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ABSTRACT

This paper proposes a novel local model averaging estimator for divergent-dimensional

functional-coefficient regressions, which selects optimal functional combination weights by

minimizing a local leave-h-out forward-validation criterion. It is shown that the proposed

leave-h-out forward-validation model averaging (FVMA) estimator is asymptotically optimal

in the sense of achieving the lowest possible local squared error loss in a class of functional

model averaging estimators, which is also extended to the ultra-high dimensional framework.

The rate of the FVMA-based varying-weights converging to the optimal weights minimizing

the expected local quadratic errors is derived. Besides, when correctly specified models are

included in the candidate model set, the proposed FVMA asymptotically assigns all varying-

weights to the correctly specified models. Furthermore, a simulation study and an empirical

application highlight the merits of the proposed FVMA estimator relative to a variety of

popular estimators with constant model averaging weights and model selection.
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1 Introduction

Rational decisions and forecasts are often influenced by various economic and financial

factors, such as monetary policies, interest rates, inflation, and business sentiment. For

instance, in finance, Jansen et al. (2008) investigated the role of fiscal policy in explaining

the behavior of the U.S. stock and bond markets, which was further studied by Tu & Wang

(2020). In asset pricing models, factor loadings are considered as functions of certain state

variables, which represent the unobserved information set of investors (Roussanov, 2014; Cai

et al., 2015a,b, 2022). In labor economics, the marginal returns to education are dependent

on work experience, assuming that work experience is a valued attribute by employers (Card,

2001; Cai et al., 2006). In exchange rate forecasting, Hong & Lee (2003) utilized a proxy

variable to reveal useful information about the direction of changes, capturing nonlinearity

in the mean for five exchange rates.

The functional coefficient model is a widely used nonparametric approach in applied

science fields such as statistics and econometrics as well as finance to capture nonlinear

features. This model allows coefficients to be represented as functions of observable state

variables (Cai et al., 2000b, 2009; Jansen et al., 2008; Xiao, 2009; Phillips &Wang, 2022; Tu &

Wang, 2020, 2022). For instance, the coefficients in the functional coefficient auto-regressive

(FAR) model, which was initially proposed by Chen & Tsay (1993) and later extended by

Cai et al. (2000b), are in unknown form depending on lagged terms. Notably, many well-

known nonlinear models can be regarded as special cases of functional coefficient models. For

example, the threshold model in Tong (1978) and Chan (1993) assumes the coefficients to

be step functions of some observed state variables, including the lagged dependent variable.

On the other hand, the smooth transition model proposed by Teräsvirta (1994) considers

logistic functions of state variables.

Given the available data, we encounter a substantial number of functional coefficient

candidate models. One popular approach is model selection which aims to choose an optimal

model for making a prediction. Popular model selection criteria includes the nonparametric-
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version of the bias-corrected AIC (Cai & Xu, 2008; Cai et al., 2015b), regularization method

(Zou, 2006), and dimension reduction. However, many studies have shown that procedures

that select the best model from a set, particularly in regression analysis, are intrinsically

unstable (Stock & Watson, 2012).

Unlike model selection, model averaging incorporates all available information and con-

structs a weighted average of all potential candidate models. It is expected that model aver-

aging serves as a form of insurance against selecting a poor candidate model (Hansen, 2014;

Zhang & Zhang, 2022) and enhances robustness against model misspecification biases (Hsiao

& Wan, 2014). Model averaging can be roughly categorized into Bayesian model averaging

(BMA) and frequentist model averaging (FMA). For a literature review, refer to Claeskens

& Hjort (2008) and Steel (2020).In contrast to BMA, where models are weighted based on

posterior probabilities, FMA has gained increasing attention over the past decades. Various

strategies include Mallows model averaging (Hansen, 2007; Zhu et al., 2019), jackknife model

averaging (Hansen & Racine, 2012b), leave-subject-out cross-validation (Gao et al., 2016),

forward-validation (Zhang & Zhang, 2022), k-fold cross-validation (Zhang & Liu, 2022), and

AdaBoost semiparametric model averaging (Li et al., 2022). For instance, Zhu et al. (2019)

proposed a Mallows-type model averaging for semiparametric varying-coefficient partially

linear model and demonstrated the asymptotic optimality of the selected constant weights.

The aforementioned model averaging approaches are designed to select optimal con-

stant combination weights for candidate models. To the best of our knowledge, there are

only two papers to select the optimal non-constant weights in the model averaging litera-

ture. Specifically, Sun et al. (2021) proposed time-varying model averaging estimators based

on local jackknife criterion. It is shown that the selected weight achieves the asymptotic

optimality and the proposed model averaging estimator is consistent under certain mild

conditions. Subsequently, Sun et al. (2022) derived the asymptotic normality of the penal-

ized time-varying model averaging estimators, when the true model is included in candidate

models. However, these two works mainly focus on time-varying coefficient regressions with

low-dimensional covariates, potentially overlooking valuable information from the thousands
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of predictors available in sophisticated information systems. When dealing with a large set of

potential covariates, there arises substantial model uncertainty. Therefore, it becomes highly

desirable to reduce model uncertainty and enhance forecast accuracy in functional-coefficient

regressions with high-dimensional covariates.

Our attempt in this article is at developing an optimal model averaging method with

varying weights for functional-coefficient regressions. However, compared to the case with

constant weights, we face three distinct challenges. First, we need to devise a suitable

local weight choice criterion, which varies over state variables. Existing literature typically

considers the unbiased estimator of the quadratic loss risk over the entire sample, and thus,

the selected weights are constant. Instead, our approach allows weights to change over state

variables, rendering the traditional weight choice criterion unsuitable. Second, we seek to

establish the asymptotic optimality and consistency of the combination weight estimator.

However, proving these properties becomes significantly more intricate than in the constant

weight setting. For example, some desirable properties of the projection matrix, such as

symmetry and idempodence, cannot be applied anymore. Moreover, we allow the number

of covariates to increase as the sample size grows, leading to a divergence in both dimension

and the number of candidate models. This considerably complicates the mathematical proof.

For example, the rate of parameter estimators converging to the well-defined limits in high-

dimensional misspecified models is different from that in low-dimensional framework; see

Lemma 3 in Appendix. Additionally, specific conditions must be assumed to illustrate the

relationships among the sample size, the number of candidate models, and the dimension.

To address these challenges, we propose a local forward-validation model averaging

method to select varying weights for functional-coefficient candidate models. This weight

choice criterion is designed for selecting optimal weights in out-of-sample forecasts and suit-

able for highly persistent time-series data. The asymptotic optimality and consistency will

be established for both the diverging dimension of covariates and the diverging number of

candidate models. Besides, when the correctly specified models are included in candidate

models, we demonstrate that the proposed method assigns all weights to the correctly spec-

4



ified models at any fixed point. We further extend our work to the ultra-high dimensional

framework and the asymptotic optimality is investigated accordingly. A simulation study

and an empirical application highlights the merits of the proposed model averaging estima-

tor, relative to various popular estimators with constant model averaging weights and model

selection.

The remainder of this paper is organized as follows. Section 2 introduces the model av-

eraging estimation across different functional-coefficient models, together with proposing the

local weight choice criterion and extending to the ultra-high dimensional model framework.

Section 3 derives the asymptotic properties of the proposed method. Sections 4 and 5 present

the numerical results in simulation and real data example. Finally, Section 6 concludes the

article. Mathematical proofs are relegated to Appendix.

2 Model and Its Implementation

2.1 Model Setup

Let {Ut,Xt, Yt+h}∞t=1 be a jointly strictly stationary processes with Ut taking values in Rp

and Xt taking values in Rq. The regression model is considered as follows:

Yt+h = m(Ut,Xt) + 󰂃t+h ≡ µt + 󰂃t+h, t = 1, · · · , T,

where Yt+h is a dependent variable, Xt = (Xt1, Xt2, · · · , Xtq)
′ is a vector of covariate,

µt = m(u,x) = E(Yt|Ut = u,Xt = x) is the multivariate regression function, and 󰂃t+h

is unobservable disturbance with E(󰂃t+h|Xt) = 0 almost surely (a.s.). Here, both Xt and

Ut with the joint distribution f(x,u) might be allowed to consist of some lagged values of

Yt+h. For notational simplicity, let Y = (Y1+h, · · · , YT+h)
′ be a T × 1 vector of the observed

values of the dependent variable, µ = (µ1, · · · , µT )
′, X = (X1, · · · ,XT )

′ be a T × q covariate

matrix, and 󰂃 = (󰂃1+h, · · · , 󰂃T+h)
′. Clearly, the nonparametric estimation of m(u,x) in Rp+q

might suffer from the so-called curse of dimensionality. To overcome this difficulty, as argued
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in Cai (2010), the functional-coefficient regression model has the particular form as

m(Ut,Xt) =

q󰁛

j=1

αj(Ut)Xtj = X′
tα(Ut) = µt, (1)

where {αj(·)}qj=1 are measurable functions from Rp to R, which are flexible enough to cover

many applications. Here are some examples, including but not limited to, the functional-

coefficient autoregressive model, generalized exponential autoregressive model, and threshold

autoregressive model; see, for example, Cai et al. (2000b) for details, and with Ut being time,

poisson regression model with time-varying coefficients as in Cai et al. (2000a) and trending

time series models studied in Cai (2007) and Chen & Hong (2012), etc. This setting is

particularly appealing in modeling economic and financial data; see, for example, Cai (2010)

for details. Here, to ease notation, it is assumed that Ut is an observable scalar smoothing

variable. Of course, one can consider the multivariate case for the smoothing variable. But,

the estimation procedure and asymptotic results still hold for the multivariate case with

much complicated notation. Therefore, in what it follows, it is assumed that p = 1 and Ut

is changed to Ut.

Indeed, the functional coefficient form in (1) can be regarded as an approximation of

m(Ut,Xt). For convenience, it is assumed that Xt is a scalar. Then, by Taylor expansion

and assuming that m(u, x) is differentiable with respect to x in infinite order, it is easy to

obtain that

m(u, x) =
∞󰁛

j=1

∂jm(u, x)/∂xj|x=0x
j =

∞󰁛

j=0

aj(u) zj,

where zj = xj for all j. Suppose the data generating process is a model including q regressors

with nonzero coefficients, i.e., Yt+h = X′
tα(Ut)+󰂃t+h, whereXt is a q×1 vector of explanatory

variables, and α(Ut) is a q × 1 functional coefficient vector. Here, each element in α(Ut) is

nonzero, and 󰂃t+h is unobservable disturbance with E(󰂃t+h|Xt) = 0 almost surely.

We use MT candidate models to approximate the true regression function m(·, ·), where

MT is allowed to depend on the sample size T . The m-th candidate model is given by

Yt+h =

qm󰁛

j=1

α
(m)
j (Ut)Xtj + 󰂃

(m)
t+h ≡ X

(m)′

t α(m)(Ut) + 󰂃
(m)
t+h = µ

(m)
t + 󰂃

(m)
t+h,
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where the functions {α(m)
j (·)} are measurable functions from Rp to R andX

(m)
t = (Xt1, · · · , Xtqm)

′

is a qm×1 vector of regressors and α(m)(Ut) = (α
(m)
1 (Ut), · · · ,α(m)

qm (Ut))
′. Note that we allow

each candidate model has a divergent dimension of regressors as the sample size T increases;

that is, qm grows to infinity at some slower rates than the sample size.

2.2 Estimation Procedure

The unknown coefficient functions can be estimated by using a local constant estimation

technique. For any given u0 and Ut in a neighborhood of u0, it follows from a Taylor expansion

that

α
(m)
j (Ut) = α

(m)
j (u0) +Op(Ut − u0),

where α
(m)
j (u0) is the local intercept corresponding to α

(m)
j (Ut). Using the data with Ut

around u0, we run the following local constant regression. Minimizing with respect to

{α(m)
j (u0)}, we have the locally weighted sum squared errors:

T󰁛

t=1

󰀥
Yt+h −

qm󰁛

j=1

α
(m)
j (u0)Xtj

󰀦2

kt, (2)

where kt = k((Ut − u0)/l), k(·) is a kernel function on R1, and l > 0 is a bandwidth which

satisfies l → 0 as T → ∞. Let X(m) denote a T × qm matrix with X
(m)′

t as its t-th row, and

K(u0) = diag{k1, · · · , kT}, the locally weighted least squared errors in (2) can be rewritten

as

(Y −X(m)α(m)(u0))
′K(u0)(Y −X(m)α(m)(u0)),

where α(m)(u0) ≡ (α
(m)
1 (u0), · · · ,α(m)

qm (u0))
′. Thus, the local constant estimator of α(m)(u0)

is given by

󰁥α(m)(u0) =
󰁫
X(m)′K(u0)X

(m)
󰁬−1

X(m)′K(u0)Y,

and 󰁥α(m)
j (u0) = e′j,qm 󰁥α(m)(u0) with ej,qm the qm × 1 unit vector with 1 at the jth position.

Define P
(m)
t ≡ P(m)(Ut) =

󰀅
X(m)′K(Ut)X

(m)
󰀆−1

X(m)′K(Ut) as a qm × T matrix. Then,

󰁥α(m)(Ut) = P
(m)
t Y and the least square estimation 󰁥µ(m) for the conditional mean in the
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m-th candidate model as follows:

󰁥µ(m) =

󰀳

󰁅󰁃
󰁥µ(m)(U1)

...

󰁥µ(m)(UT )

󰀴

󰁆󰁄 ≡

󰀳

󰁅󰁅󰁃

X
(m)
1

′
P

(m)
1

...

X
(m)
T

′
P

(m)
T

󰀴

󰁆󰁆󰁄Y = P(m)(X)Y, (3)

where the definition of P(m)(X) is obvious in (3).

2.3 Selection of Local Weight

Let w = (w1, · · · , wMT )′ be a vector of weights in the unit simplex of RMT , i.e., HT =
󰁱
w ∈ [0, 1]MT :

󰁓MT

m=1 w
m = 1

󰁲
. Actually, these weights can be allowed to be dynamic such

that they can be functional weights of some information. For simplicity, we write w = w(u0)

with wm = wm(u0) given u0. Define P(w,X) =
󰁓MT

m=1 w
mP(m)(X). For given w, in view of

(3), an averaging estimator for the conditional mean is given by

󰁥µ(w) =

MT󰁛

m=1

wm󰁥µ(m) =

MT󰁛

m=1

wmP(m)(X)Y = P(w,X)Y,

and the model averaging estimator for α(u0) is given by

󰁥α(u0,w) =

MT󰁛

m=1

wmΠ(m)′ 󰁥α(m)(u0),

where Π(m) is a projection matrix of size qm × q mapping α(u0) to α(m)(u0).

Within heteroskedastic or autocorrelated errors, we propose the leave-h-out forward-

validation estimator in the functional-coefficient linear regression model. Denote two selected

matrixes as φt = (It,0t×(T−t)) for 1 < t ≤ h and φt = (0h×(t−h), Ih,0h×(T−t)) for h+ 1 ≤ t ≤

T , and πt = (01×(t−1), 1) for 1 < t ≤ h and πt = (01×(h−1), 1) for h + 1 ≤ t ≤ T . Then, we

obtain Y[t+h] = φtY and X
(m)
[t] = φtX

(m), which are the sets to be removed. Denote Y[−(t+h)]

and X
(m)
[−t] as the remaining sets of Y and X(m) after removing Y[t+h] and X

(m)
[t] , respectively.

For any fixed u0, the following local constant estimator 󰁥α(m)
[−t] is obtained from Y[−(t+h)] and

X
(m)
[−t]:

󰁥α(m)
[−t] (u0) =

󰀓
X

(m)′
[−t] K[−t](u0)X

(m)
[−t]

󰀔−1

X
(m)′
[−t] K[−t](u0)Y[−(t+h)],
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where K[−t](u0) = diag{k1, · · · , kt−h, kt+1, · · · , kT} and the leave-h-out forward-validation

estimator 󰁨µ(m)
t (u0) of µ

(m)
t is

󰁨µ(m)
t (u0) = πtX

(m)
[t] 󰁥α(m)

[−t](u0). (4)

Thus, the leave-h-out forward validation averaging estimator of µt, is 󰁨µt(w) =
󰁓M

m=1 w
m󰁨µ(m)

t (u0)

and 󰁨µ(w) = (󰁨µ1(w), · · · , 󰁨µT (w))′.

Now, define the local squared loss of µ(w) as follows:

LT (u0,w) = (󰁥µ(w)− µ)′K(u0)(󰁥µ(w)− µ),

which is infeasible because of the unknown conditional mean µ. Thus, we propose the

feasible leave-h-out forward validation criteria to develop the corresponding local constant

averaging estimators

FVT (u0,w) = (Y − 󰁨µ(w))′K(u0)(Y − 󰁨µ(w)). (5)

For any given u0, minimizing FVT (u0,w) with respect to w, we have

󰁥wu0 = argminw∈HT
FVT (u0,w).

Then, the FVMA estimator of conditional mean at time t is 󰁥µt(󰁥wUt), which is in a dynamic

way.

Actually, the proposed model averaging procedure’s implementation can be formulated

as a quadratic programming problem. This formulation involves minimizing a quadratic

objective function subject to linear constraints, and the following algorithm illustrates the

computational procedure.
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Algorithm 1: An Algorithm for Computing w.
For any given u0,

Step 1: Calculate the leave-h-out forward-validation estimator for µt under

every candidate model.

for m = 1, 2, . . . ,MT

for t = 1, 2, . . . , T

Calculate 󰁥α(m)
[−t] (u0) =

󰀓
X

(m)′
[−t] K[−t](u0)X

(m)
[−t]

󰀔−1
X

(m)′
[−t] K[−t](u0)Y[−(t+h)];

then, compute 󰁨µ(m)
t (u0) by Eq.(4).

end

Calculate 󰁥µ(m) by Eq.(3).

end

Step 2: Calculate the model averaging weight based on the local weight choice

criterion.

(2.1) Calculate 󰁨e = (Y, · · · ,Y)−

󰀳

󰁅󰁅󰁃

󰁨µ(1)
1 (u0) · · · 󰁨µ(MT )

1 (u0)
...

...

󰁨µ(1)
T (u0) · · · 󰁨µ(MT )

T (u0)

󰀴

󰁆󰁆󰁄;

(2.2) Solve the constrained quadratic programming problem to obtain the model

averaging weight

󰁥wu0 = argminw∈HT
FVT (u0,w),

where FVT (u0,w) = (Y − 󰁨µ(w))′K(u0)(Y − 󰁨µ(w)) = w
′󰁨e′

K(u0)󰁨ew.

Output: 󰁥wu0

Note: Numerical solutions can be obtained using various optimization software packages. For instance,

the quadprog package in the R language and the quadprog command in MATLAB are commonly used to

solve such problems.

2.4 Extension to Ultra-High Dimensional Framework

So far, both the number of predictors and the number of candidate models are allowed to

grow to infinity at some slower rates than the sample size T . This section is mainly motivated

by the attempt to address the dimensionality issue encountered in regression problems with

q > T and reduce the computational burden of model averaging procedure. There are two

steps involved.

In Step 1, we use model screening to prepare candidate models, which essentially selects

a valid subset of all candidate models. Let M∗ be a subset of {1, · · · ,MT} and thus, H∗
T =
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{w ∈ [0, 1]MT :
󰁓

m∈M∗ wm = 1 and
󰁓

m/∈M∗ wm = 0}. Various model screening strategies

are proposed in the existing literature, including threshold model screening (Zhang et al.,

2016), top s model screening (Yuan & Yang, 2005), ordering model screening (Claeskens

et al., 2006), and others. For example, we could follow Ando & Li (2014, 2017) to do model

screening as a special case, which calculates the marginal correlation between each predictor

and the dependent variable, without prior subject knowledge or expert theories. Then, we

divide the q marginal correlation into M∗
T +1 groups based on the ordering. The first group

has the highest values, while the last group has the correlations closest to zero. And in each

group, qm is smaller than the sample size T . After that, we discard the M∗
T + 1 group and

thus, the number of candidate mode is M∗
T . In this case, M∗ = {1, · · · ,M∗

T}.

In Step 2, we construct model averaging based on the subset M∗, and the weight vector

is derived from

󰁥w∗
u0

= arg min
w∈H∗

T

LT (u0,w),

which will be shown to be asymptotically optimal under some regularity conditions, see,

Theorem 5 later.

3 Asymptotic Properties

Let α(m)∗(u0) be parameter vector which is essentially derived from minimizing the MSE

between Yt+h and the mth candidate model at the point u0, i.e.,

α(m)∗(u0) = arg min
α(m)(u0)

E[Yt+h −X
(m)′

t α(m)(u0)]
2 = [E(X(m)

t X
(m)′

t )]−1E(X(m)
t Yt+h). (6)

From Lemma 3 in Appendix, we know that under certain regularity conditions,

||󰁥α(m)(u0)−α(m)∗(u0)|| = Op(q
1/2T−1/2l−1/2).

Remark 1. This is similar to that of parametric estimation in the existing literature. For

example, based on Assumptions A1-A3(a) and A4-A6(a) of Theorem 3.2 of White (1982), the

consistency of parameter estimator in misspecified models can be derived under the maximum
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likelihood framework. Besides, with the under-smoothing bandwidth, the squared bias term

Op(ql
4) of 󰁥α(m)(u0)−α(m)∗(u0) could be dominated by the variance term Op(qT

−1l−1). Thus,

the bias term is ignored in (6).

Denote L∗
T (u0,w) ≡ [µ∗(w)−µ]′K(u0)[µ

∗(w)−µ], µ∗(w) ≡
󰁓MT

m=1 w
mµ(m)∗, µ(m)∗ ≡

󰁥µ(m)|󰁥α(m)(u0)=α(m)∗(u0)
and ξT (u0) = infw∈HT

EL∗
T (u0,w). Let f(u,x) denote the joint density

of (U,X), fU(u) be the marginal density of U , ζmax(A) and ζmin(A) denote the maximum

and minimum singular value of a matrixA, respectively. Unless stated otherwise, all limiting

processes refer to T → ∞. Our derivation of the asymptotic optimality requires the following

conditions.

Condition (C.1). For all s ≥ 1 and some positive constant C, |f(u, v|x0,x1; s)| ≤ C < ∞,

where f(u, v|x0,x1; s) is the conditional density of (U0, Us) given (X0,Xs), and f(u|x) ≤

C < ∞, where f(u|x) is the conditional density of U given X = x.

Condition (C.2). {Ut,Xt, Yt+h} is α-mixing process with the mixing coefficient {α(j)} sat-

isfying that
󰁓

jcα(j)1−2/ι < ∞ for some ι > 2 and c > 1−2/ι, sup1≤t≤T T−1l−1||K(u0)µ||2 =

Op(1), sup1≤t≤T ||X(m)
t ||/√q = Op(1) uniformly for allm, and ζmin(T

−1l−1X(m)′K(u0)X
(m)) ≥

C0 for some positive constant C0.

Condition (C.3). The error term {󰂃t+h} is weakly stationary and satisfies E(󰂃t+h|Xt, Ut) =

0 almost surely, E(󰂃2t+h) = σ2 and E(󰂃2t+h|It) = σ2(It).

Condition (C.4). The kernel function k : [−1, 1] → R+ is a bounded symmetric probability

density function, satisfying that
󰁕 1

−1
k(u)du = 1,

󰁕 1

−1
k2(u)du < ∞, and

󰁕 1

−1
k(u)u2du < ∞.

Condition (C.5). The bandwidth l = cT−1/5+ν for some −4/5 < ν ≤ 0 and 0 < c < ∞.

Condition (C.6). For any fixed u0, qMTT
−1l−1 = o(1) and qM

1/2
T T 1/2l1/2ξ−1

T (u0) = o(1),

Remark 2. Condition (C.1) is the same as Condition 1 (ii) in Cai et al. (2000b), which is

a standard condition for functional-coefficient regression models. Condition (C.2) imposes a

standard requirement for the mixing coefficient and moments, which is commonly used in the
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existing literature (Fan & Yao, 2003). Condition (C.3) imposes that the forecast error is a

martingale difference sequence when h = 1, and allows a non-diagonal covariance structure

for regression errors with bounded eigenvalues.

Remark 3. Condition (C.4) requires the two-sided kernel to be symmetric and bounded with

a compact support [−1, 1]. Note that in out-of-sample forecasting, the functional-coefficient

regression models need the two-sided kernel instead of one-sided kernel with a compact support

[−1, 0] in time-varying coefficient regression models. The commonly used kernels including

the Epanechnikov and uniform kernels satisfy Condition (C.4). If ν = 0, the optimal band-

width hopt = O(T−1/5) satisfies Condition (C.5).

Remark 4. Condition (C.6) requires that ξT (u0) grows at a faster rate than qM
1/2
T T 1/2l1/2,

which is similar to Condition 7 of Ando & Li (2014) and Condition (C.6) of Zhang et al.

(2016). Note that this condition implies ξT (u0) → ∞, which requires that all candidate

models are misspecified. Specifically, suppose the m0-th candidate model is correctly specified,

then, we have α(m0)∗(u0) = α(u0), where α(u0) is the true value defined in date generating

process. Thus, we have

ξT (u0) = inf
w∈HT

E[µ∗(w)− µ]′K(u0)[µ
∗(w)− µ] ≤ E[µ(m0)∗ − µ]′K(u0)[µ

(m0)∗ − µ] = 0,

and then, Condition (C.6) is violated. We first discuss asymptotic optimality when all can-

didate models to be misspeficified, and then, discuss the alternative cases where some models

are correctly specified.

The following theorem states that the proposed criterion has the asymptotic optimality

for diverging qm, when all candidate models are misspecified.

Theorem 1 (Asymptotic Optimality). Suppose that Conditions (C.1)-(C.6) hold. Then, for

any given point u0, the FVMA estimator satisfies the asymptotic optimality (OPT) property,

i.e.,
LT (u0, 󰁥wu0)

infw∈HT
LT (u0,w)

p→ 1,

where
P→ denotes the convergence in probability as T → ∞.
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Theorem 1 shows that for any given u0, the model averaging procedure is asymptoti-

cally optimal in the sense that its local squared loss is asymptotically identical to that of the

infeasible but best possible model averaging estimator. This provides theoretical support for

the advantages of the proposed method over other averaging or selection methods, including

SAIC or SBIC, because the infeasible local loss of the best possible model averaging esti-

mator is smaller or equal to that of other model averaging estimators and model selection

estimators.

For any given u0, denote the optimal weight w0(u0) = argminw∈HT
E[LT (u0,w)], and

󰁨ξT (u0) = minw∈HT
E[LT (u0,w)].

Condition (C.7). For any given u0, κ1 < ζmin(T
−1l−1Λ′K(u0)Λ) ≤ ζmax(T

−1l−1Λ′K(u0)Λ) <

κ2 < ∞ for some positive constants κ1 and κ2, where Λ is a T ×MT matrix with 󰁥µ(m)
s in its

(s,m)th element.

Condition (C.8). max1≤m≤MT
max1≤t≤T P

(m)
t = Op(MTT

−1l−1), where P
(m)
t is the tth di-

agonal element of P(m)(X).

Condition (C.9). For 1 ≤ m ≤ MT and given u0, ζmax(T
−1l−1P(m)′(X)K(u0)P

(m)(X)) =

Op(q) a.s., and Pr(ζmin(T
−1l−1(P(m)′(X)K(u0)P

(m)(X)) > C > 0)) tends to 1 for some

positive constant C.

Condition (C.10). (i) 󰁨ξ−1
T (u0)T

−2δl−2δM2
T q = o(1) and M

1/2
T q−1/2T−1/2−δl−1/2−δ = o(1),

and (ii) M
3/2
T q3/2T−1/2+δl−1/2+δ = o(1), where δ is a positive constant.

Remark 5. Condition (C.7) is similar to Condition (C.9) in Liao et al. (2019), which re-

quires that the minimum and maximum singular values of Λ′K(u0)Λ/(T l) are asymptotically

bounded. Condition (C.8) is similar to Condition (C.3) of Liao et al. (2019), which is related

to cross-validation methods (Li, 1987; Gao et al., 2016). Condition (C.9) is commonly used

in Fan & Peng (2004); Li et al. (2022). This condition is rather mild, because typical esti-

mators satisfy the regularity condition that the maximum singular value of the corresponding

matrix is bounded.
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Remark 6. Condition (C.10) illustrates the relationships among 󰁨ξT (u0), T l, MT and q.

Similar conditions can be found in the model averaging literature; see Liao et al. (2019);

Li et al. (2022). Note that condition (C.10) allows all candidate models to be misspecified,

as well as correctly specified models included. For example, suppose the m0-th candidate

model is correctly specified, then, we have ||󰁥α(m0)(u0) − α(u0)|| = Op(q
1/2T−1/2l−1/2) based

on Lemma 3. Thus, we have

󰁨ξT (u0) = inf
w∈HT

E[󰁥µ(w)− µ]′K(u0)[󰁥µ(w)− µ] = Op(1),

and then, Condition (C.10) still holds.

Theorem 2 (Consistency of Weights Estimation). Suppose that Conditions (C.1)-(C.5) and

(C.7)-(C.10) hold. Then, for any given u0, there exists a local minimizer 󰁥wu0 of FVT (u0,w)

such that

||󰁥wu0 −w0(u0)|| = Op(MT qT
−1/2+δl−1/2+δ),

where δ is a positive constant given in Condition (C.10).

Remark 7. From Theorem 2, it is observed that for any given u0, 󰁥wu0 converges to the

optimal weight w0(u0) at the rate MT qT
−1/2+δl−1/2+δ. Given u0 and the rate of T l → ∞,

the slower the rates of MT → ∞ and q → ∞, the faster the rate of 󰁥wu0 approaching to w0(u0)

in probability. Theorem 2 holds in the case where all candidate models are misspeficied, as

well as the alternative case where some models are correctly specified.

Remark 8. A linear regression model is correctly specified for E(Yt+h|Xt,Ut) if E(Yt+h|Xt,Ut) =

X′
tα(Ut) for some α(Ut), which is equivalent to the condition that

E(󰂃t+h|Xt,Ut) = 0.

That is, correct model specification occurs if and only if the conditional mean of the linear

regression error is zero. See more discussions in Hong (2005).
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Theorem 3 (Consistency of MA Parameter Estimation). Suppose Conditions (C.1)-(C.5)

and (C.7)-(C.10) hold. Then, for any given u0,

||󰁥α(u0, 󰁥wu0)−α∗(u0,w
0(u0))|| = Op(M

3/2
T q3/2T−1/2+δl−1/2+δ),

where α∗(u0,w
0(u0)) =

󰁓MT

m=1 w
0
m(u0)α

(m)∗(u0), w
0
m(u0) is the m-th element of w0(u0), and

α(m)∗(u0) is defined in Remark 1.

Theorem 3 shows that for any give u0, the model averaging estimator 󰁥α(u0, 󰁥w0(u0))

converges to a well-defined limit α∗(u0,w
0(u0)), even all candidate models are misspecified.

Next, we discuss whether the proposed local averaging estimator asymptotically assigns

all weights to the correctly specified models, if they are included in candidate models.

Condition (C.11). For any fixed u0, qMTT
−1l−1 = o(1) and

qM
1/2
T T 1/2l1/2{ inf

w∈ 󰁨HT

EL∗
T (u0,w)}−1 = o(1),

where 󰁨HT = {w ∈ [0, 1]MT :
󰁓

m/∈D wm = 1} and D is the subset of {1, · · · ,MT} which is

composed of the correctly specified models.

Remark 9. Condition (C.11) is essentially equivalent to Condition (C.6), if D is empty,

that is, all candidate models are misspecified.

Theorem 4. If there is one or more correctly specified models, and Conditions (C.1)-(C.5)

and (C.11) are satisfied, then,
󰁛

m∈D

󰁥wm
u0

p→ 1,

where 󰁥wm
u0

is the m-th element of 󰁥wu0.

Theorem 4 shows that the proposed criterion asymptotically assigns all weights to the

the correctly specified models when the model set includes correctly specified models. If

there is only one correctly specified model among the candidate models, Theorem 4 implies

that the proposed criterion would select this correctly specified model asymptotically.
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Finally, to establish the asymptotic theory for the model averaging estimator under

the ultra-high dimensional framework as described in Section 2.4, the following condition is

needed.

Condition (C.12). For any fixed u0, there exist a nonnegative series of vT (u0) and a weight

series of wT ∈ HT such that ξ−1
T (u0)vT (u0) → 0, infw∈HT

LT (u0,w) = LT (u0,wT )− vT (u0),

and Pr(wT ∈ H∗
T ) → 1 as T → ∞.

Theorem 5 (Asymptotic Optimality). Suppose Conditions (C.1)-(C.6) and (C.12) hold.

Then, we have
LT (u0, 󰁥w∗

u0
)

infw∈HT
LT (u0,w)

P→ 1.

Theorem 5 states that under Condition (C.12) together with other conditions, the

proposed model averaging estimator for the ultra-high dimensional case is still asymptotically

optimal based on the model set H∗
T .

4 Simulation Studies

In this section, we conducted simulations to compare the in-sample prediction and out of

sample forecasting performance of different model averaging methods for horizons h = 1, 2

and 4:

• FVMA: the proposed method in the paper;

• FVMASA: the forward-validation model averaging estimator with uniform weights;

• AICc: the nonparametric version of bias-corrected AIC model selection by Cai & Tiwari

(2010);

• SAICc, the smoothed AICc model averaging;

• SAIC: the smoothed Akaike information criterion model averaging as in Buckland et al.

(1997);
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• SBIC: the smoothed Bayesian information criterion model averaging;

• JMA: the jackknife model averaging initiated by Hansen & Racine (2012a).

In the following examples, we use 1000 replicates and for each replication, we draw

a sample of size T = 200 and 600 from the data generating process (DGP, hereafter),

respectively. Our simulation study is based on the DGP framework:

Yt+h =

p󰁛

j=1

αj(Xt,1)Xt,j + εt+h, t = 1, · · · , T, (7)

and comparisons between model averaging methods above are presented by considering dif-

ferent setting of the DGP. The Epanechnikov kernel function K(u) = 0.75(1 − u2)I|u|≤1 is

employed in all simulation examples, and it down-weights more distant observations within

the subsample. We also ran simulations with the Gaussian kernel, the results were similar

and thus, omitted to save space. For each replication, we compute the mean squared er-

ror of model risk by MSE(k) = 1
T−1

󰁓T−1
t=1 (

󰁥Y (k)
t+h − µ

(k)
t )2, where {󰁥Y (k)

t+h, t = 1, · · · , T − 1} is

the in-sample prediction and µ
(k)
t is the conditional mean of Y

(k)
t+h, we report the MSE =

1
1000

󰁓1000
k=1 MSE(k) for all methods. For the out of sample forecast error, denote 󰁥Y (k)

T+h be

the out of sample forecast of Y
(k)
T+h in the kth simulation, then, MSFE can be given by

MSFE = 1
1000

󰁓1000
k=1 (

󰁥Y (k)
T+h − Y

(k)
T+h)

2 for all methods.

Example 1: We consider model (7) with αj(u) = [1+ exp(− cu
j
)]−1 and εt ∼ N(0, 0.32). We

generate the predicting variables from ARMA processes, to be specific, Xt,1 = 0.8Xt−1,1+vt,1,

vt,1 ∼ N(0, 1) and Xt,2 = Xt−1,1. Xt,3 = 0.6Xt−1,3 + 0.3vt−1,3 + vt,3, vt,3 ∼ N(0, 1), and

Xt,4 = Xt−1,3, Xt,5 = Xt−2,3. That is, we have some predictors are lag variables. Furthermore,

we consider Xt,j = (−0.3 + 0.1j)Xt−1,j + vt,j, vt,j ∼ N(0, s2j) for j > 5, {sj} is a random

sample generated from the Chi-square distribution χ2
1, then the conditional variances of these

predictors are not identical in general. We set c = 2 and it is assumed the number of the

predictors p = 10.

The proposed data generating process in this example includes functional coefficients

αj(·), which are dependent on the value of j and are modeled as logit functions. This design
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allows for the contribution of different predictor variables to the conditional mean to vary.

Specifically, the functional form of αj(·) is such that the curvature of the logit function

tends to flatten as j increases. As a result, both linear and nonlinear types of functional

coefficients are incorporated into the model. This approach enables the model to capture

relationships between the predictors and the response variable, including both linear and

nonlinear associations.

Example 2: The setup for this simulation example is adapted from Example 1, but with

functional coefficients αj(u) = [1 + exp((−1)j · cu
j
)]−1 for j = 1, · · · , p. The key innovation

of this design is that the functional coefficients are dependent on both the state variable u

and the index j. Specifically, the parity of j determines the direction of the relationship

between the predicting variable and the response variable, such that odd j coefficients are

decreasing and even j coefficients are increasing. This approach achieves the conversion of

monotonicity of the coefficients through the parity of j.

Example 3: Our setting is nearly identical to that of Example 1, with the exception of the

functional coefficients αj(u), which are defined as follows:

αj(u) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

√
2cj−c exp(−3u2) j = 1, 2;

(1− α)αju j = 3, 4, 5;

(u2 − ju)/3j j > 5.

Here, c = 1, α = 0.95, and we have a total of p = 8 predictors. The functional coefficients

in the proposed design are defined in a way that the underlying relationships between the

predictors and the response variable may be complex in practice. To model the complex

relationships between the predictors and the response variable, we partition the predictors

into three groups based on their characteristics, and design functional coefficients for each

group. To be more specific, the first two functional coefficients (j = 1, 2) are formulated

as a combination of a decaying exponential function and a power function of j. These

coefficients correspond to the predictors Xt,1 = 0.8Xt−1,1 + vt,1 and Xt,2 = Xt−1,1. This

functional form facilitates the capture of nonlinear relationships between the predictors and

the response variable. The functional coefficients for the third, fourth, and fifth predictors
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(j = 3, 4, 5) are structured as linear functions of u. These coefficients correspond to the

predictors Xt,3 = 0.6Xt−1,3 + 0.3vt−1,3 + vt,3, Xt,4 = Xt−1,3, and Xt,5 = Xt−2,3. Furthermore,

for predictors with indices greater than 5 (j > 5), denoted by Xt,j = (−0.3+0.1j)Xt−1,j+vt,j,

the functional coefficients adopt a quadratic form in terms of u, where j serves as the scaling

factor.

Example 4: In this example, we consider a scenario of diverging dimensionality where

the number of predicting variables p grows without bound as the sample size T converges

to infinity. Specifically, we use p = ⌊3T 1/3⌉ where ⌊x⌉ denotes the rounding of x to the

nearest integer. This choice of p ensures that the growth rate of p is not too fast relative to

the sample size T , which is a common consideration in the literature on high-dimensional

statistical modeling. This choice also ensures that there is enough sample size to estimate

the functional coefficients in our model, which is crucial for obtaining accurate and reliable

estimates.

We employ the same setting of predicting variables as in Example 1, and for the func-

tional form of coefficients, we use αj(u) =
√
2j−1 exp(−3u2). One notable feature of these

functional coefficients is that their values shrink to zero as j increases, indicating that the

contribution of the corresponding predicting variable Xt,j becomes increasingly insignificant

as j grows larger. This phenomenon is analogous to a situation that a regressor with nui-

sance parameter in high-dimensional linear regression model. It is common to encounter

situations where some predictors are only weakly associated with the response variable in

high-dimensional setting. Their inclusion in the model may lead to increased variance and

reduced efficiency in estimating the coefficients of interest. Such predictors are often referred

to as “nuisance” predictors, as they add noise to the model but do not contribute much to

the estimation.

The numerical results are reported in Tables 1 for Example 1 in the top panel and

Example 2 in the bottom panel and 2 for Example 3 in the top panel and Example 4

in the bottom panel. It is observed that the FVMA method demonstrates significantly

smaller MSE and MSFE than the FVMASA method. This outcome can be attributed to the
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asymptotic optimality of the proposed weight estimator in Section 3, which indicates that

its local squared loss converges asymptotically to that of the best possible model averaging

estimator. In comparison to the other methods, the results consistently indicate that the

FVMA approach outperforms. It exhibits the smallest MSE in nearly all examples and the

smallest MSFE in every case. This is within our expectation since that the proposed model

averaging methodology is designed for selecting optimal weights in out-of-sample forecasts.

5 An Empirical Example

This section is devoted to an empirical application of the proposed method to illustrate

its practical usefulness. The dataset used in this analysis includes monthly observations of

the S&P 500 stock price index, Federal funds rate, industrial production (IP), and the US

government budget deficit (or surplus). The data range from October 1980, which is the first

available observation of the Federal deficit on the FRED database, to December 2020. The

following variables are utilized based on the transformation of the original data: stock return

(SRt), the growth in industrial production (IPGt = ln(IPt)− ln(IPt−1)), the first differences

of the effective federal fund rate (DFFt = FFt − FFt−1) and the change in fiscal deficits

(CFDt = FDt − FDt−1). Deficits are denoted as positive values of FD, while surpluses are

represented as negative values.

In line with much of the existing literature, we regard federal deficits as an indicator of

constraints on monetary policy actions. Federal deficits can limit the ability of the govern-

ment to implement monetary policy measures, such as interest rate adjustments, to stabilize

the economy. By employing the framework proposed by Jansen et al. (2008), we obtain the

candidate model

SRt+h = X
(m)′

t α(m)(CFDt) + 󰂃t+h,

where X
(m)
t = (Xt1, · · · , Xtqm)

′ is a qm × 1 vector of regressors. We construct the candidate

pool Ω using the variables {SRt, IPGt, DFFt} and their respective lags. The inclusion
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Table 1: Simulation Results of Examples 1-2.

Example 1 h=1 h=2 h=4

p=10, T=200 MSE MSFE MSE MSFE MSE MSFE

FVMA 0.0992 0.3482 0.1006 0.2885 0.1012 0.4068

FVMASA 4.2854 5.2842 4.2594 4.7695 4.2814 5.1670

AICc 0.1240 0.3846 0.1246 0.3335 0.1248 0.5028

SAICc 1.1547 1.7474 1.1517 1.5681 1.1570 1.7285

SAIC 5.7805 7.0876 5.4713 6.8454 5.7341 6.6753

SBIC 5.7916 7.1159 5.7552 6.9497 5.7457 6.7322

JMA 5.7910 7.1065 5.7514 6.8713 5.7442 6.6996

p=10, T=600

FVMA 0.0422 0.1469 0.0421 0.2035 0.0415 0.1792

FVMASA 4.5039 5.1484 4.4941 4.8370 4.5035 5.4351

AICc 0.0544 0.1570 0.0542 0.2891 0.0535 0.1905

SAICc 0.9785 1.2254 0.9778 1.2744 0.9741 1.3128

SAIC 6.3233 6.7646 6.3409 6.6130 6.3607 7.1993

SBIC 6.3233 6.7646 6.3409 6.6130 6.3607 7.1993

JMA 6.3244 6.7813 6.3420 6.6124 6.3618 7.1992

Example 2 h=1 h=2 h=4

p=10, T=200 MSE MSFE MSE MSFE MSE MSFE

FVMA 0.0547 0.2045 0.0549 0.1869 0.0592 0.1854

FVMASA 4.0519 4.8070 4.0545 4.5621 4.0531 4.7398

AICc 0.0648 0.4359 0.0648 0.2022 0.0648 0.1917

SAICc 0.9697 1.4180 0.9700 1.2952 0.9724 1.3452

SAIC 0.8406 1.1613 0.8371 1.1156 0.8376 1.0962

SBIC 0.8406 1.1613 0.8371 1.1156 0.8376 1.0962

JMA 0.8409 1.1650 0.8373 1.1167 0.8378 1.0991

p=10, T=600

FVMA 0.0257 0.1226 0.0258 0.1334 0.0259 0.1196

FVMASA 4.2499 4.3865 4.2430 4.6761 4.2606 4.3674

AICc 0.0311 0.1334 0.0312 0.1411 0.0313 0.1291

SAICc 0.8887 0.9911 0.8873 1.0920 0.8886 1.0012

SAIC 0.9122 1.0664 0.9124 1.1783 0.9114 1.1308

SBIC 0.9122 1.0664 0.9124 1.1783 0.9114 1.1308

JMA 0.9122 1.0659 0.9124 1.1786 0.9114 1.1311
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Table 2: Simulation Results of Examples 3-4.

Example 3 h=1 h=2 h=4

p=8, T=200 MSE MSFE MSE MSFE MSE MSFE

FVMA 0.0578 0.2517 0.0579 0.1874 0.0582 0.1959

FVMASA 0.1541 0.3302 0.1530 0.2955 0.1523 0.3023

AICc 0.0546 0.2810 0.0545 0.2053 0.0544 0.2127

SAICc 0.1164 0.2950 0.1159 0.2620 0.1149 0.2600

SAIC 0.7351 0.8789 0.7292 0.8006 0.7321 0.8447

SBIC 0.7542 0.8673 0.7476 0.8041 0.7508 0.8326

JMA 0.7395 0.8712 0.7335 0.7968 0.7366 0.8326

p=8, T=600

FVMA 0.0351 0.1260 0.0355 0.1399 0.0356 0.1437

FVMASA 0.1517 0.2668 0.1513 0.2896 0.1517 0.2788

AICc 0.0339 0.1278 0.0340 0.1897 0.0340 0.1643

SAICc 0.1037 0.2123 0.1035 0.2368 0.1034 0.2253

SAIC 0.7888 0.8919 0.7857 0.9231 0.7915 0.9044

SBIC 0.7974 0.8953 0.7940 0.9266 0.8000 0.9066

JMA 0.7904 0.8918 0.7872 0.9200 0.7931 0.9044

Example 4 h=1 h=2 h=4

T=200 MSE MSFE MSE MSFE MSE MSFE

FVMA 0.2503 0.4421 0.2502 0.4889 0.2512 0.4694

FVMASA 0.3900 0.6042 0.3907 0.6671 0.3904 0.6204

AICc 0.3490 0.6150 0.3490 0.6233 0.3493 0.5982

SAICc 0.3421 0.5607 0.3426 0.6135 0.3423 0.5770

SAIC 2.2009 2.2984 2.1926 2.5668 2.1903 2.3763

SBIC 2.3115 2.3015 2.3039 2.5265 2.2992 2.3291

JMA 2.2081 2.2800 2.1990 2.5462 2.1968 2.3562

T=600

FVMA 0.1384 0.2914 0.1382 0.2876 0.2512 0.4694

FVMASA 0.2426 0.4267 0.2415 0.9009 0.3904 0.6204

AICc 0.1992 0.3680 0.1988 0.3644 0.3493 0.5982

SAICc 0.1986 0.3806 0.1977 1.0072 0.3423 0.5770

SAIC 2.3181 2.6062 2.3067 2.6924 2.1903 2.3763

SBIC 2.3830 2.6497 2.3711 2.7310 2.2992 2.3291

JMA 2.3140 2.6087 2.3027 2.6926 2.1968 2.3562
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of lagged variables allows us to incorporate feedback over time and capture the dynamic

relationships. Specifically, we consider

Ω = {SRt, · · · , SRt−k1 , IPGt, · · · , IPGt−k1 ,DFFt, · · · ,DFFt−k1}

and Xti ∈ Ω and k1 = 5. Note that our methodology does not require the candidate model

to be parsimonious. While a larger lag order k1 could be considered to capture more complex

dynamics, this would result in an increase in computational load. Additionally, it is worth

noting that when h = 1, setting the lag order k1 to 5 is consistent with the maximum lag

order used in previous studies such as Jansen et al. (2008) and Tu & Wang (2020). The

bandwidth is selected via l = 2.34SCFDT
−1/5, where SCFD is the sample standard deviation of

{CFDt}. The number of candidate models is determined by the rule M = min(⌊3T 1/3⌉, q),

where q is the number predicting variables in Ω.

In our analysis, we evaluate the forecasting performance of the methods used in simu-

lation section, and we rely on plots of relative MSFE to illustrate our findings. These plots

provide a visual representation of the forecasting performance of the different methods under

consideration. Specifically, let T1 denote the start forecast date and vary it from 2019:6 until

2020:1, the MSFE for each method i is computed via

MSFEh
(i) (T1, T2) =

󰁓T2

t=T1
󰁥󰂃2t,(i)

T2 − T1 + 1
with T2 = 2020 : 12.

Next, we evaluate the relative percentage gains in mean squared forecast errors of the fore-

casts produced by the first six methods compared to the forecast produced by the JMA

method. A negative value suggests that the corresponding method produces more a accu-

rate forecast than the JMA method. This allows us to assess the relative performance of

these methods in terms of their ability to reduce forecast errors.

As shown in Figure 1, the performance of the SAIC and SBIC methods are similar

for h = 1 and h = 2, but both are inferior to the JMA method. Figure 1 reveals that the

FVMAmethod strongly outperforms the FVMASA method over the forecasting period. This

suggests that the proposed time-varying weighting scheme 󰁥wu0 is not equivalent to a simple
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Figure 1: MSFE plots: the left panel for h = 1 and the right panel for h = 2.

averaging weighting scheme. Furthermore, the results indicate that the proposed method

delivers out-of-sample forecasts that are no worse than existing model-average methods.

6 Conclusion

In this article, we have proposed a novel model averaging method for high-dimensional

functional-coefficient regression models, which allows the selected weights to change over

state variables. We have established the asymptotic optimality of the proposed estimator

and the rate of the selected varying weights converging to the optimal weight, even when

all candidate models with high-dimensional covariates are misspecified. When the model

set includes the correctly specified models, the proposed method asymptotically assigns all

weights to the correctly specified models. Also, model screening prior to model averaging

in ultra-high-dimensional context has been investigated. Numerical analysis and empirical

application strongly favor the proposed model averaging in comparison with the existing

conventional methods.
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Some relevant issues deserve further research. First, this paper has reduced model

uncertainty mainly caused by high-dimensional covariates. It would be interesting to study

local optimal averaging for functional-coefficient models with various state variables. For

example, we could follow the spirit of Cai et al. (2015b) to select state variables prior to model

averaging. In addition, one extension is to generalize the proposed method to functional-

coefficient models for nonstationary time series data, which covers more applications in

economics and finance (Cai et al., 2009; Xiao, 2009).
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Appendix

Before we embrace on providing the detailed proof to the main theorems, some lemmas are

needed, presented as follows.

Lemma 1. Suppose Conditions (C.1)-(C.5) hold. Then, as T → ∞, it holds that

Ψu0,T ≡ T−1l−1

T󰁛

t=1

XtX
′
tkt

P→ fU(u0)Ψ(u0),

where Ψ(u0) ≡ E(XtX
′
t|Ut = u0) is a symmetric positive definite matrix.

Proof. This can be directly derived from Theorem 1 in Cai et al. (2000b).

Lemma 2. Suppose Conditions (C.1)-(C.3) hold. Then, we have

||T−1/2l−1/2q−1/2

T󰁛

t=1

ktXt󰂃t+h|| = Op(1),

and

e||T−1l−1q−1/2

T󰁛

t=1

ktXtYt+h|| = Op(1),

if q grows at some rate of T .

Proof. We have

T−1/2l−1/2q−1/2

T󰁛

t=1

ktXt󰂃t+h = T−1/2l−1/2q−1/2X′K(u0)󰂃,

and

T−1l−1q−1/2

T󰁛

t=1

ktXtYt+h = T−1l−1q−1/2X′K(u0)Y.

Lemma 2 is valid if the following holds:

||X′K(u0)󰂃|| = Op(
󰁳

qT l), (A.1)

and

||X′K(u0)Y|| = Op(
√
qT l). (A.2)
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First, with Conditions (C.1)-(C.3), we have

E(T−1l−1q−1||X′K(u0)󰂃||2)

=
1

qT l
E(󰂃′K(u0)XX′K(u0)󰂃)

=
1

qT l
tr
󰁫
(
󰁳

K(u0)X)(
󰁳

K(u0)X)′cov(
󰁳

K(u0)󰂃)
󰁬

≤ max
1≤t≤T

kt
||Xt||2

q

1

T l

T󰁛

t=1

var(Yt+h)kt ≤ C < ∞

for some positive C and non-stochastic X. We have similar results for random X. Thus,

(A.1) holds.

Next, with (A.1) and Conditions (C.1)-(C.3), we have

||X′K(u0)Y|| = ||X′K(u0)µ+X′K(u0)󰂃||

≤ ||X′K(u0)µ||+Op(
󰁳

qT l)

≤
T󰁛

t=1

|µt|||Xt||kt +Op(
󰁳

qT l)

≤

󰁹󰁸󰁸󰁷
T󰁛

t=1

µ2
tkt

󰁹󰁸󰁸󰁷
T󰁛

t=1

||Xt||2kt +Op(
󰁳

qT l)

≤
√
CTl

󰁴
T l max

1≤t≤T
||Xt||2 +Op(

󰁳
qT l)

= Op(
√
qT l) +Op(

󰁳
qT l)

for some positive constant C. Thus, the proof of (A.2) is completed.

Lemma 3. Suppose Conditions (C.1)-(C.3) hold. Then, for any fixed ε > 0, there exists a

δε > 0 such that for all sufficiently large T ,

Pr

󰀕󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
T 1/2l1/2

q1/2
(󰁥α(m)(u0)−α(m)∗(u0))

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏 ≤ δε

󰀖
≥ 1− ε.

Proof. With Conditions (C.1)-(C.5), we have

Pr

󰀕󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
T 1/2l1/2

q1/2
(󰁥α(m)(u0)−α(m)∗(u0))

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏 ≤ δ

󰀖
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= Pr

󰀗󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
T 1/2l1/2

q1/2

󰀓
X(m)′K(u0)X

(m)
󰀔−1

X(m)′K(u0)(Y − µ)

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏 ≤ δ

󰀘

≥ Pr

󰀕
C−1

0

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
T−1/2l−1/2

q1/2
X(m)′K(u0)(Y − µ)

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏 ≤ δ

󰀖

≥ 1− var(X(m)′K(u0)󰂃)

C2
0δ

2T lq
≥ 1− C1

C2
0δ

2

for some positive constants C0 and C1. Thus, the proof of Lemma 3 is completed, when

δ = δε = C
1/2
1 (ε1/2C0).

Lemma 4. Suppose that Conditions (C.1)-(C.2) hold. We have

FVT (u0,w) = Y′(A(w,X) +Q(w,X))′K(u0)(A(w,X) +Q(w,X))Y,

where A(w,X) ≡
󰁓M

m=1 w
mA(m)(X), Q(w,X) ≡

󰁓M
m=1 w

mQ(m)(X), A(m)(X) = I −

P(m)(X), Q(m)(X) ≡ πD(m)φA(m)(X), φ = (φ′
1, · · · ,φ′

T )
′, (I−P

(m)
tt )−1 = I+

󰁓∞
j=1(P

(m)
tt )j ≡

I +D
(m)
t , and π and D(m) are block diagonal matrices with the t-th diagonal block being πt

and D
(m)
t (1 ≤ t ≤ T ).

Proof. It can be shown easily that

󰁨µ(m)
t = πt

󰁫
Y[t+h] − (I−P

(m)
tt )−1(Y[t+h] − 󰁥µ(m)

[t] )
󰁬

= πtφtP
(m)(X)Y − πtD

(m)
t φtA

(m)(X)Y,

where 󰁥µ(m)
[t] ≡ φtP

(m)(X)Y and P
(m)
tt ≡ φtP

(m)(X)φ′
t. Then, we have that

󰁨µ(m) = P(m)(X)Y −Q(m)(X)Y,

and

Y − 󰁨µ(w) =
󰀓
I−

󰁛M

m=1
wmP(m)(X) +

󰁛M

m=1
wmQ(m)(X)

󰀔
Y = (A(w,X) +Q(w,X))Y,

which implies that Lemma 4 is obtained.

Lemma 5. Suppose Conditions (C.8)-(C.9) hold. Then,

ζmax(Q
(m)(X)) = Op(MT q

1/2T−1l−1).
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Proof. With Condition (C.8), we have tr(P
(m)
tt ) = tr(φtP

(m)(X)φ′
t) ≤ (h+1)max1≤t≤T P

(m)
t =

Op(MTT
−1l−1) uniformly in m. Then, it follows that

ζmax(D
(m)) ≤ max

1≤t≤T
tr(D

(m)
t ) = max

1≤t≤T
tr{

∞󰁛

j=1

(P
(m)
tt )j}

≤ max
1≤t≤T

∞󰁛

j=1

{ζmax[P
(m)
tt ]j−1tr[P

(m)
tt ]}

≤ max
1≤t≤T

∞󰁛

j=1

tr[P
(m)
tt ]j

= max
1≤t≤T

trP
(s)
tt /(1− trP

(s)
tt ) = Op(MTT

−1l−1),

which implies that ζmax(π) = 1, so that

ζmax(Q
(m)(X)) = ζmax{πD(m)φA(m)(X)}

≤ ζmax(π)ζmax(D
(m))ζmax(φ)ζmax(A

(m)(X))

= Op(MT q
1/2T−1l−1)

with Condition (C.9). This proves the lemma.

Proof of Theorem 1. For any given u0, we first do the following decomposition

LT (u0,w) = (µ∗(w)− µ+ 󰁥µ(w)− µ∗(w))′K(u0)(µ
∗(w)− µ+ 󰁥µ(w)− µ∗(w))

= L∗
T (u0,w) + 2(󰁥µ(w)− µ∗(w))′K(u0)(µ

∗(w)− µ)

+(󰁥µ(w)− µ∗(w))′K(u0)(󰁥µ(w)− µ∗(w))

≡ L∗
T (u0,w) + ΓT (u0,w)

= EL∗
T (u0,w) + ΓT (u0,w) + (L∗

T (u0,w)− EL∗
T (u0,w)),

and

|FVT (u0,w)− LT (u0,w)|

=
󰀏󰀏[Y − 󰁨µ(w)]′ K(u0) [Y − 󰁨µ(w)]− (󰁥µ(w)− µ)′K(u0)(󰁥µ(w)− µ)

󰀏󰀏

=
󰀏󰀏[µ− 󰁥µ(w)− (󰁨µ(w)− µ∗(w)) + (󰁥µ(w)− µ∗(w)) + (Y − µ)]′ K(u0)
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× [µ− 󰁥µ(w)− (󰁨µ(w)− µ∗(w)) + (󰁥µ(w)− µ∗(w)) + (Y − µ)]

− (󰁥µ(w)− µ)′K(u0)(󰁥µ(w)− µ)|

≤ (󰁨µ(w)− µ∗(w))′K(u0)(󰁨µ(w)− µ∗(w)) + |(󰁥µ(w)− µ∗(w))′K(u0)(󰁥µ(w)− µ∗(w))|

+2|(󰁥µ(w)− µ∗(w))′K(u0)(󰁨µ(w)− µ∗(w))|+ 2|(µ∗(w)− µ)′K(u0)(󰁨µ(w)− µ∗(w))|

+2|(󰁥µ(w)− µ∗(w))′K(u0)(󰁥µ(w)− µ∗(w))|+ 2|(µ∗(w)− µ)′K(u0)(󰁥µ(w)− µ∗(w))|

+2|(󰁥µ(w)− µ∗(w))′K(u0)(µ−Y)|+ 2|(µ∗(w)− µ(w))′K(u0)(µ−Y)|

+2|(󰁨µ(w)− µ∗(w))′K(u0)(󰁥µ(w)− µ∗(w))|+ 2|(󰁨µ− µ∗)′K(u0)(µ−Y)|

+2|(󰁥µ(w)− µ∗(w))′K(u0)(µ−Y)|+ |(µ−Y)′K(u0)(µ−Y)|

≡ ΛT (u0,w) + |(µ−Y)′K(u0)(µ−Y)|,

where the second term is unrelated to w. From Theorem 1 of Zhao et al. (2019), Theorem

1 is valid if

sup
w∈HT

|ΓT (u0,w)|
EL∗

T (u0,w)
= op(1), (A.3)

sup
w∈HT

|ΛT (u0,w)|
EL∗

T (u0,w)
= op(1), (A.4)

and

sup
w∈HT

|L∗
T (u0,w)− EL∗

T (u0,w)|
EL∗

T (u0,w)
= op(1). (A.5)

Based on Lemma 3, for any given u0, it is observed that

max
1≤m≤MT

||󰁥α(m)(u0)−α(m)∗(u0)|| = Op(M
1/2
T q1/2T−1/2l−1/2).

Then, we have

󰁥α(u0,w)−α∗(u0,w) =

MT󰁛

m=1

wm
󰁫
󰁥α(m)(u0)−α(m)∗(u0)

󰁬

= Op(M
1/2
T q1/2T−1/2l−1/2). (A.6)

Thus,

sup
w∈HT

[󰁥µ(w)− µ∗(w)]′ K(u0) [󰁥µ(w)− µ∗(w)]
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= sup
w∈HT

[X′(󰁥α(u0,w)−α∗(u0,w))]
′
K(u0) [X

′(󰁥α(u0,w)−α∗(u0,w))]

= Op(T lq) ∗Op(MT qT
−1l−1) = Op(MT q

2) (A.7)

with Conditions (C.2)-(C.4) and (A.6). Similarly, we have

sup
w∈HT

[󰁨µ(w)− µ∗(w)]′ K(u0) [󰁨µ(w)− µ∗(w)] = Op(MT q
2). (A.8)

Also, with Condition (C.3), it is shown that

sup
w∈HT

|(µ∗(w)− µ)′K(u0)(󰁥µ(w)− µ∗(w))| = Op(M
1/2
T qT 1/2l1/2), (A.9)

sup
w∈HT

|(µ∗(w)− µ)′K(u0)(󰁨µ(w)− µ∗(w))| = Op(M
1/2
T qT 1/2l1/2), (A.10)

and

(µ−Y)′K(u0)(µ−Y) = 󰂃′K(u0)󰂃 = Op(T l). (A.11)

From (A.7) and (A.9), we have supw∈HT
|ΓT | = Op(M

1/2
T qT 1/2l1/2) and thus, (A.3) is ob-

tained.

By the same token, we have

sup
w∈HT

|(󰁥µ(w)− µ∗(w))′K(u0)(󰁨µ(w)− µ∗(w))| = Op(MT q
2),

sup
w∈HT

|(µ∗(w)− µ)′K(u0)(µ−Y)| = Op(T l),

sup
w∈HT

|(󰁥µ(w)− µ∗(w))′K(u0)(µ−Y)| = Op(M
1/2
T qT 1/2l1/2),

and

sup
w∈HT

|(󰁨µ(w)− µ∗(w))′K(u0)(µ−Y)| = Op(M
1/2
T qT 1/2l1/2).

Besides, we will verify that

sup
w∈HT

|(µ∗(w)− µ)′K(u0)(µ−Y)|
EL∗

T (u0,w)
= op(1). (A.12)

For any δ > 0, we have

Pr

󰀝
sup

w∈HT

ξT (u0)
−1|(µ∗(w)− µ)′K(u0)(µ−Y)| > δ

󰀞
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≤ Pr

󰀫
sup

w∈HT

ξT (u0)
−1

M󰁛

m=1

wm|(µ(m)∗ − µ)′K(u0)(µ−Y)| > δ

󰀬

= Pr
󰁱
max
m

|(µ(m)∗ − µ)′K(u0)(µ−Y)| > ξT (u0)δ
󰁲

≤
MT󰁛

m=1

Pr{|(µ(m)∗ − µ)′K(u0)(µ−Y)| > ξT (u0)δ}

≤ ξ−2
T (u0)δ

−2

MT󰁛

m=1

T󰁛

s=1

E{E[((µ(m)∗
s − µs)

′(µs − Ys+h)ks)
2|Is]}

≤ ξ−2
T (u0)δ

−2

MT󰁛

m=1

T󰁛

s=1

k2
sE{E(󰂃2s+h|Is)(µ(m)∗

s − µs)
2)]}

= O(q2MTT lξ
−2
T (u0)) = o(1),

where the last step of the above is obtained from Conditions (C.3), (C.4) and (C.6). Thus,

(A.12) is completed. Thus, with (A.7)-(A.12) and Condition (C.6), we have supw∈HT
|ΛT | =

Op(qM
1/2
T T 1/2l1/2), so that (A.4) is derived.

Finally, with Conditions (C.1)-(C.2), for any δ > 0 and uniformly for any u0, we have

Pr{
󰁛

w∈HT

ξ−1
T (u0)|L∗

T (u0,w)− EL∗
T (u0,w)| > δ} = o(1)

based on the law of large numbers of the mixing-process as in Doukhan (2012), and so (A.5)

is obtained. Therefore, the proof of Theorem 1 is completed.

Proof of Theorem 2. Following Fan & Peng (2004) and Chen et al. (2018), we need only

to verify that for any given u0, there is a constant c0 such that

lim
T→∞

Pr

󰀕
inf

||v||=c0,(w0(u0)+ηT (u0)v)∈HT

FVT (u0,w
0(u0) + ηT (u0)v) > FVT (u0,w

0(u0))

󰀖
= 1

with v = (v1, · · · , vMT )′ and ηT (u0) ≡ MT qT
−1/2+δl−1/2+δ, which implies that for any given

u0, ||󰁥wu0 −w0(u0)|| = Op(ηT (u0)) with a minimum 󰁥wu0 in the set {w0(u0)+ηT (u0)v : ||v|| ≤

c0,w
0(u0) + ηT (u0)v ∈ HT}.

First, we decompose FVT (u0,w
0(u0) + ηT (u0)v) − FVT (u0,w

0(u0)) in the following

four parts:

FVT (u0,w
0(u0) + ηT (u0)v)− FVT (u0,w

0(u0))
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= Y′ 󰀅A(w0(u0) + ηT (u0)v,X) +Q(w0(u0) + ηT (u0)v,X)
󰀆′
K(u0)

󰀅
A(w0(u0) + ηT (u0)v,X)

+Q(w0(u0) + ηT (u0)v,X)
󰀆
Y − Y′ 󰀅A(w0(u0),X) +Q(w0(u0),X)

󰀆′
K(u0)

×
󰀅
A(w0(u0),X) +Q(w0(u0),X)

󰀆
Y

= Y′A′(w0(u0) + ηT (u0)v,X)K(u0)A(w0(u0) + ηT (u0)v,X)Y +Y′M(w0(u0) + ηT (u0)v,X)Y

−Y′A′(w0(u0),X)K(u0)A(w0(u0),X)Y −Y′M(w0(u0),X)Y

= 󰁥µ(ηT (u0)v)
′K(u0)󰁥µ(ηT (u0)v)− 2(µ− 󰁥µ(w0(u0)))

′K(u0)󰁥µ(ηT (u0)v)− 2ε′K(u0)󰁥µ(ηT (u0)v)

+
󰀅
Y′M(w0(u0) + ηT (u0)v,X)Y −Y′M(w0(u0),X)Y

󰀆

≡ Ξ1 − 2Ξ2 − 2Ξ3 + Ξ4,

where

M(w,X) ≡ Q′(w,X)K(u0) +K(u0)Q(w,X)−P′(w,X)K(u0)Q(w,X)

−Q′(w,X)K(u0)P(w,X) +Q′(w,X)K(u0)Q(w,X),

Ξ1 ≡ 󰁥µ(ηT (u0)v)
′K(u0)󰁥µ(ηT (u0)v), Ξ2 ≡ (µ−󰁥µ(w0(u0)))

′K(u0)󰁥µ(ηT (u0)v), Ξ3 ≡ ε′K(u0)󰁥µ(ηT (u0)v),

and Ξ4 ≡ Y′M(w0(u0) + ηT (u0)v,X)Y −Y′M(w0(u0),X)Y.

To verify Theorem 2, it is equivalent to showing that Ξ1 > 0 in probability converges to

1, and Ξ1 asymptotically dominates {Ξ2,Ξ3,Ξ4}, respectively. Based on Conditions (C.4)-

(C.5) and (C.7), it is derived that

Ξ1 =
T󰁛

s=1

(

MT󰁛

m=1

ηT (u0)v
m󰁥µ(m)

s )2ks =
T󰁛

s=1

η2T (u0)(

MT󰁛

m=1

vm󰁥µ(m)
s )2ks ≥ κ1η

2
T (u0)||v||2T l > 0

in probability approaching to 1. Next, given

󰁨ξT (u0) = inf
w∈HT

ELt,T (w) = E
󰀅
(µ− 󰁥µ(w0(u0)))

′K(u0)(µ− 󰁥µ(w0(u0)))
󰀆
,

we have ||
󰁳

K(u0) [µ− 󰁥µ(w0(u0))] || = Op(󰁨ξ1/2T (u0)). Then, from Conditions (C.4)-(C.5)

and (C.7), similar to (A.5) in Li et al. (2022), it is shown that

|Ξ2| ≤ ||
󰁳

K(u0)
󰀅
µ− 󰁥µ(w0(u0))

󰀆
||× ||

󰁳
K(u0)󰁥µ(ηT (u0)v)||

= Op(󰁨ξ1/2T (u0)q
1/2T 1/2l1/2ηT (u0))||v||.
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With Condition (C.10), it is shown that |Ξ2| is dominated by Ξ1 asymptotically. Next,

similar to (A.54) of Liao et al. (2019), it is observed that

|Ξ3| = |tr{ε′K(u0)󰁥µ(ηT (u0)v)}|

= |tr{K(u0)󰁥µ(ηT (u0)v)ε
′}|

= |{vec(ε󰁥µ(ηT (u0)v)
′)}′vec(K(u0))|

= |ηT (u0)v
′{vec(ε󰁥µ(1)′), · · · , vec(ε󰁥µ(MT )′)}′vec(K(u0))|

≤ ηT (u0)||v||tr1/2
󰀥

MT󰁛

m=1

{vec(ε󰁥µ(m)′)}{vec(ε󰁥µ(m)′)}′
󰀦
||K(u0)||

= Op(MT q
1/2T 1/2l1/2ηT (u0))||v||,

which is dominated by Ξ1 asymptotically based on Condition (C.10). Furthermore, Ξ4 can

be decomposed as

Ξ4 = Y′M(w0(u0) + ηT (u0)v,X)Y −Y′M(w0(u0),X)Y

= Y′Q′(ηT (u0)v,X)K(u0)Y +Y′K(u0)Q(ηT (u0)v,X)Y

−Ξ41 − Ξ42 + Ξ43,

where

Ξ41 ≡ Y′P′(w0(u0) + ηT (u0)v,X)K(u0)Q(w0(u0) + ηT (u0)v,X)Y

−Y′P′(w0(u0),X)K(u0)Q(w0(u0),X)Y,

Ξ42 ≡ Y′Q′(w0(u0) + ηT (u0)v,X)K(u0)P(w0(u0) + ηT (u0)v,X)Y

−Y′Q′(w0(u0),X)K(u0)P(w0(u0),X)Y,

and

Ξ43 ≡ Y′Q′(w0(u0) + ηT (u0)v,X)K(u0)Q(w0(u0) + ηT (u0)v,X)Y

−Y′Q′(w0(u0),X)K(u0)Q(w0(u0),X)Y.

Denote

F1 ≡ (
󰁳

K(u0)P
(1)(X)Y, · · · ,

󰁳
K(u0)P

(MT )(X)Y),
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and

F2 ≡ (
󰁳

K(u0)Q
(1)(X)Y, · · · ,

󰁳
K(u0)Q

(MT )(X)Y).

Then, we have

||F1|| = tr1/2(F1F
′
1) = tr1/2{

MT󰁛

m=1

Y′P(m)′(X)K(u0)P
(m)(X)Y}

≤ {
MT󰁛

m=1

ζmax(K(u0))||Ykt||2ζ2max(P
(m)(X))}1/2 = Op(

󰁳
qT lMT ),

and similarly

||F2|| = {
MT󰁛

m=1

||
󰁳

K(u0)Q
(m)(X)Y||2}1/2

≤ {
MT󰁛

m=1

ζmax(K(u0))ζ
2
max(Q

(m)(X))||Y||2}1/2

= Op(q
1/2T−1/2l−1/2M

3/2
T ).

Then, we have

|Ξ41 + Ξ42 + Ξ43|

≤ 2ηT (u0)||v||||F1||||F2||||w0(u0)||+ 2ηT (u0)||w0(u0)||||F1||||F2||||v||

+2η2T (u0)||F1||||F2||||v||2 + 2ηT (u0)||v||||F2||2||w0(u0)||+ η2T (u0)||v||2||F2||2

= Op(ηT (u0)qM
2
T )||v||+Op(η

2
T (u0)qM

2
T )||v||2

+Op(T
−1l−1ηT (u0)qM

3
T )||v||+Op(T

−1l−1η2T (u0)qM
3
T )||v||2.

In addition, it is seen that

|Y′Q′(ηT (u0)v,X)K(u0)Y +Y′K(u0)Q(ηT (u0)v,X)Y|

= |2Y′(

MT󰁛

m=1

ηT (u0)v
mQ(m)′(X))K(u0)Y|

≤ 2ηT (u0)||v||||F′
2

󰁳
K(u0)Y||

= Op(ηT (u0)q
1/2MT

3/2)||v||.

This shows that Ξ4 is dominated by Ξ1 asymptotically based on Conditions (C.6) and (C.10).

Therefore, Theorem 2 is verified.
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Proof of Theorem 3. With Theorem (3.a) in Andrew (1992) and Theorem 2, it is easily

obtained that

||󰁥α(u0, 󰁥wu0)−α∗(u0,w
0(u0))||

≤ ||󰁥α(u0, 󰁥wu0)− 󰁥α(u0,w
0(u0))||+ ||󰁥α(u0,w

0(u0))−α∗(u0,w
0(u0))||

= ||󰁥α(u0, 󰁥wu0 −w0(u0))||+ ||
MT󰁛

m=1

w0
m(󰁥α

(m)(u0)−α(m)∗(u0))||

≤ ||󰁥wu0 −w0(u0)||||󰁥A(u0)||+ ||w0(u0)||||󰁥A(u0)−A∗(u0)||

= Op(T
−1/2+δl−1/2+δM

3/2
T q3/2) +Op(M

1/2
T q1/2T−1/2l−1/2) = op(1),

where 󰁥A(u0) = (󰁥α(1)(u0), · · · , 󰁥α(MT )(u0))
′ and A∗(u0) = (α(1)∗(u0), · · · ,α(MT )∗(u0))

′. Thus,

the proof of Theorem 3 is completed.

Proof of Theorem 4. Let FV∗
T (u0,w) = FVT (u0,w)− |(µ−Y)′K(u0)(µ−Y)|, where the

last term is unrelated tow, and thus, 󰁥wu0 = argminw∈HT
FVT (u0,w) = argminw∈HT

FV∗
T (u0,w).

Similar to the proof of Theorem 1, it is obtained that

FV∗
T (u0, 󰁥wu0) = EL∗

t,T (󰁥wu0) +Op(qM
1/2
T T 1/2l1/2). (A.13)

Denote τ =
󰁓

m∈D wm. Let 󰁨w be a weight vector with wm = 0 for the correctly specified

models (i.e., m ∈ D) and 󰁨wm = wm/(1 − τ) for all misspecified models (i.e., m /∈ D). For

any given u0 and any correctly specified model, it is easy to see that

µ
(m)
t − µt = 0 for m ∈ D. (A.14)

Then, we obtain that

EL∗
T (u0,w) = E [(µ∗(w)− µ)′K(u0)(µ

∗(w)− µ)]

= E

󰀥
T󰁛

s=1

(

MT󰁛

m=1

wm{µ(m)∗
s − µs})2kst

󰀦

= E

󰀥
T󰁛

s=1

(

M0󰁛

m=1

wm{µ(m)∗
s − µs})2kst

󰀦

= (1− τ)2E

󰀵

󰀷
T󰁛

s=1

󰀣
M0󰁛

m=1

(1− wM0+1)−1wm{µ(m)∗
s − µs}

󰀤2

kst

󰀶

󰀸

40



= (1− τ)2L∗
T (u0, 󰁨w). (A.15)

By replacing w with its estimator and based on (A.13) and (A.15), we have

FV∗
T (u0, 󰁥wu0) = (1− τ)2EL∗

T (u0, 󰁥󰁨wu0) +Op(qM
1/2
T T 1/2l1/2).

Let λ be a weight vector with
󰁓

m∈D λm. Also, we obtain EL∗
T (u0,λ) = 0 based on (A.14).

Then, it is shown that

FV∗
T (u0,λ) = Op(qM

1/2
T T 1/2l1/2),

and

(1− τ)2EL∗
T (u0, 󰁥󰁨wu0) +Op(qM

1/2
T T 1/2l1/2) ≤ FV∗

T (u0,λ) = Op(qM
1/2
T T 1/2l1/2)

based on the fact that 󰁥wu0 = argminw∈HT
FV∗

T (u0,w). Therefore, we derive that

(1− 󰁥τu0)
2 inf
w∈ 󰁨HT

EL∗
T (u0,w) +Op(qM

1/2
T T 1/2l1/2) ≤ Op(qM

1/2
T T 1/2l1/2),

where 󰁥τu0 is the estimator of τ for any given u0, i.e., 󰁥τu0 =
󰁓

j∈D 󰁥wj
u0
. Combined with

Condition (C.11), for any given u0 we obtain 󰁥τu0

P→ 1, and thus, the proof of Theorem 4 is

completed.

Proof of Theorem 5. To verify Theorem 5, it is equivalent to showing that for any given

u0 and for any δ > 0,

Pr

󰀝󰀏󰀏󰀏󰀏
infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

− 1

󰀏󰀏󰀏󰀏 > δ

󰀞
P→ 0. (A.16)

First, we define DFT (u0,w) = FVT (u0,w) − LT (u0,w) − |(µ −Y)′K(u0)(µ −Y)|. Based

on (A.4) and (A.5), supw∈HT
|DFT (u0,w)/L∗

T (u0,w)| = op(1) for any given u0. With (A.5),

Conditions (C.6) and (C.12), it is observed that for any given u0

sup
w∈HT

󰀏󰀏󰀏󰀏
vT (u0)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏 = op(1),

and

sup
w∈HT

󰀏󰀏󰀏󰀏
L∗
T (u0,w)

LT (u0,w)

󰀏󰀏󰀏󰀏
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=

󰀝
inf

w∈HT

󰀏󰀏󰀏󰀏
LT (u0,w)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏

󰀞−1

≤
󰀝
1− sup

w∈HT

󰀏󰀏󰀏󰀏
LT (u0,w)− L∗

T (u0,w)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏

󰀞−1

P→ 1,

where the last step is obtained from (A.3) and (A.5). Similarly, we have

sup
w∈HT

󰀏󰀏󰀏󰀏
L∗
T (u0,w)

LT (u0,w)− vT (u0)

󰀏󰀏󰀏󰀏

≤
󰀝
1− sup

w∈HT

󰀏󰀏󰀏󰀏
LT (u0,w)− L∗

T (u0,w)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏− sup
w∈HT

󰀏󰀏󰀏󰀏
vT (u0)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏

󰀞−1

P→ 1.

Finally, we will prove (A.16). It is observed that

Pr

󰀝󰀏󰀏󰀏󰀏
infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

− 1

󰀏󰀏󰀏󰀏 > δ

󰀞

= Pr

󰀝󰀏󰀏󰀏󰀏
LT (u0, 󰁥w∗

u0
)− infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

󰀏󰀏󰀏󰀏 > δ

󰀞

= Pr

󰀝󰀏󰀏󰀏󰀏
FVT (u0, 󰁥w∗

u0
)−DFT (u0, 󰁥w∗

u0
)− infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

󰀏󰀏󰀏󰀏 > δ

󰀞

= Pr

󰀝󰀏󰀏󰀏󰀏
infw∈H∗

T
[LT (u0,w) +DFT (u0,w)]−DFT (u0, 󰁥w∗

u0
)− infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

󰀏󰀏󰀏󰀏 > δ

󰀞

≤ Pr

󰀝󰀏󰀏󰀏󰀏
infw∈H∗

T
[LT (u0,w) +DFT (u0,w)]−DFT (u0, 󰁥w∗

u0
)− infw∈HT

LT (u0,w)

LT (u0, 󰁥w∗
u0
)

󰀏󰀏󰀏󰀏 > δ|wT ∈ H∗
T

󰀞

×Pr(wT ∈ H∗
T ) + Pr(wT /∈ H∗

T )

≤ Pr

󰀝󰀏󰀏󰀏󰀏
DFT (u0,wT )−DFT (u0, 󰁥w∗

u0
) + vT (u0)

LT (u0, 󰁥w∗
u0
)

󰀏󰀏󰀏󰀏 > δ

󰀞
+ Pr(wT /∈ H∗

T )

≤ Pr

󰀝󰀏󰀏󰀏󰀏
DFT (u0,wT )

infw∈HT
LT (u0,w)

󰀏󰀏󰀏󰀏+ sup
w∈HT

󰀏󰀏󰀏󰀏
DFT (u0,w)

LT (u0,w)

󰀏󰀏󰀏󰀏+ sup
w∈HT

󰀏󰀏󰀏󰀏
vT (u0)

LT (u0,w)

󰀏󰀏󰀏󰀏 > δ

󰀞
+ Pr(wT /∈ H∗

T )

≤ Pr

󰀝
sup

w∈HT

󰀏󰀏󰀏󰀏
DFT (u0,w)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏 sup
w∈HT

󰀏󰀏󰀏󰀏
L∗
T (u0,w)

LT (u0,w)− vT (u0)

󰀏󰀏󰀏󰀏+ sup
w∈HT

󰀏󰀏󰀏󰀏
DFT (u0,w)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏 sup
w∈HT

󰀏󰀏󰀏󰀏
L∗
T (u0,w)

LT (u0,w)

󰀏󰀏󰀏󰀏

+ sup
w∈HT

󰀏󰀏󰀏󰀏
vT (u0)

L∗
T (u0,w)

󰀏󰀏󰀏󰀏 sup
w∈HT

󰀏󰀏󰀏󰀏
L∗
T (u0,w)

LT (u0,w)

󰀏󰀏󰀏󰀏 > δ

󰀞
+ Pr(wT /∈ H∗

T )
P→ 0.

Thus, (A.16) is obtained and therefore, the proof of Theorem 5 is completed.
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