
Universal theory of equilibrium in models with complementarities

By

Tarun Sabarwal∗

Abstract

We develop a universal theory of equilibrium for models with complementarities on partially ordered sets
(posets), unifying lattice-based theories used widely in economics and other disciplines and poset-based the-
ories useful to study stochastic systems in many settings. Our theorems for extremal equilibria, structure of
equilibrium set, and monotone comparative statics (MCS) of equilibrium generalize both types of theories
in a unified manner. This extends to new theorems for MCS of the infimum equilibrium set, supremum
equilibrium set, full equilibrium set, and isotone equilibrium set, and to a universal theory of order approx-
imation of equilibria as well. As an application, we show new, deeper structural features of equilibrium in
the canonical isotone stochastic dynamic economy with correlated shocks due to Hopenhayn and Prescott
(1992).
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1 Introduction

We develop a universal theory of equilibrium for models with complementarities on partially ordered

sets (posets), unifying lattice-based theories used widely in economics and other disciplines and

poset-based theories useful to study stochastic systems in many settings.

Our theory includes as a special case Sabarwal (2023b)’s general theory of equilibrium in models

with complementarities, which unifies and generalizes the theory of equilibrium in lattice-based

models prevalent in the literature, such as Tarski (1955), Topkis (1978), Topkis (1979), Milgrom

and Roberts (1990), Shannon (1990), Vives (1990), Milgrom and Shannon (1994), Zhou (1994),

Quah and Strulovici (2009), Prokopovych and Yannelis (2017), Che, Kim, and Kojima (2021), and

others.
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Our theory includes large classes of stochastic phenomena typically excluded from lattice-based

models, because the space of measures on a poset is not a lattice in general, but is a poset in the

stochastic order (also known as first order stochastic dominance). Our results unify the study of

equilibrium in stochastic systems with complementarities, which include isotone kernel systems,

stochastic dynamical systems, stochastic dynamic economies, and Markov decision processes, ex-

panding the scope of the theory greatly.

As a concrete example, consider the model with complementarities in Hopenhayn and Prescott

(1992) based on the canonical stochastic dynamic economy with correlated shocks from Stokey

and Lucas (1989). Let X ⊆ Rℓ be a convex Borel set of actions, Z ⊆ Rk a compact set of

realizations of uncertainty, q the structure of serially correlated shocks, Γ : X×Z ⇒ X a feasibility

correspondence, A the graph of Γ, F : A → R a one-period return function, β ∈ (0, 1) the constant

discount rate. Using standard assumptions, let v : X × Z → R be the unique value function

associated with this problem, given by v(x, z) = supx′∈Γ(x,z){F (x′, x, z)+β
∫
v(x′, z′)q(z, dz′)}, and

γ(x, z) = {x′ ∈ Γ(x, z) | v(x, z) = F (x′, x, z) + β
∫
v(x′, z′)q(z, dz′)} the policy correspondence. A

policy g (a measurable selection from γ) and serially correlated shocks q determine an associated

stochastic kernel p on the state space X×Z which governs the stochastic evolution of the economy

over time. An equilibrium in a Stokey-Lucas economy is a pair (g, µ) where g is a measurable

selection from γ and µ is a stationary distribution of the associated stochastic process governed

by p. Equivalently, µ is a fixed point of the adjoint Tp of p on the set of probability measures on

X × Z. When γ has more than one measurable selection, there are multiple possible evolutions of

the economy giving rise to a system of stochastic processes. Letting G be the set of all measurable

selections from γ and X be the set of probability measures on X × Z, the equilibrium set is

E = {(g, µ) ∈ G × X | µ = Tp(µ)}. Complementarities are included as follows. Using the natural

partial order on Rn, X is subcomplete, F is supermodular on X ×X for each z and has increasing

differences in (x′, x; z), Γ has strict complementarity, graph of Γ(·, ·, z) is a sublattice for each z,

Γ is ascending, and q is an isotone kernel. With these assumptions, an HP model is given by

(X,Z, q,Γ, F, β). Hopenhayn and Prescott (1992) show that γ has an isotone selection that is the

lowest policy g (g is an isotone function and ∀g ∈ G, g ⪯ g, pointwise) and an isotone highest

policy g, and use these to prove that an equilibrium always exists in their model. They show that

several foundational problems such as investment theory, stochastic growth theory, and industry

equilibrium may be modeled using their framework.
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We show that the HP model is a special case of our formulation of a stochastic dynamic economy.

There are many questions of interest in addition to existence of equilibrium in the HP model.

Consider an isotone smallest policy g (g is an isotone function and ∀g ∈ G, g ⪯ g, pointwise) or an

isotone largest policy g, a typical feature of models with complementarities. What does this imply

for the structure of the equilibrium set E beyond existence of equilibrium? How does E relate to

the infimum equilibrium set E = {(g, µ) ∈ G × X | µ = Tp(µ)} or the supremum equilibrium set

E = {(g, µ) ∈ G × X | µ = Tp(µ)}? What do E or E tell us about an arbitrary equilibrium in E?

What is the structure of the set of isotone equilibria, E iso = {(g, µ) ∈ E | g is isotone}?

Additional questions arise about how equilibria change when parameters of the economy change.

We include parameters as a poset (T,⪯T ), leading to the parametric policy correspondence (x, z, t) 7→

γ(x, z, t) and the correspondence t 7→ G(t), where G(t) is the set of measurable selections from the

t-section of γ. The equilibrium set at t is E(t) = {(g, µ) ∈ G(t)×X | µ = Tp(µ)}, where p is derived

from g ∈ G(t) and q(t), and the equilibrium correspondence is the mapping t 7→ E(t). Similarly,

there is the infimum equilibrium correspondence, t 7→ E(t), the supremum equilibrium correspon-

dence, t 7→ E(t), and the isotone equilibrium correspondence, t 7→ E iso(t). Hopenhayn and Prescott

(1992) show that a higher shock (in terms of stochastic order) implies that the smallest and largest

policies move up. What are the implications of the higher policies for the entire steady state distri-

bution at the higher shocks? More generally, what are the impacts of parametric isotone selections

from γ on selections from the different equilibrium correspondences? When do we have monotone

comparative statics (MCS) of equilibrium (an isotone selection from the equilibrium correspon-

dence)? Do we have MCS in isotone equilibria (an isotone selection from the isotone equilibrium

correspondence)? For parameters t̂ ⪯T t̃, how do the equilibrium sets E(t̂), E(t̂), E(t̂), and E iso(t̂)

relate to E(t̃), E(t̃), E(t̃), and E iso(t̃)? Are there natural relations under which we have MCS of

equilibrium correspondences (rather than MCS in terms of selections from correspondences), that

is, when t goes up, the entire corresponding equilibrium set goes up as well?

We provide widely applicable answers to these questions by abstracting core features shared

by all these models and showing their common implications for the theory of equilibrium. For

this purpose, we define a poset model as (X,⪯X ,Φ) where (X,⪯X) is a poset and Φ : X ⇒ X

is a correspondence on X. An equilibrium is a fixed point of Φ, and the equilibrium set of the

model is E(Φ) = {x ∈ X | x ∈ Φ(x)}. A universal model with complementarities is a poset model

in which (X,⪯X) is either chain sup-complete with smallest element or chain inf-complete with
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largest element and Φ has an isotone selection. Parameters are included as a poset (T,⪯T ) along

with a correspondence Φ : X × T ⇒ X, and the equilibrium set at t is the fixed point set of the

t-section of Φ, denoted E(Φt). The equilibrium correspondence is E : T ⇒ X, t 7→ E(Φt).

As a first contribution, we show that both the variety of situations studied in Sabarwal (2023b)

and the variety of stochastic systems included here are unified in terms of the same properties on

their associated poset models. Sabarwal (2023b) shows that the theory of equilibrium in lattice-

based models is unified by studying their associated lattice models (X,⪯X ,Φ), where (X,⪯X) is a

nonempty complete lattice and Φ has an isotone, isotone infimum, or isotone supremum selection.

These are special cases of poset models. We show that all the stochastic systems studied here are

unified in terms of the same properties on their associated measure theory model (X ,⪯s,Φ), a

poset model in which X is the set of probability measures on an underlying state space, ⪯s is the

stochastic order on measures, and Φ is the adjoint correspondence associated with the stochastic

system. Therefore, the theory of equilibrium in all these classes of models is unified by the study

of the associated poset models with these common properties. The study of stochastic systems

is more complex because isotone properties are affected by the additional interdependence among

the multitude of policy functions, the kernels they induce, their effects on the associated adjoint

correspondence, and the associated steady state distributions. Moreover, isotone equilibria arise

naturally in stochastic systems, opening up additional avenues of study. Including parameters

compounds all these effects.

As a second contribution, we show that the main benefits of different models with complemen-

tarities such as existence of equilibrium, existence of extremal equilibrium, and MCS of extremal

equilibria generalize to universal models in a natural manner using only isotone, isotone infimum,

and isotone supremum selections from Φ. In addition, stochastic systems have MCS of isotone

equilibrium. No other conditions are imposed on Φ. The images Φ(x) are not assumed to have

any additional structure such as chain inf-complete, chain sup-complete, complete lattice, compact

or convex. The correspondence Φ is not assumed to have any continuity properties, maintaining a

benefit of monotone methods in studying models with discontinuities or non-convexities where the

use of standard tools from topology and convex analysis may be limited. We allow for cases not

covered by Smithson (1971), using Abian and Brown (1961) in that case. We strengthen results

for existence of maximal or minimal equilibria in Li (1984) and Che, Kim, and Kojima (2021) by

proving existence of largest or smallest equilibria (without using continuity conditions on Φ), and
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strengthening a result due to Markowsky (1976) as well.

As a third contribution, we provide conditions under which the full equilibrium set in a poset

model is a chain sup-complete set with smallest equilibrium, a chain inf-complete set with largest

equilibrium, or a chain complete set with extremal equilibria. Our theorem goes beyond existing

results for structure of the fixed point set of correspondences on posets. Markowsky (1976)’s

result for isotone functions is a special case when Φ is singleton valued. Our theorem also goes

beyond existence of maximal elements and inductive set structure of the fixed point set in chain

sup-complete posets in Li (1984), and goes beyond existence of maximal or minimal fixed points in

Che, Kim, and Kojima (2021). Our theorem also generalizes the complete lattice structure theorem

for fixed points of correspondences in lattice models proved in Sabarwal (2023b), which, in turn,

generalized the well-known lattice-based theorems proved in Tarski (1955), Vives (1990), and Zhou

(1994). We use this theorem to prove that the set of isotone equilibria in every HP model is chain

complete, a new result for the HP model.

As a fourth contribution, we define the star chain complete set order, a new relation on nonempty

subsets of a poset that is helpful to compare equilibrium sets in poset models, including stochastic

systems. For nonempty A,B ⊆ X, A is lower than B in the star chain complete set order, denoted

A ⊑∗cc B, if for every nonempty chain C ⊆ A, supB C exists (in B), and for every nonempty chain

C ⊆ B, infAC exists (in A). To define supremum and infimum for arbitrary subsets of a poset,

we follow Sabarwal (2023b): For nonempty subsets D and E of poset X, supD E is an element of

D that is an upper bound of E and is the smallest upper bound of E among elements of D, and

infD E is defined similarly.

As a fifth contribution, we provide a universal theory of order approximation of equilibria using

the star chain complete set order. We prove that in every universal model (X,⪯X ,Φ) with an

isotone infimum selection Φ, it must be that E(Φ) ⊑∗cc E(Φ). Therefore, for every nonempty chain

C ⊆ E(Φ), infE(Φ)C ∈ E(Φ). In other words, if a nonempty chain C of equilibria formalizes a

specialized equilibrium notion of interest, it is uniquely and tightly approximated from below in

an order theoretic manner using equilibria from the infimum selection. In the special case that

C = {e∗} is a singleton, this proves that every equilibrium e∗ ∈ E(Φ) is uniquely and tightly

order approximated from below by an equilibrium using the infimum selection. This is particularly

useful if the infimum selection is easier to work with or has some useful computational, dynamic, or

theoretical properties. Our result requires very little structure for the universal model (only isotone
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infimum selection). Similarly, in every universal isotone supremum model, E(Φ) ⊑∗cc E(Φ), and

in particular, every equilibrium e∗ ∈ E(Φ) is uniquely and tightly order approximated from above

by an equilibrium using the supremum selection. Moreover, these results apply to every stochastic

system. This implies the following new results for the HP model. In every HP model, for every

equilibrium (g, µ) in the model, there is a unique equilibrium in E (set of equilibria associated with

the smallest policy g) closest to it from below and a unique equilibrium in E (equilibria associated

with g) closest to it from above, from among all equilibria in those respective sets.

As a sixth contribution, we use the star chain complete order to prove MCS of entire equi-

librium sets associated with different equilibrium correspondences. We prove that every universal

parametric isotone infimum model has MCS of the infimum equilibrium set in star chain complete

set order (that is, for every t̂, t̃ ∈ T, t̂ ⪯T t̃ ⇒ E(Φt̂) ⊑∗cc E(Φt̃)). This implies that ∀e∗ ∈ E(Φt̂),

∃ unique ẽ ∈ E(Φt̃) higher than e∗ and closest to it among all equilibria in E(Φt̃), and ∀e∗ ∈ E(Φt̃),

∃ unique ê ∈ E(Φt̂) lower than e∗ and closest to it among all equilibria in E(Φt̂). Similarly, every

universal parametric isotone supremum model has MCS of the supremum equilibrium set in star

chain complete set order (t̂ ⪯T t̃ ⇒ E(Φt̂) ⊑∗cc E(Φt̃)). Moreover, if the poset model at every t

satisfies our conditions to have a nonempty chain complete poset of equilibria, then the model has

MCS of the full equilibrium set in star chain complete set order (t̂ ⪯T t̃ ⇒ E(Φt̂) ⊑∗cc E(Φt̃)).

This implies that ∀e∗ ∈ E(Φt̂), ∃ unique ẽ ∈ E(Φt̃) higher than e∗ and closest to it among all

equilibria at t̃, and ∀e∗ ∈ E(Φt̃), ∃ unique ê ∈ E(Φt̂) lower than e∗ and closest to it among all

equilibria at t̂. In the special case when Φ is singleton valued, these conditions are satisfied in

every universal parametric model with complementarities. Therefore, when Φ is singleton valued,

every universal parametric model has MCS of the full equilibrium set in star chain complete set

order. All these results apply to every stochastic system as well. Moreover, under similar condi-

tions, every stochastic system has MCS of the full isotone equilibrium set in star chain complete set

order (t̂ ⪯T t̃ ⇒ E iso(t̂) ⊑∗cc E iso(t̃)). Furthermore, we prove that every HP model has MCS of the

infimum equilibrium set, supremum equilibrium set and the full isotone equilibrium set in star chain

complete set order. In particular, ∀(g∗, µ∗) ∈ E(t̂) that is isotone, ∃ unique (g̃, µ̃) ∈ E(t̃) that is

isotone, higher than (g∗, µ∗) and closest to it among all isotone equilibria at t̃, and ∀(g∗, µ∗) ∈ E(t̃)

that is isotone, ∃ unique (ĝ, µ̂) ∈ E(t̂) that is isotone, lower than (g∗, µ∗) and closest to it among

all isotone equilibria at t̂. These results can help in policy analysis by proving existence of order-

nearest equilibria before or after a policy change, not only in terms of optimal actions g but also

for the entire steady state distribution µ in the economy. These results are not true for the strong
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set order (or the uniform set order) even in the canonical standard cases, as shown in Sabarwal

(2023b).

As a seventh contribution, we focus on the theory of equilibrium in universal models with

complementarities. That is, we take the underlying behavioral description as given, with minimal

conditions consistent with our core understanding of interdependent situations with complementar-

ities, and investigate systemic influences and equilibrium impact of such behavior. The underlying

behavior can be the solution to an optimization problem, as is often the case, but we do not require

that in the general case. Anything that is an accurate description of the situation being studied is

permissible as long as it satisfies our weak conditions. This has several benefits. First, it provides

unified, off-the-shelf theorems that apply regardless of the manner in which individual choices are

made as long as they satisfy weak conditions. Second, our conditions are naturally satisfied in many

models, they are intuitively easy to check, and they allow for new situations. Third, it separates the

study of optimization from the theory of equilibrium. This means that our results can guide new

research lines to discover more general behavioral properties that do not fall under the purview of

the existing optimization models with complementarities but satisfy our weaker conditions. Fourth,

our study isolates salient properties of equilibrium that unify and generalize important and large

classes of applications in lattice-based models and in stochastic systems. A hallmark of the anal-

ysis here is that we identify and prove the role that particular isotone selections play in a unified

theory of equilibrium in a transparent manner using deeper and more foundational order theoretic

arguments.

We do not make any topological assumptions in developing the universal theory of equilib-

rium, maintaining a benefit of monotone methods in studying models with discontinuities or non-

convexities where the use of standard tools from topology and convex analysis may be limited.

A strand of the theory considers monotone sequences that arise from iterating the smallest best

response and using particular versions of continuity, shows that such sequences converge to the

smallest equilibrium. Examples can be seen in Milgrom and Roberts (1990), Milgrom and Shannon

(1994), Amir (1996), Echenique (2002), Roy and Sabarwal (2012), Balbus, Reffett, and Woźny

(2014), Sabarwal (2021), Balbus, Dziewulski, Reffett, and Woźny (2022), and others. Balbus, Ol-

szewski, Reffett, and Woźny (2023) study strong set order increasing (respectively, strongly mono-

tone) upper order hemicontinuous correspondences on complete (respectively, σ-complete) lattices.

Sabarwal (2023a) studies the poset-based theory. Our results may open the door to study addi-
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tional models with complementarities, for example directional MCS as in Quah (2007), Barthel and

Sabarwal (2018), and Paul and Sabarwal (2018), or dynamic supermodular games as in Echenique

(2004) and Feng and Sabarwal (2020).

The paper is organized as follows. Section 2 defines universal models with complementarities,

including a variety of stochastic systems, and proves the main results for existence of equilibrium,

existence of extremal equilibrium, and structure of the equilibrium set. Section 3 formulates the star

chain complete set order, proves its properties, provides comparisons among different set orders, and

provides relations among the infimum equilibrium set, the supremum equilibrium set, and the full

equilibrium set using this relation. It also formalizes the theory of order approximation of equilibria

in universal models. Section 4 defines universal parametric models with complementarities, proves

MCS of particular equilibrium selections and includes theorems about MCS of different equilibrium

correspondences. Section 5 concludes.

2 Universal models with complementarities

A partial order on a set X is a binary relation ⪯ that is reflexive, antisymmetric, and transitive.

A partially ordered set , or poset , is a set X along with a partial order ⪯ on it, denoted (X,⪯).

For a poset (X,⪯) and subset A of X, the relative partial order on A is the usual one: for every

x, x′ ∈ A, x ⪯A x′ ⇔ x ⪯ x′, and in this case, (A,⪯A) is a poset in the relative partial order.

For posets (X,⪯X) and (Y,⪯Y ), the Cartesian product X × Y is a poset under the product partial

order given by (x, y) ⪯ (x′, y′) ⇔ x ⪯X x′ and y ⪯Y y′. For posets (X,⪯X) and (Y,⪯Y ), a function

f : X → Y is isotone if for every x̂ and x̃ in X, x̂ ⪯X x̃ =⇒ f(x̂) ⪯Y f(x̃). The partial order

on the set of all functions from X to poset (Y,⪯Y ) is the product (or pointwise) partial order:

f ⪯ g ⇔ (∀x) f(x) ⪯Y g(x).

Two points x, y in a poset (X,⪯) are comparable (or ordered), if x ⪯ y or y ⪯ x. In this case,

we say that x is lower than y when x ⪯ y, or x is higher than y when y ⪯ x. A chain is a subset

C ⊆ X in which every pair of points is comparable. The empty set is trivially a chain. Points x, y

are strictly comparable (or strictly ordered), if they are comparable and x ̸= y. In this case, we

say x is strictly lower than y, denoted x ≺ y, or x is strictly higher than y, denoted y ≺ x, as the

case may be. Two points x, y are incomparable (or noncomparable, or unordered), if they are not

comparable, that is, x ̸⪯ y and y ̸⪯ x.
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Let X be a poset and E ⊆ X. An upper bound for E is an element x ∈ X such that for every

e ∈ E, e ⪯ x. The sup of E in X, denoted supX E, is an element e ∈ X such that (1) e is an

upper bound for E and (2) for every x ∈ X that is an upper bound for E, e ⪯ x. A lower bound

for E is an element x ∈ X such that for every e ∈ E, x ⪯ e. The inf of E in X, denoted infX E,

is an element e ∈ X such that (1) e is a lower bound for E and (2) for every x ∈ X that is a lower

bound for E, x ⪯ e. When convenient, we denote x = infX X and x = supX X.

A poset (X,⪯) is chain sup-complete (respectively, inf-complete) if for every nonempty

chain C ⊆ X, supX C ∈ X (respectively, infX C ∈ X). A poset X is chain complete if it is chain

inf-complete and chain sup-complete.

A lattice is a poset (X,⪯) in which for every x, y ∈ X,x ∧ y := infX{x, y} ∈ X and x ∨ y :=

supX{x, y} ∈ X. Subset A of poset (X,⪯) with the relative partial order is a complete lattice if for

every nonempty E ⊆ A, infAE ∈ A and supAE ∈ A. It follows that if A is a nonempty complete

lattice, then infAA ∈ A and supAA ∈ A. Subset A of poset X is subcomplete if for every nonempty

B ⊆ A, infX B ∈ A and supX B ∈ A.

Let A,B be subsets of poset X. A is lower than B in the strong set order (SSO),

denoted A ⊑s B, if ∀a ∈ A, ∀b ∈ B, infX{x, y} ∈ A and supX{x, y} ∈ B. A is lower than

B in the weak set order , A ⊑w B, if (1) ∀x ∈ A, ∃y ∈ B, x ⪯ y, and (2) ∀y ∈ B, ∃x ∈ A,

x ⪯ y. If condition (1) (respectively, (2)) is satisfied, we say that A is lower than B in the upper

(respectively, lower) weak set order, A ⊑uw B (respectively, A ⊑lw B). A is lower than B in the

uniform set order , A ⊑u B, if ∀x ∈ A, ∀y ∈ B, x ⪯ y. It follows immediately that for nonempty

subsets A,B of lattice X, A ⊑u B ⇒ A ⊑s B ⇒ A ⊑w B.

For arbitrary sets X and Y , a correspondence from X to Y , denoted Φ : X ⇒ Y , is a

function from X to the power set of Y , Φ : X → P(Y ). It is nonempty valued if for every x ∈ X,

Φ(x) ̸= ∅. It is singleton valued if for every x in X, Φ(x) is a singleton subset of Y . A function

f : X → Y is viewed as a correspondence that is singleton valued, and conversely (and in this case,

we’ll use either notation without further mention). A selection from correspondence Φ is a function

f : X → Y such that f(x) ∈ Φ(x) for every x ∈ X. For correspondence Φ : X ⇒ X, a point x ∈ X

is a fixed point of Φ if x ∈ Φ(x), and the fixed point set of Φ is E(Φ) = {x ∈ X | x ∈ Φ(x)}.

A poset model is a triple (X,⪯,Φ), where (X,⪯) is a poset and Φ : X ⇒ X is a correspondence.

An equilibrium in the poset model is a fixed point of Φ. The equilibrium set of the poset model

is the fixed point set E(Φ).
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A poset model (X,⪯,Φ) is isotone if Φ has an isotone selection. A poset model (X,⪯,Φ) is

isotone infimum if the infimum selection exists in Φ and is isotone, that is, ∀x ∈ X,Φ(x) :=

infΦ(x)Φ(x) exists and x 7→ Φ(x) is isotone. This is equivalent to Φ is isotone in lower weak

set order (x̂ ⪯X x̃ ⇒ Φ(x̂) ⊑lw Φ(x̃)) and ∀x,Φ(x) exists. The infimum equilibrium set is

E(Φ) = {x ∈ X | x = Φ(x)}. A poset model (X,⪯,Φ) is isotone supremum if the supremum

selection exists in Φ and is isotone, that is, ∀x ∈ X,Φ(x) := supΦ(x)Φ(x) exists and x 7→ Φ(x)

is isotone. This is equivalent to Φ is isotone in upper weak set order and ∀x,Φ(x) exists. The

supremum equilibrium set is E(Φ) = {x ∈ X | x = Φ(x)}. These definitions do not require

Φ(x) to be a complete lattice, or lattice, or chain subcomplete, or chain complete, or to satisfy

any topological properties such as closedness or compactness. (The definitions here use infimum or

supremum over Φ(x) not X. It is easy to check that infΦ(x)Φ(x) exists ⇒ infΦ(x)Φ(x) = infX Φ(x),

and the same holds if infX Φ(x) ∈ Φ(x), and similarly for supremum. Therefore, in these definitions

we can use either version. This is not true more generally: For arbitrary E ⊆ Φ(x), infΦ(x)E exists

̸⇒ infΦ(x)E = infX E, and similarly for supremum. The weaker definition using a subset of X

rather than X over which infimum or supremum is taken is more relevant for this paper, and

therefore, we use infΦ(x)Φ(x) or supΦ(x)Φ(x) to keep the notation consistent with other parts of

the paper where the distinction is important.)

A universal model with complementarities is an isotone poset model (X,⪯,Φ) in which

either X is chain sup-complete with infX X ∈ X, or X is chain inf-complete with supX X ∈ X.

A universal isotone infimum model is an isotone infimum poset model (X,⪯,Φ) in which X

is chain sup-complete with infX X ∈ X. A universal isotone supremum model is an isotone

supremum poset model (X,⪯,Φ) in which X is chain inf-complete with supX X ∈ X.

Example 1 (General model with complementarities). Following Sabarwal (2023b), a general

model with complementarities (or general model) is a poset model (X,⪯,Φ) in which (X,⪯)

is a nonempty complete lattice and Φ : X ⇒ X is a correspondence with an isotone selection.

A nonempty complete lattice is necessarily a chain complete poset with a smallest and a largest

element, and therefore, every general model with complementarities is a universal model with com-

plementarities. A general isotone infimum (respectively, supremum) model is a general

model (X,⪯,Φ) in which the infimum (respectively, supremum) selection exists and is isotone The

class of general models with complementarities is very large. As shown in Sabarwal (2023b), every

Topkis model (Topkis (1978), Topkis (1979)), every Vives model (Vives (1990)), every MR model
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(Milgrom and Roberts (1990), every Zhou model (Zhou (1994)), every generalized MS model (Shan-

non (1990), Milgrom and Shannon (1994)), every CKK model (Che, Kim, and Kojima (2021)), and

every PY model (Prokopovych and Yannelis (2017)) is a general model that is isotone infimum

and/or isotone supremum in a natural manner. Moreover, the class of general models includes

models not covered by any of these standard models.

Example 2 (Measure theory model). Let X be a Polish space with a closed partial order ⪯X and

M(X) be the set of finite measures on the Borel sets of X, denoted B(X). The stochastic order,

⪯s, on M(X) is the usual one: µ ⪯s ν if for every increasing set A ∈ B(X), µ(A) ≤ ν(A). Set

A ⊆ X is increasing if ∀a ∈ A, ∀x ∈ X, a ⪯X x ⇒ x ∈ A. As shown in Kamae, Krengel, and

O’Brien (1977), this is equivalent to
∫
fdµ ≤

∫
fdν for every bounded, isotone, measurable, real-

valued f on X. A measure theory model is (X ,⪯s,Φ), where X ⊆ M(X), ⪯s is the stochastic

order on X , and Φ : X ⇒ X is a correspondence. It follows immediately that every measure theory

model is a poset model. An equilibrium of the measure theory model is a fixed point of Φ. The

equilibrium set of the measure theory model is the set of fixed points of Φ, E(Φ).

The measure theory model defined here is quite general. It includes models that may arise as a

result of optimizing behavior in economic models of constrained optimization where the constraints

are a set of measures or probabilities. It also arises as a result of optimal control for different models

of stochastic dynamics, such as kernel systems, stochastic dynamical systems, stochastic dynamic

economies, and Markov decision processes.

Complementarities in a measure theory model are included as follows. A measure theory model

is isotone if either X is chain sup-complete with infX X ∈ X or X is chain inf-complete with

supX X ∈ X , and Φ has an isotone selection. A measure theory model is isotone infimum if X

is chain sup-complete with infX X ∈ X and Φ has an isotone infimum selection, and it is isotone

supremum if X is chain inf-complete with supX X ∈ X and Φ has an isotone supremum selection.

Example 3 (Kernel systems). A kernel system is a collection (X,⪯X ,B(X),P), where X is a

Polish space, ⪯X is a closed partial order on X, B(X) are the Borel sets of X, and P is a subset

of kernels on X × B(X), denoted P ⊆ ker(X × B(X)). A kernel on X × B(X) is a function p :

X×B(X) → [0, 1] that is measurable in x for every A ∈ B(X), and is a probability measure on B(X)

for every x ∈ X. When convenient, we let p(x) denote the measure p(x, ·). The associated measure

theory model is (X ,⪯s,Φ), where X is the set of probability measures on B(X), ⪯s is stochastic

order, and Φ is the adjoint correspondence for P defined by Φ : X ⇒ X , Φ(µ) = {Tp(µ) | p ∈ P},
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where Tp is the adjoint of p defined by Tp : X → X , µ 7→ Tp(µ), where Tp(µ)(A) =
∫
X p(x,A)dµ(x),

∀A ∈ B(X). An equilibrium of kernel system (X,⪯X ,B(X),P) is a pair (p, µ) such that p ∈ P,

µ ∈ X , and µ = Tp(µ). The equilibrium set is E = {(p, µ) ∈ P ×X | µ = Tp(µ)} with the product

order. Isotone equilibria play an important role in theory and applications. Kernel p is isotone ,

if ∀x̂, x̃ ∈ X, x̂ ⪯X x̃ ⇒ p(x̂) ⪯s p(x̃), where ⪯s is the stochastic order on X . Equilibrium (p, µ) is

isotone if p is isotone. The isotone equilibrium set is E iso = {(p, µ) ∈ E | p is isotone}.

A kernel system with singleton P = {p} is the special case of a (discrete-time) Markov process,

and in this case, an equilibrium is a stationary distribution of the Markov process. We do not

impose uniqueness of equilibrium even in this case. With multiple kernels, a kernel system can be

viewed as a system of Markov processes, and the equilibrium set is the collection of all processes

along with their stationary distributions. We impose no constraint on the mechanism by which the

kernels p ∈ P in a kernel system may arise.

Complementarities are included as follows. The kernel order, ⪯k, on ker(X×B(X)) is defined

as follows: p ⪯k q if ∀x ∈ X, p(x) ⪯s q(x). A kernel system is isotone if either infX X ∈ X or

supX X ∈ X, and there is p ∈ P such that p is isotone. It is isotone infimum if infX X ∈ X

and there is p ∈ P such that p is isotone and ∀p ∈ P, p ⪯k p. The infimum equilibrium

set is E = {(p, µ) ∈ P × X | µ = Tp(µ)}. It is isotone supremum if supX X ∈ X and

there is p ∈ P such that p is isotone and ∀p ∈ P, p ⪯k p. The supremum equilibrium set is

E = {(p, µ) ∈ P × X | µ = Tp(µ)}. No additional conditions (including topological conditions) are

imposed on the structure of P or on kernels p ∈ P.

Example 4 (Stochastic dynamical systems). Many stochastically evolving phenomena including

physical, human, animal, societal, and socioeconomic can be modeled using stochastic dynamics.

An abstract model is formulated as follows. A stochastic dynamical system is a collection

((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), q,G), where S is a Polish space, ⪯S is a closed partial order on S,

B(S) are the Borel sets of S, Z is a Polish space, ⪯Z is a closed partial order on Z, B(Z) are the

Borel sets of Z, q is a kernel on S×B(Z), and G ⊆ mbl(S×Z, S) is a subset of measurable functions

from S×Z to S with the pointwise partial order. At this stage, we impose no additional conditions

(beyond measurability) on policies g ∈ G. We view S as the state space of the dynamical system, Z

as the set of possible realizations of exogenous shocks to the system (or exogenous uncertainty), q

as the state dependent distribution of exogenous shocks, and G as a set of policies or update rules.

For a given policy g ∈ G, the dynamical system evolves as follows. In period t, if the state of the
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system is st and the shock to the system is zt, the state next period is st+1 = g(st, zt). Shocks zt

are state dependent and governed by q(st, ·).

Equilibrium of a stochastic dynamical system is defined by transforming the system into an

associated kernel system, then an associated measure theory system, then studying the equilibrium

behavior of the associated adjoint correspondence and relating it back to the policies in the original

system, as follows. The associated kernel system is (S,⪯S ,B(S),P) with P = {p ∈ ker(S ×

B(S)) | p(s,A) = q(s, [g−1(A)]s), g ∈ G}, where [g−1(A)]s is the s-section of g−1(A), and the

associated measure theory model is (X ,⪯s,Φ), derived as in Example 3. An equilibrium of a

stochastic dynamical system is a pair (g, µ) such that µ = Tp(µ), where p is derived from g as

above, p(s,A) = q(s, [g−1(A)]s). The equilibrium set is E = {(g, µ) ∈ G × X | µ = Tp(µ)} with

the product order. Equilibrium (g, µ) is isotone if g is isotone, and the isotone equilibrium set

is E iso = {(g, µ) ∈ E | g is isotone}.

A stochastic dynamical system with a single policy or update rule G = {g} gives rise to the

Markov process governed by the associated kernel. With multiple policies, a stochastic dynamical

system can have multiple dynamic evolutions based on different policies, thereby generating a

system of Markov processes and each process may have its own collection of stationary distributions.

Complementarities are included as follows. A stochastic dynamical system is isotone if either

infS S ∈ S or supS S ∈ S, q is isotone, and there is isotone g ∈ G. The definition of q is isotone

follows the one in Example 3. It is isotone infimum if infS S ∈ S, q is isotone, and there is

isotone g ∈ G such that ∀g ∈ G, g ⪯ g. The infimum equilibrium set is E = {(g, µ) ∈ G × X |

µ = Tp(µ)}, where p is derived from g as above. It is isotone supremum if supS S ∈ S, q is

isotone, and there is isotone g ∈ G such that ∀g ∈ G, g ⪯ g. The supremum equilibrium set is

E = {(g, µ) ∈ G × X | µ = Tp(µ)}, where p is derived from g as above. No additional conditions

(including topological conditions) are imposed on G. No additional conditions (including continuity

conditions) are imposed on policies g ∈ G.

Example 5 (Stochastic dynamic economies). Many dynamic economic systems have serially cor-

related shocks (weather shocks, technological advances, agglomeration, unemployment shocks, and

so on). A general model incorporating this is formulated as follows. A stochastic dynamic

economy is a collection ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), q,G), where X is a Polish space, ⪯X is

a closed partial order on X, B(X) are the Borel sets of X, Z is a Polish space, ⪯Z is a closed

partial order on Z, B(Z) are the Borel sets of Z, q ∈ ker(Z × B(Z)) is a kernel on Z × B(Z), and
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G ⊆ mbl(X×Z,X) is a subset of measurable functions from X×Z to X with the pointwise partial

order. We impose no additional conditions (beyond measurability) on the policies g ∈ G. Shocks

to the economic system are serially correlated: The distribution of shocks zt+1 ∈ B next period

depends on the shock zt today through the kernel q(zt, B). (IID shocks are a special case.) This

formulation arises in the foundational and widely used model of a stochastic dynamic economy

with correlated shocks formulated in Stokey and Lucas (1989), with their standard assumptions.

Example 8 provides more details.

Stochastic dynamics in such economies are analyzed using their associated stochastic dynamical

system ((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), q, Ĝ), where S = X × Z, and Ĝ is the collection of extension

of policies in g ∈ G given by ĝ : X × Z × Z → X × Z, ĝ(x, z, z′) = (g(x, z), z′). A stochastic

dynamic economy evolves as follows: In period t, if the state of the system is st = (xt, zt) and

the serially correlated shock to the system is zt+1, governed by q(zt, ·), the state next period is

st+1 = (g(xt, zt), zt+1). Including serially correlated shocks means that two components of the

economy evolve in a correlated manner: xt+1 evolves with g(xt, zt) and zt+1 evolves with q(zt, ·).

The associated kernel system is (S,⪯S ,B(S),P), where S = X ×Z with product partial order ⪯S ,

product sigma-algebra B(S), and P = {p ∈ ker(S×B(S)) | p((x, z), A) = q(z, [ĝ−1(A)](x,z)), g ∈ G},

and the associated measure theory model is (X ,⪯s,Φ), where X is the set of probability measures

on B(S), ⪯s is stochastic order, and Φ : X ⇒ X is the adjoint correspondence given by Φ(µ) =

{Tp(µ) | p ∈ P}. An equilibrium of a stochastic dynamic economy is a pair (g, µ) such that

µ = Tp(µ), where p is derived from g as above, p((x, z), A) = q(z, [ĝ−1(A)](x,z)). The equilibrium

set is E = {(g, µ) ∈ G × X | µ = Tp(µ)} with the product order. Equilibrium (g, µ) is isotone if g

is isotone. The isotone equilibrium set is E iso = {(g, µ) ∈ E | g is isotone}.

In order to ensure a unique equilibrium, models in dynamic macroeconomics sometimes include

additional assumptions such as smoothness, continuity, contractibility, and convexity. These may be

violated due to nonconvex technologies, self-fulfilling behavior, and regime switching costs, leading

to multiple equilibria and discontinuous behavior. A benefit of models with complementarities is

that they can accommodate some of these situations. A stochastic dynamic economy is isotone

if either (infX X, infZ Z) ∈ X × Z or (supX X, supZ Z) ∈ X × Z, q is isotone, and there is g ∈ G

such that g is isotone. It is isotone infimum if (infX X, infZ Z) ∈ X × Z, q is isotone, there

is g ∈ G such that g is isotone, and ∀g ∈ G, g ⪯ g. The infimum equilibrium set is E =

{(g, µ) ∈ G × X | µ = Tp(µ)}, where p is derived from g as above. It is isotone supremum if
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(supX X, supZ Z) ∈ X × Z, q is isotone, there is g ∈ G such that g is isotone, and ∀g ∈ G, g ⪯ g.

The supremum equilibrium set is E = {(g, µ) ∈ G×X | µ = Tp(µ)}, where p is derived from g as

above. No additional conditions (including topological conditions) are imposed on the structure of

G or on policies g ∈ G. In particular, no policy in G is assumed to be upper or lower semicontinuous.

Example 6 (Markov decision processes). Another large class of stochastically evolving phenomena

is modeled using Markov decision processes, in which endogenous actions and exogenous uncertainty

simultaneously affect the evolution of the process. A Markov decision process is a collection

((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), q,G), where X is a Polish space, ⪯X is a closed partial order on X,

B(X) are the Borel sets of X, Z is a Polish space, ⪯Z is a closed partial order on Z, B(Z) are

the Borel sets of Z, q ∈ ker((X × Z) × B(Z)), and G ⊆ mbl(X × Z,X) is a subset of measurable

functions from X × Z to X with the pointwise partial order. We impose no additional conditions

(beyond measurability) on the policies g ∈ G. In this formulation, shocks to the stochastic system

are simultaneously state dependent and serially correlated: The distribution of the shock zt+1 ∈ B

next period depends on both today’s action xt and today’s shock zt through the kernel q((xt, zt), B).

Equilibrium in Markov decision processes is defined using their associated stochastic dynamical

system ((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), q, Ĝ), where S = X × Z, and Ĝ is the collection of extension

of policies in g ∈ G given by ĝ : X×Z×Z → X×Z, ĝ(x, z, z′) = (g(x, z), z′). The associated kernel

system (S,⪯S ,B(S),P) and associated measure theory model (X ,⪯s,Φ) are defined analogously.

An equilibrium of a Markov decision process is a pair (g, µ) such that µ = Tp(µ), where p is

derived from g analogously p((x, z), A) = q((x, z), [ĝ−1(A)](x,z)). The equilibrium set is E =

{(g, µ) ∈ G × X | µ = Tp(µ)} with the product order. Equilibrium (g, µ) is isotone if g is isotone.

The isotone equilibrium set is E iso = {(g, µ) ∈ E | g is isotone}. The formulation here applies

regardless of the mechanism generating the collection of admissible policies G.

A Markov decision process is isotone if either (infX X, infZ Z) ∈ X×Z or (supX X, supZ Z) ∈

X×Z, q is isotone, and there is isotone g ∈ G. It is isotone infimum if (infX X, infZ Z) ∈ X×Z,

q is isotone, and there is isotone g ∈ G such that ∀g ∈ G, g ⪯ g. The infimum equilibrium set is

E = {(g, µ) ∈ G × X | µ = Tp(µ)}, where p is derived from g as above. It is isotone supremum

if (supX X, supZ Z) ∈ X × Z, q is isotone, and there is isotone g ∈ G such that ∀g ∈ G, g ⪯ g. The

supremum equilibrium set is E = {(g, µ) ∈ G × X | µ = Tp(µ)}, where p is derived from g as

above. No additional conditions (including topological conditions) are imposed on the structure of

G or on policies g ∈ G. In particular, no policy in G is assumed to be upper or lower semicontinuous.
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Example 7 (Stochastic systems). The previous classes of models are formulated with a view to

abstracting some of the unifying features in stochastic dynamical models that arise in many different

contexts. In order to highlight their unifying analytical properties, we collect these different models

into one. A stochastic system is one that is either a kernel system, or a stochastic dynamical

system, or a stochastic dynamic economy, or a Markov decision process. A stochastic system is

isotone (respectively, isotone infimum, isotone supremum) if the corresponding system is

isotone (respectively, isotone infimum, isotone supremum).

Let’s look at the models due to Hopenhayn and Prescott (1992) and Balbus, Dziewulski, Reffett,

and Woźny (2019) to see how the ideas here take more concrete shape.

Example 8 (HP model). Following Hopenhayn and Prescott (1992), consider the standard stochas-

tic dynamic economy from Stokey and Lucas (1989). Let X ⊆ Rℓ be a convex Borel set, Z ⊆ Rk a

compact set, each with the standard partial order (⪯X , ⪯Z), q a kernel on Z ×B(Z) that satisfies

the Feller property, Γ : X×Z ⇒ X a feasibility correspondence that is nonempty valued, compact-

valued, and continuous, A the graph of Γ, F : A → R a bounded and continuous one-period

return function, β ∈ (0, 1) the constant discount rate, v : X × Z → R the unique value function

associated with this problem, given by v(x, z) = supx′∈Γ(x,z){F (x′, x, z) + β
∫
v(x′, z′)q(z, dz′)},

and γ(x, z) = {x′ ∈ Γ(x, z) | v(x, z) = F (x′, x, z) + β
∫
v(x′, z′)q(z, dz′)} the policy correspon-

dence. When convenient, we may use the Lebesgue completion of the Borel sigma-algebra on

finite-dimensional Euclidean space. Suppose the economy satisfies the complementarity assump-

tions in Hopenhayn and Prescott (1992), that is, X is subcomplete, F is supermodular on X×X for

each z and has increasing differences in (x′, x; z), Γ has strict complementarity, graph of Γ(·, ·, z) is

a sublattice for each z, Γ is ascending, and q is an isotone kernel. With these assumptions, an HP

model is given by (X,Z, q,Γ, F, β). As shown in Hopenhayn and Prescott (1992), the HP model

provides a unified model to study many central topics in dynamic economies such as investment

theory, stochastic growth theory, and industry equilibrium. The associated stochastic dynamic

economy is ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), q,G), where G is the set of measurable selections from

γ. The associated measure theory model is (X ,⪯s,Φ), derived as in Example 5.

Example 9 (BDRW model). Following Balbus, Dziewulski, Reffett, and Woźny (2019), let I be a

compact, perfect Hausdorff topological space of player characteristics and λ a regular probability

measure on Borel sets of I, B(I), vanishing at each singleton. Let A ⊆ Rm be the action set,

Γ : I ⇒ A the feasibility correspondence, and Ã the graph of Γ. Let M be the set of regular
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probability measures on Borel sets of I × A, let R = {µ ∈ M | µ|I = λ} be the subset of those

measures with marginal on I equal to λ, and D = {µ ∈ R | µ(Ã) = 1}. Let r : I × A × D → R

be the player payoff function. We assume the conditions in Assumption 1 (page 501) in Balbus,

Dziewulski, Reffett, and Woźny (2019). The BDRW model is ((I,B(I), λ), A, Ã, r). Let γ be the

best response correspondence, γ(i, µ) = argmaxa∈Γ(i) r(i, a, µ). A measure µ∗ ∈ D is a distributional

equilibrium if µ∗({(i, a) | r(i, a, µ∗) ≥ r(i, a′, µ∗), ∀a′ ∈ Γ(i)} = 1. Equivalently, µ∗({(i, a) | a ∈

γ(i, µ∗)} = 1. As shown in Balbus, Dziewulski, Reffett, and Woźny (2019), the BDRW model

can be used to understand many economic applications, including social distance model, linear

non-atomic supermodular games, large stopping games, and keeping up with the Joneses.

The BDRW model does not fit directly into one of the classes of stochastic systems. Its equi-

librium properties can be analyzed using its associated measure theory model as follows. For each

measurable selection g from γ, define the mapping Tg : D → D by Tg(µ)(B) = λ[g̃−1(B)]µ, where

g̃ : I ×D → I × A is given by g̃(i, µ) = (i, g(i, µ)), and [g̃−1(B)]µ is the µ-section of [g̃−1(B)]. Let

G be the collection of all measurable selections g from γ. The associated measure theory model is

(D,⪯s,Φ), where ⪯s is stochastic order on D and Φ : D ⇒ D is given by Φ(µ) = {Tg(µ) | g ∈ G}.

Acemoglu and Jensen (2015) propose a model of large dynamic economies with heterogeneous

agents and stochastic monotonicity, extending the HP model. Balbus, Dziewulski, Reffett, and

Woźny (2022) extend this to large games with no aggregate risk. Their models use some additional

continuity assumptions and different methods to compute equilibrium, which are not assumed here.

All the models formulated above can be viewed either directly or through their associated

measure theory model as special cases of universal models with complementarities.

Theorem 1. Consider the class of poset models.

1. Every general model that is isotone (respectively, isotone infimum, isotone supremum) is a

universal model that is isotone (respectively, isotone infimum, isotone supremum).

2. Every measure theory model that is isotone (respectively, isotone infimum, isotone supremum)

is a universal model that is isotone (respectively, isotone infimum, isotone supremum).

3. For every stochastic system that is isotone (respectively, isotone infimum, isotone supremum),

its associated measure theory model is isotone (respectively, isotone infimum, isotone supre-

mum).
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4. For every HP model and for every BDRW model, their associated measure theory model is

isotone infimum and isotone supremum.

Proof. Statements (1) and (2) follow immediately from the definitions. Consider statement (3)

for the case of an isotone kernel system (X,⪯X ,B(X),P) and consider the associated measure

theory model (X ,⪯s,Φ), where X is the set of probability measures on B(X), ⪯s is stochastic

order, and Φ : X ⇒ X is given by Φ(µ) = {Tp(µ) | p ∈ P}. Notice that if x = infX X ∈ X then

the unit measure on x, δx, satisfies infX X = δx ∈ X , and if x = supX X ∈ X then supX X =

δx ∈ X . Let p̂ ∈ P be isotone. Then for every increasing set A in X, the measurable function

x 7→ p̂(x,A) is isotone in x. Combined with µ ⪯s ν, it follows that for every increasing set A in

X, Tp̂(µ)(A) =
∫
X p̂(x,A)dµ(x) ≤

∫
X p̂(x,A)dν(x) = Tp̂(ν)(A), whence Tp̂(µ) ⪯s Tp̂(ν). Therefore,

µ 7→ Tp̂(µ) is an isotone selection from Φ. This shows that (X ,⪯s,Φ) is an isotone measure

theory model. If (X,⪯X ,B(X),P) is an isotone infimum kernel model with isotone p ∈ P, then

the same argument shows that µ 7→ Tp(µ) is an isotone selection from Φ. To see that it is the

infimum selection, fix p ∈ P arbitrarily. Then p ⪯k p implies that ∀x ∈ X and ∀A ⊆ X that

is increasing, p(x,A) ≤ p(x,A). Therefore, for every µ ∈ X and for every increasing A ⊆ X,

Tp(µ)(A) =
∫
X p(x,A)dµ(x) ≤

∫
X p(x,A)dµ(x) = Tp(µ)(A), whence Tp(µ) ⪯s Tp(µ). This shows

that (X ,⪯s,Φ) is an isotone infimum measure theory model. A similar argument works if P is an

isotone supremum kernel model.

Consider statement (3) for the case of a stochastic dynamical system ((S,⪯S ,B(S)), (Z,⪯Z

,B(Z)), q,G). Let its associated kernel system be (S,⪯S ,B(S),P) with P = {p ∈ ker(S × B(S)) |

p(s,A) = q(s, [g−1(A)]s), g ∈ G}, and its associated measure theory model be (X ,⪯s,Φ). If the

stochastic dynamical system is isotone, then q is isotone and there is isotone ĝ ∈ G. Consider

the kernel p̂(s,A) = q(s, [ĝ−1(A)]s). Kernel p̂ is isotone, because for every ŝ ⪯S s̃ and for every

increasing set A ⊆ S, p̂(ŝ, A) = q(ŝ, [ĝ−1(A)]ŝ) ≤ q(ŝ, [ĝ−1(A)]s̃) ≤ q(s̃, [ĝ−1(A)]s̃) = p̂(s̃, A), where

the first inequality follows from [ĝ−1(A)]ŝ ⊆ [ĝ−1(A)]s̃, using ĝ is isotone and A is increasing, and

the second inequality follows from q is isotone and [ĝ−1(A)]s̃ is an increasing set in Z. Moreover,

either infS S ∈ S or supS S ∈ S. This shows that the associated kernel system is isotone and

therefore, the previous proof implies that the associated measure theory model is isotone. If the

stochastic dynamical system is isotone infimum with isotone q and isotone g ∈ G, then the same

argument shows that p(s,A) = q(s, [g−1(A)]s) is an isotone kernel. To see that it is the lowest

kernel in P, fix g ∈ G arbitrarily and let p(s,A) = q(s, [g−1(A)]s). Then g ⪯ g implies that for
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every s ∈ S and for every increasing A in S, p(s,A) = q(s, [g−1(A)]s) ≤ q(s, [g−1(A)]s) = p(s,A),

where the inequality follows from [g−1(A)]s ⊆ [g−1(A)]s, using g ⪯ g and A is increasing. This

shows that the associated kernel system is isotone infimum and therefore, its associated measure

theory model is isotone infimum. A similar argument works if the stochastic dynamical system is

isotone supremum.

Statement (3) for the case of stochastic dynamic economy and of Markov decision process is

proved similarly.

Statement (4) for HP model follows from Theorem 9.6 (page 263) in Stokey and Lucas (1989),

which shows that correspondence γ is nonempty valued, compact valued, and upper hemicontinuous,

and from Proposition 2 (page 1395) in Hopenhayn and Prescott (1992), which shows that the

functions (x, z) 7→ g(x, z) := inf γ(x, z) and (x, z) 7→ g(x, z) := sup γ(x, z) exist, are measurable,

and are isotone.

Statement (4) for BDRWmodel follows from Lemma 1 (page 502) in Balbus, Dziewulski, Reffett,

and Woźny (2019), which shows that the functions (i, µ) 7→ g(i, µ) := inf γ(i, µ) and (i, µ) 7→

g(i, µ) := sup γ(i, µ) exist, are measurable, and are isotone. Moreover, D is a chain complete poset

in the stochastic order ⪯s. It can be shown that the mappings Tg and Tg are isotone on D (for

every µ, ν ∈ D, µ ⪯s ν ⇒ Tg(µ) ⪯s Tg(ν) and Tg(µ) ⪯s Tg(ν) in the stochastic order) and for

every two measurable selections g, h from γ, if g ⪯ h (as measurable functions) then Tg ⪯ Th (as

mappings on D, that is, for every µ ∈ D, Tg(µ) ⪯s Th(µ) in the stochastic order).

The next theorem shows equilibrium existence properties of universal models.

Theorem 2. Consider the class of poset models.

1. Every universal model with complementarities has an equilibrium.

2. In every universal isotone infimum model (X,⪯,Φ), E(Φ) contains a chain sup-complete poset

E(Φ) such that infE(Φ) E(Φ) = infE(Φ) E(Φ). In particular, every universal isotone infimum

model has a smallest equilibrium.

3. In every universal isotone supremum model (X,⪯,Φ), E(Φ) contains a chain inf-complete

poset E(Φ) such that supE(Φ) E(Φ) = supE(Φ) E(Φ). In particular, every universal isotone

supremum model has a largest equilibrium.

4. Every universal model that is isotone infimum and isotone supremum has a smallest and a
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largest equilibrium.

Proof. Statement (1) follows immediately by applying Abian and Brown (1961) to the isotone

selection f from Φ to conclude a fixed point exists, or by applying Markowsky (1976) to f to show

that E(f) is a nonempty chain sup-complete (or inf-complete) poset and noting that E(f) ⊆ E(Φ).

It is included here for cases (like Example 10) that are outside the scope of statements (2) and

(3). For statement (2), let (X,⪯,Φ) be a universal isotone infimum model. Statement (1) implies

that E(Φ) is a chain sup-complete poset contained in E(Φ) and infE(Φ) E(Φ) ∈ E(Φ). To see that

infE(Φ) E(Φ) = infE(Φ) E(Φ), let A = {x ∈ X | x ⪯ Φ(x) and ∀e ∈ E(Φ), x ⪯ e}. The set A is

nonempty as infX X ∈ A. Let C be a chain in A. If C is empty, then supX C = infX X ∈ A. If C

is not empty, let y = supX C, which exists because X is chain sup-complete. Notice that ∀x, x ∈ C

implies x ⪯ Φ(x), and also, x ⪯ y implies Φ(x) ⪯ Φ(y). Thus, Φ(y) is an upper bound for C,

whence y ⪯ Φ(y). Moreover, ∀e ∈ E(Φ),∀x ∈ C, x ⪯ e implies that ∀e ∈ E(Φ), e is an upper bound

for C, and therefore, ∀e ∈ E(Φ), y ⪯ e. It follows that y ∈ A. In other words, every chain in A has

an upper bound in A. By Zorn’s lemma, let e∗ be a maximal element in A. Then e∗ ⪯ Φ(e∗) and

∀e ∈ E(Φ), e∗ ⪯ e. Therefore, Φ(e∗) ⪯ Φ(Φ(e∗)) and ∀e ∈ E(Φ),Φ(e∗) ⪯ Φ(e) ⪯ e. Consequently,

Φ(e∗) ∈ A. As e∗ is maximal in A, it cannot be that e∗ ̸= Φ(e∗), whence e∗ = Φ(e∗) ∈ Φ(e∗). In

other words, e∗ ∈ E(Φ) ⊆ E(Φ) and ∀e ∈ E(Φ), e∗ ⪯ e, that is, e∗ = infE(Φ) E(Φ) = infE(Φ) E(Φ) ∈

E(Φ). This proves statement (2). Statement (3) is proved similarly. Statement (4) follows from

statements (2) and (3).

The statements in Theorem 2 are fairly weak. None of the statements requires any structure on

the sets Φ(x) beyond isotone selections. This allows for situations not covered by existing general

theorems on fixed points of correspondences on chain sup-complete posets, such as Smithson (1971)

and its variants.

Example 10 (Not isotone in quasi weak set order). Smithson (1971) proves existence of fixed

points for a correspondence Φ : X ⇒ X on a chain sup-complete poset X when the images satisfy

one of the following conditions. Their condition I requires that Φ is isotone in the upper weak set

order: For every x̂ ⪯X x̃, ∀ŷ ∈ Φ(x̂), ∃ỹ ∈ Φ(x̃), ŷ ⪯X ỹ. Their condition II requires Φ is isotone

in lower weak set order: For every x̂ ⪯X x̃, ∀ỹ ∈ Φ(x̃),∃ŷ ∈ Φ(x̂), ŷ ⪯X ỹ. Weak set order is

defined using both conditions. Theorem 1.1 in Smithson (1971) (page 305) requires condition I

(or condition II) to hold for Φ. Our Theorem 2 (statement (1)) does not require either condition.

For example, let X = {1, 2, 3} with the natural order and Φ : X ⇒ X be given by Φ(1) = {1, 3},
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Φ(2) = {2}, and Φ(3) = {1, 3}. Then Φ does not satisfy condition I in Smithson (1971), because

3 ∈ Φ(1), but there is no y ∈ Φ(2) such that 3 ⪯ y, and Φ does not satisfy condition II in Smithson

(1971), because 1 ∈ Φ(3), but there is no y ∈ Φ(2) such that y ⪯ 1. Nevertheless, Φ has an isotone

selection and the example satisfies statement (1) in Theorem 2. Indeed, E(Φ) = {1, 2, 3}.

In addition to condition I or II, Smithson (1971) requires Φ to satisfy their condition III: For

every chain C ⊆ X, ∃ isotone function g : C → X such that ∀x ∈ C, g(x) ∈ Φ(x) and if x0 = supX C

then ∃y0 ∈ Φ(x0) such that ∀x ∈ C, g(x) ⪯X y0. This is automatically satisfied if Φ has an isotone

selection, in which case Abian and Brown (1961) applied to this selection prove existence of a fixed

point, obviating the need for any additional conditions on the structure of images of Φ. This is the

point that Example 10 highlights. As universal models with complementarities assume an isotone

selection, conditions I and II in Smithson’s theorem are not necessary for equilibrium existence.

Smithson’s theorem applies when Φ has an isotone infimum or isotone supremum selection,

because Φ has an isotone infimum (respectively, supremum) selection if, and only if, Φ satisfies

condition II (respectively, condition I) in Smithson (1971) and ∀x ∈ X, infΦ(x)Φ(x) (respectively,

supΦ(x)Φ(x)) exists. This can be viewed as replacing Smithson’s condition III with the simpler and

more transparent one that Φ(x) has a smallest (or largest) point. In other words, in a universal

isotone infimum model, in addition to invoking Abian and Brown (1961) to guarantee a fixed

point, Smithson (1971) can also be invoked to prove existence of a fixed point. In either case,

Markowsky (1976) implies further that infE(Φ) E(Φ) exists. Theorem 2 goes further by proving that

infE(Φ) E(Φ) = infE(Φ) E(Φ). A similar conclusion holds in every universal isotone supremum model,

with Theorem 2 showing that supE(Φ) E(Φ) = supE(Φ) E(Φ).

Li (1984) provides related results. Their Theorem 2.1 is a special case of Smithson (1971) and

their Corollary 2.3 states that when Φ satisfies condition I in Smithson (1971) and ∀x, supΦ(x)Φ(x)

exists, then E(Φ) has a maximal element and is an inductive set. With the same conditions, our

Theorem 2 strengthens their result to E(Φ) has a largest element, whence E(Φ) is an inductive set.

(If necessary, their Assumption A3 can be translated into the subset X̂ of X consisting of elements

above the point y in their Assumption 3 for which there is u ∈ Φ(y) with y ⪯X u, and considering

the restricted correspondence Φ̂(x) = Φ(x) ∩ X̂.)

Che, Kim, and Kojima (2021) use condition I (or II) from Smithson (1971) but replace condition

III with a compactness condition: ∀x,Φ(x) is compact (closed subset of a compact metric space

X). They make additional assumptions about a natural topology to go with the metric space
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and partial order. With their assumptions, their Theorem 6 concludes that E(Φ) has a maximal

(or minimal) element. We don’t impose topological restrictions in the universal model: X is not

assumed to be a metric space and the images Φ(x) are not assumed to be compact. If the images

Φ(x) are compact lattices, or if we replace their compactness assumption with Φ(x) has a largest

(or smallest) element and remove all metric space and topological assumptions, then their Theorem

6 is a special case of our Theorem 2, and we strengthen their conclusion to E(Φ) has a largest (or

smallest) element.

A motivation for working with isotone selections in universal models is that foundational models

in economics (and elsewhere) may have discontinuities or non-convexities that limit the use of tools

from topology and convex analysis. Isotone selections may provide a methodological advantage

in these cases. Moreover, our condition that Φ(x) has a smallest (or largest) element is more

transparent and intuitive as compared to condition III in Smithson (1971) or the related condition

A2 in Li (1984): ∀x, SF (x) = {ξ ∈ X | ∃y ∈ Φ(x), ξ ⪯X y} is inductively ordered. Manifestation of

our conditions in large classes of models make them relevant to broad audiences studying models

with complementarities within and outside economics. A hallmark of the analysis here is that we

identify and prove the role such selections play in many aspects of the unified theory of equilibrium

in universal models with complementarities developed with many new results throughout this paper.

Theorem 2 combined with Theorem 1 implies immediately that measure theory models that

are isotone (respectively, isotone infimum, isotone supremum) have the properties in statement (1)

(respectively, statement (2), statement (3)) of Theorem 2. The next theorem generalizes this to all

stochastic systems.

Theorem 3. Consider the class of stochastic systems.

1. In every isotone stochastic system, the set of isotone equilibria Ê having the associated isotone

kernel or policy is either a chain sup-complete set in which inf Ê Ê exists or a chain inf-

complete set in which supÊ Ê exists. In particular, every isotone stochastic system has an

isotone equilibrium.

2. In every isotone infimum stochastic system, E contains a chain sup-complete subset of isotone

equilibria E such that infE E exists and infE E = infE E = infEiso E iso. In particular, every

isotone infimum stochastic system has a smallest equilibrium and it is isotone.

3. In every isotone supremum stochastic system, E contains a chain inf-complete subset of iso-
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tone equilibria E such that supE E exists and supE E = supE E = supEiso E iso. In particular,

every isotone supremum stochastic system has a largest equilibrium and it is isotone.

4. Every stochastic system that is isotone infimum and isotone supremum has a smallest and a

largest equilibrium and both are isotone.

Proof. Suppose the stochastic system being considered in statements (1)-(3) is a kernel system.

For statement (1), consider an isotone kernel system (X,⪯X ,B(X),P) with isotone p̂ ∈ P, let

(X ,⪯s,Φ) be the associated measure theory model, and let the set of isotone equilibria associated

with p̂ be Ê = {(p̂, µ) | µ = Tp̂(µ)} ⊆ E iso. Suppose infX X ∈ X. Theorem 1 shows that µ 7→ Tp̂(µ)

is an isotone selection from Φ and infX X ∈ X . By Markowsky (1976), the set E(p̂) = {µ ∈ X | µ =

Tp̂(µ)} is chain sup-complete with µ̂ := infE(p̂) E(p̂) ∈ E(p̂). Using this, it can be shown that Ê is

chain sup-complete with (p̂, µ̂) = inf Ê Ê . A similar proof shows that if supX X ∈ X, then Ê is chain

inf-complete and supÊ Ê exists. For statement (2), suppose the kernel system has an isotone infimum

kernel p ∈ P (that is, p is isotone and ∀p ∈ P, p ⪯k p). As infX X ∈ X, the proof for statement (1)

shows that E = {(p, µ) | µ = Tp(µ)} is chain sup-complete, and both µ = infE E and (p, µ) = infE E

exist. Consider arbitrary (p, µ) ∈ E . We know that p ⪯k p, and by Theorem 1, µ ⪯s µ, whence

(p, µ) is a lower bound for E . As (p, µ) ∈ E ⊆ E , it follows that (p, µ) = infE E . Combined with

(p, µ) is an isotone equilibrium, it follows that (p, µ) = infE E = infEiso E iso. Statement (3) for an

isotone supremum kernel system is proved similarly.

Suppose the stochastic system being considered in statements (1)-(3) is a stochastic dynamical

system. For statement (1), consider an isotone stochastic dynamical system ((S,⪯S ,B(S)), (Z,⪯Z

,B(Z)), q,G) with isotone q and isotone ĝ ∈ G, let (X ,⪯s,Φ) be the associated measure theory

model, and let the set of isotone equilibria associated with ĝ be Ê = {(ĝ, µ) | µ = Tp̂(µ)} ⊆ E iso,

where p̂ is derived from ĝ using p̂(s,A) = q(s, [ĝ−1(A)]s). Then q is isotone and ĝ is isotone imply

that p̂ is an isotone kernel. Following the proof of statement (1) for isotone kernel systems, if

infS S ∈ S, then Ê is chain sup-complete with smallest element, and if supS S ∈ S, then Ê is chain

inf-complete with largest element. For statement (2), suppose the stochastic dynamical system has

an isotone infimum g ∈ G (that is, g is isotone and ∀g ∈ G, g ⪯ g). In this case, the associated kernel

p given by p(s,A) = q(s, [g−1(A)]s) is an isotone infimum kernel in the associated kernel system.

Following the proof for isotone infimum kernel systems, it follows that E = {(g, µ) | µ = Tp(µ)} is

chain sup-complete and ∃(g, µ) ∈ E such that (g, µ) = infE E = infE E = infEiso E iso. Statement (3)

for an isotone supremum stochastic dynamical system is proved similarly.
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Statements (1)-(3) for stochastic dynamic economies and Markov decision processes are proved

in a manner similar to the proof for stochastic dynamical systems. Statement (4) follows from

statements (2) and (3).

Theorem 2 guarantees that the equilibrium set contains a nonempty chain sup-complete subset

or a nonempty chain inf-complete subset. Theorem 4 strengthens this by presenting conditions

that guarantee that the equilibrium set is a nonempty chain sup-complete set or a nonempty chain

inf-complete set or a nonempty chain complete set. In a poset model (X,⪯,Φ), for every X̂ ⊆ X,

the model restricted to X̂ is (X̂, ⪯̂, Φ̂), where ⪯̂ is the restriction of the partial order ⪯ to X̂ and

Φ̂ is the restriction of Φ to X̂ given by Φ̂(x) = Φ(x) ∩ X̂. A universal isotone infimum model

on upper intervals is a universal isotone infimum model (X,⪯,Φ) in which for every x̂ ∈ X

such that x̂ ⪯ Φ(x̂), the model restricted to X̂ = {x ∈ X | x̂ ⪯ x} is a universal isotone infimum

model. As earlier, this is equivalent to Φ̂ is isotone in lower weak set order and ∀x ∈ X̂, Φ̂(x)

exists. A universal isotone supremum model on lower intervals is a universal isotone

supremum model (X,⪯,Φ) in which for every x̂ ∈ X such that Φ(x̂) ⪯ x̂, the model restricted to

X̂ = {x ∈ X | x ⪯ x̂} is a universal isotone supremum model. This is equivalent to Φ̂ is isotone in

upper weak set order and ∀x ∈ X̂, Φ̂(x) exists.

Theorem 4. Consider the class of poset models.

1. In every universal isotone supremum model (X,⪯,Φ) that is isotone infimum on upper inter-

vals, E(Φ) is a nonempty, chain sup-complete set.

2. In every universal isotone infimum model (X,⪯,Φ) that is isotone supremum on lower inter-

vals, E(Φ) is a nonempty, chain inf-complete set.

3. In every universal model (X,⪯,Φ) that is isotone infimum on upper intervals and isotone

supremum on lower intervals, E(Φ) is a nonempty, chain complete set.

4. In each of (1)-(3) above, infE(Φ) E(Φ) = infE(Φ) E(Φ) and supE(Φ) E(Φ) = supE(Φ) E(Φ).

Proof. To prove statement (1), let (X,⪯,Φ) be a universal isotone supremum model that is isotone

infimum on upper intervals. Then (X,⪯) is chain complete with infX X ∈ X and supX X ∈ X, and

Theorem 2 shows that E(Φ) is nonempty with infE(Φ) E(Φ) ∈ E(Φ) and supE(Φ) E(Φ) ∈ E(Φ). To

show that E(Φ) is chain sup-complete, consider nonempty chain C ⊆ E(Φ) and let e = supX C ∈ X,

which exists because X is chain sup-complete. Then e ∈ C implies e ⪯ Φ(e) ⪯ Φ(e), whence e ⪯
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Φ(e). Let X̂ = {x ∈ X | e ⪯ x}. By assumption, the model (X̂,⪯, Φ̂) is a universal isotone infimum

model and therefore, has a smallest equilibrium, say, e∗. Then e∗ ∈ Φ̂(e∗) = Φ(e∗) ∩ X̂ ⊆ Φ(e∗)

and e ⪯ e∗ imply that e∗ is an upper bound for C in E(Φ). If e ∈ E(Φ) is an arbitrary upper bound

for C, then e ⪯ e and therefore, e ∈ Φ(e)∩ X̂ = Φ̂(e), whence e∗ ⪯ e. Thus e∗ = supE(Φ)C ∈ E(Φ).

This proves statement (1). Statement (2) is proved similarly. Statement (3) follows from statements

(1) and (2). Statement (4) follows from Theorem 2.

Theorem 4 goes beyond existing results for structure of the fixed point set of correspondences

on posets. It subsumes Markowsky (1976)’s result for isotone functions as a special case when Φ is

singleton valued. More broadly, it extends the existence theorems in Abian and Brown (1961) and

Smithson (1971) by providing additional structure to the fixed point set, goes beyond existence of

maximal elements and inductive set structure of the fixed point set in chain sup-complete posets in

Li (1984), and goes beyond existence of maximal or minimal fixed points in Che, Kim, and Kojima

(2021). Theorem 4 goes beyond existing results by using natural and transparent assumptions in

terms of isotone infimum (or supremum) selections, or equivalently, by using isotone in lower (or

upper) weak set order and replacing condition III in Smithson (1971) or condition A2 in Li (1984)

with the simpler assumption that infimum (or supremum) exists, which typically holds in models

with complementarities.

Theorem 4 also generalizes the complete lattice structure theorem for fixed points of corre-

spondences in lattice-based models proved in Sabarwal (2023b), which, in turn, generalized the

well-known lattice-based theorems proved in Tarski (1955), Vives (1990), and Zhou (1994). Sabar-

wal (2023b) used similar assumptions about isotone infimum and supremum selections. Theorem

4 shows that the same assumptions over more general sets can be used to unify and generalize

structure theorems from lattices to posets.

Example 11 (Stochastic systems, continued). Consider a kernel system (X,⪯X ,B(X),P). For

each p ∈ P and x ∈ X, let p(x) denote the probability measure p(x, ·). The kernel system

is strongly isotone (respectively, isotone) infimum on upper intervals if it is isotone

infimum, the associated P has a largest kernel p (not necessarily isotone) in the kernel order,

and for every function (respectively, isotone function) p̂ : X → X lower than p (that is, ∀x ∈

X, p̂(x) ⪯s p(x)), there is isotone kernel p̂ ∈ P such that (1) ∀x ∈ X, p̂(x) ⪯s p̂(x) and (2)

∀p ∈ P (respectively, ∀p ∈ P that is isotone), if ∀x ∈ X, p̂(x) ⪯s p(x), then ∀x ∈ X, p̂(x) ⪯s p(x).

A stochastic dynamical system is strongly isotone (respectively, isotone) infimum on
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upper intervals if it is isotone infimum, its state space S is chain sup-complete, the associated

G has a largest function g (not necessarily isotone) in the pointwise partial order and for every

function (respectively, isotone function) ĝ : S × Z → S satisfying ĝ ⪯ g (pointwise), there is

isotone function ĝ ∈ G such that (1) ĝ ⪯ ĝ and (2) ∀g ∈ G (respectively, ∀g ∈ G that is isotone),

ĝ ⪯ g ⇒ ĝ ⪯ g. A stochastic dynamic economy or Markov decision process is strongly

isotone (respectively, isotone) infimum on upper intervals is defined similarly. For every

stochastic system, strongly isotone (respectively, isotone) supremum on lower intervals

is defined similarly. It follows immediately that if a stochastic system is strongly isotone infimum on

upper intervals then it is isotone infimum on upper intervals, and if it is strongly isotone supremum

on lower intervals then it is isotone supremum on lower intervals.

Theorem 5. Consider the class of stochastic systems.

1. In every isotone supremum stochastic system that is strongly isotone (respectively, isotone)

infimum on upper intervals, E (respectively, E iso) is a nonempty, chain sup-complete set.

2. In every isotone infimum stochastic system that is strongly isotone (respectively, isotone)

supremum on lower intervals, E (respectively, E iso) is a nonempty, chain inf-complete set.

3. In every stochastic system that is strongly isotone (respectively, isotone) infimum on upper

intervals and strongly isotone (respectively, isotone) supremum on lower intervals, E (respec-

tively, E iso) is a nonempty, chain complete set.

4. In every HP model, E iso is a nonempty, chain complete set.

5. In each of (1)-(4) above, infE E and supE E exist, and infE E = infEiso E iso = infE E, and

supE E = supEiso E iso = supE E.

Proof. Consider statement (1) for an isotone supremum kernel system (X,⪯X ,B(X),P) that is

isotone infimum on upper intervals. (The case for strongly isotone infimum on upper intervals

is similar). For each p ∈ P and x ∈ X, let p(x) denote the probability measure p(x, ·). We

already know E iso has a smallest and largest equilibrium. To show that E iso is chain sup-complete,

let C be a nonempty chain in E iso. Let C1 = {p ∈ P | ∃µ ∈ X , (p, µ) ∈ C} and for each

x ∈ X, let p̂(x) = supX {p(x) | p ∈ C1}, which exists because {p(x) | p ∈ C1} is a chain in X

and X is chain sup-complete. As ∀p ∈ C1, p is isotone and ∀x ∈ X, p(x) ⪯s p(x), it follows

that p̂ is isotone (as a function of x) and ∀x ∈ X, p̂(x) ⪯s p(x). Let p̂ ∈ P be isotone such
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that (1) ∀x ∈ X, p̂(x) ⪯s p̂(x) and (2) ∀p ∈ P that is isotone, if ∀x ∈ X, p̂(x) ⪯s p(x), then

∀x ∈ X, p̂(x) ⪯s p(x). Let C2 = {µ ∈ X | ∃p ∈ P, (p, µ) ∈ C} and let µ̂ = supX C2, which exists

because C2 is a chain and X is chain sup-complete. Let X̂ = {µ ∈ X | µ̂ ⪯s µ} and for µ ∈ X̂ , let

Φ̂(µ) = {Tp(µ) | p ∈ P, p̂ ⪯k p} where Tp is the adjoint operator defined by kernel p. Correspondence

Φ̂ : X̂ ⇒ X̂ is well defined, because µ̂ ⪯s Tp̂(µ̂) and therefore, ∀p ∈ P satisfying p̂ ⪯k p, it follows

that µ̂ ⪯s µ ⇒ µ̂ ⪯s Tp̂(µ̂) ⪯s Tp̂(µ) ⪯s Tp(µ). Moreover, Φ̂ has an isotone infimum selection given

by µ 7→ Tp̂(µ). Let µ̂ be the smallest fixed point of Φ̂. Then (p̂, µ̂) ∈ E iso. Let (p′, µ′) ∈ E iso be

an upper bound for C. Then ∀x ∈ X, p̂(x) ⪯s p′(x) implies ∀x ∈ X, p̂(x) ⪯s p′(x), and moreover

µ̂ ⪯s µ
′, and therefore, µ′ is a fixed point of Φ̂, whence µ̂ ⪯s µ

′. It follows that (p̂, µ̂) = supEiso C.

A similar proof shows that E is chain sup-complete and has smallest and largest element.

Consider (1) for an isotone supremum stochastic dynamical system ((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), q,G)

that is isotone infimum on upper intervals. Then E iso has a smallest and largest equilibrium. Let

C be a nonempty chain in E iso. Let C1 = {g ∈ G | ∃µ ∈ X , (g, µ) ∈ C}. For each (s, z) ∈ S × Z,

let ĝ(s, z) = supS{g(s, z) | g ∈ C1}, which exists because {g(s, z) | g ∈ C1} is a chain and S

is chain sup-complete. As ∀g ∈ C1, g is isotone and g ⪯ g, it follows that ĝ is isotone and

ĝ ⪯ g. Let ĝ ∈ G be isotone such that (1) ĝ ⪯ ĝ and (2) for every g ∈ G that is isotone,

ĝ ⪯ g ⇒ ĝ ⪯ g. Let C2 = {µ ∈ X | ∃g ∈ G, (g, µ) ∈ C} and let µ̂ = supX C2, which exists

because C2 is a chain and X is chain sup-complete. Let X̂ = {µ ∈ X | µ̂ ⪯s µ} and for µ ∈ X̂ ,

let Φ̂(µ) = {Tg(µ) | g ∈ G, ĝ ⪯ g} where Tg is the adjoint operator defined by the kernel derived

from g, as above. Correspondence Φ̂ is well defined, because µ̂ ⪯s Tĝ(µ̂) and therefore, ∀g ∈ G with

ĝ ⪯ g, µ̂ ⪯s µ ⇒ µ̂ ⪯s Tĝ(µ̂) ⪯s Tĝ(µ) ⪯s Tg(µ). Moreover, Φ̂ has an isotone infimum selection

given by µ 7→ Tĝ(µ). Let µ̂ be the smallest fixed point of Φ̂. Then (ĝ, µ̂) ∈ E iso. Let (g′, µ′) ∈ E iso

be an upper bound for C. Then ĝ ⪯ g′ implies ĝ ⪯ g′, and moreover µ̂ ⪯s µ
′, and therefore, µ′ is a

fixed point of Φ̂, whence µ̂ ⪯s µ
′. It follows that (ĝ, µ̂) = supEiso C. A similar proof shows that E

is chain inf-complete and has smallest and largest element.

Statement (1) for the cases of stochastic dynamic economies and Markov decision processes are

proved similarly. Statement (2) is proved similarly. Statement (3) follows from (1) and (2).

For statement (4), consider an HP model (X,Z, q,Γ, F, β), with v : X × Z → R the unique

value function given by v(x, z) = supx′∈Γ(x,z){F (x′, x, z)+β
∫
v(x′, z′)q(z, dz′)} and γ(x, z) = {x′ ∈

Γ(x, z) | v(x, z) = F (x′, x, z) + β
∫
v(x′, z′)q(z, dz′)} the policy correspondence. The associated

stochastic dynamic economy is ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), q,G), where G is the set of measur-
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able selections from γ with smallest selection g and largest selection g. Theorem 3 implies that

E iso has a smallest and largest equilibrium. Let C be a nonempty chain in E iso. Let C1 = {g ∈ G |

∃µ ∈ X , (g, µ) ∈ C}. For each (x, z) ∈ X × Z, let ĝ(x, z) = supX{g(x, z) ∈ X | g ∈ C1}, which

exists because {g(x, z) | g ∈ C1} is a chain and X is a complete lattice, hence chain sup-complete.

As ∀g ∈ C1, g is isotone and g ⪯ g, it follows that ĝ is isotone and ĝ ⪯ g. For each (x, z) ∈ X ×Z,

consider the restricted problem γ̂(x, z) = argmaxx′∈Γ̂(x,z) F (x′, x, z) + β
∫
v(x′, z′)q(z, dz′), where

Γ̂(x, z) = Γ(x, z) ∩ [ĝ(x, z),∞). The correspondence γ̂ is nonempty valued because g is a se-

lection from γ̂. Moreover, Γ̂ remains isotone in strong set order and the optimization prob-

lem continues to fit the framework of Topkis (1978) and Hopenhayn and Prescott (1992). Let

ĝ be the isotone infimum selection from γ̂, which is measurable (using Lebesgue completion of

Borel sets if needed) because X × Z is in finite-dimensional Euclidean space. We show that

∀(x, z), γ̂(x, z) = γ(x, z) ∩ [ĝ(x, z),∞), and therefore, ĝ is the isotone infimum measurable se-

lection from γ(x, z) ∩ [ĝ(x, z),∞). To see that γ̂(x, z) = γ(x, z) ∩ [ĝ(x, z),∞), suppose ξ ∈ γ̂(x, z).

Then ĝ(x, z) ⪯X ξ. Moreover, ĝ(x, z) ⪯X g(x, z) and g(x, z) ∈ γ(x, z) imply g(x, z) ∈ Γ̂(x, z),

whence F (ξ, x, z) + β
∫
v(ξ, z′)q(z, dz′) ≥ F (g(x, z), x, z) + β

∫
v(g(x, z), z′)q(z, dz′) ≥ F (x′, x, z) +

β
∫
v(x′, z′)q(z, dz′),∀x′ ∈ Γ(x, y), where the second inequality follows from g(x, z) ∈ γ(x, z). This

shows that ξ ∈ γ(x, z)∩ [ĝ(x, z),∞). In the other direction, suppose ξ ∈ γ(x, z)∩ [ĝ(x, z),∞). Then

ĝ(x, z) ⪯ ξ and ∀x′ ∈ Γ(x, z), F (ξ, x, z) + β
∫
v(ξ, z′)q(z, dz′) ≥ F (x′, x, z) + β

∫
v(x′, z′)q(z, dz′),

whence ξ ∈ γ̂(x, z).

Let C2 = {µ ∈ X | ∃g ∈ G, (g, µ) ∈ C} and let µ̂ = supX C2, which exists because C2 is a

chain and X is chain sup-complete. Let X̂ = {µ ∈ X | µ̂ ⪯s µ} and for µ ∈ X̂ , let Φ̂(µ) =

{Tg(µ) | g ∈ G, ĝ ⪯ g} where Tg is the adjoint operator defined by the kernel derived from g. Using

γ̂(x, z) = γ(x, z) ∩ [ĝ(x, z),∞) and the same argument as in proof of statement (1) above, it can

be shown that Φ̂ has an isotone infimum selection given by µ 7→ Tĝ(µ). Let µ̂ be the smallest fixed

point of Φ̂. Then (ĝ, µ̂) = supEiso C, showing that E iso is chain sup-complete. Similarly E iso is chain

inf-complete.

Statement (5) follows from Theorem 3 and in the case of statement (4) using Theorem 1 as

well.
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3 Equilibrium set comparisons

In order to compare equilibrium sets in poset models, we define the star chain complete set order

as follows. For nonempty subsets A,B in a poset X, A is chain sup-complete in B, if for every

nonempty chain C ⊆ A, supB C ∈ B, and B is chain inf-complete in A, if for every nonempty

chain C ⊆ B, infAC ∈ A. Set A is lower than B in the star chain complete set order ,

denoted A ⊑∗cc B, if A is chain sup-complete in B and B is chain inf-complete in A.

To define infimum and supremum for arbitrary subsets of a poset, we follow Sabarwal (2023b).

For nonempty subsets E and A of poset X, the sup of E in A, denoted supAE, is an element

e ∈ A such that (1) e is an upper bound for E and (2) for every a ∈ A that is an upper bound

for E, e ⪯ a. The inf of E in A, denoted infAE, is an element e ∈ A such that (1) e is a lower

bound for E and (2) for every a ∈ A that is a lower bound for E, a ⪯ e. Notice that A = X gives

the standard definition and E ⊆ A ⊆ X gives the standard definition in the relative partial order.

More generally, as E and A are arbitrary nonempty subsets of X, supAE and infAE might not

exist in general even if X is a complete lattice. When they exist, they have some natural properties,

proved in Sabarwal (2023b).

The star chain complete set order generalizes Sabarwal (2023b)’s star complete set order, defined

as follows. For nonempty subsets A,B in a poset X, A is sup-complete in B, if for every nonempty

E ⊆ A, supB E ∈ B, and B is inf-complete in A, if for every nonempty E ⊆ B, infAE ∈ A. Set A

is lower than B in star complete set order , denoted A ⊑∗c B, if A is sup-complete in B and

B is inf-complete in A. For nonempty subsets A,B in a poset X, A is join-complete in B, if for

every x ∈ A and y ∈ B, supB{x, y} ∈ B. Similarly, B is meet-complete in A, if for every x ∈ A and

y ∈ B, infA{x, y} ∈ A, and A is lower than B in star lattice set order , denoted A ⊑∗ℓ B, if

A is join-complete in B and B is meet-complete in A. Some properties of the star chain complete

set order and its relation to other orders are as follows.

Theorem 6. Let X be a poset and A,B,C be nonempty subsets of X.

1. Star chain complete set order

(a) A ⊑∗cc A ⇐⇒ A is a chain complete poset (in the relative partial order from X)

(b) A ⊑∗cc B =⇒ infAA ⪯ infB B and supAA ⪯ supB B, whenever these exist

(c) A ⊑∗cc B =⇒ A ⊑w B.
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2. Cross comparisons

(a) A ⊑∗c B =⇒ A ⊑∗cc B

(b) If B is chain inf-complete in A and A is a lattice, then B is meet-complete in A.

(c) If A is chain sup-complete in B and B is a lattice, then A is join-complete in B.

(d) If A and B are lattices, then A ⊑∗cc B =⇒ A ⊑∗ℓ B =⇒ A ⊑w B.

(e) If X is a lattice, then A ⊑s B =⇒ A ⊑∗ℓ B =⇒ A ⊑w B.

(f) If A and B are subcomplete in X, then A ⊑∗c B ⇔ A ⊑∗cc B ⇔ A ⊑∗ℓ B ⇔ A ⊑w B

Proof. For (1)(a), if A ⊑∗cc A, then for every nonempty chain C ⊆ A, infAC ∈ A and supAC ∈ A,

showing that A is chain complete. If A is chain complete, the reverse argument shows that A ⊑∗cc A.

For (1)(b), suppose A ⊑∗cc B and suppose a = infAA and b = infB B exist. Then A ⊑∗cc B implies

a′ = infA{b} ∈ A, whence a ⪯ a′ ⪯ b. Similarly, supAA ⪯ supB B. For (1)(c), suppose A ⊑∗cc B

and consider arbitrary a ∈ A. Let b′ = supB{a} ∈ B. Then a ⪯ b′. Similarly, for b ∈ B there is

a′ = infA{b} ∈ A such that a′ ⪯ b.

Statement 2(a) follows immediately, because B is inf-complete in A implies B is chain inf-

complete in A, and A is sup-complete in B implies A is chain sup-complete in B. For (2)(b),

suppose B is chain inf-complete in A and A is a lattice. Let x ∈ A, y ∈ B. Let E = {y} ⊆ B and

let ŷ = infAE ∈ A, which exists because B is chain inf-complete in A. Then ŷ is a lower bound

for E and for every z ∈ A that is a lower bound for E, z ⪯ ŷ. In other words, ŷ ⪯ y and for every

z ∈ A such that z ⪯ y, it must be that z ⪯ ŷ. As A is a lattice, let â = infA{x, ŷ} ∈ A. Then ŷ ⪯ y

implies that â is a lower bound for {x, y}. Suppose z ∈ A is a lower bound for {x, y}. Then z ∈ A

and z ⪯ y implies z ⪯ ŷ and therefore, z is a lower bound for {x, ŷ}, whence z ⪯ â. This shows

that infA{x, y} = â ∈ A. Statement (2)(c) is proved similarly and (2)(d) follows from (2)(b) and

(2)(c) and the last implication is due to Sabarwal (2023b). Statement 2(e) is proved in Sabarwal

(2023b) To prove 2(f), it is sufficient to show that A ⊑w B =⇒ A ⊑∗c B. Suppose A ⊑w B. Let

E ⊆ A be nonempty. As A is subcomplete, let a = supX E ∈ A. Let b̂ ∈ B such that a ⪯X b̂, and

let U = {b ∈ B | a ⪯X b}, which contains b̂. As B is subcomplete, let b = infX U ∈ B. Then a

is a lower bound of U implies a ⪯X b, whence b = supB E, showing that A is sup-complete in B.

Similarly, B is inf-complete in A.

As shown in Theorem 6, the star chain complete set order and the star lattice set order are

both stronger than the weak set order, and imply isotone infimum and supremum when these exist.
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Additional comparisons are as follows.

For every nonempty subset A,B of poset X, A ⊑∗c B =⇒ A ⊑∗cc B. The converse is not

true: Let A = {(1, 0), (0, 1)} and B = {(2, 0), (0, 2)} in R2 with the product order. Then A ⊑∗cc B

and A ̸⊑∗c B. When A and B are lattices, A ⊑∗cc B =⇒ A ⊑∗ℓ B. The converse is not true: Let

A = {0} and B = (0, 1] in R. Then A ⊑∗ℓ B and A ̸⊑∗cc B. On a lattice X, the star lattice set

order is an intermediate notion between weak set order and strong set order. The converse of these

statements is not true either.

When comparing subcomplete subsets of poset X, the star complete set order, star chain com-

plete set order, star lattice set order, and weak set order are all equivalent. These equivalences

do not hold for more general classes of subsets. The example above with A = {(1, 0), (0, 1)} and

B = {(2, 0), (0, 2)} in R2 shows that even when A and B are chain complete and A ⊑∗cc B, it can be

that A ̸⊑∗c B and A ̸⊑∗ℓ B. Strong set order is more restrictive. Even in the class of subcomplete

subsets, these equivalences do not necessarily hold for the strong set order: Let A = {0, 2} and

B = {1, 3}, both are subcomplete (chains) in N (and in R), A ⊑w B and A ̸⊑s B. Additional

examples can be constructed as well.

Recall that the strong set order is reflexive on the class of sublattices of a lattice, and is a partial

order on this class. The weak set order is reflexive on the class of nonempty subsets of a poset, is

not antisymmetric, but is transitive. Theorem 6 shows that the star chain complete set order is

reflexive on the class of complete lattices in a poset. Like the weak set order, it is easy to see that

it is not necessarily antisymmetric. Theorem 6 shows that on the class of subcomplete subsets of

a poset, the star chain complete set order is transitive. This is not necessarily true more generally:

Let X = [0, 3] ⊆ R, A = [0, 2) ∪ {3}, B = {1, 3}, and C = {2, 3}. In this case, A ⊑∗cc B and

B ⊑∗cc C, but A ̸⊑∗cc C, because infA{2} does not exist in A. In terms of comparison to strong

set order, it is easy to check that A ̸⊑s B, B ̸⊑s C, and A ̸⊑s C, and in terms of weak set order,

A ⊑w C. We want to compare different equilibrium sets or subsets of equilibrium sets and these

are typically not subcomplete. Therefore, transitivity cannot be taken for granted and must be

proved every time it appears in a theorem. We prove this in all the general results in this paper.

The extended S-model example in Sabarwal (2023b) is a universal model with complementar-

ities. It provides additional distinctions between star complete set order, star chain complete set

order, star lattice set order, and weak set order in a canonical model with complementarities.

Theorem 7. Consider poset models in which X is chain complete.
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1. In every universal isotone infimum model, E(Φ) ⊑∗cc E(Φ).

2. In every universal isotone supremum model, E(Φ) ⊑∗cc E(Φ).

3. In every universal model that is isotone infimum and isotone supremum, in addition to (1)

and (2), E(Φ) ⊑∗cc E(Φ).

Proof. For statement (1), to show that E(Φ) is inf-complete in E(Φ), consider nonempty chain

C ⊆ E(Φ) and let e = infX C ∈ X, which exists because X is chain inf-complete. Let X̂ = {x ∈ X |

x ⪯ e} and Ψ : X̂ → X̂ be given Ψ(x) = Φ(x). Then e ∈ C =⇒ Φ(e) ⪯ Φ(e) ⪯ e, and therefore,

Φ(e) is a lower bound for C, whence Φ(e) ⪯ e. Moreover, for every x ∈ X̂, Φ(x) ⪯ Φ(e) ⪯ e. This

shows that Ψ is well-defined and therefore, (X̂,⪯X ,Ψ) is a universal isotone supremum model (a

poset model in which X̂ is chain inf-complete, supX̂ X̂ ∈ X̂, and Ψ is an isotone function). Let ê be

the largest fixed point of Ψ. Then ê = Ψ(ê) = Φ(ê) implies that ê ∈ E(Φ), and ê ⪯ e implies that ê is

a lower bound for C. If e ∈ E(Φ) is an arbitrary lower bound for C, then e ⪯ e and e = Φ(e) = Ψ(e),

showing that e is a fixed point of Ψ, whence e ⪯ ê. Therefore, infE(Φ)C = ê ∈ E(Φ).

To show that E(Φ) is sup-complete in E(Φ), consider nonempty chain C ⊆ E(Φ) and let ē =

supX C ∈ X, which exists as X is chain sup-complete. Let X̂ = {x ∈ X | e ⪯ x} and Ψ : X̂ ⇒ X̂

be given by Ψ(x) = Φ(x) ∩ X̂. Then e ∈ C =⇒ e = Φ(e) ⪯ Φ(e) and therefore, Φ(e) is an upper

bound for C, whence e ⪯ Φ(e). Moreover, for every x ∈ X̂, e ⪯ Φ(e) ⪯ Φ(x), whence Φ(x) ⊆ X̂,

and therefore, Ψ(x) = Φ(x). Consequently, (X̂,⪯X ,Ψ) is a universal isotone infimum model (X̂ is

chain sup-complete, infX̂ X̂ ∈ X̂, and Ψ has an isotone infimum selection). Let ê be the smallest

fixed point of Ψ. Then ê ∈ Ψ(ê) = Φ(ê) ∩ X̂ =⇒ ê ∈ E(Φ), and e ⪯ ê =⇒ ê is an upper bound

for C. If e ∈ E(Φ) is an arbitrary upper bound for C, then e ⪯ e and e ∈ Φ(e)∩ X̂ = Ψ(e), showing

that e is a fixed point of Ψ, whence ê ⪯ e. Therefore, supE(Φ)C ∈ E(Φ).

Statement (2) is proved similarly. Statement (3) is proved by following the proof of statement

(1) with E(Φ) instead of E(Φ) and the proof of statement (2) with E(Φ) instead of E(Φ).

In addition to comparative statics of the entire equilibrium set, Theorem 7 provides a formal

theory of order approximation of equilibria. This extends to universal models the corresponding

theory proposed and proved in Sabarwal (2023b) for general models with complementarities. State-

ment (1) shows that in models with an isotone infimum selection, every nonempty chain of equilibria

has a largest lower bound among equilibria that arise using the infimum selection. Therefore, if

C ⊆ E(Φ) is a nonempty chain of equilibria of particular interest, it can be uniquely approximated
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from below in a formal order theoretic manner using an equilibrium from the infimum selection.

In the special case that C = {e∗} is a singleton, this proves that ∀e∗ ∈ E(Φ), ∃unique ê ∈ E(Φ)

lower than e∗ and closest to it among all equilibria associated with the infimum selection. In other

words, every equilibrium e∗ ∈ E(Φ) can be uniquely order approximated from below by an equilib-

rium in E(Φ). This may be particularly useful if the infimum selection is easier to work with or

has some useful computational, dynamic, or theoretical properties (see, for example, Becker and

Rincón-Zapatero (2021)). This result requires very little structure for the poset model (only chain

complete X with a smallest point and isotone infimum selection). Notably, it does not require that

X has a largest element.

Moreover, if E(Φ) and E(Φ) are lattices, then it follows that E(Φ) ⊑∗ℓ E(Φ), and therefore, for

every equilibrium x̂ ∈ E(Φ) and x̃ ∈ E(Φ), if x̂ ̸⪯ x̃, then there is a different and unique equilibrium

x̂ ∈ E(Φ) that is the largest equilibrium in E(Φ) smaller than both of these equilibria.

Similarly, statement (2) shows that in universal isotone supremum models with chain complete

X, every nonempty chain C of equilibria can be uniquely approximated from above as a smallest

upper bound using equilibria from the supremum selection. In the special case that C = {e∗} is

a singleton, this proves that every equilibrium e∗ ∈ E(Φ) can be uniquely order approximated from

above by an equilibrium in E(Φ). This result also requires very little structure for the poset model

(only chain complete X with a largest point and isotone supremum selection). For example, Rostek

and Yoder (2020) show that in matching with complementarities, stable outcomes are characterized

by the largest fixed point of a monotone operator. In particular, this result does not require that

X has a smallest element.

In models with both isotone infimum and supremum selections, both sets of results hold. The

next theorem proves that these results apply to every stochastic system.

Theorem 8. Consider the class of stochastic systems.

1. In every isotone infimum stochastic system, E ⊑∗cc E and E ⊑∗cc E iso.

2. In every isotone supremum stochastic system, E ⊑∗cc E and E iso ⊑∗cc E.

3. In every stochastic system that is isotone infimum and isotone supremum, in addition to (1)

and (2), E ⊑∗cc E.

4. In every isotone supremum stochastic system that is strongly isotone infimum on upper in-
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tervals, E is chain sup-complete in E iso.

5. In every isotone infimum stochastic system that is strongly isotone supremum on lower inter-

vals, E is chain inf-complete in E iso.

6. In every stochastic system that is strongly isotone infimum on upper intervals and strongly

isotone supremum on lower intervals, E is chain complete in E iso.

Proof. Suppose the stochastic system being considered in statements (1)-(3) is a kernel system.

For statement (1), consider an isotone infimum kernel system (X,⪯X ,B(X),P) with infX X ∈ X

and isotone p ∈ P such that ∀p ∈ P, p ⪯k p and consider the associated measure theory model

(X ,⪯s,Φ). Let C be a nonempty chain in E and let C ′ = {µ ∈ X | (∃p ∈ P), (p, µ) ∈ C} ⊆ E(Φ).

It follows that C ′ is a nonempty chain in E(Φ) and using E(Φ) ⊑∗cc E(Φ), let µ̂ = infE(Φ)C
′ ∈ E(Φ).

Then (p, µ̂) ∈ E is a lower bound for C from E . If (p, µ′) ∈ E is an arbitrary lower bound for C from

E , then µ′ is a lower bound for C ′ from E(Φ), whence µ′ ⪯s µ̂. This shows that (p, µ̂) = infE C ∈ E .

Now suppose C is a nonempty chain in E and let C ′ = {µ ∈ X | (p, µ) ∈ C} ⊆ E(Φ). As X is

chain sup-complete, let µ = supX C ′ ∈ X . Let X̂ = {µ ∈ X | µ ⪯s µ} and consider Ψ : X̂ ⇒ X̂

be given by Ψ(µ) = Φ(µ) ∩ X̂ . Then µ ∈ C ′ =⇒ µ = Φ(µ) ⪯s Φ(µ) and therefore, µ ⪯s Φ(µ).

Moreover, for every µ ∈ X̂, µ ⪯s Φ(µ) ⪯s Φ(µ), whence Φ(µ) ⊆ X̂, and therefore, Ψ(µ) = Φ(µ).

Consequently, (X̂ ,⪯s,Ψ) is an isotone infimum measure theory model. Let µ̂ be the smallest fixed

point of Ψ. Then µ̂ = Ψ(µ̂) = Φ(µ̂) implies (p, µ̂) ∈ E ⊆ E and µ ⪯s µ̂ implies that (p, µ̂) is an

upper bound for C from E . Let (p, µ) be an arbitrary upper bound for C from E . Then p ⪯k p

and µ ⪯s µ and µ ∈ Φ(µ) imply µ ∈ Ψ(µ), whence µ̂ ⪯s µ. This shows that (p, µ̂) = supE C ∈ E .

Therefore, E ⊑∗cc E . Similarly, E ⊑∗cc E iso. Statement (2) for an isotone supremum kernel system

is proved similarly. Statement (3) is proved by following the proof of statement (1) with E instead

of E and the proof of statement (2) with E instead of E .

Suppose the stochastic system being considered in statements (1)-(3) is a stochastic dynami-

cal system. For statement (1), consider an isotone infimum stochastic dynamical system ((S,⪯S

,B(S)), (Z,⪯Z ,B(Z)), q,G) with infS S ∈ S, isotone q, and isotone g ∈ G such that (∀g ∈ G), g ⪯ g

and consider the associated measure theory model (X ,⪯s,Φ). Let C be a nonempty chain in E

and let C ′ = {µ ∈ X | (∃g ∈ G), (g, µ) ∈ C} ⊆ E(Φ). It follows that C ′ is a nonempty chain

in E(Φ) and using E(Φ) ⊑∗cc E(Φ), let µ̂ = infE(Φ)C
′ ∈ E(Φ). Then (g, µ̂) ∈ E is a lower bound

for C from E . If (g, µ′) ∈ E is an arbitrary lower bound for C from E , then µ′ is a lower bound

for C ′ from E(Φ), whence µ′ ⪯s µ̂. This shows that (g, µ̂) = infE C ∈ E . Now suppose C is a
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nonempty chain in E and let C ′ = {µ ∈ X | (g, µ) ∈ C} ⊆ E(Φ). As X is sup-complete, let

µ = supX C ′ ∈ X . Let X̂ = {µ ∈ X | µ ⪯s µ} and consider Ψ : X̂ ⇒ X̂ given by Ψ(µ) = Φ(µ) ∩ X̂ .

Then µ ∈ C ′ =⇒ µ = Φ(µ) ⪯s Φ(µ) and therefore, µ ⪯s Φ(µ). Moreover, for every µ ∈ X̂ ,

µ ⪯s Φ(µ) ⪯s Φ(µ), whence Φ(µ) ⊆ X̂ , and therefore, Ψ(µ) = Φ(µ). Consequently, (X̂ ,⪯s,Ψ)

is an isotone infimum measure theory model. Let µ̂ be the smallest fixed point of Ψ. Then

µ̂ = Ψ(µ̂) = Φ(µ̂) implies (g, µ̂) ∈ E ⊆ E and µ ⪯s µ̂ implies that (g, µ̂) is an upper bound for

C from E . Let (g, µ) be an arbitrary upper bound for C from E . Then g ⪯ g and µ ⪯s µ and

µ ∈ Φ(µ) imply µ ∈ Ψ(µ), whence µ̂ ⪯s µ. This shows that (g, µ̂) = supE C ∈ E . Therefore,

E ⊑∗cc E . Similarly, E ⊑∗cc E iso. Statement (2) for an isotone supremum stochastic dynamical

system is proved similarly. Statement (3) is proved by following the proof of statement (1) with E

instead of E and the proof of statement (2) with E instead of E .

Statements (1)-(3) for stochastic dynamic economies and Markov decision processes are proved

in a manner similar to the proof for stochastic dynamical systems.

For statement (4), consider an isotone supremum kernel system that is strongly isotone infimum

on upper intervals. Let C be a nonempty chain in E . Let C1 = {p ∈ P | ∃µ ∈ X , (p, µ) ∈ C} and

C2 = {µ ∈ X | ∃p ∈ P, (p, µ) ∈ C}. For each x ∈ X, let p̂(x) = supX {p(x) | p ∈ C1}, which exists

because X is chain sup-complete. As the system is isotone supremum, ∃p ∈ P such that for every

p ∈ P, p ⪯k p, whence ∀x ∈ X, p̂(x) ⪯s p(x). Let p̂ ∈ P be an isotone kernel guaranteed by the

assumption that the system is strongly isotone infimum on upper intervals. Let µ = supX C2 and

for µ ⪯S µ, let Φ̂(µ) = {Tp(µ) | p ∈ P, p is isotone, µ ⪯S Tp(µ)}. Then µ 7→ Tp̂(µ) is an isotone

infimum selection from Φ̂. Let µ̂ be the smallest fixed point. Then (p̂, µ̂) is an upper bound for C

from E iso. If (p̃, µ̃) is an upper bound for C from E iso, then p̃ is isotone and ∀x ∈ X, p̂(x) ⪯s p̃(x),

and therefore, ∀x ∈ X, p̂(x) ⪯k p̃(x), whence p̂ ⪯k p̃. Moreover, µ ∈ C2 ⇒ µ ⪯s µ̃ ⇒ µ ⪯s µ̃. As µ̃

is a fixed point of Φ̂, µ̂ ⪯s µ̃. Therefore, (p̂, µ̂) = supEiso C. Statement (5) for an isotone infimum

kernel system that is strongly isotone supremum on lower intervals is proved similarly. Statements

(4) and (5) for stochastic dynamical systems, stochastic dynamic economies, and Markov decision

processes are proved similarly. Statement (6) follows from statements (4) and (5).

Statements (1)-(3) apply immediately to the HP model along with their interpretation about

the role these play in the order approximation of arbitrary subsets of equilibria using only the

isotone infimum or supremum selection.

In statement (4), if we replace strongly isotone infimum on upper intervals with isotone infimum
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on upper intervals, then E iso is chain sup-complete in E , following the same proof with the new

definitions. Similarly, in statement (5), if we replace strongly isotone supremum on lower intervals

with isotone supremum on lower intervals, then E iso is chain inf-complete in E . With both these

replacements, it follows that E iso is chain complete in E .

In addition to a theory of order approximation of equilibria, the star chain complete set order

is useful to prove MCS of the equilibrium set associated with different equilibrium selections in

universal parametric models with complementarities, as formalized in the next section.

4 Universal parametric models with complementarities

Parametric models are used to study the effect of exogenous parameters on the working of a system

and its equilibrium. We include these effects in a general manner by positing a partially ordered

set T of parameters. A parametric poset model is a collection ((X,⪯X), (T,⪯T ),Φ), where

(X,⪯X) and (T,⪯T ) are posets and Φ : X × T ⇒ X is a correspondence. For each t ∈ T , the

poset model at t is the triple (X,⪯X ,Φt) where Φt is the t-section of Φ. An equilibrium at t is a

fixed point of Φt, and the equilibrium set at t is E(Φt) = {x ∈ X | x ∈ Φ(x, t)}. The equilibrium

correspondence is E : T ⇒ X, t 7→ E(Φt). An equilibrium selection is a selection from the

equilibrium correspondence. An isotone equilibrium selection is an equilibrium selection that is an

isotone function. A parametric poset model ((X,⪯X), (T,⪯T ),Φ) has monotone comparative

statics (MCS) of equilibrium if its equilibrium correspondence has an isotone selection.

A universal parametric model with complementarities (or universal parametric model)

is a parametric poset model ((X,⪯X), (T,⪯T ),Φ) in which (X,⪯X) is either a chain sup-complete

poset with infX X ∈ X or a chain inf-complete poset with supX X ∈ X and Φ : X×T ⇒ X has an

isotone selection. A universal parametric model ((X,⪯X), (T,⪯T ),Φ) is isotone infimum if X

is chain sup-complete with infX X ∈ X and Φ has an isotone infimum selection (∀(x, t) ∈ X × T ,

Φ(x, t) := infΦ(x,t)Φ(x, t) ∈ Φ(x, t), and the function (x, t) 7→ Φ(x, t) is isotone). The infi-

mum equilibrium set at t is E(Φt) = {x ∈ X | x = Φ(x, t)}. A universal parametric model

((X,⪯X), (T,⪯T ),Φ) is isotone supremum if X is chain inf-complete with supX X ∈ X and Φ

has an isotone supremum selection (∀(x, t) ∈ X × T , Φ(x, t) := supΦ(x,t)Φ(x, t) ∈ Φ(x, t), and the

function (x, t) 7→ Φ(x, t) is isotone). The supremum equilibrium set at t is E(Φt) = {x ∈ X |

x = Φ(x, t)}.
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Example 12 (General parametric model with complementarities). Following Sabarwal (2023b),

a general parametric model with complementarities (or general parametric model) is

a parametric poset model ((X,⪯X), (T,⪯T ),Φ) in which (X,⪯X) is a nonempty complete lattice

and Φ has an isotone selection. A general parametric model is isotone infimum (respectively,

isotone supremum) if Φ has an isotone infimum (respectively, isotone supremum) selection.

As shown in Sabarwal (2023b), the class of parametric general models is very large, including

standard parametric models with complementarities used widely in economics. For example, every

parametric Topkis model, every parametric Vives model, every parametric Zhou model, every

parametric generalized MS model, and every parametric CKK model is a parametric general model

that is isotone infimum and/or isotone supremum. Moreover, the class of general parametric models

includes models not covered by any of these models.

Example 13 (Parametric measure theory model). Let X be a Polish space with a closed partial

order ⪯X and M(X) the set of finite measures on the Borel sets of X (B(X)) with the stochastic

order, ⪯s, on M(X). Let (T,⪯T ) be a poset. A parametric measure theory model is ((X ,⪯s

), (T,⪯T ),Φ), where X ⊆ M(X), ⪯s is the stochastic order on X , and Φ : X × T ⇒ X is a

correspondence. For each t, the measure theory model at t is (X ,⪯s,Φt), where Φt is the t-section

of Φ. It follows immediately that every parametric measure theory model is a parametric poset

model. It retains the same definition of an equilibrium at t, the equilibrium set at t, and the

equilibrium correspondence. A parametric measure theory model ((X ,⪯s), (T,⪯T ),Φ) is isotone

(respectively, isotone infimum, isotone supremum) if either X is chain sup-complete with

infX X ∈ X or X is chain inf-complete with supX X ∈ X (respectively, X is chain sup-complete

with infX X ∈ X , X is chain inf-complete with supX X ∈ X ), and Φ has an isotone (respectively,

isotone infimum, isotone supremum) selection.

Example 14 (Parametric kernel systems). A parametric kernel system is a collection ((X,⪯X

,B(X)), (T,⪯T ),P), where X is a Polish space, ⪯X is a closed partial order on X, B(X) are

the Borel sets of X, (T,⪯T ) is a poset, and P is a correspondence P : T ⇒ ker(X × B(X)),

t 7→ P(t). For each t ∈ T , we view P(t) as the set of kernels governing the evolution of the system

of Markov processes associated with the kernels in P(t). Each t ∈ T is viewed as describing the

exogenously specified environment in which the system P(t) is studied. The kernel system at t is

((X,⪯X ,B(X)),P(t)). The associated parametric measure theory model is ((X ,⪯s), (T,⪯T ),Φ),

where X is the set of probability measures on B(X), ⪯s is stochastic order, and Φ : X × T ⇒ X
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is given by Φ(µ, t) = {Tp(µ) | p ∈ P(t)}. An equilibrium at t is a pair (p, µ) such that p ∈ P(t),

µ ∈ X , and µ = Tp(µ). The equilibrium set at t is E(t) = {(p, µ) ∈ P(t) × X | µ = Tp(µ)} with

the product order. The isotone equilibrium set at t is E iso(t) = {(p, µ) ∈ E(t) | p is isotone}.

A parametric kernel system is isotone if either infX X ∈ X or supX X ∈ X, and there is an

isotone selection t 7→ p(t) from P such that ∀t, p(t) is an isotone kernel. It is isotone infimum if

infX X ∈ X and there is an isotone selection p from P such that ∀t, p(t) is an isotone kernel and

∀p ∈ P(t), p(t) ⪯k p. The infimum equilibrium set at t is E(t) = {(p(t), µ) ∈ P(t) × X | µ =

Tp(t)(µ)}. It is isotone supremum if supX X ∈ X and there is an isotone selection p from P such

that ∀t, p(t) is an isotone kernel and ∀p ∈ P(t), p ⪯k p(t). The supremum equilibrium set at t

is E(t) = {(p(t), µ) ∈ P(t)×X | µ = Tp(t)(µ)}.

Example 15 (Parametric stochastic dynamical systems). A parametric stochastic dynamical

system is a collection ((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), (T,⪯T ), q,G), where (S,⪯S ,B(S)) and (Z,⪯Z

,B(Z)) are as in Example 4, (T,⪯T ) is a poset, q is a function q : T → ker(S × B(Z)), and G is a

correspondence G : T ⇒ mbl(S×Z, S). Each t ∈ T describes the exogenously specified environment

in which the stochastic dynamical system is studied. For each t ∈ T , we view q(t) as the state

dependent distribution of shocks when the exogenous parameter is t. Changing t to t′ changes the

state dependent distribution of shocks from q(t) to q(t′). Similarly, G(t) is viewed as the set of

policies being considered in environment t and these may change with t as well. Changes to q(t)

and G(t) affect the evolution of the stochastic dynamical system in an interdependent manner. The

stochastic dynamical system at t is ((S,⪯S ,B(S)), (Z,⪯Z ,B(Z)), q(t),G(t)).

The associated parametric kernel system is (S,⪯S ,B(S), (T,⪯T ),P) with P(t) = {p ∈ ker(S ×

B(S)) | p(s,A) = q(s, [g−1(A)]s), q = q(t), g ∈ G(t)}, where [g−1(A)]s is the s-section of g−1(A).

The associated parametric measure theory model is ((X ,⪯s), (T,⪯T ),Φ), where X is the set of

probability measures on B(S), ⪯s is stochastic order, and Φ : X × T ⇒ X is given by Φ(µ, t) =

{Tp(µ) | p ∈ P(t)}. An equilibrium at t is a pair (g, µ) such that g ∈ G(t), µ ∈ X , and µ = Tp(µ),

where p is derived from q = q(t) and g ∈ G(t) as above, p(s,A) = q(s, [g−1(A)]s). The equilibrium

set at t is E(t) = {(g, µ) ∈ G(t)×X | µ = Tp(µ)} with the product order. The isotone equilibrium

set at t is E iso(t) = {(g, µ) ∈ E(t) | g is isotone}.

Parametric complementarities are included as follows. A parametric stochastic dynamical sys-

tem is isotone if either infS S ∈ S or supS S ∈ S, the mapping t 7→ q(t) is isotone with q(t) is

isotone ∀t, and there is an isotone selection t 7→ g(t) from G such that (∀t), g(t) is isotone. It
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is isotone infimum if infS S ∈ S, the mapping t 7→ q(t) is isotone with q(t) is isotone ∀t, and

there is isotone selection t 7→ g(t) from G, such that (∀t), g(t) is isotone and ∀g ∈ G(t), g(t) ⪯ g.

The infimum equilibrium set at t is E(t) = {(g(t), µ) ∈ G(t) × X | µ = Tp(µ)}, where p

is derived from q(t) and g(t) as above. It is isotone supremum if supS S ∈ S, the mapping

t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t) from G, such

that (∀t), g(t) is isotone and ∀g ∈ G(t), g ⪯ g(t). The supremum equilibrium set at t is

E(t) = {(g(t), µ) ∈ G(t)×X | µ = Tp(µ)}, where p is derived from q(t) and g(t) as above.

Example 16 (Parametric stochastic dynamic economies). A parametric stochastic dynamic

economy is a collection ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), (T,⪯T ), q,G), where (X,⪯X ,B(X)) and

(Z,⪯Z ,B(Z)) are as in Example 5, (T,⪯T ) is a poset, q is a function q : T → ker(Z × B(Z)), and

G is a correspondence G : T ⇒ mbl(X × Z,X). For each g ∈ G(t), let ĝ : X × Z × Z → X × Z

be given by ĝ(x, z, z′) = (g(x, z), z′). The associated parametric stochastic dynamical system is

((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), (T,⪯T ), q, Ĝ). The associated parametric kernel system is ((S,⪯S

,B(S)), (T,⪯T ),P), where S = X × Z with product partial order ⪯S and product sigma algebra

B(S), and P(t) = {p ∈ ker(S × B(S)) | p((x, z), A) = q(z, [ĝ−1(A)](x,z)), q = q(t), g ∈ G(t)}.

The associated parametric measure theory model is ((X ,⪯s), (T,⪯T ),Φ), derived analogously. The

stochastic dynamic economy at t is ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), q(t),G(t)). An equilibrium at

t is a pair (g, µ) such that g ∈ G(t), µ ∈ X , and µ = Tp(µ), where p is derived from q = q(t)

and g ∈ G(t) as above, p((x, z), A) = q(z, [ĝ−1(A)](x,z)). The equilibrium set at t is E(t) =

{(g, µ) ∈ G(t) × X | µ = Tp(µ)} with the product order. The isotone equilibrium set at t is

E iso(t) = {(g, µ) ∈ E(t) | g is isotone}.

A parametric stochastic dynamic economy is isotone if either infX X ∈ X or supX X ∈ X,

the mapping t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t)

from G, such that (∀t), g(t) is isotone. It is isotone infimum if infX X ∈ X, the mapping

t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t) from G, such

that (∀t), g(t) is isotone, and ∀g ∈ G(t), g(t) ⪯ g. The infimum equilibrium set at t is E(t) =

{(g(t), µ) ∈ G(t) × X | µ = Tp(µ)}, where p is derived from q(t) and g(t) as above. It is isotone

supremum if infX X ∈ X, the mapping t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is

isotone selection t 7→ g(t) from G, such that (∀t), g(t) is isotone, and ∀g ∈ G(t), g ⪯ g(t). The

supremum equilibrium set at t is E(t) = {(g(t), µ) ∈ G(t)× X | µ = Tp(µ)}, where p is derived

from q(t) and g(t) as above.

39



Example 17 (Parametric Markov decision processes). A parametric Markov decision pro-

cess is a collection ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), (T,⪯T ), q,G), where (X,⪯X ,B(X)) and (Z,⪯Z

,B(Z)) are as in Example 6, (T,⪯T ) is a poset, q is a function q : T → ker((X × Z)× B(Z)), and

G is a correspondence G : T ⇒ mbl(X × Z,X). For each g ∈ G(t), let ĝ : X × Z × Z → X × Z be

given by ĝ(x, z, z′) = (g(x, z), z′). P(t) = {p ∈ ker(S × B(S)) | p((x, z), A) = q(z, [ĝ−1(A)]z), q =

q(t), g ∈ G(t)}. The associated parametric stochastic dynamical system is ((X,⪯X ,B(X)), (Z,⪯Z

,B(Z)), (T,⪯T ), q, Ĝ). The associated parametric kernel system and the associated parametric mea-

sure theory model are derived as in Example 16. The Markov decision process at t is ((X,⪯X

,B(X)), (Z,⪯Z ,B(Z)), q(t),G(t)). An equilibrium at t is a pair (g, µ) such that g ∈ G(t), µ ∈ X ,

and µ = Tp(µ), where p is derived from q = q(t) and g ∈ G(t) as above, p((x, z), A) = q(z, [ĝ−1(A)]z).

The equilibrium set at t is E(t) = {(g, µ) ∈ G(t)× X | µ = Tp(µ)} with the product order. The

isotone equilibrium set at t is E iso(t) = {(g, µ) ∈ E(t) | g is isotone}.

A parametric Markov decision process is isotone if either (infX X, infZ Z) ∈ X×Z or (supX X, supZ Z) ∈

X×Z, the mapping t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t)

from G, such that (∀t), g(t) is isotone. It is isotone infimum if (infX X, infZ Z) ∈ X × Z, the

mapping t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t) from

G, such that (∀t), g(t) is isotone, and ∀g ∈ G(t), g(t) ⪯ g. The infimum equilibrium set at t

is E(t) = {(g(t), µ) ∈ G(t) × X | µ = Tp(µ)}, where p is derived from q(t) and g(t) as above. It is

isotone supremum if (supX X, supZ Z) ∈ X × Z, the mapping t 7→ q(t) is isotone with q(t) is

isotone ∀t, and there is isotone selection t 7→ g(t) from G, such that (∀t), g(t) is isotone, and ∀g ∈

G(t), g ⪯ g(t). The supremum equilibrium set at t is E(t) = {(g(t), µ) ∈ G(t)×X | µ = Tp(µ)},

where p is derived from q(t) and g(t) as above.

Example 18 (Parametric stochastic systems). A parametric stochastic system is one that is

either a parametric kernel system, or a parametric stochastic dynamical system, or a parametric

stochastic dynamic economy, or a parametric Markov decision process. A parametric stochastic

system is isotone (respectively, isotone infimum, isotone supremum) if the corresponding

parametric system is isotone (respectively, isotone infimum, isotone supremum).

Example 19 (Parametric HP model). A parametric HP model is given by (X,Z, T, q,Γ, F, β),

whereX and Z are as in Example 8, T ⊆ Rm is a compact poset of parameters with standard partial

order, q : T → ker(Z×B(Z)) is an isotone function such that for every t, q(t) is isotone and satisfies

Feller property, Γ : X × Z × T ⇒ X is the feasibility correspondence that is nonempty valued,

40



compact-valued, and continuous, A the graph of Γ, F : A → R the (bounded) one-period return

function, β ∈ (0, 1) the constant discount rate, v : X×Z×T → R the unique value function associ-

ated with this problem, given by v(x, z, t) = supx′∈Γ(x,z,t){F (x′, x, z, t) + β
∫
v(x′, z′, t)q(z, dz′, t)},

and γ(x, z, t) = {x′ ∈ Γ(x, z, t) | v(x, z, t) = F (x′, x, z, t) + β
∫
v(x′, z′, t)q(z, dz′, t)} the policy

correspondence. Under the natural parametric extension of the complementarity and continuity

assumptions in Proposition 2 (page 1395) in Hopenhayn and Prescott (1992) and their compact-

ness assumptions in Corollary 6 (page 1396), the functions (x, z, t) 7→ g(x, z, t) := inf γ(x, z, t)

and (x, z, t) 7→ g(x, z, t) := sup γ(x, z, t) exist, are measurable, and are isotone. The HP model

at t is (X,Z, q(t),Γt, Ft, β) defined in terms of the appropriate sections. The associated paramet-

ric stochastic dynamic economy is ((X,⪯X ,B(X)), (Z,⪯Z ,B(Z)), (T,⪯T ), q,G), where G(t) is the

set of measurable selections from γ(t). In particular, Corollary 7 (page 1396) in Hopenhayn and

Prescott (1992) is the special case when T = {a, b} with a ≺ b.

Example 20 (Parametric BDRW model). Consider the BDRW model in Example 9 and let

(T,⪯T ) be a poset. Moreover, suppose Assumptions 2 (i), (ii), and (iii) (page 505) in Bal-

bus, Dziewulski, Reffett, and Woźny (2019) are satisfied. (Assumption 2 (iv) is not used in

this example.) Let Γ : I × T ⇒ A be the feasibility correspondence, Ã the graph of Γ, r :

I × A × D × T → R the player payoff function, and γ be the best response correspondence,

γ(i, µ, t) = argmaxa∈Γ(i,t) r(i, a, µ, t). The parametric BDRW model is ((I,B(I), λ), T, A, Ã, r).

The BDRW model at t is ((I,B(I), λ), At, Ãt, rt) defined in terms of the appropriate sections. With

these assumptions, results in Balbus, Dziewulski, Reffett, and Woźny (2019) show that for each

t ∈ T , the functions (i, µ, t) 7→ g(i, µ, t) := inf γ(i, µ, t) and (i, µ, t) 7→ g(i, µ, t) := sup γ(i, µ, t) exist,

are measurable, and are isotone. For each selection g from γ, let g̃ : I ×D×T → I ×A be given by

g̃(i, µ, t) = (i, g(i, µ, t)). For each t ∈ T , let γ(t) be the t-section of γ and G(t) be the collection of all

measurable selections from γ(t). For each t ∈ T and each g ∈ G(t), define the mapping Tg : D → D

by Tg(µ)(B) = λ[g̃−1(B)](µ,t), where g̃ is as above and [g̃−1(B)](µ,t) is the (µ, t)-section of [g̃−1(B)].

The associated parametric measure theory model is ((D,⪯s), (T,⪯T ),Φ), where Φ : D × T ⇒ D is

given by Φ(µ, t) = {Tg(µ) | g ∈ G(t)}.

Theorem 9. Consider the class of parametric poset models.

1. Every general parametric model that is isotone (respectively, isotone infimum, isotone supre-

mum) is a universal parametric model that is isotone (respectively, isotone infimum, isotone

supremum).
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2. Every parametric measure theory model that is isotone (respectively, isotone infimum, isotone

supremum) is a universal parametric model that is isotone (respectively, isotone infimum,

isotone supremum).

3. For every parametric stochastic system that is isotone (respectively, isotone infimum, isotone

supremum), its associated parametric measure theory model is isotone (respectively, isotone

infimum, isotone supremum).

4. For every parametric HP and every parametric BDRW model, the associated parametric mea-

sure theory model is isotone infimum and isotone supremum.

Proof. Statements (1) and (2) follow immediately from the definitions. To prove statement (3) for

a parametric kernel system ((X,⪯X ,B(X)), (T,⪯T ),P), consider its associated parametric measure

theory model ((X ,⪯s), (T,⪯T ),Φ). If the parametric kernel system is isotone, let t 7→ p(t) be an

isotone selection from P such that ∀t, p(t) is isotone. Then the selection (µ, t) 7→ Tp(t)(µ) from Φ

is isotone, because for every µ ⪯s ν and for every t̂ ⪯T t̃, Tp(t̂)(µ) ⪯s Tp(t̃)(µ) ⪯s Tp(t̃)(ν), where

the first inequality follows from p(t̂) ⪯k p(t̃) and the second from p(t̃) is isotone. Moreover, if

x = infX X ∈ X then the unit measure on x, δx, satisfies infX X = δx ∈ X , and if x = supX X ∈ X

then supX X = δx ∈ X . Therefore, the associated parametric measure theory model is isotone.

If the parametric kernel system is isotone infimum, let t 7→ p(t) be an isotone selection from P

such that ∀t, p(t) is isotone and ∀p ∈ P(t), p(t) ⪯k p. The reasoning above shows that the

selection (µ, t) 7→ Tp(t)(µ) from Φ is isotone. This selection is the infimum selection follows from

the statement that ∀t and ∀p ∈ P(t), p(t) ⪯k p implies that for every µ ∈ X , Tp(t)(µ) ⪯s Tp(µ).

The statement for parametric kernel systems that are isotone supremum is proved similarly.

To prove statement (3) for a parametric stochastic dynamical system ((S,⪯S ,B(S)), (Z,⪯Z

,B(Z)), (T,⪯T ), q,G), consider its associated parametric kernel system be (S,⪯S ,B(S), (T,⪯T ),P)

with P(t) = {p ∈ ker(S × B(S)) | p(s,A) = q(s, [g−1(A)]s), q = q(t), g ∈ G(t)}, where [g−1(A)]s

is the s-section of g−1(A). If the parametric stochastic dynamical system is isotone, the mapping

t 7→ q(t) is isotone with q(t) is isotone ∀t, and there is an isotone selection t 7→ g(t) from G

such that (∀t), g(t) is isotone. Consider the selection t 7→ p(t) from P given by p(s,A, t) =

q(s, [g−1(A)]s), where q = q(t) and g = g(t). The proof in Theorem 1 (models) shows that ∀t, p(t)

is an isotone kernel. To see that the selection is isotone, fix t̂ ⪯T t̃ arbitrarily, and consider arbitrary

s ∈ S and arbitrary increasing set A ⊆ S. Then pt̂(s,A) = qt̂(s, [g
−1
t̂

(A)]s) ≤ qt̂(s, [g
−1
t̃

(A)]s) ≤

qt̃(s, [g
−1
t̃

(A)]s) = pt̃(s,A), where pt̂ = p(t̂), pt̃ = p(t̃), qt̂ = q(t̂), qt̃ = q(t̃), gt̂ = g(t̂), gt̃ = g(t̃),
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the first inequality follows from [g−1
t̂

(A)]s ⊆ [g−1
t̃

(A)]s using A is increasing and g(t̃) ⪯ g(t̂), and

the second inequality follows from q(t̂) ⪯k q(t̃) and [g−1
t̃

(A)]s is an increasing set in Z. Therefore,

the associated parametric kernel system is isotone, and the proof for that case implies that the

associated parametric measure theory model is isotone.

If the parametric stochastic dynamical system is isotone infimum, the mapping t 7→ q(t) is

isotone with q(t) is isotone ∀t, and there is isotone selection t 7→ g(t) from G, such that (∀t), g(t)

is isotone and ∀g ∈ G(t), g(t) ⪯ g. The same argument shows that t 7→ p(t) given by p
t
(s,A) =

qt(s, [g
−1
t

(A)]s) is isotone, and for ∀t, p(t) is an isotone kernel. A similar argument shows that for

every t, as each p ∈ P(t) is of the form p(s,A) = qt(s, [g
−1(A)]s), for some g ∈ G(t), g(t) ⪯ g

implies p(t) ⪯k p. Therefore, the associated parametric kernel system is isotone infimum, and the

proof for that case implies that the associated parametric measure theory model is isotone infimum.

The statement for parametric stochastic dynamical systems that are isotone supremum is proved

similarly.

Statements (3) for the cases of parametric stochastic dynamic economies and parametric Markov

decision processes are proved similarly. Statement (4) for parametric HP model follows from (3) for

the case of parametric stochastic dynamic economy, using the existence of infimum and supremum

selections from γ as described in Example 19. Statement (4) for parametric BDRW model follows

by showing that in every parametric BDRW model, the mapping (µ, t) 7→ Tg(t)(µ) is the isotone

infimum selection from Φ, where g(t) is the t-section of g(i, µ, t) := inf γ(i, µ, t), and the mapping

(µ, t) 7→ Tg(t)(µ) is the isotone supremum selection, where g(t) is the t-section of g(i, µ, t) :=

sup γ(i, µ, t).

Isotone properties in universal parametric models imply MCS of equilibrium in these models.

Theorem 10. Consider the class of parametric poset models.

1. In every universal parametric model, there is an isotone equilibrium selection. Equivalently,

every universal parametric model has MCS of equilibrium.

2. In every universal parametric isotone infimum model, the infimum equilibrium selection t 7→

infE(Φt)
E(Φt) is isotone and selects the smallest equilibrium in E(Φt). Equivalently, every

universal parametric isotone infimum model has MCS of infimum equilibrium.

3. In every universal parametric isotone supremum model, the supremum equilibrium selection

t 7→ supE(Φt)
E(Φt) is isotone and selects the largest equilibrium in E(Φt). Equivalently, every
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universal parametric isotone supremum model has MCS of supremum equilibrium.

4. Every universal parametric isotone infimum and isotone supremum model has MCS of ex-

tremal (that is, both infimum and supremum) equilibrium.

Proof. To prove statement (1), let ((X,⪯X), (T,⪯T ),Φ) be a universal parametric model with

complementarities. Suppose X is chain sup-complete with infX X ∈ X and f : X × T → X is

an isotone selection from Φ. Then ∀t ∈ T , (X,⪯,Φt) has an isotone selection ft given by the

t-section of f . By Theorem 2, the equilibrium set E(ft) is chain sup-complete and has a smallest

element. Let e(t) = infE(ft) E(ft) ∈ E(ft) ⊆ E(Φt). Then t 7→ e(t) is an equilibrium selection.

To see that it is isotone, fix t̂ ⪯T t̃. Let A = {x ∈ X | x ⪯X f(x, t̂) and x ⪯X e(t̃)}. Set A

is nonempty as infX X ∈ A. Let C be a chain in A. If C = ∅ then supX C = infX X ∈ A.

Otherwise, let y = supX C which exists as X is sup-complete. For every x ∈ C, x ⪯ f(x, t̂)

and also, x ⪯ y =⇒ f(x, t̂) ⪯ f(y, t̂), showing that f(y, t̂) is an upper bound for C, whence,

y ⪯ f(y, t̂). Moreover, ∀x ∈ C, x ⪯ e(t̃) =⇒ f(x, t̂) ⪯ f(e(t̃), t̂) ⪯ f(e(t̃), t̃) = e(t̃). This shows

that y ⪯ e(t̃). It follows that y ∈ A showing that every chain in A has an upper bound in A. Let

e∗ be a maximal element of A. Then e∗ ⪯ f(e∗, t̂) and e∗ ⪯ e(t̃). Therefore, f(e∗, t̂) ⪯ f(f(e∗, t̂), t̂)

and also, f(e∗, t̂) ⪯ f(e(t̃), t̂) ⪯ f(e(t̃), t̃) = e(t̃) showing that f(e∗, t̂) ∈ A, whence e∗ = f(e∗, t̂).

Consequently, e(t̂) ⪯ e∗ ⪯ e(t̃), as desired. A similar argument works if X is chain inf-complete

with supX X ∈ X.

Statement (2) is proved similarly. The mapping selects the smallest equilibrium in the corre-

sponding poset model follows from Theorem 2. Statement 3 follows similarly. Statement (4) follows

from statements (2) and (3).

Theorem 10 combined with Theorem 9 yields MCS of equilibrium in every stochastic system.

Theorem 11. Consider the class of parametric stochastic systems.

1. Every isotone parametric stochastic system has MCS of equilibrium.

2. Every isotone infimum parametric stochastic system has MCS of infimum equilibrium.

3. Every isotone supremum parametric stochastic system has MCS of supremum equilibrium.

4. Every parametric stochastic system that is isotone infimum and isotone supremum has MCS

of extremal equilibrium.
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5. In each of (1)-(4), every equilibrium that is selected is an isotone equilibrium.

Proof. Suppose the stochastic system being considered in statements (1)-(4) is a kernel system.

For statement (1), consider an isotone parametric kernel system ((X,⪯X ,B(X)), (T,⪯T ),P) with

isotone selection t 7→ p(t) such that ∀t, p(t) is an isotone kernel, and the associated parametric

measure theory model ((X ,⪯s), (T,⪯T ),Φ). Suppose infX X ∈ X. Theorem 9 shows that (µ, t) 7→

Tp(t)(µ) is an isotone selection from Φ : X × T ⇒ X . For each t, let E(p(t)) = {µ ∈ X | µ =

Tp(t)(µ)}. Then E(p(t)) ⊆ E(Φt) is nonempty, chain sup-complete, and has a smallest element. Let

µ(t) = infE(p(t)) E(p(t)) ∈ E(p(t)) ⊆ E(Φt). Then t 7→ (p(t), µ(t)) is a selection from the equilibrium

correspondence E . To see that it is isotone, consider arbitrary t̂ ⪯T t̃. Then p(t̂) ⪯k p(t̃) as the

kernel system is isotone, and µ(t̂) ⪯s µ(t̃) by Theorem 10 for the associated isotone parametric

measure theory model. A similar proof works if supX X ∈ X. For statement (2), consider a

parametric kernel system ((X,⪯X ,B(X)), (T,⪯T ),P) with isotone infimum selection t 7→ p(t) such

that ∀t, p(t) is an isotone kernel and for all p ∈ P(t), p(t) ⪯k p, and the associated parametric

measure theory model ((X ,⪯s), (T,⪯T ),Φ), and suppose infX X ∈ X. The same proof as above

shows that t 7→ (p(t), µ(t)) is an isotone selection from the equilibrium correspondence E . To see

that it is the infimum equilibrium selection, fix t and consider p ∈ P(t) and µ ∈ X such that

µ = Tp(µ). Then p(t) ⪯k p as the kernel system is isotone infimum and µ(t) ⪯s µ by Theorem 3.

Statement (3) is proved similarly. Statement (4) follows from statements (2) and (3). Statement

(5) follows because the kernel associated with each equilibrium that is selected is isotone.

Suppose the stochastic system being considered in statements (1)-(4) is a stochastic dynamical

system. For statement (1), consider an isotone parametric stochastic dynamical system ((S,⪯S

,B(S)), (Z,⪯Z ,B(Z)), (T,⪯T ), q,G), with isotone selection t 7→ g(t) such that ∀t, g(t) is isotone,

and the associated parametric measure theory model ((X ,⪯s), (T,⪯T ),Φ). Suppose infS S ∈ S.

Theorem 9 shows that (µ, t) 7→ Tp(t)(µ), where p(t) is derived from q(t) and g(t), is an isotone

selection from Φ : X × T ⇒ X . Following the same steps as above, it follows that for each t, if

we let E(p(t)) = {µ ∈ X | µ = Tp(t)(µ)} and let µ(t) = infE(p(t)) E(p(t)) ∈ E(p(t)) ⊆ E(Φt), then

t 7→ (p(t), µ(t)) is an isotone selection from the equilibrium correspondence E . A similar proof

works for an arbitrary isotone infimum parametric stochastic dynamical system and an arbitrary

isotone supremum parametric stochastic dynamical system, showing statements (2), (3) and (4).

Statements (1)-(4) for parametric stochastic dynamic economies and parametric Markov decision

processes are proved similarly. Statement (5) follows similarly.
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Corollary 12. Every parametric HP model and every parametric BDRW model has MCS of ex-

tremal equilibrium, and the selected equilibria are isotone.

Proof. Follows from Theorem 11 and Theorem 9.

Theorem 13 shows that the star chain complete set order can be used to generalize Theorem 10

to prove results for parametric comparisons of all the equilibria associated with particular selections

from Φ.

Theorem 13. Consider parametric poset models in which X is chain complete.

1. In every universal parametric isotone infimum model, for every t̂ ⪯ t̃,

(a) E(Φt̂) ⊑∗cc E(Φt̃) and (b) E(Φt̂) ⊑∗cc E(Φt̃).

2. In every universal parametric isotone supremum model, for every t̂ ⪯ t̃,

(a) E(Φt̂) ⊑∗cc E(Φt̃) and (b) E(Φt̂) ⊑∗cc E(Φt̃).

3. In every universal parametric isotone infimum and isotone supremum model, for every t̂ ⪯ t̃,

in addition to (1) and (2), E(Φt̂) ⊑∗cc E(Φt̃).

4. In every universal parametric isotone infimum and isotone supremum model, for every t̂ ⪯ t̃,

if (X,⪯X ,Φt̂) is isotone supremum on lower intervals and (X,⪯X ,Φt̃) is isotone infimum on

upper intervals, then in addition to (1), (2) and (3), E(Φt̂) ⊑∗cc E(Φt̃).

Proof. For statement (1), fix t̂ ⪯ t̃. To show that E(Φt̂) is chain sup-complete in E(Φt̃), consider

nonempty chain C ⊆ E(Φt̂) and let ē = supX C ∈ X, which exists because X is chain sup-complete.

Let X̂ = {x ∈ X | e ⪯ x} and Ψ : X̂ → X̂ be given by Ψ(x) = Φt̃(x). Then e ∈ C and Φ(x, t)

is isotone imply e = Φt̂(e) ⪯ Φt̂(e) ⪯ Φt̃(e), whence e ⪯ Φt̃(e). Moreover, for every x ∈ X̂,

e ⪯ Φt̃(e) ⪯ Φt̃(x). This shows that Ψ is well-defined and therefore, (X̂,⪯X ,Ψ) is a universal

isotone infimum model (a poset model in which X̂ is chain sup-complete with infX̂ X̂ ∈ X̂ and Ψ

is an isotone function). Let ê be the smallest fixed point of Ψ. Then e ⪯ ê =⇒ ê is an upper

bound for C and ê ∈ Ψ(ê) = Φt̃(ê) =⇒ ê ∈ E(Φt̃). Let e ∈ E(Φt̃) be an arbitrary upper bound for

C. Then e ⪯ e and e = Φt̃(e) = Ψ(e), showing that e is a fixed point of Ψ, whence ê ⪯ e. This

shows that supE(Φt̃)
C = ê ∈ E(Φt̃).

To show that E(Φt̃) is chain inf-complete in E(Φt̂), consider nonempty chain C ⊆ E(Φt̃) and let

e = infX C ∈ X, which exists because X is chain inf-complete. Let X̂ = {x ∈ X | x ⪯ e} and
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Ψ : X̂ → X̂ be given by Ψ(x) = Φt̂(x). Then e ∈ C and Φ(x, t) is isotone imply e = Φt̃(e) ⪰ Φt̃(e) ⪰

Φt̂(e), whence e ⪰ Φt̂(e). Moreover, for every x ∈ X̂, e ⪰ Φt̂(e) ⪰ Φt̂(x). This shows that Ψ is well-

defined and therefore, (X̂,⪯X ,Ψ) is a universal isotone supremum model (a poset model in which

X̂ is chain inf-complete with a largest element, and Ψ is an isotone function). Let ê be the greatest

fixed point of Ψ. Then e ⪰ ê =⇒ ê is a lower bound for C and ê ∈ Ψ(ê) = Φt̂(ê) =⇒ ê ∈ E(Φt̂).

Let e ∈ E(Φt̂) be an arbitrary lower bound for C. Then e ⪰ e and e = Φt̂(e) = Ψ(e), showing

that e is a fixed point of Ψ, whence ê ⪰ e. This shows that infE(Φt̂)
C = ê ∈ E(Φt̂). It follows that

E(Φt̂) ⊑∗cc E(Φt̃).

To show that E(Φt̂) is chain sup-complete in E(Φt̃), consider nonempty chain C ⊆ E(Φt̂) and let

ē = supX C ∈ X. Let X̂ = {x ∈ X | e ⪯ x} and Ψ : X̂ ⇒ X̂ be given by Ψ(x) = Φt̃(x) ∩ X̂. Then

e ∈ C and Φ(x, t) is isotone imply e = Φt̂(e) ⪯ Φt̂(e) ⪯ Φt̃(e), whence e ⪯ Φt̃(e). Moreover, for

every x ∈ X̂, e ⪯ Φt̃(e) ⪯ Φt̃(x), whence Φt̃(x) ⊆ X̂, and therefore, Ψ(x) = Φt̃(x). Consequently,

(X̂,⪯X ,Ψ) is a universal isotone infimum model (X̂ is chain sup-complete, infX̂ X̂ ∈ X̂, and Ψ is

isotone). Let ê be the smallest fixed point of Ψ. Then ê ∈ Ψ(ê) = Φt̃(ê) ∩ X̂ implies ê ∈ E(Φt̃)

and e ⪯ ê implies that ê is an upper bound for C. Let e ∈ E(Φt̃) be an arbitrary upper bound for

C. Then e ⪯ e and e ∈ Φt̃(e) ∩ X̂ = Ψ(e), showing that e is a fixed point of Ψ, and consequently,

ê ⪯ e. Therefore, supE(Φt̃)
C ∈ E(Φt̃).

Finally, E(Φt̃) is chain inf-complete in E(Φt̂) can be proved in a manner very similar to the

proof for E(Φt̃) is chain inf-complete in E(Φt̂). It follows that E(Φt̂) ⊑∗cc E(Φt̃).

Statement (2) is proved similarly. For statement (3), E(Φt̂) is chain sup-complete in E(Φt̃) can

be proved in a manner very similar to the proof for E(Φt̂) is chain sup-complete in E(Φt̃), and E(Φt̃)

is chain inf-complete in E(Φt̂) can be proved in a manner very similar to the proof for E(Φt̃) is

chain inf-complete in E(Φt̂). This shows that E(Φt̂) ⊑∗cc E(Φt̃).

For statement (4), E(Φt̂) is chain sup-complete in E(Φt̃) can be proved in a manner very similar

to the proof for E(Φt̂) is chain sup-complete in E(Φt̃) and using Φ(x, t) instead of Φ(x, t). E(Φt̃) is

chain inf-complete in E(Φt̂) can be proved similarly. This shows that E(Φt̂) ⊑∗cc E(Φt̃).

Theorem 13 provides a framework for new theories of MCS of the full equilibrium set, the

infimum equilibrium set, and the supremum equilibrium set using the star complete chain set

order, unifying the results for lattice-based models in Sabarwal (2023b) and those for stochastic

systems here. A parametric lattice model ((X,⪯X), (T,⪯T ),Φ) has MCS of the full equilibrium

set in the star chain complete set order , if the mapping t 7→ E(Φt) is isotone in the star chain

47



complete set order; that is, for every t̂ ⪯ t̃, E(Φt̂) ⊑∗cc E(Φt̃). It has MCS of the infimum

equilibrium set in the star chain complete set order , if the mapping t 7→ E(Φt̂) is isotone in

the star chain complete set order, and it has MCS of the supremum equilibrium set in the

star chain complete set order , if the mapping t 7→ E(Φt̂) is isotone in the star chain complete

set order.

Corollary 14. Consider parametric poset models in which X is chain complete.

1. Every universal parametric isotone infimum model has MCS of the infimum equilibrium set

in the star chain complete set order.

2. Every universal parametric isotone supremum model has MCS of the supremum equilibrium

set in the star chain complete set order.

3. Every universal parametric isotone infimum and supremum model in which for every t, (X,⪯X

,Φt) is isotone supremum on lower intervals and isotone infimum on upper intervals has, in

addition to (1) and (2), MCS of the full equilibrium set in the star chain complete set order.

Proof. Follows from Theorem 13.

Statements (1) and (2) in Corollary 14 require very little structure on the parametric model (just

isotone infimum or isotone supremum). Statement (1) implies that ∀e∗ ∈ E(Φt̂), ∃ unique ẽ ∈ E(Φt̃)

higher than e∗ and closest to it among all equilibria in E(Φt̃), and ∀e∗ ∈ E(Φt̃), ∃ unique ê ∈ E(Φt̂)

lower than e∗ and closest to it among all equilibria in E(Φt̂), and similarly for statement (2).

Statement (3) provides a universal order approximation result for every equilibrium, that is, ∀e∗ ∈

E(Φt̂), ∃ unique ẽ ∈ E(Φt̃) higher than e∗ and closest to it among all equilibria at t̃, and ∀e∗ ∈ E(Φt̃),

∃ unique ê ∈ E(Φt̂) lower than e∗ and closest to it among all equilibria at t̂.

Theorem 13 provides additional order approximation results of this form. Statement (1.b)

implies that ∀e∗ ∈ E(Φt̃), ∃ unique ê ∈ E(Φt̂) lower than e∗ and closest to it among all equilibria

in E(Φt̂), and (2.b) implies that ∀e∗ ∈ E(Φt̂), ∃ unique ẽ ∈ E(Φt̃) higher than e∗ and closest to it

among all equilibria in E(Φt̃).

When X is chain complete and Φ is singleton valued, every universal parametric model satisfies

the conditions in every statement in Theorem 13 and Corollary 14, leading to the following corollary.

Corollary 15. Every universal parametric model in which X is chain complete and Φ is singleton

valued has MCS of the full equilibrium set in the star chain complete set order.
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Proof. Follows from Theorem 13 and Corollary 14.

Corresponding statements for parametric stochastic systems are proved similarly.

Theorem 16. Consider the class of parametric stochastic systems.

1. In every isotone infimum parametric stochastic system, for every t̂ ⪯ t̃,

(a) E(t̂) ⊑∗cc E(t̃), (b) E(t̂) ⊑∗cc E(t̃), and (c) E(t̂) ⊑∗cc E iso(t̃).

2. In every isotone supremum parametric stochastic system, for every t̂ ⪯ t̃,

(a) E(t̂) ⊑∗cc E(t̃), (b) E(Φt̂) ⊑∗cc E(t̃), and (c) E iso(Φt̂) ⊑∗cc E(t̃).

3. In every parametric stochastic system that is isotone infimum and isotone supremum, for

every t̂ ⪯ t̃, in addition to (1) and (2), E(t̂) ⊑∗cc E(t̃).

4. In every parametric stochastic system that is isotone infimum and supremum, for every t̂ ⪯T t̃,

if the t̂ section of the system is strongly isotone (respectively, isotone) supremum on lower in-

tervals and the t̃ section is strongly isotone (respectively, isotone) infimum on upper intervals,

then in addition to (1), (2), and (3), E(t̂) ⊑∗cc E(t̃) (respectively, E iso(t̂) ⊑∗cc E iso(t̃)).

Proof. Suppose the stochastic system being considered in statements (1)-(3) is a parametric

kernel system. For statement (1), consider an isotone infimum parametric kernel system ((X,⪯X

,B(X)), (T,⪯T ),P) with infX X ∈ X, isotone infimum selection t 7→ p(t) such that ∀t, p(t) is

an isotone kernel and for all p ∈ P(t), p(t) ⪯k p, and the associated parametric measure theory

model ((X ,⪯s), (T,⪯T ),Φ). Fix t̂ ⪯ t̃. To show that E(t̃) is inf-complete in E(t̂), let C be a

nonempty chain in E(t̃) and let C ′ = {µ ∈ X | (∃p ∈ P(t̃)), (p, µ) ∈ C} ⊆ E(Φt̃). It follows

that C ′ is a nonempty chain in E(Φt̃) and using E(Φt̂) ⊑∗cc E(Φt̃), let µ̂ = infE(Φt̂)
C ′ ∈ E(Φt̂).

Then (p, µ̂) ∈ E(t̂) is a lower bound for C from E(t̂). If (p, µ′) ∈ E(t̂) is an arbitrary lower bound

for C from E(t̂), then µ′ is a lower bound for C ′ from E(Φt̂), whence µ′ ⪯s µ̂. This shows that

(p, µ̂) = infE(t̂)C ∈ E(t̂). Similarly, E(t̂) is sup-complete in E(t̃), whence E(t̂) ⊑∗cc E(t̃). For

(1)(b) and (1)(c), E(t̂) ⊑∗cc E(t̃) and E(t̂) ⊑∗cc E iso(t̃) are shown by adapting the proof in Theorem

8 and using the connection to the associated parametric measure theory model in Theorem 13.

Statements (2) and (3) are proved similarly. The statements for parametric stochastic dynamical

systems, parametric stochastic dynamic economies, and parametric Markov decision processes are

proved similarly. Statement (4) is proved by adapting the proof in Theorem 5 and using isotonicity

of the corresponding stochastic system.
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Theorem 16 formalizes monotone comparative statics of the infimum equilibrium set and the

supremum equilibrium set for parametric stochastic systems in an analogous manner. A parametric

stochastic system hasMCS of the full equilibrium set in the star chain complete set order ,

if the mapping t 7→ E(t) is isotone in the star chain complete set order (t̂ ⪯ t̃ ⇒ E(t̂) ⊑∗cc E(t̃)), and

it has MCS of the full isotone equilibrium set in the star chain complete set order , if the

mapping t 7→ E iso(t) is isotone in the star chain complete set order (t̂ ⪯ t̃ ⇒ E iso(t̂) ⊑∗cc E iso(t̃)).

A parametric stochastic system has MCS of the infimum equilibrium set in the star chain

complete set order , if the mapping t 7→ E(t) is isotone in the star chain complete set order

(t̂ ⪯ t̃ ⇒ E(t̂) ⊑∗cc E(t̃)), and it has MCS of the supremum equilibrium set in the star

chain complete set order , if the mapping t 7→ E(t) is isotone in the star chain complete set

order (t̂ ⪯ t̃ ⇒ E(t̂) ⊑∗cc E(t̃)).

Corollary 17. Consider the class of parametric stochastic systems.

1. Every isotone infimum (respectively, supremum) parametric stochastic system has MCS of the

infimum (respectively, supremum) equilibrium set in the star chain complete set order.

2. Every parametric isotone infimum and supremum stochastic system in which for every t, the

t section of the system is strongly isotone (respectively, isotone) supremum on lower intervals

and strongly isotone (respectively, isotone) infimum on upper intervals has, in addition to (1),

MCS of the full equilibrium set (respectively, full isotone equilibrium set) in the star chain

complete set order.

Proof. Follows from Theorem 16.

Statement (1) in Corollary 17 requires very little structure on the parametric model (just isotone

infimum or isotone supremum). Indeed, in every isotone stochastic system, if the state space (X or

S) has smallest and largest points and the kernel correspondence P or the policy correspondence

G is singleton valued, the system satisfies the conditions in every statement in Theorem 16 and

Corollary 17, leading to the following corollary.

Corollary 18. Every isotone parametric stochastic system in which the state space has smallest

and largest points and the associated correspondence P or G is singleton valued has MCS of the full

equilibrium set in the star chain complete set order.

Proof. Follows from Theorem 13 and Corollary 14.
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Corollary 19. Every parametric HP model has MCS of infimum equilibrium set, supremum equi-

librium set, and isotone equilibrium set in the star chain complete set order. If the policy corre-

spondence is singleton valued, then the model has MCS of the full equilibrium set in the star chain

complete set order as well.

Proof. Follows by showing that every parametric HP model satisfies the corresponding statement

in Corollary 17, using arguments similar to those in proof of Theorem 5.

All the results in Corollary 19 are new features of equilibrium in the parametric HP model

that are unknown in the previous literature. In particular, MCS of isotone equilibrium set implies

the following: ∀(g∗, µ∗) ∈ E(t̂) that is isotone, ∃ unique (g̃, µ̃) ∈ E(t̃) that is isotone, higher than

(g∗, µ∗) and closest to it among all isotone equilibria at t̃, and ∀(g∗, µ∗) ∈ E(t̃) that is isotone,

∃ unique (ĝ, µ̂) ∈ E(t̂) that is isotone, lower than (g∗, µ∗) and closest to it among all isotone

equilibria at t̂. These results can help in policy analysis by guaranteeing order-nearest equilibria

before or after a policy change, not only in terms of optimal actions but also for the entire steady

state distribution in the economy.

5 Conclusion

We develop a universal theory of equilibrium in models with complementarities, unifying lattice-

based theories used widely in economics and elsewhere and poset-based theories useful to study

stochastic systems in many settings. We use deeper and more foundational order theoretic argu-

ments to unify and generalize existing results. This provides a common language to study central

features of equilibrium in different models with complementarities. Our formulation and proofs

open the way to study additional classes of phenomena with complementarities, whether dynamic,

deterministic, or stochastic.
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