ

′
k,ϖk

}∞

k=1
. The first ϖ1

observations in the pseudo time series {y∗
t }Tt=1 are determined by the first block Bϖ

′
1,ϖ1

of

observations yϖ
′
1
, · · · ,yϖ

′
1+ϖ1−1, the next ϖ2 observations in the pseudo time series are

the observations in the second sampled block Bϖ
′
2,ϖ2

, namely yϖ
′
2
, · · · ,yϖ

′
2+ϖ2−1. This

process is repeated until T observations have been generated for the pseudo time series.

Our target in this section is to construct confidence intervals. Therefore, we provide

some details of the practical implementation based on the block bootstrap method below.

Step 1. Generate a pseudo sample series {y∗
t }Tt=1 from the original observations {yt}Tt=1

by using the stationary bootstrap technique described above.

Step 2. Calculate the corresponding η̂∗(z) at grid point z with the WNW estimates

F̂ ∗
Xj |z(xjt) for j ∈ {1, · · · , p}.

Step 3. Get R values of η̂∗(z) at each z if we repeat the first two steps R times with

a large integer R (says, R = 1000). Denote the α
2
-th and

(
1− α

2

)
-th percentiles of

the sequence {η̂∗(z)} by qα
2
and q1−α

2
. Then, the interval

(
qα

2
, q1−α

2

)
is the empirical

100(1− α)% confidence interval for η̂(z).
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5 Numerical Studies

In this section, we investigate the finite-sample performance of our estimation and model

selection procedures through Monte Carlo simulations. For convenience, we define a mix-

ture copula consisting of the Clayton, Gumbel, and Frank copulas. They are widely used

in empirical studies because they can describe different dependence structures. Specif-

ically, the Clayton copula exhibits strong lower tail dependence, and can capture cases

such as two markets that are likely to crash simultaneously. The Gumbel copula shows

strong upper tail dependence and can be an appropriate model when two markets are

likely to boom together. The Frank copula exhibits symmetric tail dependence.

The working mixture copula model is then formulated as

Czt(u1, u2) = ωCl(zt)CCl (u1(zt), u2(zt); θCl(zt))+

ωGu(zt)CGu(u1(zt), u2(zt); θGu(zt))+

ωFr(zt)CFr(u1(zt), u2(zt); θFr(zt)),

(18)

where CCl(·), CGu(·), and CFr(·) denote the Clayton, Gumbel, and Frank copulas, respec-

tively. Similar to Abegaz et al. (2012), we generate the covariate z from the truncated

normal distribution within [−2, 2] with mean 0 and variance 9, and then consider three

different types of the copula dependent parameter function θ(z):

Type 1: θ(z) = 10− 1.5z2;

Type 2: θ(z) = 10− 0.02z2 + 0.4z3;

Type 3: θ(z) = 3 + z + 2 exp(−2z2).

For the two conditional marginal distributions, given a specific level of z, we assume u1

and u2 respectively denote the cumulative distribution functions of X1t ∼ N(exp(z/2), 1)

and X2t ∼ N(exp(z/2), 2). For each generated sample, we calculate the estimates θ̂ at

101 equally-spaced grid points zi = −1.95 + 0.039i for i ∈ {0, 1, ..., 100}. We use local

linear fitting with the Epanechnikov kernel. Each simulation is repeatedM = 1000 times

with sample size T ∈ {200, 400, 800}.

We start with a scenario in which data are generated from a single copula. That

is, the true model is an individual copula selected from the three candidates. For each

individual copula used to generate data, we assume that the function of the copula
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dependent parameter θ follows one of the three types listed above. Then, we fit Equation

(18) to the generated data and investigate the performance of the proposed method.

To assess the performance of our method, we report the percentage that each copula

is correctly (incorrectly) selected and the mean squared errors (MSEs) of the copula

dependent parameter estimates over the 101 grid points, which is defined as

MSE(θ̂) =
1

M

1

101

M∑
j=1

101∑
i=1

(
θ̂j(zi)− θ(zi)

)2
.

Table 1 documents the MSEs of copula dependent parameter estimates by the pro-

posed method for the three functional forms of θ(z) as the sample size T increases from

200 to 800, and the accurate (inaccurate) rate of copula selection. We draw three ob-

servations from Table 1. First, the MSEs of the copula dependent parameter estimates

remarkably decrease as the sample size increases. Second, the accuracy rate of copula

selection is high in all three panels and robust to the different combinations of sample

size and functional form of θ(z). Third, as the sample size increases, the inaccurate rate

of copula selection decreases, and becomes negligible when T = 800. In Figure 1, we pro-

vide visual evidence of the performance of the proposed method by sketching the paths

of the estimated copula dependent parameters along the covariate z when T = 400. For

ease of comparison, we transform the copula dependent parameters into Kendall’s τ . In

each panel, the black solid line denotes the actual path of Kendall’s τ , which respectively

follows Types 1 - 3 of θ(z), and the other two dashed curves denote the mean (red) and

median (blue) of the copula dependent parameter estimates at the 101 grid points from

the 1000 simulations. The two green dotted curves connect the 5% and 95% percentiles

of the copula dependent parameter estimates at the 101 grid points. As seen therein,

both the mean and median curves closely track the actual path in all three types of

θ(z), indicating a reasonably good performance of the proposed method in estimating

the parameter of the selected copula model.

Next, we examine the performance of the proposed method when the true model is a

mixture of two copulas. Specifically, for the three-component mixture copula model (18),

we assume two candidate copulas’ weights respectively equal to (1 + z)2/29 + 0.3 and

1 − ((1 + z)2/29 + 0.3), while the remaining copula’s weight uniformly equals zero. For

the two component copulas with nonzero weights, we further assume that their copula
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dependent parameter functions θ(z) follow different patterns determined by the three

models discussed above. Table 2 presents the MSEs of the copula dependent parameter

estimates and the accurate (inaccurate) rates of copula selection by the proposed method.

For instance, Panel (a) corresponds to the case where the true model is a combination of

the Clayton and Gumbel copulas. The results indicate that the MSEs of the two copu-

las’ dependent parameter estimates significantly decrease as the sample size T increases

from 200 to 800. Moreover, the likelihood of selecting Gumbel gradually increases as

T increases, while the likelihood of inaccurately selecting Frank substantially decreases.

Similar patterns can be observed in Panels (b) and (c) when the true models are com-

binations of Clayton and Frank, and Gumbel and Frank, respectively. As in the single

copula scenario, we also sketch the paths of the estimated dependent parameters of the

selected copulas. To conserve space, here, we display only the three combinations of

dependent parameter functions when the true model is a combination of the Clayton and

Gumbel copulas. For example, in Figure 2(a), the left panel shows the true path (Type

1), the mean, and the median of the estimated paths by the proposed method for Clay-

ton, while the right panel exhibits the corresponding results for Gumbel. Figure 2 shows

that the copula dependent parameters of the Clayton-Gumbel mixture can be reasonably

well estimated by the proposed method, as the mean and median paths closely track

the actual paths of the dependent parameter functions. Furthermore, results in Table 3

indicate that the MSEs of the corresponding weight estimates decrease in all cases when

T increases. In Figure 3, we additionally draw the actual, mean, and median paths of

weight parameters of the Clayton-Gumbel mixture over the covariate Z. Both the mean

and median paths of the weight estimates track the true paths closely, implying good

performance of the proposed method in estimating the weights of the Clayton-Gumbel

combination.

6 An Empirical Illustration

In this section, we implement the proposed method to explore the comovement of the

housing markets in four states in the United States: California (CA), Colorado (CO),

Massachusetts (MA), and Washington (WA). These states were chosen because they had
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the highest median home prices in 2020, according to information released by Zillow.1 We

obtain the four states’ quarterly housing price indices (HPIs) from 1975:Q1 to 2022:Q4

from the Federal Housing Finance Agency. Figure 4 presents the HPI trajectories for

these states. The HPIs in all four states exhibit similar patterns over the sample period.

Housing prices showed a significant increase after 2000 but declined considerably following

the subprime mortgage crisis in 2007. Thanks to the Federal Reserve’s quantitative easing

policy, housing prices resumed their upward trend after 2011 and saw a sharp increase at

the onset of the COVID pandemic in 2020.

Several economic factors have the potential to impact the housing market. For sim-

plicity, we examine only the influence of the interest rate in this study. The interest

rate can directly affect mortgage rates and purchasing costs. Additionally, the interest

rate is closely linked with the business cycle and serves as an effective monetary tool for

the Federal Reserve to adjust the macroeconomy. In this study, we use the quarterly

Federal Funds Effective Rate, retrieved from FRED (https://fred.stlouisfed.org/),

to proxy the interest rate, and sketch its trajectory in Figure 5.

We compute the quarterly growth rates of the four states’ HPIs and then present some

summary statistics. As shown in Table 4, the upper panel reveals that the housing prices

in all four states experienced positive average growth rates over the past few decades,

although CA and WA exhibited larger fluctuations than the other two states. Moreover,

the growth rates in CA and WA are left-skewed, while those in CO and MA are right-

skewed. The Jarque-Bera test results indicate that the null hypothesis of normality of the

growth rates is rejected for all states except MA, whose kurtosis is close to 3. Panel (b)

illustrates the linear (Pearson) correlation coefficients across the four housing markets.

The results reveal that, among the six pairs, the correlation between CA and WA is the

highest, which is not surprising given the cluster of high-tech companies in both states.

Furthermore, to estimate the conditional marginal distribution of the four series,

we use the WNW estimator formulated in (3), and then fit the estimated conditional

marginals to the conditional mixture copula model outlined in (18). Due to space con-

straints, here we present only the copula parameter estimates of the conditional mixture

copula model.2 Among the six pairs of local housing markets, the proposed method

1https://www.businessinsider.com/average-home-prices-in-every-state-washington-dc-2019-6
2We conduct the hypothesis test proposed in Section 2.3 and find that the null hypothesis of constant

copula parameters could be rejected at the 5% level in all six pairs. The test results, as well as the
estimates of the marginal distributions, are not tabulated but are available upon request.
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chooses a single Gumbel copula for CA-CO, CA-WA, CO-WA, and MA-WA. The esti-

mated paths of Kendall’s τ for the single Gumbel copula are shown in Figure 6, with

the shaded area representing the 95% confidence interval. As seen therein, the degree of

dependence decreases as the interest rate increases. This pattern is particularly evident

in the CA-WA pair, where Kendall’s τ drops significantly from 0.8 to approximately 0.05

as the interest rate increases. This finding indicates a strong comovement between the

two western coast states when the Fed conducted several rounds of quantitative easing

over the past decade.

For the remaining two pairs, CA-MA and CO-MA, the proposed method yields a

mixture of Gumbel and Frank copulas. For CA-MA, Panel (a) in Figure 7 suggests

that the degree of dependence increases remarkably when the interest rate decreases,

indicating a higher probability of upward comovement between the two housing markets.

The weight associated with the Gumbel copula, displayed by Panel (c), also increases

as the interest rate decreases. On the other hand, although the parameter of the Frank

copula fluctuates along the interest rate, it briefly falls within the range between 0 and 0.2,

and the associated weight declines when the interest rate decreases, as displayed by Panels

(b) and (d). For CO-MA, we can observe a similar pattern in which the HPIs between

the two housing markets are more likely to increase simultaneously when the interest rate

is low. The degree of dependence is also high for a low interest rate. We further consider

the 4-dimensional mixture copula which contains the four series simultaneously. Results

in Figure 9 show that the Gumbel and Frank copulas are selected, and the four markets

exhibit strong comovement when the interest rate is low, and the weight parameter of

the Gumbel copula is also relatively larger than that of the Frank copula.

7 Conclusion

In this article, we propose a semiparametric conditional mixture copula model, estimating

both conditional marginal distributions and copula parameters as functions of a covariate.

We use a two-step procedure: first, estimate the conditional marginal distributions using

a nonparametric method, and then, simultaneously estimate the model and select the

copula through a penalized local log-likelihood function. We provide a generalized likeli-

hood ratio test statistic for the covariate effects. We establish the asymptotic properties
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of the estimators and discuss algorithmic and selection issues. Monte Carlo simulations

demonstrate the method’s effectiveness, and we apply it to study interest rate effects on

housing market dependence. Importantly, the conditional mixture copula model in this

study allows for multidimensional covariates. However, researchers may encounter the

curse of dimensionality when too many covariates are involved. In such cases, we suggest

using a mixture single index copula model that extends the single index copula model

proposed in Fermanian and Lopez (2018) and Yang et al. (2021). The estimation and

selection for a mixture single index copula model warrant future investigation.
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Table 1: MSEs of copula dependent parameter estimates and accurate (inaccurate) rates of selection
when the true model is a single conditional copula

T = 200 T = 400 T = 800
Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank

Panel (a): True copula: Clayton
Type 1 MSE 0.896 - - 0.619 - - 0.488 - -

Rate 1.000 (0.000) (0.023) 1.000 (0.000) (0.011) 1.000 (0.000) (0.000)
Type 2 MSE 0.351 - - 0.257 - - 0.189 - -

Rate 1.000 (0.000) (0.019) 1.000 (0.000) (0.008) 1.000 (0.000) (0.000)
Type 3 MSE 0.493 - - 0.369 - - 0.255 - -

Rate 1.000 (0.000) (0.012) 1.000 (0.000) (0.003) 1.000 (0.000) (0.000)

Panel (b): True copula: Gumbel
Type 1 MSE - 0.154 - - 0.069 - - 0.046 -

Rate (0.000) 1.000 (0.000) (0.000) 1.000 (0.000) (0.000) 1.000 (0.000)
Type 2 MSE - 0.281 - - 0.209 - - 0.131 -

Rate (0.000) 1.000 (0.000) (0.000) 1.000 (0.000) (0.000) 1.000 (0.000)
Type 3 MSE - 0.186 - - 0.143 - - 0.103 -

Rate (0.000) 1.000 (0.071) (0.000) 1.000 (0.000) (0.000) 1.000 (0.000)

Panel (c): True copula: Frank
Type 1 MSE - - 0.494 - - 0.376 - - 0.235

Rate (0.000) (0.012) 0.998 (0.000) (0.000) 1.000 (0.000) (0.000) 1.000
Type 2 MSE - - 0.803 - - 0.641 - - 0.457

Rate (0.000) (0.005) 0.997 (0.000) (0.000) 1.000 (0.000) (0.000) 1.000
Type 3 MSE - - 0.374 - - 0.224 - - 0.104

Rate (0.000) (0.006) 1.000 (0.000) (0.000) 1.000 (0.000) (0.000) 1.000

Notes. This table presents the MSEs of copula dependent parameter estimates and accurate (inaccurate)
selection rates of the proposed conditional mixture copula method when the true model is a single
Clayton (panel (a)), Gumbel (panel (b)), and Frank (panel (c)) copula. Values in parentheses denote
the inaccurate selection rate. Each simulation is repeated 1000 times.
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Table 2: MSEs of copula dependent parameter estimates and accurate (inaccurate) rates of selection
when the true model is a combination of two conditional copulas

Panel (a): True Model: Clayton + Gumbel
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE 4.087 3.248 - 3.120 2.689 2.386 1.981 -

Rate 1.000 0.944 (0.176) 1.000 0.961 (0.103) 1.000 0.985 (0.062)
Type 1 + Type 3 MSE 3.205 3.117 - 2.575 2.310 1.933 1.702 -

Rate 1.000 0.917 (0.113) 1.000 0.948 (0.076) 1.000 0.972 (0.051)
Type 2 + Type 3 MSE 4.636 4.107 - 3.425 2.804 2.545 2.112 -

Rate 1.000 0.936 (0.158) 1.000 0.955 (0.117) 1.000 1.000 (0.083)

Panel (b): True Model: Clayton + Frank
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE 3.719 - 3.662 2.541 - 2.324 1.917 - 1.785

Rate 1.000 (0.025) 0.943 1.000 (0.000) 0.955 1.000 (0.000) 0.992
Type 1 + Type 3 MSE 3.248 - 3.358 2.388 - 2.439 1.733 - 1.954

Rate 1.000 (0.005) 0.908 1.000 (0.001) 0.941 1.000 (0.000) 0.983
Type 2 + Type 3 MSE 3.529 - 3.144 2.602 - 2.286 2.115 - 1.521

Rate 1.000 (0.011) 0.921 1.000 (0.004) 0.962 1.000 (0.001) 0.976

Panel (c): True Model: Gumbel + Frank
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE - 0.785 0.824 - 0.503 0.481 - 0.249 0.203

Rate (0.005) 0.985 0.913 (0.002) 1.000 0.992 (0.000) 1.000 0.996
Type 1 + Type 3 MSE - 0.846 0.793 - 0.614 0.477 - 0.220 0.211

Rate (0.004) 0.973 0.884 (0.001) 0.993 0.952 (0.000) 0.998 0.973
Type 2 + Type 3 MSE - 0.803 0.732 - 0.553 0.392 - 0.268 0.275

Rate (0.004) 0.977 0.944 (0.000) 0.980 0.985 (0.000) 0.997 0.991

Notes. This table presents the MSEs of copula dependent parameter estimates and accurate (inaccurate)
selection rates of the proposed conditional mixture copula method when the true model is a combination
of two conditional copulas: Clayton and Gumbel (panel (a)), Clayton and Frank (panel (b)), and Gumbel
and Frank (panel (c)). Values in parentheses denote the inaccurate selection rate. Each simulation is
repeated 1000 times.
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Table 3: MSEs of copula weight parameter estimates when the true model is a combination of two
conditional copulas

Panel (a): True Model: Clayton + Gumbel
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE 0.013 0.035 - 0.009 0.023 0.004 0.014 -
Type 1 + Type 3 MSE 0.036 0.022 - 0.022 0.012 0.012 0.007 -
Type 2 + Type 3 MSE 0.028 0.030 - 0.016 0.019 0.010 0.010 -

Panel (b): True Model: Clayton + Frank
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE 0.011 - 0.019 0.006 - 0.010 0.004 - 0.006
Type 1 + Type 3 MSE 0.021 - 0.018 0.012 - 0.012 0.007 - 0.003
Type 2 + Type 3 MSE 0.024 - 0.019 0.011 - 0.008 0.006 - 0.005

Panel (c): True Model: Gumbel + Frank
T = 200 T = 400 T = 800

Clayton Gumbel Frank Clayton Gumbel Frank Clayton Gumbel Frank
Type 1 + Type 2 MSE - 0.010 0.015 - 0.008 0.006 - 0.003 0.003
Type 1 + Type 3 MSE - 0.012 0.011 - 0.007 0.006 - 0.003 0.004
Type 2 + Type 3 MSE - 0.014 0.014 - 0.007 0.009 - 0.004 0.006

Notes. This table presents the MSEs of copula weight parameter estimates of the proposed conditional
mixture copula method when the true model is a combination of two conditional copulas: Clayton and
Gumbel (panel (a)), Clayton and Frank (panel (b)), and Gumbel and Frank (panel (c)). Each simulation
is repeated 1000 times.
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Table 4: Summary Statistics

CA CO MA WA Interest Rate (Z)

Panel (a): Summary statistics
Mean 0.0166 0.0145 0.0149 0.0162 4.6676
Median 0.0186 0.0129 0.0123 0.0132 4.8185
Min -0.1132 -0.0361 -0.0448 -0.1644 0.0588
Max 0.1050 0.0876 0.0758 0.1041 17.7869
Std. Dev 0.0283 0.0195 0.0215 0.0258 3.9869
Skewness -0.6393 0.7515 0.3187 -1.3384 0.9074
Kurtosis 6.2791 4.9715 3.1530 15.2772 3.6921
Jarque-Bera 98.5810*** 48.9081*** 3.4196 1256.6102*** 30.0223***

Panel (b): Linear correlation coefficients
CA CO MA WA

CA 1.0000 0.2768 0.4170 0.7247
CO 0.2768 1.0000 0.3370 0.3494
MA 0.4170 0.3370 1.0000 0.1645
WA 0.7247 0.3494 0.1645 1.0000

Notes. The sample period is between 1975:Q1 and 2022:Q4. Panel (a) presents the summary statistics
of the quarterly growth of HPIs in CA, CO, MA, and WA, and the quarterly Federal Funds Effective
rate. Jarque-Bera denotes the statistic of the Jarque-Bera test with the null hypothesis of normality.
*** indicates rejection of the null at 1%. Panel (b) presents the linear correlation coefficients among the
four housing markets’ quarterly growth rate.

30



Figure 1: Estimated paths for copula dependent parameters (Kendall’s τ) when the true model is a
conditional individual copula
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(a) True copula: Clayton
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(b) True copula: Gumbel
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(c) True copula: Frank

Notes. This figure displays the estimated paths of copula dependent parameters (Kendall’s τ) when
the true mode is an individual conditional Clayton copula (panel (a)), Gumbel copula (panel (b)), and
Frank copula (panel (c)), respectively. Type 1: θ(z) = 10 − 1.5z2. Type 2: θ(z) = 10 − 0.02z2 + 0.4z3.
Type 3: θ(z) = 3 + z + 2 exp(−2z2). The sample size T = 400. Each simulation is repeated 1000 times.
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Figure 2: Estimated paths for copula dependent parameters (Kendall’s τ) when the true model is a
combination of Clayton and Gumbel copulas
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(a) True copula: Clayton (Type 1) + Gumbel (Type 2)
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(b) True copula: Clayton (Type 1) + Gumbel (Type 3)
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(c) True copula: Clayton (Type 2) + Gumbel (Type 3)

Notes. This figure displays the estimated paths of copula dependent parameters (Kendall’s τ) when the
true mode is a combination of Clayton and Gumbel copulas with different functional forms of θ(z). Type
1: θ(z) = 10 − 1.5z2. Type 2: θ(z) = 10 − 0.02z2 + 0.4z3. Type 3: θ(z) = 3 + z + 2 exp(−2z2). The
sample size T = 400. Each simulation is repeated 1000 times.
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Figure 3: Estimated paths for weights (ω) when the true model is a combination of Clayton and Gumbel
copulas
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(a) True copula: Clayton (Type 1) + Gumbel (Type 2)
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(b) True copula: Clayton (Type 1) + Gumbel (Type 3)

Gumbel Frank
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(c) True copula: Clayton (Type 2) + Gumbel (Type 3)

Notes. This figure displays the estimated paths of weights when the true mode is a combination of
Clayton and Gumbel copulas with different functional forms of θ(z). Type 1: θ(z) = 10 − 1.5z2. Type
2: θ(z) = 10 − 0.02z2 + 0.4z3. Type 3: θ(z) = 3 + z + 2 exp(−2z2). The sample size T = 400. Each
simulation is repeated 1000 times.
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Figure 4: Housing price indices in CA, CO, MA, and WA: 1975:Q1 - 2022:Q4
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Notes. This figure displays the quarterly housing price indices in four states of the United States:
California (CA), Colorado (CO), Massachusetts (MA), and Washington (WA). The sample period is
from 1975:Q1 to 2022:Q4. The data can be retrieved from the Federal Housing Finance Agency (FHFA).

Figure 5: Effective federal funds rate: 1975:Q1 - 2022:Q4
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Notes. This figure displays the quarterly federal funds effective rate, or the interest rate depository
institutions charge each other for overnight loans of funds. The sample period is from 1975:Q1 to
2022:Q4. The data can be downloaded from https://fred.stlouisfed.org/.
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Figure 6: The estimated paths for Kendall’s τs of Gumbel for CA-CO, CA-WA, CO-WA, and MA-WA
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Notes. This figure displays the estimated paths for Kendall’s τs of the selected Gumbel copula for
CA-CO, CA-WA, CO-WA, and MA-WA. The shaded area represents the 95% confidence interval. The
data are at quarterly frequency and span from 1975:Q1 to 2022:Q4.

35



Figure 7: The estimated paths for Kendall’s τs and weights of Gumbel and Frank for CA-MA
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(b) CA-MA: Frank’s τ
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Notes. This figure displays the estimated paths for Kendall’s τs and weights of the selected Gumbel-
Frank mixture copula for CA-MA. The shaded area represents the 95% confidence interval. The data
are at quarterly frequency and span from 1975:Q1 to 2022:Q4.

36



Figure 8: The estimated paths for Kendall’s τs and weights of Gumbel and Frank for CO-MA
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(a) CO-MA: Gumbel’s τ
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Notes. This figure displays the estimated paths for Kendall’s τs and weights of the selected Gumbel-
Frank mixture copula for CO-MA. The shaded area represents the 95% confidence interval. The data
are at quarterly frequency and span from 1975:Q1 to 2022:Q4.
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Figure 9: The estimated paths for Kendall’s τs and weights of Gumbel and Frank for CA, CO, MA,
and WA
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(a) 4-dimensional: Gumbel’s τ
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Notes. This figure displays the estimated paths for Kendall’s τs and weights of the selected Gumbel-
Frank mixture 4-dimensional copula for all four states. The shaded area represents the 95% confidence
interval. The data are at quarterly frequency and span from 1975:Q1 to 2022:Q4.
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Appendix: Mathematical Proofs

A1 Proof of Theorem 1

To prove the consistency of the local polynomial penalized maximum pseudo likelihood

estimator η̂(z), we can show that, with large probability, there is a local maximum in

the sphere with center at η(z) for any sufficiently small radius. Specifically, the sphere

is the union of εi,j-sphere of radius εi,j centered at νi,j for i = 1, 2 and j = 1, · · · , d, and

denote the maximum radius by ε. That is, we want to show that the regularized kernel

weighted pseudo log-likelihood function satisfies lim
T→∞

P
(
Q(η̃(z)) < Q(η(z))

)
≥ 1− ε for

any point η̃(z) on the surface of the ε-sphere. And {Q(η̃(z))−Q(η(z))} can be written

as

Q(η̃(z))−Q(η(z)) = L(η̃(z))− L(η(z)) + L̃(ω̃(z))− L̃(ω(z)), (AE 1)

where ω̃(z) consists of first dth elements of η̃(z).

Applying Taylor’s expansion to L(η̃(z)) around the point η(z) firstly, we have

L(ω̃(z)) = L(η(z)) + TS1T + TS2T (1 + o(1)),

and

S1T =
1

T

4d∑
r=1

AT
r (η̃(z)− ηr(z)), S2T =

1

2T

4d∑
r=1

4d∑
s=1

Bn
r,s(η̃(z)− ηr(z))(η̃(z)− ηs(z)),

where

AT
r =

T∑
t=1

(Zt − z)Drℓ1(r)

(
η(z); Û (z)

)
Kh(Zt − z),

BT
r,s =

T∑
t=1

(Zt − z)Dr+Dsℓ2(r,s)

(
η̆(z); Û(z)

)
Kh(Zt − z),

with indicator functions Dr = I(r ≥ 2d), Ds = I(s ≥ 2d), and η̆(z) is a convex combina-

tion of η̃(z) and η(z). Note that we use ℓ1(r)(·) and ℓ2(r,s)(·) to denote the rth element

of vector ℓ1(·) and the (r, s)th element of matrix ℓ2(·), respectively. In addition, S1T can
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be rewritten as

S1T =
1

T

4d∑
r=1

(AT
r − Ar)(η̃r(z)− ηr(z)) +

1

T

4d∑
r=1

Ar(η̃r(z)− ηr(z)),

where

Ar =
T∑
t=1

(Zt − z)Drℓ1(r) (ω(Zt),θ(Zt);U(z))Kh(Zt − z).

Further,

S1T ≤ 4d

T
ε max
r∈{1,··· ,4d}

∣∣AT
r − Ar

∣∣+ 4d

T
ε max
r∈{1,··· ,4d}

|Ar| . (AE 2)

For the order of S1T , let’s consider the first term of (AE 2) firstly, then we have

1

T

∣∣AT
r − Ar

∣∣ ≤ 1

T

T∑
t=1

|Zt − z|Dr Kh(Zt − z)
∣∣∣ℓ1(r) (ν1,ν2; Û(z)

)
− ℓ1,(r) (ω(Zt),θ(Zt);U(z))

∣∣∣
≤ 1

T

T∑
t=1

|Zt − z|Dr Kh(Zt − z)

[
c
{
sup
z,k

∣∣∣(Zt − z)2ω
(2)
k (z)

∣∣∣+ sup
z,k

∣∣∣(Zt − z)2θ
(2)
k (z)

∣∣∣
+

p∑
j=1

sup
xj∈R

∣∣∣F̂Xj |z(xj)− FXj |z(xj)
∣∣∣ }] ,

where the second inequality holds by the definition of Lipschitz continuity. According to

the facts F̂Xj |z(xj)−FXj |z(xj) =
1
2
h2jµ2F

(2)
Xj |z(xj)+Op

(
1√
nhj

)
+ op(h

2
j) for j ∈ {1, · · · , p}

from Cai (2002), the order is given as

1

T
max

r
| AT

r − Ar | = max
r
Op

{(
h2+Dr

T

)
+Op

(
hDr

T

p∑
j=1

(
1√
Thj

+ h2jµ2F
(2)
Xj |z(xj))

)}

= Op

(
h2

T

)
+Op

(
1

T

p∑
j=1

(
1√
Thj

+ h2jµ2F
(2)
Xj |z(xj))

)
= op(1) (AE 3)

by the details of the proof of Theorem 6.1 in Fan and Yao (2003).
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For the second term of (AE 2), we have

E

(
1

T
Ar

)
=

1

T

T∑
t=1

∫ [ ∫
ℓ1(r)

(
ω(zt),θ(zt); F̂X1|z(x1t), · · · , F̂Xp|z(xpt)

)
dFX|z(xt)

]
×(zt − z)DrKh(zt − z)dFZ(zt),

and it is always equal to 0 for each r, since the first order term of log-likelihood function

with true parameters ω(zt) and θ(zt) would equal zero. In addition, by condition A3, we

obtain

V ar

(
1

T
Ar

)
=

1

T 2
V ar

[
T∑
t=1

(Zt − z)Drℓ1(r)
(
ω(Zt),θ(Zt);FX1|z(X1t), · · · , FXp|z(Xpt)

)
Kh(Zt − z)

]

=
1

T 2

T∑
t=1

E
(
(Zt − z)2DrK2

h(Zt − z)ℓ21(r)
(
ω(Zt),θ(Zt);FX1|z(X1t), · · · , FXp|z(Xpt)

))
+

1

T 2

T∑
t=2

t−1∑
j=1

E
[
(Zt − z)Dr(Zj − z)DrKh(Zt − z)Kh(Zj − z)×

ℓ1,(r) (ω(Zt),θ(Zt); û(z)) ℓ1(r) (ω(Zj),θ(Zj);U(z))
]

+
1

T 2

T−1∑
t=1

T∑
j=t+1

E
[
(Zt − z)Dr(Zj − z)DrKh(Zt − z)Kh(Zj − z)×

ℓ1,(r) (ω(Zt),θ(Zt);U(z)) ℓ1(r) (ω(Zj),θ(Zj);U(z))
]

≤ O

(
h2Dr

Th

)
,

where the inequality follows from the fact

E
[
(Z − z)2DrK2

h(Z − z)ℓ21(r)
(
ω(Z),θ(Z);FX1|z(X1), · · · , FXp|z(Xp)

)]
=

∫
1

h2
(hv)2DrK2(v)ℓ21(r)

(
ω(Z),θ(Z);FX1|z(x1), · · · , FXp|z(xp)

)
dFX,Z(x, hv + z)

≤ C
h2Dr

h

∫
1

h
v2DrK2(v)dFX,Z(x, hv + z)

= O

(
h2Dr

Th

)

by conditions A3 and A6. Therefore, S1T
p→ 0 as T → ∞ and the order of S1T is smaller

than Op

(
1√
Th

+ h2

T
+

p∑
j=1

1

T
√

Thj

)
.
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The term S2T can be rewritten as follows:

S2T =
1

2T

4d∑
r,s=1

(BT
rs −Brs)(η̃r(z)− ηr(z))(η̃s(z)− ηs(z)) +

1

2n

4d∑
r,s=1

Brs(η̃r(z)− ηr(z))(η̃s(z)− ηs(z)),

with

Brs =
T∑
t=1

(Zt − z)Dr+Dsℓ2(r,s)
(
ω(Zt),θ(Zt);FX1|z(X1t), · · · , FXp|z(Xpt)

)
Kh(Zt − z).

By the Lipschitz continuity of ℓ2, we obtain

1

T

∣∣BT
rs −Brs

∣∣
≤ 1

T

T∑
t=1

|Zt − z|Dr+Ds Kh(Zt − z)
∣∣∣ℓ2(r,s) (ν̆1, ν̆2; F̂X1|z(X1t), · · · , F̂Xp|z(Xpt)

)
−ℓ2(r,s)

(
ω(Zt),θ(Zt);FX1|z(X1t), · · · , FXp|z(Xpt)

)∣∣
≤ 1

T

T∑
t=1

|Zt − z|Dr+Ds Kh(Zt − z)

[
c
{
sup
z,k

∣∣∣(Zt − z)2ω
(2)
k (z)

∣∣∣+ sup
z,k

∣∣∣(Zt − z)2θ
(2)
k (z)

∣∣∣
+

p∑
j=1

sup
xj∈R

∣∣∣F̂Xj |z(xj)− FXj |z(xj)
∣∣∣ }]

= Op

(
h2+Dr+Ds

T

)
+Op

(
p∑

j=1

h2jh
Dr+Ds

T
+
hDr+Ds

T
√
Thj

)
,

where the definition of ν̆j is similar to η̆ for j = 1, 2. Moreover, we have

E

(
1

T
Brs

)
= E

(
1

T

T∑
t=1

(Zt − z)Dr+Dsℓ2(r,s) (ω(Zt),θ(Zt);u(z))Kh(Zt − z)

)

=
1

T

T∑
t=1

∫
ℓ2(r,s) (ω(zt),θ(zt);u(z)) (zt − z)Dr+DsKh(zt − z)dFX,Z(xt, zt)

= hDr+Ds

∫
ℓ2(r,s) (ω(z),θ(z);u(z)) (v)Dr+DsK(v)dFX,Z(x, z)(1 + o(1))

≡ hDr+DsXr,s(1 + o(1)),

where the third equality holds by the Taylor expansion. Define r0 ≤ d as the smallest
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index such that ν1,r0 − ωr0(z) ̸= 0 or ν2,r0 − θr0(z) ̸= 0, then

1

2T

4d∑
r=1

4d∑
s=1

Brs(η̃r(z)− ηr(z))(η̃s(z)− ηs(z))

=
1

2

[
E

(
1

T
Br0r0

)
+Op

(√
V ar

(
1

T
Br0r0

))]
(η̃r0(z)− ηr0(z))

2

+
1

2

∑
r ̸=r0,s ̸=r0

[
E

(
1

T
Brs

)
+Op

(√
V ar

(
1

T
Brs

))]
(η̃r(z)− ηr(z))(η̃s(z)− ηs(z))

= ch2Dr0Xr0,r0 + op(h
2Dr0 ),

where constant c is positive. Therefore, we have S2T + ch2Dr0Xr0,r0

p→ 0 as T → +∞.

Combining the result that S1T converges to 0 in probability, then we obtain the probability

thatL(η̃(z))− L(η(z)) < 0 tends to 1 for any points η̃(z)) on the surface of sphere.

Since PγT (0) = 0 and
d∑

k=1

(η̃k(z)− ηk(z)) = 0 where η̃k(z) and ηk(z) are the kth

elements of η̃(z) and η(z) respectively, then we have

L̃(ω̃(z))− L̃(ω(z)) = T
d∑

k=1

PγT (ω̃k(z))− ρ
(
1−

d∑
k=1

ω̃k(z)
)
− T

d∑
k=1

PγT (ωk(z))

+ρ
(
1−

d∑
k=1

ωk(z)
)

= T
d∑

k=1

PγT (ω̃k(z))− T
d∑

k=1

PγT (ωk(z)) .

In order to obtain the upper bound, we apply the Taylor’s expansion at ω(z), and obtain

that

1

T

∣∣∣L̃(ω̃(z))− L̃(ω(z))
∣∣∣ =

∣∣∣∣∣
d∑

k=1

[PγT (ω̃k(z))− PγT (ωk(z))]

∣∣∣∣∣
≤ d∥ω̃(z)− ω(z)∥2 max

1≤k≤d

{∣∣∣P ′

γT
(ωk(z))

∣∣∣}
+
d

2
∥ω̃(z)− ω(z)∥22 max

1≤k≤d
{| P ′′

γT
(ωk(z)) |}{1 + o(1)}.

According to the fact in Fan and Li (2001) that max
1≤k≤d

{|∂PγT (ωk(z))/∂ωk(z)|} = 0 for

the SCAD penalty function when γT → 0, and by assumption that the maximum value

of second derivative of the penalty function goes to zero, then ch2Dr0Xr0,r0(1 + op(1)) is

the sole dominant term in the right side of (AE 1) by comparing the order of terms.
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Therefore, there is a local maximum in the ε-sphere for any given ε > 0. This completes

the proof.

A2 Proof of Theorem 2 (a)

We proceed to the proof of part (a) in Theorem 2 first. Consider the local maximizer

η̂(z) =
(
ω∗⊤(z), η̂

⊤
(z)
)⊤

of the penalized kernel weighted pseudo log-likelihood function

Q(η(z)), where ω∗(z) = 0 and η̂(z) is the remaining part of vector η̂(z) after removing

ω∗(z). To prove the sparsity we need to show that, as T → ∞,

P
(
Q
(
ω̃(z), η̃(z)

)
< Q

(
ω∗(z), η̂(z)

))
→ 1 (AE 4)

for arbitrary η̃(z) =
(
ω̃⊤(z), η̃

⊤
(z)
)⊤

.We start by rewriting the leading term in (AE 4)

as

Q
(
ω̃(z), η̃(z)

)
−Q

(
ω∗(z), η̂(z)

)
= Q

(
ω̃(z), η̃(z)

)
−Q

(
ω̃(z), η̂(z)

)
+Q

(
ω̃(z), η̂(z)

)
−Q

(
ω∗(z), η̂(z)

)
≤ Q

(
ω̃(z), η̃(z)

)
−Q

(
ω̃(z), η̂(z)

)
.

It suffices to show that, if lim inf
T→∞

lim inf
πk→ω∗

k(z)+

P
′
γT

(πk)

γT
is positive and

√
ThγT → +∞,

then ∂Q(η̃(z))/∂ω̃k(z) < 0 for any given η̃(z) satisfying ∥η̃(z)− η(z)∥ = Op

(
1√
Th

)
and

0 < ω̃k(z)−ω∗
k(z) <

c√
Th

with constant c > 0, where ω̃k(z) and ω
∗
k(z) are the kth element

of ω̃(z) and ω∗(z) respectively. By Taylor expansion, we have

∂Q(η̃(z))

∂ω̃k(z)
=

∂L(η̃(z)))

∂ω̃k(z)
+
∂L̃(ω̃(z)))

∂ω̃k(z)

=
∂L(η(z))

∂ω∗
k(z)

+
∂2L(η(z))

∂ω∗
k(z)∂η

⊤(z)
(η̃(z)− η(z))

+(η̃(z)− η(z))⊤
∂3L(η̆(z))

2∂ω∗
k(z)∂η(z)∂η

⊤(z)
(η̃(z)− η(z)) +

∂L̃(ω̃(z)))

∂ω̃k(z)

=
∂L(η(z))

∂ω∗
k(z)

+
4d∑
i=1

∂2L(η(z))

∂ω∗
k(z)∂ηi(z)

(η̃i(z)− ηi(z))

+
1

2

4d∑
i=1

4d∑
j=1

∂3L(η̆(z))

2∂ω∗
k(z)∂ηi(z)∂ηj(z)

(η̃i(z)− ηi(z))(η̃j(z)− ηj(z))− TP
′

γT
(ω̃k(z))− ρ,
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where η̆(z) is the convex combination of η(z) and η̃(z). Note that,

1

T

∂L(η(z))

∂ω∗
k(z)

= Op

(
1√
Th

)
and

1

T

4d∑
i=1

∂2L(η(z))

∂ω∗
k(z)∂ηi(z)

= E

(
∂2L(η(z))

∂ω∗
k(z)∂ηi(z)

)
+ op(1),

then we obtain

∂Q(η̃(z))

∂ω̃k(z)
= Op

(√
T

h

)
− TP

′

γT
(ω̃k(z))

= TγT

(
Op

(
1

γT
√
Th

)
−
P

′
γT
(ω̃k(z))

γT

)
< 0.

Further, the inequality (AE 4) holds as T increases to infinity. This completes the proof

of part (a).

A3 Proof of Theorem 2 (b)

We now embark on proving part (b) of Theorem 2. Similar to ω†(z) and ω∗(z), we

use ν†
j to denote the corresponding vector with nonzero weight in νj for j = 1, 2. The

objective function Q(η̆(z)) could be written as Q(η̆†(z)− η†(z) + η†(z)) by the sparsity.

Equivalently, we can find the maximizer ˆ̆η†(z) to maximize Q(η̆†(z) − η†(z) + η†(z)) −

Q(η†(z)), and the maximizer is the maximum likelihood estimate η̂†(z), and that satisfies

the likelihood equation, for k = 1, · · · , 4d†,

∂Q(η̆†(z)− η†(z) + η†(z))−Q(η†(z))

∂η̆†k(z)

∣∣∣
η̆†(z)=η̂†(z)

=
∂L(η̆†(z)− η†(z) + η†(z))− L(η†(z))

∂η̆†k(z)

∣∣∣
η̆†(z)=η̂†(z)

+TI(k ≤ d†)[P
′

γT
(ω̂†

k(z)− ω†
k(z) + ω†

k(z))− P
′

γT
(ω†

k(z))].

Let η̃†(z) = arg max
η̆†(z)∈Γ

L
(
η̆†(z)− η†(z) + η†(z)

)
− L

(
η†(z)

)
≡ arg max

η̆†(z)∈Γ
Q̃(η̆†(z)) and

ˆ̃η†(z) = arg max
η̆†(z)∈Γc

Q̃(η̆†(z)), where Γ is a neighborhood of η†(z) and Γc is a cone. Con-
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sider the fact that

∥∥η̂†(z)− η†(z)
∥∥
2

≤
∥∥η̂†(z)− η̃†(z)

∥∥
2
+
∥∥∥η̃†(z)− ˆ̃η†(z)

∥∥∥
2
+
∥∥∥ ˆ̃η†(z)− η†(z)

∥∥∥
2

=
∥∥∥ ˆ̃η†(z)− η†(z)

∥∥∥
2
+ op(1)

for penalized mixture copula estimator in Cai and Wang (2014), then we need to inves-

tigate the asymptotic distribution of ˆ̃η†(z). Define the normalized estimator ˆ̃η†
T (z) ≡

DT

(
ˆ̃η†(z)− η†(z)

)
, two vectors ˆ̃ω†(z) and ˆ̃θ†(z) are corresponding to ω†(z) and θ†(z)

respectively in ˆ̃η†(z), then we have the likelihood equation

∂Q̃(ˆ̃η†(z))

∂ ˆ̃η†(z)
=

∂

∂ ˆ̃η†(z)

T∑
t=1

[ℓ⊤1 (ω
†(z),θ†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt))∆t

ˆ̃η†
T (z) +

(∆t
ˆ̃η†
T (z))

⊤ℓ2(ω̇
†(z), θ̇†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt))∆t

ˆ̃η†
T (z)]Kh(Zt − z)

=
T∑
t=1

∆tℓ1

(
ω†(z),θ†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt)

)
Kh(Zt − z) +

2
T∑
t=1

∆tℓ2

(
ω̇†(z), θ̇†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt)

)
∆tKh(Zt − z)ˆ̃η†

T (z)

≡ W 1 +W 2
ˆ̃η†
T (z)

= 0

by using Taylor expansion of L(ˆ̃η†
T (z)) around η†(z), where ∆t = (diag(1, Zt − z) ⊗

I2d†)D
−1
T , and ω̇†(z) is a convex combination of ˆ̃ω†(z) and ω†(z), and θ̇†(z) is a convex

combination of ˆ̃θ†(z) and θ†(z). For the purpose of obtaining the asymptotic property,

we first define W1 = hW 1,W2 = hW 2, and show that W2 = W ∗
2 + op(1), where

W ∗
2 = 2h

T∑
t=1

∆tℓ2

(
ω̇†(z), θ̇†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
∆tKh(Zt − z).

Similar to the (AE 3), we obtain

|(W2 −W ∗
2 )r,s| =

∣∣∣ T∑
t=1

2hKh(Zt − z)[∆t(ℓ2(ω̇
†(z), θ̇†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt))

−ℓ2(ω̇†(z), θ̇†(z);FX1|z(X1t), · · · , FXp|z(Xpt)))∆t]r,s

∣∣∣
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for any 1 ≤ r ≤ 4d† and 1 ≤ s ≤ 4d†. We now study each of the elements for the four

parts of the matrix respectively, that is, when r ≤ 2d† and s ≤ 2d†,

|(W2 −W ∗
2 )r,s| =

∣∣∣ T∑
t=1

2hKh(Zt − z)
1

Th
[ℓ2(r,s)(ω̇

†(z), θ̇†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt))

−ℓ2(r,s)(ω̇†(z), θ̇†(z);FX1|z(X1t), · · · , FXp|z(Xpt))]
∣∣∣

≤

∣∣∣∣∣
T∑
t=1

2

Th
K

(
Zt − z

h

)∣∣∣∣∣×
p∑

j=1

sup
xj

∣∣∣F̂Xj |z(xj)− FXj |z(xj)
∣∣∣

= Op

(
h2 +

1√
Th

)
·Op

(
p∑

j=1

h2jµ2F
(2)
Xj |z(xj) +

1√
Thj

)
= op(1).

Similarly, when r > 2d† and s > 2d†, we have

|(W2 −W ∗
2 )r,s| =

∣∣∣ T∑
t=1

2hKh(Zt − z)
(Zt − z)2

Th3
[ℓ2(r,s)(ω̇

†(z), θ̇†(z); F̂X1|z(X1t), · · · , F̂Xp|z(Xpt))

−ℓ2(r,s)(ω̇†
1(z), θ̇

†(z);FX1|z(X1t), · · · , FXp|z(Xpt))]
∣∣∣

= Op

(√
h

T

)
·Op

(
p∑

j=1

h2jµ2F
(2)
Xj |z(xj) +

1√
Thj

)
= op(1).

As for other two parts of matrix W2 −W ∗
2 , we can obtain the similar results. Therefore,

W2 converges to matrix W ∗
2 in probability.

As for its expectation, we have

E[(W ∗
2 )r,s] = E

[
2Kh(Z − z)

[
ℓ2(r,s)

(
η†(z);FX1|z(X1), · · · , FXp|z(Xp)

)]]
=

∫
2
1

h
K(

z0 − z

h
)
[
ℓ2(r,s)

(
η†(z);FX1|z(x1), · · · , FXp|z(xp)

)]
dFX,Z(x, z0)

=

∫
2K(v)

[
ℓ2(r,s)

(
η†(z);FX1|z(x1), · · · , FXp|z(xp)

)]
dFX,Z(x, z + hv),

where z0 is a realized velue of random variable Z when r ≤ 2d† and s ≤ 2d†. In the same
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way, we have

E[(W ∗
2 )r,s] = E

[
2hKh(Z − z)

(Z − z)2

h3
[
ℓ2(r,s)

(
η†(z);FX1|z(X1), · · · , FXp|z(Xp)

)]]
=

∫
2

h
K(

z0 − z

h
)
(z0 − z)2

h2
[
ℓ2(r,s)

(
η†(z);FX1|z(x1), · · · , FXp|z(xp)

)]
dFX,Z(x, z0)

=

∫
2K(v)v2

[
ℓ2(r,s)

(
η†(z);FX1|z(x1), · · · , FXp|z(xp)

)]
dFX,Z(x, z + hv)

when r > 2d† and s > 2d†. For the other two parts, r > 2d†, s ≤ 2d† and r ≤

2d†, s > 2d†, of matrix W ∗
2 , it is clear that each element is equal to 0. Thus E(W ∗

2 ) =

2E
{
[diag(K(V ), V 2K(V ))⊗ I2d† ]ℓ2

(
η†(Zt);FX1|Zt(X1), · · · , FXp|Zt(Xp)

)
|Zt = z

}
.

Given that W2 converges to the term W ∗
2 , we need compute the variance of W ∗

2 to

show that it tends to its expectation which is a constant matrix. For r ≤ 2d† and s ≤ 2d†,

we have

V ar

{
T∑
t=1

2

T
Kh (Zt − z)

[
ℓ2(r,s)

(
ω̇†(z), θ̇†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)]}

=
4

Th2
V ar

{[
ℓ2(r,s)

(
η†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)]
K

(
Z − z

h

)}
+

8

Th2

n−1∑
j=1

(
1− j

T

)
Cov(ℓz2(r,s)(t), ℓ

z
2(r,s)(t+ j))

≡ 4

Th2
Σ(0) +

8

T 2h2

T−1∑
j=1

(T − j)Σ(j)

≤ 4

Th2
Σ(0) +

c

Th2

T−1∑
j=1

α(j)
ς

4+ς

[
E

∣∣∣∣[ℓ2(r,s) (η†(z, Z);U(z)
)]
K

(
Z − z

h

)∣∣∣∣ 4+ς
2

]2

where ℓz2(r,s)(t) = h
[
ℓ2(r,s)(η

†(z, Zt);FX1|z(X1t), · · · , FXp|z(Xpt))
]
Kh(Zt−z), then the vari-

ance of any elements in this part equals op(1) since
∞∑
j=1

α(j)
ς

4+ς < ∞ and condition A6.

Similarly, when r > 2d† and s > 2d†, we know the variance is smaller than

4

Th2
Σ(0) +

c

Th2

T−1∑
j=1

α(j)
ς

4+ς

E ∣∣∣∣∣
(
Z − z

h

)2 [
ℓ2(r,s)

(
η†(z, Z);U(z)

)]
K

(
Z − z

h

)∣∣∣∣∣
4+ς
2

2
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by the condition A6. For the other two parts, the similar inequality still holds,

V ar

{
T∑
t=1

2
Zt − z

Th
Kh(Zt − z)

[
ℓ2(r,s)

(
ω̇†(z), θ̇†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)]}

≤ 4

Th2
Σ(0) +

c

Th2

T−1∑
j=1

α(j)
ς

4+ς

[
E

∣∣∣∣[ℓ2(r,s) (η†(z, Z);U (z)
)]
K

(
Z − z

h

)∣∣∣∣ 4+ς
2

]2
= op(1).

Hence, W2 converges to the constant matrix E(W ∗
2 ).

Next, we discuss the vector W1, and this term can be rewritten as follows:

W1 =
T∑
t=1

h∆tℓ1
(
ω†(z),θ†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
Kh(Zt − z)

≈
T∑
t=1

h∆tℓ1
(
ω†(z),θ†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
Kh(Zt − z)

+

p∑
j=1

T∑
t=1

h∆t
∂ℓ1
∂U1

(
ω†(z),θ†(z);U(z)

) (
F̂Xj |z(Xjt)− FXj |z(Xjt)

)
Kh(Zt − z)

≡
T∑
t=1

W t
1,1 +

p∑
j=1

T∑
t=1

W t
1,j+1

≡ W1,1 +

p∑
j=1

W1,j+1. (AE 5)

In the same vein, we need to calculate its expectation by partition each sub-term of W1.

Similar to the derivation of W ∗
2 , for any element which belongs to the first half and its

index is r, we have

E[(W1,1)r] =
√
Th
∫ [
ℓ1(r)(η

†(z);u(z))
]
h2K(v)dFX,Z(x, z + hv),

E[(W1,j+1)r] =
√
Th
∫ [
ℓ1,j(η

†(z);u(z))
]
r
K(v)µ2

2
h2jF

(2)
Xj |z(xj)dFX,Z(x, z + hv)(1 + o(1))

under condition A7 for j ∈ {1, · · · , p}, and [a]r denotes the rth element of the arbitrary

vector a. For the second half, the index r > 2d, then

E[(W1,1)r] =
√
Th3

∫ [
ℓ1(r)(η

†(z);u(z))
]
h2vK(v)dFX,Z(x, z + hv),

E[(W1,j+1)r] =
√
Th3

∫ [
ℓ1,j(η

†(z);u(z))
]
r
vK(v)µ2

2
h2jF

(2)
Xj |z(xj)dFX,Z(x, z + hv)(1 + o(1)).
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Hence we can obtain the asymptotic expectation vector DTΞ
∗
z of W1. Note first of all

that V ar(W1) =
p+1∑
j=1

V ar(W1,j) +
p+1∑
i,j=1
i ̸=j

Cov(W1,i,W1,j) and hence we need to calculate the

second moment in order to approximate the variance of term W1. When r ≤ 2d†, we can

get

V ar[(W1,1)r] = V ar

{
T∑
t=1

h[∆tℓ1
(
ω†(z),θ†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
]rKh(Zt − z)

}
= hV ar

{
[ℓ1(r)

(
ω†(z),θ†(z);FX1|z(X1), · · · , FXp|z(Xp)

)
]Kh(Z − z)

}
+2h

T−1∑
j=1

(1− j

T
)Cov(ℓ1(r)(t)Kh(Zt − z), ℓ1(r)(t+ j)Kh(Zt+j − z))

= hΣ(0) +
2h

T

T−1∑
j=1

(T − j)Σ(j)

≤ hΣ(0) + ch
T−1∑
j=1

α(j)
γ

4+γ
[
E
∣∣[ω†(z),θ†(z);FX1|z(X1), · · · , FXp|z(Xp)]rKh(Z − z)

∣∣]2 ,
where ℓ1(r)(t) = ℓ1(r)

(
ω†(z),θ†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
.

As for the terms W1,j+1 for j ∈ {1, · · · , p}, we have

V ar[(W1,j+1)r] = Op

(
hh2j +

h√
Thj

)
.

It can be seen that the contribution of W1 to the variance is W1,1, now consider the

covariance,

|Cov[(W1,1)r, (W1,2)r]| ≤
√
V ar(W1,1) · V ar(W1,2) = Op

(
h

√
(h21 +

1√
Th1

)(h22 +
1√
Th2

)

)
,

and we could obtain the similar results for other terms, and the covariances of W1,j+1

and W1,i+1 have the same order of the variance of W1,j+1 if hi = hj for i ̸= j. For the

another case r > 2d†, we can obtain the similar results. Therefore, the variance of W1,1 is

the leading term of the variance of W1. Further, following the same technology on pages

251-252 of Fan and Gijbels (1996), we have

E(W1,1W
⊤
1,1) = h2E

[
T∑
t=1

∆tℓ1(t)ℓ
⊤
1 (t)∆tK

2
h(Zt − z)

]
= E

{[
diag(K2(V ), V 2K2(V ))⊗ I2d†

]
ℓ1(t)ℓ

⊤
1 (t)

}
+ o(1),
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where ℓ1(t) = ℓ1
(
ω†(z),θ†(z);FX1|z(X1t), · · · , FXp|z(Xpt)

)
. Hence, it follows that

V ar(ˆ̃η†
T (z)) = V ar(DT

(
ˆ̃η†(z)− η†(z)

)
) = W ∗−1

2 E(W1,1W
⊤
1,1)(W

∗−1
2 )⊤.

Now it suffices to prove W1 is asymptotically normal. To establish the asymptotic

normality of W1, it is equivalent to show that for any nonzero vector a ∈ R4d† , the linear

combination ST = a⊤W1 is asymptotically normal. Specifically, we employ the small- and

large-block arguments as part 2.7.7 of Fan and Yao (2003), and partition ST into 2kT +1

blocks with large blocks of size lT , small blocks of size sT and the last remaining block of

size T −kT (lT + sT ). Put lT =
[√

T/ ln(T )
]
, sT =

[
(
√
T ln(T ))χ

]
and kT = [T − lT − sT ]

with ς/(4 + ς) ≤ χ < 1, where ς is a positive constant specified in condition A6, then

α(T ) = o
(
T (4+ς)/ς

)
and kTα(sT ) = o(1) by using harmonic series and

∞∑
j=1

α(j)(4+ς)/ς <∞.

It follows that

ST = a⊤W1,1 + a⊤W1,2 + a⊤W1,3

= a⊤
kT∑
r=1

(
ξ
(1)
1,r +

p∑
j=1

ξ
(j+1)
j+1,r

)
+ a⊤

kT∑
r=1

(
ζ
(1)
1,r +

p∑
j=1

ζ
(j+1)
j+1,r

)
+ a⊤

(
ψ

(1)
1,r +

p∑
j=1

ψ
(j+1)
j+1,r

)
,

where

ξ(s)s,r =

rlT+(r−1)sT∑
t=(r−1)(lT+sT )+1

W t
1,s, ζ(s)s,r =

r(lT+sT )∑
t=rlT+(r−1)sT+1

W t
1,s, ψ(s)

s,r =
T∑

t=kT (lT+sT )+1

W t
1,s

for s ∈ {1, · · · , p+ 1}. By applying the proposition 2.7 of Fan and Yao (2003), we have

kn∑
r=1

ζ(s)s,r = op(1) and ψ(s)
s,r = op(1)

directly for s ∈ {1, · · · , p+ 1}. Hence,

ST = a⊤
kT∑
r=1

ξ
(1)
1,r + a⊤

p∑
j=1

kT∑
r=1

ξ
(j+1)
j+1,r + op(1) ≡ TT + op(1).

Similarly, we can partition TT into 2 parts via truncation. Define

ξ(s)Ls,r =

rlT+(r−1)sT∑
t=(r−1)(lT+sT )+1

W t
1,sI(∥W t

1,s∥2 ≤ L), ξ(s)Rs,r =

rlT+(r−1)sT∑
t=(r−1)(lT+sT )+1

W t
1,sI(∥W t

1,s∥2 > L)
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for a fixed positive constant L and s ∈ {1, · · · , p+ 1}. Then

TT = a⊤

(
kT∑
r=1

ξ
(1)L
1,r +

p∑
j=1

kT∑
r=1

ξ
(j+1)L
j+1,r

)
+ a⊤

(
kT∑
r=1

ξ
(1)R
1,r +

p∑
j=1

kT∑
r=1

ξ
(j+1)R
j+1,r

)
≡ TL

T + TR
T .

Similar to (AE 5), we have WL
1,s and W

R
1,s for s ∈ {1, · · · , p+ 1}. Let

Γ∗L
z = D−1

T

∫
H(K2(v), v2K2(v))ℓL1 ℓ

L⊤
1 dFX,Z(x, z + hv)

where the vector ℓL1 = I(|ℓ1| ≤ L). Then Γ∗L
z → Γ∗

z as L→ ∞ and V ar
(
TL
T /
√
a⊤Γ∗L

z a
)
→

1 as T → ∞. In the same vein, we can show that Γ∗R
z → 0 as L→ ∞ and V ar

(
TR
T /
√

a⊤Γ∗R
z a
)
→

1 as T → ∞. Define

ΥT =

∣∣∣∣∣E exp

(
it(TT − a⊤DTΞ

∗
z)√

a⊤Γ∗
za

)
− exp

(
−t

2

2

)∣∣∣∣∣ ,
where i =

√
−1. Note that

ΥT ≤ E

∣∣∣∣∣exp
(
it(TL

T − a⊤DTΞ
∗L
z )√

a⊤Γ∗
za

)[
exp

(
it(TR

T − a⊤DTΞ
∗R
z )√

a⊤Γ∗
za

)
− 1

]∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
E exp

(
it(TL

T − a⊤DTΞ
∗L
z )√

a⊤Γ∗
za

)
−

kT∏
r=1

E exp


ita⊤

(
ξ
(1)L
1,r +

p∑
j=1

ξ
(j+1)L
j+1,r − 1

kT
DTΞ

∗L
z

)
√
a⊤Γ∗

za


∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣
kT∏
r=1

E exp


ita⊤

(
ξ
(1)L
1,r +

p∑
j=1

ξ
(j+1)L
j+1,r − 1

kT
DTΞ

∗L
z

)
√

a⊤Γ∗
za

− exp

(
−t

2

2

a⊤Γ∗L
z a

a⊤Γ∗
za

)∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣exp(−t22 a⊤Γ∗L
z a

a⊤Γ∗
za

)
− exp

(
−t

2

2

)∣∣∣∣ .
For the first term on the right-hand side of the expression above, we can obtain its bound

E

(∣∣∣∣∣exp
(
it
(
TR
T − a⊤DTΞ

∗R
z

)√
a⊤Γ∗

za

)
− 1

∣∣∣∣∣
)

by the property of characteristic function, and the upper bound may tend to zero by
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choosing a large enough L. The last term may also have the same result by choosing

a large L as well. The upper bound of the second term is given as 16(kT − 1)α(sT ) by

proposition 2.6 of Fan and Yao (2003). Then, the asymptotic normality follows from the

statement that the third term converges to zero, and we can express this term as

kT∏
r=1

E exp


ita⊤

(
ξ
(1)L
1,r +

p∑
j=1

ξ
(j+1)L
j+1,r − 1

kT
DTΞ

∗L
z

)
√

a⊤Γ∗
za

− exp

(
−t

2

2

a⊤Γ∗L
z a

a⊤Γ∗
za

)

= E exp


ita⊤

kn∑
j=1

kT∑
r=1

(
ξ
(1)L
1,r +

p∑
j=1

ξ
(j+1)L
j+1,r − 1

kT
DTΞ

∗L
z

)
√
a⊤Γ∗

za

− exp

(
−t

2

2

a⊤Γ∗L
z a

a⊤Γ∗
za

)

= E exp

[
it
(
TL
T − a⊤DTΞ

∗L
z

)√
a⊤Γ∗

za

]
− exp

(
−t

2

2

a⊤Γ∗L
z a

a⊤Γ∗
za

)
.

Now it suffices to show that TL
T −a⊤DTΞ

∗L
z

d−→ N
(
0, a⊤Γ∗L

z a
)
while treating

{
ξ
(s)L
s,r

}
as

a sequence of independent random variables. It follows from Theorem 2.20 of Fan and

Yao (2003) that, for any given ϵ > 0, the Lindberg condition

lim
kT→∞

1

a⊤Γ∗L
z a

kT∑
j=1

E
(
ϱ⊤j ϱjI

(∣∣ϱ⊤j ϱj∣∣ > ϵ
√

a⊤Γ∗L
z a
))

→ 0,

where ϱj = a⊤

(
ξ
(1)L
1,r +

p∑
j=1

ξ
(j+1)L
j+1,r − 1

kT
DTΞ

∗L
z

)
. Therefore, combining the results of W1

and W2, we finish the proof of the theorem.

A4 Proof of Theorem 3

Note that the function Lt (η̂) = Lt

(
η̂; F̂X|z(xt)

)
, then the GLRT statistic can be written

as

MT =
T∑
t=1

Lt

(
η̂†(Zt)

)
−

T∑
t=1

Lt

(
η̃†(Zt)

)
=

T∑
t=1

[
Lt

(
η̂†(Zt)

)
− Lt

(
η†(Zt)

)]
−

T∑
t=1

[
Lt

(
η̃†(Zt)

)
− Lt

(
η†(Zt)

)]
≡ M1T −M2T .
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The second term M2T is the canonical likelihood ratio statistic and it has an asymptotic

chi-quare distribution, then we need to investigate the behavior of the first term M1T .

Applying the Taylor’s expansion to Lt (η̂(Zt)) around the point η(Zt), then we have

M1T =
T∑
t=1

[
Lt

(
η̂†(Zt)

)
− Lt

(
η†(Zt)

)]
≈

T∑
t=1

ℓ⊤1

(
η̂†(Zt), Û(Zt)

)
H(1, Zt − Zs)

(
η̂†(Zt)− η†(Zt)

)
Kh(Zt − Zs).

By Theorem 2, it is equivalent to establish the asymptotic distribution of the term

M̃1T =
1

T 2

T∑
t=1

T∑
s=1

ℓ⊤1

(
η̂†(Zt), Û(Zt)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
×

H

(
K(

Zt − Zs

h
),
Zt − Zs

h
K(

Zt − Zs

h
)

)
H(1, Zt − Zs)ℓ1

(
η̂†(Zs), Û(Zs)

)
×

Kh(Zt − Zs)

(
h2 +

1√
Th

)
=

1

T 2

T∑
t=1

T∑
s=1

ℓ⊤1

(
η̂†(Zt), Û(Zt)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
×

H
(
h, (Zt − Zs)

2
)
ℓ1

(
η̂†(Zs), Û(Zs)

)
K2

(
Zt − Zs

h

)(
1 +

1√
Th5

)
= M̃1

1T + M̃2
1T ,

where

M̃1
1T =

1

T

T∑
t=1

ℓ⊤1

(
η̂†(Zt), Û(Zt)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
×

H (h, 0) ℓ1

(
η̂†(Zt), Û(Zt)

)
K2 (0)

(
1 +

1√
Th5

)
,

and

M̃2
1T =

2

T (T − 1)

∑
s<t

ℓ⊤1

(
η̂†(Zt), Û(Zt)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
×

H
(
h, (Zt − Zs)

2
)
ℓ1

(
η̂†(Zs), Û(Zs)

)
K2

(
Zt − Zs

h

)(
1 +

1√
Th5

)
≡ 2

T (T − 1)

∑
s<t

M̃(Zt, Zs).
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For the term M̃1
1T , we further have it converges to

µT = 1⊤
4d†E

[
ℓ1
(
η†(Z),U(Z)

)
ℓ⊤1
(
η†(Z),U (Z)

)]
H (h, 0)×

E−1
[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z),U(Z)))
]
14d†K

2 (0)

(
1 +

1√
Th5

)

by Slutsky’s theorem.

To establish the asymptotic distribution of the U-statistic M̃2
1T , we apply a general

Central Limit Theorem (CLT) from Fan and Li (1999) for dependent observations. It is

clear that E
(
M̃2

1T

)
= E

(
E
(
M̃2

1T

)
|Zt

)
= 0 and the covariate is α-mixing process. In

order to construct large and small blocks, we follow Fan and Li (1999) and define the

parameters l and m as l = [T
1
4 ] and m = o(l), where l and m represent the number

of elements in the large and small blocks, respectively. Without loss of generality, we

take m = o(h−
1
2 ), then the value of m also diverges to infinity as T goes to infinity. Let{

Z̃t

}T

t=1
be a sequence of independent and identically distributed variables which share

the same marginal distribution as that of {Zt}Tt=1, and then we have

E
(
M̃2(Z̃t, Z̃s)

)
= E

{[
ℓ⊤1

(
η̂†(Z̃t), Û(Z̃t)

)
E−1

[
H(K(V ), V 2K(V ))(−2ℓ2(η

†(Z̃),U(Z̃)))
]
×

H
(
h, (Z̃t − Z̃s)

2
)
ℓ1

(
η̂†(Z̃s), Û(Z̃s)

)
K2

(
Z̃t − Z̃s

h

)(
1 +

1√
Th5

)]2}
.

Specifically, when k ≤ 2d†, it follows

∫ [
ℓ1(k)

(
η̂†(Z̃t), Û(Z̃t)

)
ℓ1(k)

(
η̂†(Z̃s), Û(Z̃s)

)
hK2

(
Z̃t − Z̃s

h

)(
1 +

1√
Th5

)]2
×

fX,Z̃t,Z̃s
(X, Z̃t, Z̃s)dZ̃tdZ̃sdX

=

∫ [
ℓ1(k)

(
η̂†(Z̃s + hY ), Û(Z̃s + hY )

)
ℓ1(k)

(
η̂†(Z̃s), Û(Z̃s)

)
hK2 (Y )

(
1 +

1√
Th5

)]2
×

fX,Z̃s+hY,Z̃s
(X, Z̃s + hY, Z̃s)hdZ̃sdY dX

= O
(
h3
)
,

where hY = Z̃t−Z̃s and ℓ1(k)

(
η̂†(Z̃s), Û(Z̃s)

)
is the kth element of vector ℓ1

(
η̂†(Z̃s), Û(Z̃s)

)
.
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And when k > 2d†, we have

∫ [
ℓ1(k)

(
η̂†(Z̃t), Û(Z̃t)

)
ℓ1(k)

(
η̂†(Z̃s), Û(Z̃s)

)
(Z̃t − Z̃s)

2K2

(
Z̃t − Z̃s

h

)(
1 +

1√
Th5

)]2
×

fX,Z̃t,Z̃s
(X, Z̃t, Z̃s)dZ̃tdZ̃sdX

=

∫ [
ℓ1(k)

(
η̂†(Z̃s + hY ), Û(Z̃s + hY )

)
ℓ1(k)

(
η̂†(Z̃s), Û(Z̃s)

)
h2Y 2K2 (Y )

(
1 +

1√
Th5

)]2
×

fX,Z̃s+hY,Z̃s
(X, Z̃s + hY, Z̃s)hdZ̃sdY dX

= O
(
h5
)
.

Next, we focus on the fourth order of M̃(Z̃t, Z̃s), and we then obtain the orders of

E
(
M̃2(Z̃t, Z̃s)

)
are equal to O(h5) when k ≤ 2d† and O(h9) when k > 2d†, respectively.

Further, for the term

∫
E2
[
M̃(Z1, Zt)M̃(Z1, Zs)|Zt, Zs

]
fZt,Zs(Zt, Zs)dZtdZs, when

k ≤ 2d†, its order is equal to

∫ {∫
ℓ21(k)

(
η̂†(Z1), Û (Z1)

)
ℓ1(k)

(
η̂†(Zt), Û(Zt)

)
K2

(
Z1 − Zt

h

)
ℓ1(k)

(
η̂†(Zs), Û(Zs)

)
×

K2

(
Z1 − Zs

h

)
h2
(
1 +

1√
Th5

)2

fX,Z1|Zt,Zs(X, Z1)dZ1dX

}2

fZt,Zs(Zt, Zs)dZtdZs

=

∫ {∫
ℓ21(k)

(
η̂†(Zt + hỸ ), Û(Zt + hỸ )

)
ℓ1(k)

(
η̂†(Zt), Û(Zt)

)
ℓ1(k)

(
η̂†(Zs), Û(Zs)

)
×

K2
(
Ỹ
)
K2

(
Zt − Zs

h
+ Ỹ

)
h3
(
1 +

1√
Th5

)2

fX,Zt+hỸ |Zt,Zs
(X, Zt + hỸ )dỸ dX

}2

×

fZt,Zs(Zt, Zs)dZtdZs

=

∫ {∫
ℓ21(k)

(
η̂†(Zs + hȲ + hỸ ), Û(Zs + hȲ + hỸ )

)
ℓ1(k)

(
η̂†(Zs + hȲ ), Û(Zs + hȲ )

)
×

ℓ1(k)

(
η̂†(Zs), Û(Zs)

)
K2
(
Ỹ
)
K2
(
Ȳ + Ỹ

)
h3
(
1 +

1√
Th5

)2

×

fX,Zs+hȲ+hỸ |Ȳ ,Zs
(X, Zs + hȲ + hỸ )dỸ dX

}2

hfZs+hȲ ,Zs
(Zs + hȲ , Zs)dȲ dZs

= O(h7),

where hỸ = Z1 −Zt and hȲ = Zt −Zs. Similarly, its order equals O(h11) when k > 2d†.
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Moreover,

max
t̸=s

∫
E2
[
M̃(Z1, Zt)M̃(Z1, Zs)|Zt, Zs

]
fZt,Zs(Zt, Zs)dZtdZs ×

m4

E2
(
M̃2(Z̃t, Z̃s)

) = O(
√
h).

Therefore, we know

M̃2
1T

d−→ N

(
0,

2

T 2
E
(
M̃2(Z̃t, Z̃s)

))
.

Since η̃†(Zt) is the maximum likelihood estimator under the null hypothesis, the term

M2T vanishes compared to M1T under the null hypothesis, and M̃(Z̃t, Z̃s) converges to

M(Z̃t, Z̃s), we then have

T 2µT

E
(
M2(Z̃t, Z̃s)

)MT
d−→ N

 (TµT )
2

E
(
M2(Z̃t, Z̃s)

) , 2(TµT )
2

E
(
M2(Z̃t, Z̃s)

)


by the Theorem 2.1 in Fan and Li (1999). Hence, we obtain

T 2µT

E
(
M2(Z̃t, Z̃s)

)MT
d−→ χ2

 (TµT )
2

E
(
M2(Z̃t, Z̃s)

)
 .

The stated conclusion follows.
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