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Abstract: Structural breaks in time series forecasting can cause inconsistency in the con-
ventional OLS estimator. Recent research suggests combining pre and post-break estimators
for a linear model can yield an optimal estimator for weak breaks. However, this approach is
limited to linear models only. In this paper, we propose a weighted local linear estimator for a
nonlinear model. This estimator assigns a weight based on both the distance of observations
to the predictor covariates and their location in time. We investigate the asymptotic prop-
erties of the proposed estimator and choose the optimal tuning parameters using multifold
cross-validation to account for the dependence structure in time series data. Additionally,
we use a nonparametric method to estimate the break date. Our Monte Carlo simulation
results provide evidence for the forecasting outperformance of our estimator over the regular
nonparametric post-break estimator. Finally, we apply our proposed estimator to forecast
GDP growth for two countries and demonstrate its superior performance compared to the
benchmark estimators using Diebold-Mariano tests.
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1 Introduction

Econometric forecasting of time series data often assumes stationarity, and therefore the

constancy of model parameters over time, such as mean, variance, frequency, trend, or com-

bined. In practice, these parameters may change over time. For example, the US industrial

production experienced slowdown during the financial crisis between 2007 and 2008, as well

as the Covid-19 pandemic between 2020 and 2022, while it experiences expansion in other

∗Contact information: caiz@ku.edu (Z. Cai) and gunawan@ku.edu (Gunawan).
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time periods. Therefore, investigating structural instability is a long-standing issue in time

series econometrics. These two different regimes are regarded as a consequence of parameter

shift or varying smoothly over time. For the latter case, the reader is referred to the papers

by Cai (2007), Sun, Hong, Lee, Wang, and Zhang (2021), and references therein. The point

at which the regime change occurs is called a change point or structural break in statistics

and econometrics literature, whereas the associated models are known as structural break

models. In practice, breaks in the parameters of a forecasting model are caused by events

that are essentially unknowable ex-ante and may be triggered by several factors, such as

institutional, political, social, financial, legal, or technological change, may precipitate the

breaks. These breaks will be understood better retrospectively rather than at the time of

occurrence. Typically, it is assumed that the modeler does not have knowledge of the process

determining the break (Clements and Hendry, 2011).

Structural breaks pose methodological challenges for forecasting exercise. In a time se-

ries model with a structural break in the conditional mean and/or conditional variance,

a conventional OLS estimator based on full-sample observations might be inconsistent. A

consistent estimator can be computed using post-break observations only if the post-break

sample is sufficiently large. However, such forecasts may not be optimal in terms of the

mean squared forecast error (MSFE) as the relatively small post-break sample size may in-

duce large estimation uncertainty (Pesaran and Pick, 2011; Pesaran, Pick, and Pranovich,

2013; Rossi, 2013; Lee, Parsaeian, and Ullah, 2022). Therefore, pre-break observations may

still be useful for forecast improvement depending on the magnitude of the break. If there is

no break, the usual full-sample estimator is optimal. If the break is strong, the post-break

estimator may be optimal. If the break is weak or moderate, a combined estimator of the

full-sample estimator and the post-break estimator would be optimal, where a combination
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weight between 0 and 1 is chosen in a way that optimizes the trade-off between the bias and

variance efficiency of the full-sample estimator.

The idea of combining information in producing the aforementioned forecast could be

considered as frequentist model averaging, since we average the pre-break and post break

estimators (Hjort and Claeskens, 2003; Hansen, 2007, 2008; Hansen and Racine, 2012; Sun

et al., 2021; Lee et al., 2022). In this spirit, there is a large number of works that propose

different forecast combination methods, particularly in the parametric literature (Clements

and Hendry, 2006, 2011; Pesaran and Timmermann, 2005, 2007; Timmermann, 2006; Pesaran

et al., 2013; Lee et al., 2022), and in the nonparametric setting (Sun et al., 2021). Another

appealing approach that can be used for combining information from before and after the

break is a semi-parametric kernel-based regression model. In particular, Lee et al. (2022)

developed a weighted generalized least squares estimator (WGLS) for time series structural

break models which exploits pre-break data in addition to the post-break data and uses

leave-one-out cross-validation for choosing the tuning parameters.

This study is motivated by forecasting output growth using the slop of yield curve as

a predictor. However, recent studies concluded that the forecasting relationship between

output growth and yield curve may be subject to structural breaks; see, for example, Stock

and Watson (1999), Giacomini and Rossi (2006), Estrella, Rodrigues, and Schich (2003),

Schrimpf and Wang (2010), and references therein. The presence of structural breaks in

turn leads to an instability of the model coefficients, which calls its usefulness for forecasting

into question. Also, the relationship between output growth and yield curve seems to be

nonlinear; see, for instance, Figure 1 in Section 4. Therefore, to conduct this empirical study,

we need to develop a new nonparametric forecasting technique with structural breaks.

This paper contributes to the nonparametric forecasting with structural breaks literature

3



by proposing a nonparametric method to exploit information contained in the dataset before

breaks occur. While most cited previous studies use (semi-)parametric forecasting models,

we approach this problem considering nonparametric mean regression. Our proposed esti-

mator, inspired by the WGLS estimator by Lee et al. (2022), assigns weights to observations

before and after the breaks. This weight is additional to the usual nonparametric weights

that are given to observations based on how far they are located relative to the predictor

covariates. Hence, it is termed as a “weighted local linear estimator”. Also, the asymptotic

properties, including the asymptotic bias and variance, of the proposed estimator are inves-

tigated and some discussions are provided to show that the asymptotic variance indeed can

be smaller than that for the nonparametric estimator using only the post-break observations.

Furthermore, the smoothing parameters are chosen using multifold cross-validation as in Cai,

Fan, and Yao (2000), while the break date is estimated in a nonparametric way using the

latest method proposed in the literature by Mohr and Selk (2020). In order to evaluate the

forecasting performance, we perform Monte Carlo simulations with diverse schemes of data

generating process. We apply this method in an empirical application for predicting gross

domestic product (GDP) growth rate for two selected countries and compare its forecasting

performance using Diebold-Mariano test. Both simulation and empirical application results

suggest the outperformance of our proposed estimator over the usual post-break estimator

and the weighted least squares estimator.

The remainder of the paper is organized as follows. The model, the break date estimator,

as well as the weighted nonparametric regression predictor are introduced in Section 2.

Section 3 presents the Monte Carlo simulation study and its results. Section 4 illustrates

an empirical application, while Section 5 concludes the paper. Finally, the sketch proofs of

theoretical results are relegated to Appendix, together with regularity conditions for deriving
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the asymptotic theories.

2 Model and Its Forecasting Procedures

2.1 Model Setup

Let {(Yt,Xt) : t ∈ N} be a weakly dependent stochastic process in R× Rd. We consider

following the forecasting model

Yt+τ = mt(Xt) + ut, t ∈ N, (1)

where τ ≥ 0 is the forecasting horizon (τ -step ahead forecast), the idiosyncratic error ut

satisfies E[ut|Ft] = 0 almost surely for the σ-field Ft = σ(uj−1,Xj : j ≤ t). It is assumed

that there exists a change point in the prediction function such that

mt(x) = m(1)(x) (t ≤ T1) +m(2)(x) (t > T1) = m(1)(x)− λ(x)dt (2)

with m(1)(x) ∕≡ m(2)(x) and λ(x) = m(1)(x) − m(2)(x), the break size function, where

1 < T1 < T is the break point, which might be unknown, dt = (t > T1), and both functions

m(1)(x) and m(2)(x) are assumed to be continuous and satisfy some regularity conditions

to ensure that {Yt,Xt} is a stationary α-mixing time series. Here, Xt is allowed to include

some lags of Yt.
1 Also, it is assumed that T1 = ⌊Ts0⌋ with 0 < s0 < 1, the portion of the

pre-break observations. Finally, note that the expression in the right hand side of (2) can be

regarded as a special case of a functional coefficient time series model proposed in Cai et al.

(2000).

It is clear that when mt(x) = β⊤
t x in (1) with βt changing smoothly over time, the

model in (1) becomes to the models studied by Cai (2007) for estimation and forecasting

1For this regard, the reader is referred to the paper by Cai and Masry (2000) for details on the conditions

and the theoretical justifications.
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and Sun et al. (2021) for a model averaging. Furthermore, when βt has structural change, the

model in (2) was investigated by Pesaran et al. (2013) and Lee et al. (2022) for the weighted

generalized least squares estimators for a conventional structural change linear model to

combine the information from both pre-break and post-break. As argued in Pesaran et al.

(2013) and Lee et al. (2022), the WGLS estimators proposed in Pesaran et al. (2013) and

Lee et al. (2022) have an ability to reduce MSFE under the structural breaks by using the

full-sample observations instead of using only the post-break observations, by deriving the

optimal weight for the pre-break proportion of the full-sample. Note that in (2), our focus

is only on one break and it is easy to generalize the model in (2) to a multiple break case.

2.2 Weighted Local Linear Estimation

Inspired by the work of Lee et al. (2022), we propose an estimator for nonparametric

time series structural break model, where breaks may occur in the mean function and error

variance. In particular, we are interested in estimating the mean function after the break by

partly using information contained in the pre-break observations. Our starting point is the

following nonparametric local linear regression problem. For Xt in a neighborhood of x, a

given grid point from the data domain, we can approximate locally the mean function by

m(Xt) ≈ β0(x) + β1(x)
⊤(Xt − x) by ignoring the higher order term, where β0(x) = m(x)

and β1(x) = m′(x), the first order derivative of m(x). Then, the locally weighted least

squares is given by

min
β0,β1

T󰁛

t=1

󰁨K(t, γ)Kh(x−Xt)
󰀃
Yt+τ − β0 − β⊤

1 (Xt − x)
󰀄2

, (3)

where for some 0 ≤ γ ≤ 1,

󰁨K(t, γ) = γ (t ≤ T1) + (t > T1) (4)
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is a discrete kernel.2 We use the short notation Kh(u) = K(u/h)/hd, where K(·) is a kernel

function and h is the bandwidth. As mentioned in Cai et al. (2000), the estimation procedure

and its asymptotic theory for the d-dimensional case are the same those for the case that

Xt is the univariate case. Therefore, for ease notation, our next presentation is only for

one-dimensional case; that is d = 1, so that Xt and x become to be Xt and x, respectively.

Equation (3) shows the weighting scheme used for this estimator, i.e. 󰁨K(t, γ) to assign a

weight γ or 1 based on where the observations lie in time t, and Kh(x−Xt) to assign weights

on each observation based on how close they are to a point x. In addition, we fit a local linear

estimator instead of a local constant one in order to reduce boundary bias and to achieve the

minimax efficiency (Fan and Gijbels, 1996). Based on (4), post-break observations receive a

weight of 1, while a weight of γ ∈ [0, 1] is assigned to pre-break observations, as information

from recent data is considered more relevant for forecasting. If γ is close to zero, then the

estimator is heavily weighted on the post-break observations. If γ = 1, then we would ignore

any structural break and have a usual full-sample estimator. In other cases where γ ∈ (0, 1),

we thus have a combination of pre- and post-break observations for the estimator.

The solution to (3) is a 󰁥β(x) = (󰁥β0(x), 󰁥β1(x))
⊤, which gives 󰁥m(x) = 󰁥β0(x), the estimator

of m(x), and 󰁥m′(x) = 󰁥β1(x), the estimator of m′(x). To express the estimator in matrix

form, we introduce the following notations. Let Y ⊤ = (Y ⊤
(1), Y

⊤
(2)) be a T × 1 vector of the

dependent variable, where Y(i) = (YTi−1+1+τ , . . . , yTi+τ )
⊤, and X⊤ = (X⊤

(1),X
⊤
(2)) be a T × 2

2For more bout the discrete kernel, the reader is referred to the book by Li and Racine (2007).
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matrix of the independent variables, where

X(i) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 (XTi−1+1 − x)

1 (XTi−1+2 − x)

...
...

1 (XTi
− x)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

with i = 1 and 2 and the convention that T0 = 0, and T2 = T . Now, define the T × T

weighting matrix W(γ) as follows

W = W(γ) = WγWk, where Wγ =

󰀳

󰁅󰁃
γIT1 O

O IT−T1

󰀴

󰁆󰁄 and Wk =

󰀳

󰁅󰁃
W(1) O

O W(2)

󰀴

󰁆󰁄

with W(1) = diag(Kh(x−X1), . . . , Kh(x−XT1)) and W(2) = diag(Kh(x−XT1+1), . . . , Kh(x−

XT )) as well as Id denoting a d× d identity matrix. Thus, the minimizer of (3) is given by

󰁥β(x) = (󰁥β0(x), 󰁥β1(x))
⊤ = (X⊤WX)−1X⊤WY. (5)

In particular, our weighted local linear (WLL) estimator for the mean function is given by

󰁥mwll(x) = 󰁥β0(x), (6)

which reduces to the local linear estimator of m(2)(x) when γ = 0. Further, equation (5) can

be rewritten as

󰁥β(x) =
󰀅
γX⊤

(1)W(1)X(1) +X⊤
(2)W(2)X(2)

󰀆−1 󰀃
γX⊤

(1)W(1)Y(1) +X⊤
(2)W(2)Y(2)

󰀄

= Γ󰁥β(1)(x) + (I2 − Γ)󰁥β(2)(x), (7)

where

Γ = Γ(x, γ) =
󰀅
γX⊤

(1)W(1)X(1) +X⊤
(2)W(2)X(2)

󰀆−1 󰀃
γX⊤

(1)W(1)X(1)

󰀄
.

Indeed, equation (7) can be viewed as the combined estimator of the pre-break and the

post-break estimators, i.e., a combination of 󰁥β(1)(x) for the estimator before the break and
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󰁥β(2)(x) for the estimator after the break, where 󰁥β(1)(x) =
󰁫
X⊤

(1)W(1)X(1)

󰁬−1 󰀓
X⊤

(1)W(1)Y(1)

󰀔

and 󰁥β(2)(x) =
󰁫
X⊤

(2)W(2)X(2)

󰁬−1 󰀓
X⊤

(2)W(2)Y(2)

󰀔
, respectively, with the combination weight

Γ. A feasible version for (7) is

󰁥β(x) = 󰁥Γ󰁥β(1)(x) +
󰀓
I2 − 󰁥Γ

󰀔
󰁥β(2)(x),

where Γ̂ is a consistent estimator of Γ, say,

Γ̂ =
󰀅
γ̂X⊤

(1)W(1)X(1) +X⊤
(2)W(2)X(2)

󰀆−1 󰀃
γ̂X⊤

(1)W(1)X(1)

󰀄
,

where γ̂ is chosen using multifold cross-validation discussed in Section 2.4. Of course, 󰁥β(x)

involves the bandwidth h, which can be selected using multifold cross-validation.

2.3 Asymptotic Analyses

Now, we investigate the asymptotic properties of 󰁥mwll(x). First, we evaluate Γ. To do so,

consider X⊤WX = (γ − 1)X⊤
(1)W(1)X(1) +X⊤WkX. For j ≥ 0, let µj =

󰁕
K(u)ujdu and

Sj(x) =
1

T

T󰁛

t=1

Kh(Xt − x)

󰀕
Xt − x

h

󰀖j

.

It is easy to see that

X⊤WkX = TH

󰀳

󰁅󰁃
S0(x) S1(x)

S1(x) S2(x)

󰀴

󰁆󰁄H,

where H = diag{1, h}. Under some regularity conditions given in Appendix; see, for ex-

ample, Assumptions (A1) - (A5), it follows from (C.1) in Appendix that as T → ∞,

Sj(x)
p−→ µj f(x), where f(x) is the density of Xt, µj =

󰁕
ujK(u), and

p−→ denotes

the convergence in probability. Therefore, X⊤WkX = Tf(x)HµH(1 + op(1)), where

µ = diag{1, µ2} and AT = op(BT ) means that AT/BT
p−→ 0 as T → ∞. Similarly,

we have X⊤
(1)W(1)X(1) = f(x)T1HµH(1 + op(1)) = s0 f(x)THµH(1 + op(1)). Hence,
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X⊤WX = [1 + (γ − 1)s0]f(x)THµH(1 + op(1)), which implies that Γ = sbI2, where

sb = s0γ[1 + (γ − 1)s0]
−1, which depends on both γ and s0.

2.3.1 Asymptotic Bias

Next, we evaluate the asymptotic bias for 󰁥mwll(x). For this purpose, (7) is re-expressed as

󰁥β(x) = 󰁥β(2)(x)+Γ
󰁫
󰁥β(1)(x)− 󰁥β(2)(x)

󰁬
, so that 󰁥mwll(x)−m(2)(x) = 󰁥β0(x)−m(2)(x) ≈ 󰁥β0,(2)(x)−

m(2)(x) + sb

󰁫
󰁥β0,(1)(x)− 󰁥β0,(2)(x)

󰁬
, where 󰁥β0,(1)(x) and 󰁥β0,(2)(x) are the first component of

󰁥β(1)(x) and 󰁥β(2)(x), respectively. Indeed, 󰁥β0,(1)(x) is the local linear estimator for m(1)(x)

using only the pre-break observations and 󰁥β0,(2)(x) is the local linear estimator for m(2)(x)

using only the post-break observations. Also, under regularity conditions given in Appendix,

we show in Appendix that the asymptotic biases for 󰁥β0,(1)(x) and 󰁥β0,(2)(x) are B1(x) =

h2m′′
(1)(x)µ2/2 and B2(x) = h2m′′

(2)(x)µ2/2, respectively. Therefore, the asymptotic bias for

󰁥mwll(x) is

Bwll(x) = B2(x) + sb

󰀗
λ(x) +

h2

2
µ2λ

′′(x)

󰀘
, (8)

where λ(x) is defined in (2). Clearly, the second term in the right hand side of Bwll(x) is

extra by comparing with that for 󰁥β0,(2)(x) due to the weighted estimation procedure and it is

negative if λ(x) < 0 by ignoring the higher order term. Finally, one can see that for a linear

model (mt(Xt) = β⊤
t Xt), Bwll(x) reduces to sbλ(x), which is similar to those in Pesaran

et al. (2013) and Lee et al. (2022).

One might be interested in a bias correction version to reduce the asymptotic bias of

󰁥mwll(x) to be in the order of Op(h
2) instead of λ(x). To do so, it is easy to see that

λ̂(x) = 󰁥β0,(1)(x) − 󰁥β0,(2)(x) is a consistent estimate of λ(x). Therefore, a bias corrected

version of 󰁥mwll(x) is

󰁥mwll,c(x) = 󰁥mwll(x)− ŝb

󰁫
󰁥β0,(1)(x)− 󰁥β0,(2)(x)

󰁬
, (9)
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where ŝb = s0γ̂[1 + (γ̂ − 1)s0]
−1 if γ̂ is a consistent estimate of γ. Then, the asymptotic bias

for 󰁥mwll,c(x) should be

1

2
h2µ2

󰀅
m′′

(2)(x) + sbλ
′′(x)

󰀆
=

1

2
h2µ2

󰀅
(1− sb)m

′′
(2)(x) + sbm

′′
(1)(x)

󰀆
,

which is the conventional asymptotic bias for a local linear estimator; see, for instance, Cai

et al. (2000) for details.

2.3.2 Asymptotic Variance

Finally, addition to the asymptotic bias given in (8), we consider the asymptotic variance

of 󰁥mwll(x). To this end, express

X⊤WU = γ

T1󰁛

t=1

Kh(Xt − x)

󰀳

󰁅󰁃
1

Xt − x

󰀴

󰁆󰁄ut +
T󰁛

t=T1+1

Kh(Xt − x)

󰀳

󰁅󰁃
1

Xt − x

󰀴

󰁆󰁄ut =

󰀳

󰁅󰁃
A1

A2

󰀴

󰁆󰁄 ,

where U is defined in the same way as Y , which is the main term that contributes to the

asymptotic variance of 󰁥mwll(x), and A1 and A2 are defined in a clear manner. Clearly,

C0(γ) =

󰁵
h

T
A1 = γ

√
s0 C1 +

√
1− s0 C2,

where

C1 =

󰁵
h

T1

T1󰁛

t=1

Kh(Xt − x)ut and C2 =

󰁵
h

T − T1

T󰁛

t=T1+1

Kh(Xt − x)ut

One can show in Appendix that under regularity conditions given in Appendix; see, for

example, Assumptions (B1) - (B4),

C1
d→ N

󰀃
0, σ2

m,1(x)
󰀄

and C2
d→ N

󰀃
0, σ2

m,2(x)
󰀄
,

where
d→ denotes the convergence in distribution, σ2

m,1(x) = ν0σ
2
1(x)f(x) and σ2

m,2(x) =

ν0σ
2
2(x)f(x) with νj =

󰁕
u2jK2(u)du (j ≥ 0), σ2

1(x) = E (u2
t |Xt = x) for t ≤ T1 and σ2

2(x) =
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E (u2
t |Xt = x) for t ≥ T1, if the conditional variance of ut given Xt = x has the same break

date as the mean function. Also, it is not difficult to show that Cov(C1, C2) → 0 as T → ∞.

Therefore,

C0(γ) =

󰁵
h

T

󰀥
γ

T1󰁛

t=1

Kh(Xt − x)ut +
T󰁛

t=T1+1

Kh(Xt − x)ut

󰀦

= γ
√
s0 C1 +

√
1− s0 C2

d−→ N
󰀃
0, σ2

m,0(x)
󰀄
,

where σ2
m,0(x) = ν0 [s0γ

2σ2
1(x) + (1− s0)σ

2
2(x)] f(x), which implies that

√
Th

󰀅
󰁥mwll(x)− Bwll(x) + op(h

2)
󰀆 d−→ N

󰀃
0, σ2

wll(x)
󰀄
, (10)

where σ2
wll(x) = σ2

m,0(x)[1+(γ−1)s0]
−2/f 2(x), which is regarded as the asymptotic variance

of 󰁥mwll(x). If there is no break in the variance function; that is, σ2(x) = E (u2
t |Xt = x) =

σ2
1(x) = σ2

2(x), then, it is reduced to σ2
wll(x) = ν0 swllσ

2(x)/f(x), where swll = [γ2s0 + (1 −

s0)]/[1 + (γ − 1)s0]
2. By the same token, it is not difficult to derive the asymptotic variance

of 󰁥β0,(2)(x), which is σ2
(2)(x) = ν0s(2)σ

2(x)/f(x), where s(2) = 1/[1−s0]. Evidently, swll < s(2)

so that the asymptotic variance for 󰁥mwll(x) is smaller than that for 󰁥β0,(2)(x). Note that

(10) provides the asymptotic normality for 󰁥mwll(x). Also, note that when γ is consistently

estimated as γ̂,

C0(γ̂) = C0(γ) + (γ̂ − γ)
√
s0 C1 = C0(γ) + op(1)

d−→ N
󰀃
0, σ2

wll(x)
󰀄

by Slutsky theorem, σ2
wll(x) is defined in (10), which indicates that the asymptotic normality

for 󰁥mwll(x) is the same for both known γ and the consistent estimate γ̂, as long as γ can be

consistently estimated.

It is clear that from (8) and (10), the mean squared error (MSE) of 󰁥mwll(x) is given by

MSE (󰁥mwll(x)) = B2
wll(x) +

σ2
wll(x)

Th
,
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which provides a criterion for choosing the optimal h and γ simultaneously, described as

follows.

2.4 Selection of Tuning Parameters

Our weighted local linear estimator (7) relies on two parameters that require selection: the

bandwidth h and the weight γ. To determine appropriate values for these parameters, we

employ the multifold cross-validation method, which allows us to effectively choose optimal

values for both h and γ.

A popular method used for choosing tunning parameters is the leave-one-out cross-

validation as used in Lee et al. (2022). However, as pointed out by Shao (1993) and Cai

et al. (2000), this leave-one-out cross-validation method would fail for time series data, since

adjacent points might be highly dependent. In our study, we use a modified multifold cross-

validation proposed by Cai et al. (2000) to be attentive to the structure of stationary time

series data, which is different from that in Lee et al. (2022).

Let m and Q be two given positive integers such that T > mQ. The idea is first to use

Q sub-series of lengths T − qm (q = 1, . . . , Q) to estimate the unknown mean functions and

then compute the one-step forecasting errors of the next section of the time series of length

m based on the estimated models. More precisely, we choose the optimal weight γ and the

optimal bandwidth that minimize the average mean squared (AMS) error

AMS(h, γ) =
1

Q

Q󰁛

q=1

AMSq(h, γ), (11)

where for (q = 1, . . . , Q),

AMSq(h, γ) =
1

m

T1−qm+m󰁛

t=T1−qm+1

(Yt+τ − 󰁥mwll,q(Xt))
2

and {󰁥mwll,q(·)} is the weighted local linear mean estimate computed using (7) from the

sample {(Yt+τ ,Xt), 1 ≤ t ≤ T1 − qm}. To account for both pre- and postbreak samples, we
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need to use an optimal bandwidth for each subsample, denoted as h(1) and h(2), respectively.

To determine these bandwidths, we utilize Gaussian kernel for the regression and perform

multifold cross-validation as well. Ten candidate values for each bandwidth are chosen

to be equidistant within the range [10−2, 10] · h̃(i), where h̃(i) represents the theoretically

optimal bandwidth for subsample i under Gaussian kernel. Specifically, h̃(1) is calculated

as 1.06 · σ(X(1))T
−1/(4+d)
1 , while h̃(2) is calculated as 1.06 · σ(X(2))(T − T1)

−1/(4+d), where

T1 represents the size of the prebreak subsample, T represents the total sample size, and

d represents the number of covariates. Additionally, we adopt m = [0.1T ] and Q = 4 as

recommended in Cai et al. (2000). It is worth noting that the selected bandwidths are not

particularly sensitive to the choice ofm and Q, provided that the productmQ is large enough

to ensure stable prediction error estimation. Alternatively, one can use the nonparametric

type Akaike information criterion selector as proposed in Cai and Tiwari (2000); see, for

instance, Cai and Tiwari (2000) for details.

2.5 Estimation of Break Date

When the break date T1 is unknown, it can be estimated using the method proposed

by Mohr and Selk (2020). The objective is to estimate the rescaled change point s0. The

estimator itself is based on a Kolmogorov-Smirnov functional of the marked empirical process

of residuals; that is

T̂T (s, z) =
1

T

⌊Ts⌋󰁛

t=1

(Yt − m̂T (Xt))ωT (Xt) (Xt ≤ z)

for s ∈ [0, 1] and z ∈ Rd, where x ≤ y is short for xj ≤ yj for all j = 1, . . . , d,

ωT (•) = {• ∈ [−(log T )
1

d+1 , (log T )
1

d+1 ]d} and for simplicity, m̂T (·) is the Naradaya-Watson
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estimator3, namely

m̂T (x) =

󰁓T
t=1 Kh(x−Xt)Yt󰁓T
t=1 Kh(x−Xt)

.

The truncation of the domain of Xt to a compact set within Rd by the function ωT (•)

is motivated by the fact that kernel estimators only perform well in regions where there

are many observations and rather poorly on the edges and outside of the sample space.

Therefore, the nice asymptotic properties can not be expected on the whole domain of Rd.

Then, s0 is estimated by

ŝT := min

󰀫
s : sup

z∈Rd

|T̂T (s, z)| = sup
s̄∈[0,1]

sup
z∈Rd

|T̂T (s̄, z)|
󰀬
. (12)

Note that ŝT = ⌊T ŝT ⌋/T . Under some regularity conditions; see, for instance, Assumptions I

- TX.2 in Mohr and Selk (2020), it follows from Mohr and Selk (2020) that ŝT is a consistent

estimate of s0 with the convergence rate T . The reader is referred to the paper by Mohr and

Selk (2020) for details. Therefore, ŝT in (12) is used in our simulation and empirical studies

conducted in Sections and 3 and 4, respectively.

3 Monte Carlo Simulation Studies

In order to evaluate to finite sample performance of our proposed estimator, we consider

two basic models; that is

(IID) Yt+τ = mt(Xt) + σ(Xt)εt, where Xt, εt ∼ N (0, 1) i.i.d.

(TS) Yt+τ = mt(Xt) + σ(Xt)εt, where Xt = 0.4Xt−1 + ηt, and ηt, εt ∼ N (0, 1) i.i.d.

(AR) Yt+τ = mt(Xt) + σ(Xt)εt, where Xt = Yt−1 and ηt, εt ∼ N (0, 1) i.i.d.

3Of course, one can use the local linear fitting scheme.
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with a break in variance σ2(x) = (0.1 + σ0|x|) (t ≤ T1) + (0.2 + σ0|x|) (t > T1). We

generate data for both the homoscedastic case σ0 = 0 and the heteroscedastic case σ0 = 1.

The prediction function is modeled in six different scenarios

mt(x) = m(1)(x) (t ≤ T1) +m(2)(x) (t > T1), (M1)

where m(1)(x) = sin(x) and m(2)(x) = b1 sin(x) with b1 = 0.9, 0.7 and 0.5, respectively, so

that the break size function λ1(x) = (1− b1) sin(x) characterized by b1, and

mt(x) = m(1)(x) (t ≤ T1) +m(2))(x) (t > T1), (M2)

where m(1) = x(1 + cos(x)) and m(2)(x) = x(1 + cos(b2x)) with b2 = 1.1, 1.3 and 1.5,

respectively, so that the break size function λ2(x) = x(cos(x) − cos(b2x)) characterized by

b2. The pre-break sample size is defined as a proportion of the full-sample, T1 = ⌊Ts0⌋

with s0 ∈ {0.7, 0.8, 0.9}, with sample sizes of T ∈ {500, 1000}. The simulation is iterated

M = 1000 times. Both sets of scenarios M1 and M2 represent two different mean functions

with different sizes of break. We shall evaluate whether the size of the break in both the

mean and variance influences the forecasting performance of our proposed estimator. We

distinguish the cases when s0 is known, or unknown and estimated by ŝT using (12). We

use the Gaussian kernel for estimating the mean function 󰁥m(·), together with the bandwidth

h and the weight γ determined by the multifold cross-validation in (11). As mentioned in

Section 2, the estimator 󰁥mwll(·) exhibits bias. Consequently, in this simulation exercise, we

implement the proposed bias correction to address this issue.

In order to evaluate forecasting performance, we employ the mean squared forecasting

error of one to four step ahead forecasts by comparing our weighted local linear estimator

(“wll”) and the forecast using post-break estimator (“pb”). The τ -step ahead forecast for

Yt computed at time T using method i is denoted as 󰁥Yi,T+τ with τ = 1, 2, 3, 4, and i = wll
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or, pb. That is,

󰁥Ywll,T+τ = 󰁥mwll,c(XT ),

where 󰁥mwll,c(·) is computed using (9), while 󰁥Ypb,T+τ is based on local linear estimator using

post-break observations only. We use a fixed estimation window from t = 1, . . . , T . The

MSFE for each method is calculated as

MSFEi,τ =
1

M

M󰁛

m=1

󰀓
Y

(m)
i,T+τ − 󰁥Y (m)

i,T+τ

󰀔2

,

where 󰁥Y (m)
i,T+τ is the forecasted value for YT+τ computed using method i for the m-th replica-

tion.

Tables 1 (homoscedastic errors) and 2 (heteroscedastic errors) present simulation results

for IID data. In contrast, Tables 3 (homoscedastic errors) and 4 (heteroscedastic errors)

display results for TS data, where the regressor follows an AR(1) process. Additionally,

Tables 5 (homoscedastic errors) and 6 (heteroscedastic errors) showcase results for AR data,

where the first-lag dependent data serves as the regressor. In all cases, the sample size is

T = 500 or T = 1000. These tables contain the MSFE of the weighted local linear estimator

relative to the post-break estimator; that is MSFEj/MSFEi, where j stands for the weighted

local linear estimator and i represents the post-break estimator (γ = 0). If the number is

less than 1, then the former estimator performs better than the latter, and vice versa, while

a relative MSFE of 1 shows the equal forecasting performance of both estimators.

Table 1 presents the relative MSFEs for IID data with a break in homoscedastic variance.

Across all forecast horizons, we observe that our proposed estimator consistently outperforms

the post-break estimator, as evidenced by relative MSFEs lower than 1. In some cases, the

relative MSFEs are slightly above 1, indicating that our proposed estimator performs at least

as well as the post-break estimator. When comparing across s0, we notice a decreasing trend

in relative MSFEs as s0 increases. This suggests that as the post-break sample size decreases,
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.967 1.006 0.973 0.988 0.984 0.995 0.984 1.000
0.8 0.937 0.922 0.916 0.935 0.993 1.001 1.000 0.995
0.9 0.879 0.728 0.734 0.745 0.998 0.912 0.996 0.967

b1 = 0.7
0.7 0.988 0.978 0.976 0.981 0.979 0.994 0.998 0.984
0.8 0.968 0.941 0.942 0.600 0.997 1.001 0.996 0.988
0.9 0.837 0.853 0.639 0.308 0.989 0.975 1.004 0.951

b1 = 0.5
0.7 0.999 0.995 0.983 1.001 0.996 0.996 0.995 1.001
0.8 1.003 0.979 0.977 0.986 1.003 0.996 0.997 1.000
0.9 0.890 0.916 0.843 0.826 0.991 1.000 0.979 0.999

b2 = 1.1
0.7 0.994 0.983 0.987 0.977 0.997 0.998 0.997 0.995
0.8 0.959 0.979 0.976 0.965 0.999 1.000 0.998 0.990
0.9 0.968 0.894 0.924 0.653 1.000 1.000 0.998 0.988

b2 = 1.3
0.7 0.994 0.996 0.993 0.992 1.001 0.999 1.002 0.999
0.8 0.970 0.985 0.968 0.986 0.997 0.998 0.992 0.995
0.9 0.940 0.970 0.792 0.885 1.001 0.999 0.998 0.999

b2 = 1.5
0.7 0.994 0.997 0.997 1.002 1.001 0.998 1.002 1.000
0.8 0.988 0.970 0.997 0.984 1.001 0.939 0.996 0.995
0.9 0.972 0.971 0.935 0.977 0.995 0.998 1.000 1.001

T = 1000

b1 = 0.9
0.7 0.972 0.986 0.968 0.982 0.996 1.004 0.916 0.982
0.8 0.944 0.968 0.942 0.930 0.992 0.992 0.588 0.986
0.9 0.806 0.565 0.668 0.812 0.994 0.943 0.939 0.986

b1 = 0.7
0.7 0.977 0.998 0.982 0.984 0.993 1.004 0.993 0.987
0.8 0.974 0.953 0.866 0.890 0.995 0.985 0.933 0.973
0.9 0.785 0.663 0.703 0.793 0.986 0.960 1.005 0.976

b1 = 0.5
0.7 0.986 0.984 0.983 0.985 1.000 0.998 0.999 1.000
0.8 0.993 0.973 0.998 0.978 0.999 0.997 1.000 1.003
0.9 0.909 0.682 0.875 0.714 0.992 1.002 0.995 0.969

b2 = 1.1
0.7 0.997 1.001 0.998 0.984 0.997 0.999 1.000 0.995
0.8 0.958 0.946 0.986 0.984 0.997 0.997 1.000 0.997
0.9 0.861 0.851 0.908 0.926 0.952 1.000 0.965 0.989

b2 = 1.3
0.7 0.992 0.993 0.991 0.982 0.996 0.999 0.997 0.987
0.8 0.971 0.886 0.972 0.989 0.996 0.981 0.997 0.995
0.9 0.963 0.958 0.897 0.906 0.998 0.996 0.996 1.002

b2 = 1.5
0.7 1.003 0.993 1.001 0.994 0.997 1.000 0.996 0.999
0.8 0.991 0.996 0.981 1.005 1.000 1.000 0.999 1.000
0.9 0.974 0.982 0.969 0.935 0.997 0.998 1.001 0.998

Table 1: MSFE for WLL estimator relative to the post-break estimator. IID data with a break in ho-
moscedastic variance σ2(x) = 0.1 · (t ≤ T1) + 0.2 · (t > T1), both known (the left panel) and estimated s0
(the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and T = 1000 (the
bottom panel) with M = 1000 Monte-Carlo iterations.
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.977 0.976 0.969 0.980 0.991 1.003 0.987 0.989
0.8 0.918 0.888 0.906 0.938 1.000 0.999 0.998 1.013
0.9 0.800 0.632 0.842 0.706 1.006 0.993 0.989 0.998

b1 = 0.7
0.7 0.993 0.983 0.939 0.973 0.988 0.983 0.987 0.998
0.8 0.960 0.907 0.914 0.919 1.000 0.972 0.962 0.983
0.9 0.866 0.692 0.526 0.481 0.995 0.976 1.005 0.991

b1 = 0.5
0.7 0.972 0.989 0.973 0.990 0.999 1.000 0.982 0.937
0.8 0.995 0.917 0.924 0.939 0.587 0.995 0.997 0.514
0.9 0.802 0.787 0.770 0.816 0.988 0.994 1.002 0.995

b2 = 1.1
0.7 0.996 0.988 0.996 0.997 0.993 0.999 1.001 0.970
0.8 0.956 0.993 0.972 0.945 0.999 1.002 0.998 1.000
0.9 0.874 0.929 0.907 0.922 0.997 0.994 1.000 0.985

b2 = 1.3
0.7 0.996 0.985 0.980 1.000 0.998 1.002 0.995 0.994
0.8 0.988 0.988 0.981 0.986 1.000 1.002 0.997 0.999
0.9 0.939 0.650 0.968 0.888 0.999 1.003 0.999 1.000

b2 = 1.5
0.7 0.998 0.988 0.997 0.999 1.001 0.999 1.000 0.999
0.8 0.983 0.965 0.994 0.987 0.998 0.997 0.998 1.002
0.9 0.982 0.941 0.836 0.932 1.001 1.001 0.996 1.001

T = 1000

b1 = 0.9
0.7 0.982 0.989 0.965 0.954 0.989 1.005 0.986 0.991
0.8 0.939 0.952 0.852 0.650 0.994 0.991 1.003 0.885
0.9 0.801 0.868 0.792 0.665 0.999 0.980 1.000 0.996

b1 = 0.7
0.7 0.977 0.995 0.985 0.983 0.996 0.946 0.990 0.987
0.8 0.957 0.963 0.865 0.854 1.003 0.996 0.929 1.000
0.9 0.805 0.781 0.651 0.653 0.982 0.995 1.001 0.924

b1 = 0.5
0.7 0.990 0.977 0.978 0.992 1.004 0.997 1.006 1.001
0.8 0.984 0.968 0.902 0.927 1.001 0.993 0.923 0.949
0.9 0.858 0.681 0.623 0.720 0.984 0.987 1.002 0.974

b2 = 1.1
0.7 0.995 0.994 0.991 0.996 0.998 0.993 0.998 0.989
0.8 0.979 0.931 0.983 0.980 0.995 0.998 0.996 0.997
0.9 0.948 0.950 0.904 0.930 0.998 0.997 1.000 0.997

b2 = 1.3
0.7 0.995 0.997 0.981 0.989 0.991 0.998 0.982 0.996
0.8 0.988 0.759 0.984 0.992 0.992 0.989 0.995 0.997
0.9 0.948 0.953 0.829 0.939 0.996 0.995 0.999 0.999

b2 = 1.5
0.7 0.985 0.992 0.998 0.987 0.999 1.001 1.001 0.993
0.8 0.994 0.999 0.993 1.002 0.999 0.999 0.999 1.000
0.9 0.948 0.963 0.903 0.856 1.000 1.005 1.000 1.000

Table 2: MSFE for WLL estimator relative to the post-break estimator. IID data with a break in het-
eroscedastic variance σ2(x) = (0.1 + |x|) (t ≤ T1) + (0.2 + |x|) (t > T1), both known (the left panel) and
estimated s0 (the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and
T = 1000 (the bottom panel) with M = 1000 Monte-Carlo iterations.
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.982 0.972 0.991 0.984 1.003 0.984 0.985 0.986
0.8 0.914 0.965 0.886 0.890 0.996 0.985 0.991 0.998
0.9 0.786 0.657 0.688 0.816 0.987 0.985 0.993 0.992

b1 = 0.7
0.7 1.000 0.916 0.986 0.991 0.994 0.993 0.992 0.999
0.8 0.969 0.971 0.957 0.819 0.998 0.952 1.004 0.991
0.9 0.776 0.761 0.611 0.604 0.988 0.986 0.996 0.993

b1 = 0.5
0.7 1.021 0.992 0.888 0.992 0.998 0.996 0.993 0.997
0.8 1.001 0.950 0.988 0.954 1.000 0.995 0.981 0.998
0.9 0.941 0.779 0.854 0.883 1.004 0.999 1.001 0.998

b2 = 1.1
0.7 0.994 0.994 0.994 0.994 0.982 0.997 0.996 0.995
0.8 0.883 0.978 0.985 0.983 1.001 1.001 1.002 1.004
0.9 0.957 0.947 0.927 0.954 0.996 0.999 0.994 0.997

b2 = 1.3
0.7 0.990 0.999 0.996 0.990 0.995 0.996 0.996 0.999
0.8 0.994 0.993 0.985 0.975 0.989 0.997 0.997 0.997
0.9 0.981 0.950 0.905 0.970 0.998 1.000 1.001 0.987

b2 = 1.5
0.7 1.015 0.997 0.999 1.000 1.001 0.999 0.993 0.998
0.8 1.028 0.997 0.995 0.996 1.002 1.000 1.000 1.000
0.9 1.043 0.980 0.932 0.936 1.000 1.001 1.000 0.993

T = 1000

b1 = 0.9
0.7 0.975 0.993 0.981 0.973 0.997 1.001 1.001 0.993
0.8 0.956 0.955 0.954 0.920 0.997 0.935 0.986 0.960
0.9 0.894 0.754 0.566 0.787 1.003 0.992 0.975 0.988

b1 = 0.7
0.7 0.984 0.988 0.987 0.965 0.992 0.997 1.002 1.001
0.8 0.982 0.960 0.942 0.896 0.994 0.998 0.954 0.967
0.9 0.788 0.890 0.512 0.695 0.997 0.983 0.992 0.963

b1 = 0.5
0.7 1.008 0.979 0.990 0.969 1.001 0.997 0.998 0.956
0.8 0.976 0.985 0.954 0.959 1.004 0.984 0.997 0.998
0.9 0.931 0.772 0.617 0.371 1.009 0.996 0.987 1.005

b2 = 1.1
0.7 0.997 1.000 0.988 0.993 0.995 0.998 0.892 0.994
0.8 0.941 0.991 0.978 0.975 1.001 0.998 1.001 1.002
0.9 0.966 0.913 0.906 0.951 0.973 0.998 1.000 0.997

b2 = 1.3
0.7 0.993 1.002 0.995 0.991 1.001 1.001 0.990 0.997
0.8 0.984 0.994 0.960 0.982 0.996 0.995 0.998 1.001
0.9 0.959 0.931 0.921 0.732 1.000 1.002 0.999 0.998

b2 = 1.5
0.7 1.013 0.998 0.998 0.999 1.005 0.998 0.994 1.000
0.8 1.020 0.992 0.968 0.989 1.002 0.997 1.001 0.999
0.9 1.030 0.882 0.961 0.953 1.002 0.996 1.001 1.003

Table 3: MSFE for WLL estimator relative to the post-break estimator. TS data with a break in ho-
moscedastic variance σ2(x) = 0.1 · (t ≤ T1) + 0.2 · (t > T1), both known (the left panel) and estimated s0
(the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and T = 1000 (the
bottom panel) with M = 1000 Monte-Carlo iterations.
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.989 0.974 0.982 0.980 0.997 0.998 0.994 0.996
0.8 0.910 0.887 0.753 0.923 0.997 0.999 1.000 0.974
0.9 0.751 0.675 0.721 0.655 0.995 0.990 0.996 0.991

b1 = 0.7
0.7 0.964 0.984 0.889 0.956 0.978 0.989 0.988 0.989
0.8 0.853 0.797 0.937 0.877 0.995 0.996 0.995 0.993
0.9 0.876 0.755 0.737 0.695 0.993 0.995 0.980 0.994

b1 = 0.5
0.7 0.995 0.980 0.991 0.985 1.001 0.991 0.996 0.995
0.8 0.970 0.847 0.587 0.923 0.997 0.993 0.986 0.968
0.9 0.848 0.656 0.783 0.732 1.004 0.997 0.995 0.999

b2 = 1.1
0.7 0.977 0.993 0.986 0.999 1.002 1.001 0.993 0.996
0.8 0.984 0.981 0.990 0.991 0.989 0.997 0.997 0.990
0.9 0.977 0.955 0.964 0.931 0.992 0.995 1.000 0.995

b2 = 1.3
0.7 0.987 0.995 0.994 0.989 1.004 1.005 0.996 0.994
0.8 0.993 0.992 0.992 0.976 0.997 1.003 0.994 0.986
0.9 0.969 0.688 0.911 0.920 0.999 1.002 0.997 0.993

b2 = 1.5
0.7 1.008 0.996 0.989 0.999 0.998 0.994 0.998 0.998
0.8 1.007 0.979 0.986 0.968 1.000 0.999 0.983 0.998
0.9 0.986 0.924 0.961 0.983 1.000 0.984 0.999 0.997

T = 1000

b1 = 0.9
0.7 0.978 0.981 0.979 0.966 0.991 0.993 0.992 0.996
0.8 0.974 0.932 0.928 0.891 0.996 0.995 0.988 0.991
0.9 0.838 0.733 0.775 0.790 0.996 0.998 0.984 0.890

b1 = 0.7
0.7 0.904 0.965 0.971 0.773 0.981 0.981 0.993 0.998
0.8 0.920 0.912 0.952 0.680 0.999 0.951 0.987 0.983
0.9 0.859 0.863 0.711 0.520 0.937 0.994 0.992 0.996

b1 = 0.5
0.7 0.909 0.971 1.000 0.994 1.003 0.991 0.995 0.997
0.8 0.977 0.968 0.949 0.886 1.001 0.954 0.990 0.948
0.9 0.826 0.664 0.519 0.832 1.000 0.588 0.961 0.985

b2 = 1.1
0.7 0.980 1.002 0.998 0.982 0.997 1.000 1.000 0.997
0.8 0.980 0.994 0.994 0.999 1.001 1.000 0.993 0.991
0.9 0.800 0.675 0.912 0.873 0.999 0.999 0.996 1.003

b2 = 1.3
0.7 0.985 0.999 0.999 0.988 0.997 0.994 1.011 0.996
0.8 0.957 0.994 0.980 0.996 1.001 0.995 0.995 0.966
0.9 0.951 0.945 0.715 0.937 0.997 0.996 0.994 0.996

b2 = 1.5
0.7 1.015 0.996 0.992 0.995 1.002 1.000 1.001 0.996
0.8 1.019 0.994 0.985 0.939 1.000 0.994 0.999 0.998
0.9 0.986 0.929 0.946 0.957 1.002 1.001 0.998 0.999

Table 4: MSFE for WLL estimator relative to the post-break estimator. TS data with a break in het-
eroscedastic variance σ2(x) = (0.1 + |x|) (t ≤ T1) + (0.2 + |x|) (t > T1), both known (the left panel) and
estimated s0 (the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and
T = 1000 (the bottom panel) with M = 1000 Monte-Carlo iterations.
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.984 0.960 0.938 0.938 1.003 0.996 0.991 0.996
0.8 0.896 0.863 0.844 0.826 0.977 0.965 0.974 0.961
0.9 0.757 0.743 0.792 0.683 1.000 0.974 0.968 0.979

b1 = 0.7
0.7 1.002 0.987 0.972 0.933 1.010 0.998 0.987 0.979
0.8 0.957 0.882 0.873 0.907 0.987 0.992 0.982 1.000
0.9 0.858 0.819 0.787 0.729 1.006 0.923 0.982 0.985

b1 = 0.5
0.7 1.039 1.032 1.023 1.005 1.003 1.002 0.937 0.984
0.8 1.061 1.032 1.042 0.979 1.008 1.008 1.008 1.006
0.9 1.005 0.988 0.967 0.742 1.003 0.999 0.973 0.998

b2 = 1.1
0.7 1.005 0.999 1.007 0.993 0.988 0.986 0.989 0.999
0.8 0.976 0.987 0.987 0.962 0.998 0.997 0.997 0.998
0.9 0.902 0.825 0.915 0.880 1.002 1.001 0.997 0.999

b2 = 1.3
0.7 1.021 1.010 1.016 1.005 0.995 0.996 0.992 0.990
0.8 1.012 1.005 1.002 0.983 1.003 0.994 1.001 1.003
0.9 0.951 0.916 0.907 0.809 1.006 1.006 1.000 1.003

b2 = 1.5
0.7 1.044 1.047 1.051 1.018 1.008 1.008 1.017 1.008
0.8 1.056 1.043 1.031 0.999 1.005 1.005 1.005 1.004
0.9 1.048 1.027 1.002 0.978 1.004 1.005 1.002 0.999

T = 1000

b1 = 0.9
0.7 0.975 0.880 0.909 0.985 0.986 0.995 0.982 1.001
0.8 0.968 0.964 0.913 0.972 1.006 0.963 0.950 0.991
0.9 0.925 0.966 0.887 0.854 1.008 1.001 0.997 1.001

b1 = 0.7
0.7 1.012 0.955 1.000 1.024 0.975 1.004 1.003 0.998
0.8 1.007 0.984 0.934 0.976 1.000 0.988 0.992 0.954
0.9 0.994 0.989 0.971 0.900 0.974 1.016 0.928 1.011

b1 = 0.5
0.7 0.991 0.980 0.980 0.981 0.994 0.994 0.991 0.976
0.8 0.993 0.986 0.992 0.954 0.974 0.995 0.995 0.989
0.9 0.973 0.968 0.979 0.955 0.979 0.981 0.983 0.993

b2 = 1.1
0.7 0.998 1.013 0.978 0.991 1.000 1.002 0.997 1.000
0.8 0.974 0.937 0.982 0.978 0.998 0.997 0.882 0.989
0.9 0.754 0.902 0.959 0.825 0.917 0.961 0.980 0.996

b2 = 1.3
0.7 1.012 1.022 1.017 1.000 0.993 0.952 0.969 0.987
0.8 1.011 0.988 1.011 1.027 0.978 0.999 0.979 0.986
0.9 1.010 0.910 0.989 1.003 0.989 0.998 0.985 0.978

b2 = 1.5
0.7 0.994 1.000 0.992 0.996 0.999 0.999 0.995 0.996
0.8 1.004 0.995 0.997 0.988 0.996 0.995 0.993 0.991
0.9 1.002 1.017 1.006 0.991 0.976 1.003 1.003 0.992

Table 5: MSFE for WLL estimator relative to the post-break estimator. AR data with a break in ho-
moscedastic variance σ2(x) = 0.1 · (t ≤ T1) + 0.2 · (t > T1), both known (the left panel) and estimated s0
(the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and T = 1000 (the
bottom panel) with M = 1000 Monte-Carlo iterations.
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DGP s0
s0 known s0 estimated

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

T = 500

b1 = 0.9
0.7 0.993 0.982 0.984 0.995 0.921 0.973 0.990 0.990
0.8 0.984 0.973 0.919 0.927 1.009 0.650 0.966 0.966
0.9 0.937 0.817 0.718 0.878 1.001 0.986 0.994 0.934

b1 = 0.7
0.7 0.997 0.981 0.996 0.986 0.927 0.970 0.916 0.989
0.8 0.974 0.982 0.964 0.877 1.003 1.003 0.984 0.984
0.9 0.705 0.863 0.690 0.789 0.963 0.946 0.992 0.986

b1 = 0.5
0.7 1.079 1.023 1.034 0.927 0.857 0.806 0.971 0.980
0.8 1.092 0.678 0.733 0.836 0.946 0.975 0.965 0.905
0.9 0.908 0.481 0.817 0.493 0.851 0.971 0.516 1.020

b2 = 1.1
0.7 0.997 1.016 1.008 1.015 0.991 0.987 0.959 1.012
0.8 0.991 1.023 1.013 0.989 0.968 0.994 0.981 0.992
0.9 1.005 0.963 0.914 0.974 0.996 0.996 0.968 1.012

b2 = 1.3
0.7 1.011 1.012 1.010 1.009 1.004 1.001 1.003 1.004
0.8 1.024 1.026 1.025 0.968 0.990 0.992 0.999 0.991
0.9 0.993 0.972 0.848 0.944 1.003 1.000 0.998 1.003

b2 = 1.5
0.7 1.064 1.065 0.999 0.885 1.030 1.011 0.994 0.987
0.8 1.086 1.048 1.001 1.008 0.942 0.843 1.002 0.570
0.9 1.075 1.066 0.696 0.824 1.015 1.008 0.899 0.932

T = 1000

b1 = 0.9
0.7 0.994 1.000 1.000 0.994 1.000 1.000 1.000 0.986
0.8 0.998 0.990 0.994 0.996 1.000 1.000 0.999 1.000
0.9 0.998 0.973 0.923 0.959 1.000 0.988 1.000 0.997

b1 = 0.7
0.7 0.992 0.997 1.000 1.000 0.998 1.036 1.586 0.997
0.8 0.999 0.970 0.996 0.932 1.000 0.998 0.966 0.984
0.9 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

b1 = 0.5
0.7 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
0.8 1.000 1.000 0.998 0.916 1.000 1.000 1.000 1.000
0.9 0.999 0.999 0.898 0.876 0.999 0.996 0.994 0.979

b2 = 1.1
0.7 1.000 0.999 0.995 0.999 1.000 1.000 0.999 0.999
0.8 0.998 1.000 1.000 0.999 1.000 1.000 1.000 0.998
0.9 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000

b2 = 1.3
0.7 1.000 1.000 1.000 0.996 1.000 0.999 1.000 0.999
0.8 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 0.998 0.996 1.000 1.000 1.000 1.000

b2 = 1.5
0.7 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000
0.8 1.000 0.999 0.996 0.962 1.000 1.000 0.999 0.998
0.9 0.992 0.999 1.000 0.998 1.000 1.000 1.000 1.000

Table 6: MSFE for WLL estimator relative to the post-break estimator. AR data with a break in het-
eroscedastic variance σ2(x) = (0.1 + |x|) (t ≤ T1) + (0.2 + |x|) (t > T1), both known (the left panel) and
estimated s0 (the right panel). Forecast horizon τ = 1, 2, 3, 4. Sample size T = 500 (the top panel) and
T = 1000 (the bottom panel) with M = 1000 Monte-Carlo iterations.
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our weighted local linear estimator successfully enhances the forecasting power using the pre-

break sample. Furthermore, when comparing different break sizes, we notice that the relative

MSFEs tend to increase as b1 decreases or b2 increases. This implies that as the break size

increases, the forecast performance based on our weighted local linear estimator gradually

becomes similar to the post-break estimator. Additionally, when comparing between the

cases of known and unknown s0, we observe that the relative MSFEs tend to be higher in the

case of unknown s0. This is because the estimated s0 introduces estimation risk to our WLL

estimator, leading to relatively poorer forecast performance, as indicated by relatively higher

MSFEs. This tendency is observed for both sample sizes T = 500, 1000. Furthermore, when

considering the heteroscedastic case, Table 2 demonstrates higher relative MSFEs compared

to the homoscedastic case. Nevertheless, our proposed estimator still outperforms the post-

break estimator. Table 3, 4, 5 and 6 report the relative MSFEs for TS and AR data with

breaks in both homoscedastic and heteroscedastic variance. These tables show similar results

to the IID case.

As demonstrated in Tables 1 to 4, the majority of forecast horizons (τ =1, 2, 3, and

4) exhibit a relative mean squared forecast error that is less than or close to 1. However,

there are a few exceptions where the relative MSFE is slightly higher than 1, indicating that

our weighted local linear estimator performs at least as well as the post-break estimator.

This is particularly evident when the break magnitude is large and/or when s0 is estimated.

Despite these exceptions, our simulation results consistently indicate that our WLL estimator

enhances forecasting performance compared to the conventional post-break estimator.
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4 An Empirical Example

In our empirical application, we present a forecasting model of GDP growth using yield

curve as a predictor. The yield curve in this case is defined as the difference between interest

rates (“term spread”) on long and short maturity debt, e.g. government debt. In practice,

the literature uses either the difference between long-term government bond rate and three-

month government bill rate, or instead, the long bond rate minus the overnight rate (e.g.

the federal funds rate in the United States). Stock and Watson (1989) and Estrella and

Hardouvelis (1991) showed in their empirical studies that a positive slope of the yield curve

is associated with future increases in real economic activity six or seven quarters ahead.

The marginal predictive power of the yield curve was interpreted as evidence that market

participants were able to forecast economic expansions or contractions six or seven quarters

in advance. This finding led to the argument that the term structure could be an indicator

of monetary policy stance. The reader is referred to Stock and Watson (2003) for a survey of

literature. The economic reasoning behind the use of term spread variable for output growth

prediction lies in its predictive power on the effectiveness of monetary policy. For example,

monetary tightening will lead to a short-term interest rate that is high relative to the long-

term rate. These high short-term rate will in turn cause an economic slowdown (Bernanke

and Blinder, 1992). However, recent evidence suggests that the forecasting relationship

between output growth and yield curve may be subject to structural breaks; see, for instance,

Stock and Watson (1999), Giacomini and Rossi (2006), Estrella et al. (2003), Schrimpf and

Wang (2010), and references therein. The presence of structural breaks in turn leads to an

instability of the model coefficients, which calls its usefulness for forecasting into question.

Thus, structural break tests are usually done before forecast is made. Also, the relationship

between output growth and yield curve seems to be nonlinear; see, for instance, Figure 1. In
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this section, therefore, we apply our proposed forecasting method to investigate whether it

can improve the forecasts of GDP growth using the slope of the yield curve as the predictor

via a nonparametric forecasting technique.

4.1 Econometric Modeling

The forecast is based on the following nonparametric regression model

Yt+τ = m(st) + ut

for τ = 1, 2, 3 and 4, where Yt+τ = 100 ln(Pt+τ/Pt), Pt is the level of real GDP at time t,

and st = rLt − rSt is the slope of the yield curve, defined as the difference between the long

term interest rate, rLt , and the short term interest rate, rSt .

The model specification we employ here represents a nonparametric alternative to the

commonly used linear models found in the literature, as referenced in previous works such

as Pesaran et al. (2013), Estrella and Hardouvelis (1991), Estrella and Mishkin (1997),

and references therein. Our nonparametric modeling approach is motivated by the common

observation that real-world data frequently display intricate, nonlinear relationships between

the dependent variables and the regressors. For instance, when examining data encompassing

two industrialized economies: France and Italy, spanning the time period from 1979Q1 to

2019Q4, as depicted in Figure 1, it shows clearly that there exists a potentially nonlinear

relationship between the variables Yt and st.

The advantage of using our nonparametric specification is that we let the data reveal

which functional relationship exists between both variables, instead of imposing a linear

one. Similar to our simulation studies in Section 3, the Gaussian kernel is used for estimating

the mean function 󰁥m(·) and the bandwidth h and the weight are chosen by the multifold

cross-validation in (11). We evaluate the forecasts for horizons τ = 1, 2, 3, and 4 quarters
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Figure 1: Scatterplot of term spread st vs. real GDP growth rate Yt (blue dots) and lo-
cally weighted scatterplot smoothing (LOESS) fitted data (red dots). The yellow solid line
represents the Ordinary Least Squares (OLS) regression line Ŷt = β̂0 + β̂1st. The sample
period spans from 1979Q1 to 2019Q4. The left panel represents France, while the right panel
represents Italy.

using Diebold-Mariano test proposed in Diebold and Mariano (1995). Let ei,t = Yt− 󰁥Yi,t and

ej,t = Yt − 󰁥Yj,t be the forecast errors for method i and j, respectively, and choose the loss

differential dt = e2i,t − e2j,t. Then, the Diebold-Mariano test is defined as follows

DM =
d̄󰁴󰁓(T−1)

τ=−(T−1)
󰁥Υd(τ)/T

≈ N (0, 1),

where d̄ =
󰁓T

t=1 dt/T is the sample mean of the loss differential, or simply MSFEi−MSFEj,

and 󰁥Υd is the associated sample auto-covariance, calculated as follows

󰁥Υd(τ) =
1

T

T󰁛

t=|τ |+1

(dt − d̄)(dt−|τ | − d̄).

To assess the statistical significance of the improved predictive performance achieved by

method j, we conduct a hypothesis test comparing it to method i, where method i serves

as the benchmark estimator. The null hypothesis (H0) asserts that there is no significant

difference in mean squared forecasting error (MSFE) between the two methods, specifically
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H0 : MSFEi = MSFEj. In contrast, the alternative hypothesis (Ha) posits that method j

outperforms method i, i.e., Ha : MSFEi > MSFEj.

In this context, method i represents the benchmark estimator, while method j corre-

sponds to our proposed weighted local linear estimator. Our study considers two benchmark

estimators: a nonparametric post-break estimator that employs the most recent 12 quarters

of data leading up to the forecasting point and the weighted generalized least squares esti-

mator. The latter, proposed by Lee et al. (2022), is a notable linear estimator designed for

forecasting under structural breaks.

This framework allows us to rigorously assess and validate the enhanced predictive ability

of our proposed method against established benchmarks.

4.2 Data

Our quarterly GDP and interest rate data are sourced from the GVAR toolbox; see,

for example, Mohaddes and Raissi (2020) for details. For our analysis, we focus on two

industrialized economies: France and Italy. Our dataset spans from 1979Q1 to 2019Q4,

encompassing a total of T = 164 observations. In our approach, we adopt a recursive out-

of-sample forecasting method. We segment the sample of observations into two segments:

the initial T observations serve as the in-sample estimation period, while the remaining

observations constitute the pseudo out-of-sample evaluation period. Forecasts are generated

recursively throughout the out-of-sample period, using only the available information at each

forecast point. As we extend the estimation window, we reevaluate the break date using the

method described in Section 2.5. We initiate this scheme by generating our forecast using

data up to 2006Q4. Subsequently, we present our findings for the period 2007Q1-2019Q1.

This time period represents the era following the collapse of the sub-prime mortgage market.
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Note that our interest rate calculations follow this formula: rSt = 0.25(1 + RS
t /100) and

rLt = 0.25(1 + RL
t /100). Here, RS

t and RL
t denote the short-term and long-term nominal

interest rates per annum, expressed as percentages, respectively.

4.3 Empirical Results

We conduct a thorough comparison of forecasting performance between our novel weighted

local linear estimator and two benchmark estimators, as detailed in Table 7. To gain insights

Benchmark Postbreak estimator

Country
τ = 1 τ = 2 τ = 3 τ = 4

DM-test p-value DM-test p-value DM-test p-value DM-test p-value
France 11.464 0.000 4.805 0.000 3.466 0.000 2.887 0.002
Italy 12.155 0.000 4.866 0.000 3.495 0.000 2.894 0.002

Benchmark Weighted general least squares estimator

Country
τ = 1 τ = 2 τ = 3 τ = 4

DM-test p-value DM-test p-value DM-test p-value DM-test p-value
France 2.031 0.021 2.920 0.002 1.330 0.092 0.360 0.360
Italy 3.398 0.000 2.843 0.002 2.226 0.013 2.006 0.022

Table 7: Diebold-Mariano test statistics and their p-values for GDP-growth forecast in two selected coun-
tries for different out-of-sample forecasting periods. The null hypothesis H0 : MSFEi = MSFEj vs. the
alternative hypothesis Ha : MSFEi > MSFEj , where i represents the benchmark and weighted general least
squares estimator, and j stands for the weighted local linear estimator. Significant p-values indicate an
outperformance of the latter over the former estimator.

into the precision of our break date estimation, we examine the estimated change points,

denoted as ŝT , which serve as the foundation for identifying the break date, denoted as

T1 = ⌊ŝTT ⌋. Figure 2 displays a wide range of values, typically between 0 and 0.5, signifying

that our nonparametric break date estimator successfully detects the change point relatively

early within the data samples.

Furthermore, we scrutinize the estimated weights, denoted as γ̂, assigned to the pre-break

samples by our proposed weighted local linear estimator. The observed values fall within the

range of 0 to 0.11 are presented in Figure 3, suggesting that the pre-break observations do
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Figure 2: Estimated rescaled change points ŝT .

not significantly contribute to, or marginally enhance, post-break forecasting improvements

when utilizing the estimated break date.

Figure 3: Estimated weights for the pre-break samples γ̂.

Our evaluation extends to performing Diebold-Mariano (DM) tests for the time period

2007Q1-2019Q1, as presented in Table 7. Across these analyses, we consistently observe

substantial DM-test statistics accompanied by highly significant p-values when the post-

break estimator is served as the benchmark. Interestingly, for a lower step-ahead forecast

(τ = 1 or 2), our proposed method outperforms the weighted least squares approach due
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to its ability to capture local properties. However, the scenario is different when using the

weighted least squares estimator, as insignificant p-values are identified for a higher step-

ahead forecast (τ = 3 or 4) for France. This means that for higher step-ahead forecasts,

both our proposed method and the weighted least squares approach perform comparably.

This intriguing result suggests that, within the context of our forecasting exercise, our

nonparametric forecasting model remains accurate in many instances, even when assuming

a single break. It underscores the potential added value of our novel weighted local lin-

ear estimator, especially in situations where nonlinear patterns or the presence of multiple

structural breaks could potentially impact forecasting performance.

5 Conclusions

When forecasting time series data, structural breaks can present a significant challenge.

Existing literature has proposed several methods to handle structural breaks, but they tend

to be (semi-)parametric in nature. Typically, these methods incorporate information from

the pre-break period by assigning weights between 0 and 1 to the relevant observations.

Building on this idea, our paper proposes a similar nonparametric estimator. Our proposed

weighted local linear estimator has been shown in previous studies to outperform the usual

post-break estimator in parametric cases. However, our study only considers a single break

and a single covariate as a predictor, which could be problematic in more complex situations,

such as longer time series data with multiple breaks or with missing relevant covariates. In

real-world applications, where the break date is unknown, accurate estimation of the break

date is essential. To address this issue, future research could explore robust nonparametric

methods for identifying multiple breaks in time series data, and extend these methods to the

multivariate setting. Such efforts would help to further improve the accuracy and reliability
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of time series forecasting in the presence of structural breaks.
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Appendix

We now give some regularity conditions that are sufficient for the consistency and asymp-

totic normality of the proposed estimators, although they might not be the weakest ones

possible. As pointed out by Cai et al. (2000), the conditions list below are standard and

they are satisfied for many applications; see, for instance, the paper by Cai et al. (2000) for

details. Then, we present the sketch proofs of the asymptotic properties as mentioned in

Section 2.3.

Condition A:

(A1) The second order derivatives of both mean functions m(1)(x) and m(2)(x) are continu-

ously differentiable.

(A2) Function f(x) is continuous and positive within the support.

(A3) The condition density of Yt given Xt is bounded and satisfies the Lipschitz condition.

(A4) The kernel function K(·) is symmetric and has a compact support, say [−1, 1].

(A5) The time series {Yt,Xt} is α-mixing with the coefficient α(k) satisfying
󰁓∞

k=1 k
c0α1−2/δ0(k)

for some δ0 > 2 and c > 1− 2/δ0.

(A6) Assume that h → 0 and T h → ∞.

Condition B:

(B1) Assume that

E
󰀅
Y 2
t + Y 2

t+s |Xt = x1,Xt+s = x2

󰀆
≤ M < ∞

for any t and all s ≥ 1, and x1 and x2.

(B2) Assume that there exists a sequence of positive integers {sT} such that sT → ∞,

sT = o((Th)1/2) and (T/sT )
1/2α(sT ) → 0, as T → ∞.

(B3) There exists δ∗ > δ0, where δ0 is given in Assumption A(5) such that α(k) = O(k−θ),

where θ > δ0δ
∗/[2(δ∗ − δ0)].

(B4) T 1/2−δ0/4hδ0/δ∗−1/2−δ0/4 = O(1).
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Sketch of Theoretical Proofs

Proof of (8): To establish (8), first, we need to show that under Condition A,

Sj(x)
p−→ µj f(x). (C.1)

Indeed, it is easy to show that E[Sj(x)] → µj f(x) and ThVar(Sj(x)) → f(x)νj, by following

the same idea as in the proof of Theorem 1 in Cai et al. (2000). Next, it is easy to see that

in view of (C.1), the asymptotic bias term of β̂0,(1)(x) can be asymptotically expressed as

B1(x) ≈
1

T1

T1󰁛

t=1

Kh(Xt − x)
󰀋
m(1)(Xt)−m(1)(x)−m′

(1)(x)(Xt − x)
󰀌
/f(x)

≈
m′′

(1)(x)

2

1

T1

T1󰁛

t=1

Kh(Xt − x)(Xt − x)2/f(x)

≈ m′′
(1)(x)µ2h

2/2

by Taylor expansion and following the same proof of (C.1). Similarly, B2(x), the asymptotic

bias for β̂0,(2)(x), can be obtained easily. Therefore, (8) is established.

Proof of (10): To establish (10), first, we show that C1
d→ N

󰀃
0, σ2

m,1(x)
󰀄
and C2

d→

N
󰀃
0, σ2

m,2(x)
󰀄
. To this end, let Zt = Kh(Xt−x)ut

󰁳
h/T1. Then, C1 =

󰁓T1

t=1 Zt. By following

the same procedures as in the proof of Lemma A.1 in Cai et al. (2000), it is not difficult

to show that under Conditions A and B, Var(C1) → σ2
m,1(x) as T1 → ∞. To establish

the asymptotic normality of C1, we employ the small-block and large-block technique —

namely, C1 = Ql+Qs+Qr, to show that Ql, the sum of the large-blocks converges a normal

distribution in distribution, Qs, the sum of the small-blocks, can be ignored in probability,

Qr, the sum of the remainder terms, converges to zero in probability, and the large-blocks

are asymptotically independent. Also, we prove that for Ql, the Lindeberg’s condition is

satisfied. Then, by the Lindeberg’s central limit theorem, the asymptotic normal of C1 is

established. By the same token, we can establish the asymptotic normality for C2. Finally,

by following the same steps as used in proving Lemma A.1 in Cai et al. (2000), it is easy to

show that Cov(C1, C2) → 0 as T → ∞. This completes the proof of (10).
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