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Abstract

This paper develops an efficient Stein-like shrinkage estimator for estimating slope parameters

under structural breaks in seemingly unrelated regression models, which is then used for forecast-

ing. The proposed method is a weighted average of two estimators: a restricted estimator that

estimates the parameters under the restriction of no break in the coefficients, and an unrestricted

estimator that considers break points and estimates the parameters using the observations within

each regime. It is established that the asymptotic risk of the Stein-like shrinkage estimator is

smaller than that of the unrestricted estimator, which is the method typically used to estimate

the slope coefficients under structural breaks. Furthermore, this paper proposes an averaging

minimal mean squared error estimator in which the averaging weight is derived by minimizing

its asymptotic risk. The superiority of the two proposed estimators over the unrestricted

estimator in terms of the mean squared forecast errors are also derived. Further, analytical

comparison between the asymptotic risks of the proposed estimators is provided. Insights from

the theoretical analysis are demonstrated in Monte Carlo simulations, and through an empirical

example of forecasting output growth rates of G7 countries.
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1 Introduction

Seemingly unrelated regression (SUR) models include several individual units that are linked by

the fact that their disturbances are correlated. The correlation among the equation disturbances

could come from several sources, such as correlated technological shocks, tax policy changes, or

credit crunches, which may affect all individual units together. Consequently, such models have

been broadly used in econometrics and applied works. Using the correlation among the equations

in SUR models, one can improve the efficiency of estimates compared to those obtained by an

equation-by-equation least squares, see Zellner (1962). However, standard estimators in SUR

are arguably restrictive, as they assume that the slope coefficients are constant over time. As

an economy may experience an unexpected shock across time (such as oil price shocks, financial

crises, or technological shocks), and such a shock is likely to have impact on economic variables

simultaneously, it is important to consider structural breaks in SUR models. This is a critical issue

to consider because structural breaks are an important source of forecast failures in macroeconomics

and finance as documented by Pesaran and Timmermann (2002, 2007), Pesaran et al. (2006),

Clements and Hendry (2006, 2011), Giacomini and Rossi (2009), Inoue and Rossi (2011), Pesaran

and Pick (2011), Pesaran et al. (2013), Rossi (2013), Barnett et al. (2016), and Lee et al. (2022),

among others. To deal with this challenge, this paper considers structural breaks in SUR models,

and develops estimation and forecasting methods in this framework.

There has been a recent increase in literature concerning the estimation and tests of common

breaks in panel data models with a main focus on the detection of break points and their asymptotic

properties. Large N and T panels involves nuisance parameters that increase at a quadratic rate

because the cross-section dimension of the panel is allowed to rise. One solution to deal with this

issue is to restrict the covariance matrix of the errors using a common factor specification with

a fixed number of unobserved factors, as discussed in Bai and Ng (2002), Coakley et al. (2002),

and Phillips and Sul (2003), to mention a few. Despite the considerable attention to the detection

of break points, only a few studies have attempted to forecast panel data models, see Smith and

Timmermann (2018), Smith (2018), and Liu (2022) which use a Bayesian framework. Our paper

differs from their work in that it considers the so-called frequentist model averaging framework,

which relies on the data on hand. Further, the main purpose of our paper is to find a more accurate
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estimate of the slope parameters in the sense of mean squared errors, and also optimal forecast in

the sense of mean squared forecast errors (MSFE) in SUR models.1

This paper develops two averaging estimators in SUR models for estimating the slope coefficients

and forecasting under structural breaks when the cross-section dimension is fixed while the time

dimension is allowed to increase without bounds. It is important to allow for large T because,

for example, technological changes or policy implementations are likely to happen over long time

horizons. Moreover, the model allows for the cross-sectional dependence to gain from the correlation

across individuals, which is not applicable in a univariate time-series model. Ignoring cross-sectional

dependence of errors can have serious consequences and can result in misleading inference and even

inconsistent estimators, depending on the extent of the cross-sectional dependence. This cross-

correlations could arise due to omitted common effects, spatial effects, or as a result of interactions

within socioeconomic networks, as discussed in Chudick and Pesaran (2015).

Our first proposed estimator is a weighted average of an unrestricted estimator and a restricted

estimator in which the averaging weight takes the form of the James-Stein weight, cf. Stein (1956)

and James and Stein (1961).2 The restricted estimator is built under the restriction of no break

in the coefficients, that is, the coefficients across different regimes are restricted to be the same

as if there were no structural break. Therefore, the restricted estimator will be biased when there

is a break, but is the most efficient one. However, the unrestricted estimator considers the break

points and only uses the observations within each regime to estimate the coefficients. Thus, the

unrestricted estimator is consistent but less efficient. The weighted average of the unrestricted

estimator and the restricted estimator therefore balances the trade-off between the bias and the

variance efficiency depending on the magnitude of the break. We establish the asymptotic risk for

the Stein-like shrinkage estimator and show that its asymptotic risk is smaller than that of the

unrestricted estimator, which is the common method for estimating the slope coefficients under

structural breaks. We note that this out-performance comes from the efficiency of the restricted

estimator in which it exploits the observations in neighboring regime(s). Therefore, the proposed

estimator provides a better estimate and ultimately a better forecast in the sense of MSFE.

1A SUR model can be seen as a panel data model in which the cross-section dimension (N) is small and the time
series dimension (T ) is large.

2See also Massoumi (1978), Hansen (2016, 2017) and Mehrabani and Ullah (2020) for applying the Stein-type
shrinkage weight in different contexts.
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The second proposed estimator is a weighted average of the unrestricted estimator and the

restricted estimator in which the averaging weight is derived by minimizing the asymptotic risk.

This estimator is called the minimal mean squared error estimator. We derive the asymptotic risk

of the minimal mean squared error estimator and show that it is smaller than the asymptotic risk

of the unrestricted estimator. In addition, we analytically compare its asymptotic risk with that of

the Stein-like shrinkage estimator. The results show the out-performance of the Stein-like shrinkage

estimator over the minimal mean squared error estimator under small break sizes. However, for

large break sizes or large number of regressors, both estimators have almost equal performance. It is

noteworthy that both of the proposed estimators uniformly outperform the unrestricted estimator,

in the sense of having a smaller asymptotic risk, for any break size and break point. When choosing

between the two proposed estimators, based on the analytical and numerical results, we recommend

the Stein-like shrinkage estimator as it uniformly outperforms or performs as well as the minimal

mean squared error estimator.3

We conduct a Monte Carlo simulation study to evaluate the performance of the proposed

averaging estimators. The results confirm the theoretically expected improvements in the Stein-like

shrinkage estimator and the minimal mean squared error estimator over the unrestricted estimator

for any break size and break point. Further, we provide an empirical analysis of forecasting output

growth rates of G7 countries using quarterly data from 1995:Q1 to 2016:Q4. Our empirical results

show the benefits of using the proposed averaging estimators over the unrestricted estimator and

other alternative estimators.

The paper is structured as follows. Section 2 presents the SUR model under the structural

break. Section 3 introduces the Stein-like shrinkage estimator, as well as its asymptotic distribution

and asymptotic risk. This section also introduces the minimal mean squared error estimator, and

compares the asymptotic risk of this estimator with that of the Stein-like shrinkage estimator.

Section 4 reports the Monte Carlo simulation. Section 5 presents the empirical analysis. Section 6

concludes the paper. Detailed proofs are provided in Appendix A.

3In panel data and multivariate equation models, shrinkage estimator and model averaging techniques have been
considered on the issue of how to model potentially heterogeneous parameters across individual units, see Maddala
et al. (2001), Wang et al. (2019), Mehrabani and Ullah (2020).
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2 The model

Consider the following heterogeneous seemingly unrelated regressions model

yi,t = x′i,tβi + ui,t, for i = 1, . . . , N, t = 1, . . . , T, (1)

where xi,t is a k × 1 vector of regressors, and ui,t is the error term with zero mean that is allowed

to have cross-sectional dependence as well as heteroskedasticity. The vector of coefficients, βi, and

the variance of the error term, ui,t, are subject to a common break across individuals at time T1,

where b1 ≡ T1/T ∈ (0, 1), such that

βi =


βi(1) for t = 1, . . . , T1,

βi(2) for t = T1 + 1, . . . , T.

(2)

Let Yi, Xi, Ui denote the stacked data and errors for individuals i = 1, . . . , N over the time

period observed. Then,

Yi = Xiβi + Ui, (3)

where Yi =
(
y′i(1), y

′
i(2)

)′
is a vector of T × 1 dependent variable, with yi(1) =

(
yi,1, . . . , yi,T1

)′
and yi(2) =

(
yi,T1+1, . . . , yi,T

)′
. Also, Xi = diag

(
xi(1), xi(2)

)
is a T × 2k diagonal matrix in which

xi(1) =
(
xi,1, . . . , xi,T1

)′
, and xi(2) =

(
xi,T1+1, . . . , xi,T

)′
. βi =

(
β′
i(1), β

′
i(2)

)′
is a 2k × 1 vector of the

slope coefficients, and Ui =
(
ui(1), ui(2)

)′
is a T×1 vector of error terms with ui(1) =

(
ui,1, . . . , ui,T1

)′
and ui(2) =

(
ui,T1+1, . . . , ui,T

)′
. It is convenient to stack the equations over N individuals as



Y1

Y2
...

YN


=



X1 0 . . . 0

0 X2 . . . 0

...
. . .

. . . 0

0 . . . 0 XN





β1

β2

...

βN


+



U1

U2

...

UN


, (4)

or compactly in matrix notation as

Y
NT×1

= X
NT×2Nk

b
2Nk×1

+ U
NT×1

. (5)
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We make the following assumptions:

Assumption 1: {(x̃t, ũt)} is an i.i.d. sequence where x̃t = diag
(
x′1,t, . . . , x

′
N,t

)
, ũt =

(
u1,t, . . . , uN,t

)′
,

and E(ũt|x̃t) = 0.

Assumption 2: The disturbances are heteroscedastic across regimes, and are uncorrelated across

time but correlated across individual equations,

V ar(U) ≡ Ω =



Ω11 Ω12 . . . Ω1N

Ω21 Ω22 . . . Ω2N

...
...

. . .
...

ΩN1 ΩN2 . . . ΩNN


(6)

where Ωij =

cov(ui(1), uj(1)) 0

0 cov
(
ui(2), uj(2)

)
 =

σij(1)IT1 0

0 σij(2)I(T−T1)

 .

Assumption 3: The product moment matrix
(
X′Ω−1X

T

)
has full rank, and tends to a finite non-

singular matrix as T → ∞.

We note that Assumption 1 implies that the observations are not correlated across time so that

conventional central limit theory applies. Assumption 2 implies the cross-sectional dependence

across individuals. Assumption 3 guarantees that the Generalized least squares (GLS) estimation

method used in Section 3 is uniquely defined.

We note that the method of break point estimation is based on the least-squares principle

discussed in Bai and Perron (2003) for a univariate time-series model, and the extensions to the

multivariate regression setting is described in Qu and Perron (2007). It has been shown that the

estimated break fraction, b̂1, converges to its true value, b1, at a rate that is fast enough not to

affect the
√
T consistency of the estimated parameters asymptotically, see Qu and Perron (2007).

3 The proposed averaging estimators

This section introduces the Stein-like shrinkage estimator and the minimal mean squared error

estimator. We also provide an analytical comparison of the two proposed estimators.
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3.1 Stein-like shrinkage estimator

For the estimation of the slope parameters in model (5), we propose the Stein-like shrinkage

estimator that can reduce the estimation error under structural breaks. Our proposed shrinkage

estimator denoted by b̂w is

b̂w = wT b̂ur + (1− wT )b̂r, (7)

where b̂r is called the restricted estimator, which is under the restriction of no break in the

coefficients. Thus, it estimates the parameters by ignoring the break. Therefore, the restricted

estimator is biased when there is a break while it is efficient. The unrestricted estimator, b̂ur,

estimates the coefficients by considering the common break point across all individuals; so this is

the unbiased estimator but less efficient. As a result, the weighted average of the restricted and

unrestricted estimators trades-off between the bias and variance efficiency. The shrinkage weight

takes the form of

wT =
(
1− τ

DT

)
+
, (8)

where weight takes the form of positive part function, (x)+ = x I(x ≥ 0). Also, τ is the shrinkage

parameter that controls the degree of shrinkage, and DT is a weighted quadratic loss equal to

DT = T (b̂ur − b̂r)
′W(b̂ur − b̂r). (9)

The loss function in (9) measures the distance between the restricted and unrestricted estimators,

with W an arbitrary symmetric positive definite weight matrix. For example, when W is equal to

the inverse of the variance of the unrestricted estimator, DT is a Wald-type statistic. This is also

an appropriate weight choice as it simplifies the theoretical calculations and makes the loss function

invariant to the rotations of the coefficient vector b.

The idea behind the Stein-like shrinkage estimator in (7) is that for a large break size (a large

value of DT ), the shrinkage estimator assigns a higher weight to the unrestricted estimator and a

lower weight to the restricted estimator, since the restricted estimator adds large bias under the

large break size. However, for a small break size (a small value of DT ), the shrinkage estimator gives

more weight to the restricted estimator to gain from its efficiency. In other words, depending on the

magnitude of the break, the shrinkage estimator assigns appropriate weight to each of the restricted
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and unrestricted estimators to balance the trade-off between the bias and variance efficiency.

As mentioned earlier, the unrestricted estimator considers the common break and estimates

the coefficients (pre- and post-break coefficients) using observations within each regime separately.

This estimator is typically used for estimating the slope coefficients under structural break. Using

the feasible GLS method for estimating the slope coefficients in (5), we have

b̂ur =
(
X ′Ω̂−1X

)−1
X ′Ω̂−1Y, (10)

where Ω̂ is the estimate of the unknown parameter Ω defined in (6). We obtain the estimates of

the elements in Ω by using the OLS residuals for each equation. In practice, σ̂ij(1) =
û′
i(1)

ûj(1)

T1−k is the

estimate of the elements of Ωij , where ûi(1) = yi(1) − xi(1)β̂
ols
i(1), and β̂ols

i(1) =
(
x′i(1)xi(1)

)−1
x′i(1)yi(1)

is the pre-break estimator. Similarly, σ̂ij(2) =
û′
i(2)

ûj(2)

T−T1−k , where ûi(2) = yi(2) − xi(2)β̂
ols
i(2), and β̂ols

i(2) =(
x′i(2)xi(2)

)−1
x′i(2)yi(2) is the post-break estimator, for i = 1, . . . , N.

Alternatively, one can estimate the slope coefficients by imposing a restriction on the parameters,

Rb = rp×1 in which R is a p × 2Nk restriction matrix with rank p. This is called the restricted

estimator. By applying the feasible GLS method in (5), under the restriction Rb = r, we have

b̂r = b̂ur −
(
X ′Ω̂−1X

)−1
R′

[
R

(
X ′Ω̂−1X

)−1
R′

]−1
(Rb̂ur − r). (11)

Under the assumption of no break in the slope coefficients, Rb = 0 where

R =



Ik −Ik 0 0 0 . . . 0

0 0 Ik −Ik 0 . . . 0

...

0 . . . 0 Ik −Ik


, (12)

and p = Nk.

7



3.1.1 Asymptotic results for the Stein-like shrinkage estimator

Our analysis is asymptotic as the time series dimension T → ∞ while the number of individual

units, N , is fixed. Under the local alternative assumption, consider the parameter sequences of the

form

b = b0 +
h√
T
, (13)

where b is the true parameter value, b0 is the slope coefficients under the assumption of no break

(βi(1) = βi(2), for i = 1, . . . N), and h shows the magnitude of the break size in the coefficients.

Thus, for any fixed h, the break size h/
√
T converges to zero as the sample size increases. We

allow the size of the break to be different across individuals. That means that for each individual

i = 1, . . . , N , we have βi(1) = βi(2) +
δi√
T
, or generally

Rb =



β1(1) − β1(2)

β2(1) − β2(2)
...

βN(1) − βN(2)


=

1√
T



δ1

δ2
...

δN


=

δ√
T
, (14)

where δ = (δ′1, . . . , δ
′
N )′ is a vector of Nk × 1, and the restriction matrix R is defined in (12). We

note that Rh = δ, and Rb0 = 0 under the assumption of no break. In the following theorem,

we derive the asymptotic distributions of the unrestricted estimator, restricted estimator, and the

Stein-like shrinkage estimator.

Theorem 1: Under assumptions 1-3, along the sequences (13), the asymptotic distribution of the

unrestricted estimator is
√
T
(
b̂ur − b

) d−→ Z ∼ N
(
0, Vur

)
, (15)

where Vur =
(
E
(
X′Ω−1X

T

))−1
is the variance of the unrestricted estimator, and the asymptotic

distribution of the restricted estimator is

√
T
(
b̂r − b

) d−→ Z − VurR
′(RVurR

′)−1
R(Z + h). (16)
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In addition, the asymptotic distribution of the loss function, the weight and the Stein-like shrinkage

estimator are

DT = T (b̂ur − b̂r)
′W(b̂ur − b̂r)

d−→ (Z + h)′B(Z + h), (17)

wT
d−→ w(Z) =

(
1− τ

(Z + h)′B(Z + h)

)
+
, (18)

√
T
(
b̂w − b

) d−→ Z − w(Z)VurR
′
[
RVurR

′
]−1

R(Z + h), (19)

where B ≡ R′
[
RVurR

′
]−1

RVur WVurR
′
[
R VurR

′
]−1

R is a 2Nk × 2Nk matrix. ■

See Appendix A.1 for the proof of this theorem. Theorem 1 shows that the asymptotic

distribution of the Stein-like shrinkage estimator is a nonlinear function of the normal random

vector Z, and the non-centrality parameter h.

Remark 1: Lee et al. (2022a) consider a univariate time series model with a focus on forecasting. In

this paper, we consider a SUR model and focus on improving the estimation of the slope coefficients

within each regime, and also improving forecasts utilizing the improved estimator of the slope

coefficients. The theoretical derivations of asymptotic distributions of the estimators provided in

Theorem 1 (and subsequent theorems) are significantly different from those of Lee et al. (2022a) due

to differences in the models. Besides, the restricted estimator considered in this paper is general

which can be obtained using different linear restrictions on the model parameters. For example,

under two breaks, it may be the case that slope coefficients in the first and third regimes are equal

while different with the second regime. Another restriction would be to allow for partial changes

in the slope coefficients, or if one is interested to shrink part of the slope coefficients. □

When an estimator has an asymptotic distribution,
√
T (β̂ − β)

d−→ ϖ, we define its asymptotic

risk as ρ(β̂,W) = E(ϖ′Wϖ). See Lehmann and Casella (1998). Using Theorem 1, we derive the

asymptotic risk for the Stein-like shrinkage estimator. Theorem 2 provides the result.

Theorem 2: Under assumptions 1-3, for 0 < τ ≤ 2(Nk − 2), and for W = V −1
ur , the asymptotic

risk for the Stein-like shrinkage estimator is

ρ(b̂w,W) ≤ ρ(b̂ur,W)− τ
[2(Nk − 2)− τ

(c+ 1)Nk

]
, (20)
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where 0 < c < ∞. ■

See Appendix A.2 for the proof of this theorem.4 Theorem 2 shows that the asymptotic risk

of the Stein-like shrinkage estimator is smaller than that of the unrestricted estimator. As the

shrinkage parameter, τ , is unknown, we find it by minimizing the asymptotic risk. Theorem 3

shows the optimal value of the shrinkage parameter, denoted by τ∗opt, and the associated asymptotic

risk for the Stein-like shrinkage estimator.

Theorem 3: When W = V −1
ur and Nk > 2, the optimal value of τ is

τ∗opt = Nk − 2, (21)

where τ∗opt is positive as long as Nk > 2. Also, the asymptotic risk for the Stein-like shrinkage

estimator after plugging the τ∗opt is

ρ(b̂w,W) ≤ ρ(b̂ur,W)−
(
Nk − 2

)2
(c+ 1)Nk

. (22)

■

Theorem 3 shows that the asymptotic risk of the Stein-like shrinkage estimator is smaller than

that of the unrestricted estimator as long as Nk > 2. Besides, the out-performance of the Stein-like

shrinkage estimator over the unrestricted estimator will increase for small break sizes, large number

of individuals or large number of regressors.

3.2 Minimal mean squared error estimator

As an alternative to the shrinkage weight, we consider a weight between zero and one. Therefore,

our second proposed estimator, the minimal mean squared error estimator, is

b̂γ = γb̂r + (1− γ)b̂ur, γ ∈ [0 1] (23)

where b̂ur and b̂r are defined in (10) and (11), respectively. Using the asymptotic distribution of

the estimators in (15) and (16), we derive the asymptotic risk for the minimal mean squared error

4The general result of Theorem 2 with any positive definite weight matrix W is provided in Appendix A.2.
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estimator as

ρ(b̂γ ,W) = ρ(b̂ur,W) + γ2
(
h′Bh+Nk

)
− 2γ Nk. (24)

By minimizing the asymptotic risk with respect to γ in (24), the optimal value of the weight denoted

by γ∗opt is

γ∗opt =
Nk

h′Bh+Nk
, (25)

which by plugging the unbiased estimator of its denominator we have

γ̂∗opt =
Nk

ĥ′Bĥ
=

Nk

T (b̂ur − b̂r)′W(b̂ur − b̂r)
=

Nk

DT
, (26)

where the second equality holds noting that VurR
′
[
RVurR

′
]−1

R(b̂ur − b̂r) = (b̂ur − b̂r). Hence

T (b̂ur − b̂r)
′B(b̂ur − b̂r) = T (b̂ur − b̂r)

′W(b̂ur − b̂r).
5

Remark 2: By comparing γ̂∗opt in (26) and τ∗opt/DT using (21), we see that the difference between

the averaging weights of the Stein-like shrinkage estimator and the minimal mean squared error

estimator is in their numerators. In other words, the optimal weight in (26) also depends on

the distance between the restricted and unrestricted estimators. Basically, the idea behind the

averaging estimator in (23) is similar to the Stein-like shrinkage estimator in (7). That is, when the

difference between the restricted and unrestricted estimator is small, the minimal mean squared

error estimator gives more weight to the restricted estimator, which is efficient under Rb = 0, and

the opposite is true for the large distance between the two estimators. Therefore, the proposed

averaging estimator in (23) is also a Stein-like shrinkage estimator that incorporates the trade-off

between the bias and variance efficiency. □

Given the optimal weight in (26), we derive the asymptotic risk for the minimal mean squared

error estimator. Theorem 4 presents the results.

Theorem 4: Under Assumptions 1-3, and given the optimal value of the weight in (26), for

W = V −1
ur , the asymptotic risk of the minimal mean squared error estimator is

ρ(b̂γ ,W) ≤ ρ(b̂ur,W)− Nk − 4

(c+ 1)
. (27)

5Appendix A.3 obtains the optimal value of the weight, γ̂∗
opt, for any positive definite weight W.
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■

See Appendix A.4 for the proof of this theorem.6 Theorem 4 shows that the asymptotic risk

of the minimal mean squared error estimator is smaller than that of the unrestricted estimator as

long as Nk > 4.

Remark 3: Examining the results of Theorem 3 and Theorem 4, we find that the necessary

condition for the outperformance of the Stein-like shrinkage estimator over the unrestricted estimator

is Nk > 2, while the condition is Nk > 4 for the minimal mean squared error estimator, which is

slightly a stronger condition. Furthermore, the difference between their risks, for W = V −1
ur , is

ρ(b̂w,W)− ρ(b̂γ ,W) =
−4

(c+ 1)Nk
< 0. (28)

Therefore, the Stein-like shrinkage estimator has a smaller asymptotic risk than the minimal mean

squared error estimator. In addition, for small break sizes, we expect to see a better performance

for the Stein-like shrinkage estimator relative to the minimal mean squared error estimator, in the

sense of a smaller asymptotic risk. For a large break size, a large number of regressors, or a large

number of individuals, we expect to see an equal performance between them.7 □

3.3 Forecasting under structural breaks

Generating accurate forecasts in the presence of structural breaks requires careful consideration

of bias-variance trade-off. Our introduced Stein-like shrinkage estimator and the minimal mean

squared error estimator consider the bias-variance trade-off in the estimation of parameters, and

can thus be used to generate forecasts. As the true parameters that enter the forecasting period

6The general result of Theorem 4 with any positive definite weight matrix W is provided in Appendix A.4.
7The difference between the asymptotic risks of the Stein-llike shrinkage estimator and the minimal mean squared

error estimator for any positive definite matrix W is provided in Appendix A.4.
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are the coefficients in the post-break sample, we define a Nk × 2Nk selection matrix G such that

Gb =



0 Ik 0 0 . . . 0

0 0 0 Ik . . . 0

...

0 0 . . . 0 Ik





β1(1)

β1(2)
...

βN(1)

βN(2)


=



β1(2)

β2(2)

β3(2)
...

βN(2)


. (29)

By multiplying G to the Stein-like shrinkage estimator, we have

Gb̂w = wTGb̂ur + (1− wT )Gb̂r, (30)

where Gb̂ur estimates the coefficients only by using the observations after the break point (also

known as the post-break estimator), and Gb̂r is the restricted estimator under the assumption of

no break in the model. The assumption of no break lines up with the fact that, with a small break,

ignoring the break and estimating the coefficients using full-sample observations would result in a

better forecast (lower MSFE), see Boot and Pick (2020).

Define the mean squared forecast error of the Stein-like shrinkage estimator as

MSFE(Gb̂w) = E
(
yT+1 − x∗

′
T+1Gb̂w

)′(
yT+1 − x∗

′
T+1Gb̂w

)
= E

[(
Gb̂w − β(2)

)′
x∗T+1x

∗′
T+1

(
Gb̂w − β(2)

)]
+ E

(
u′T+1uT+1

)
= ρ(Gb̂w, x

∗
T+1x

′∗
T+1) + E

(
u′T+1uT+1

)
,

(31)

where yT+1 = (y1,T+1, . . . , yN,T+1)
′ is an N ×1 vector of dependent variables at time T +1, x∗T+1 =

diag(x1,T+1, . . . , xN,T+1) is an Nk ×N matrix of regressors, β(2) = (β′
1(2), . . . , β

′
N(2))

′, and uT+1 =

(u1,T+1, . . . , uN,T+1)
′. Thus, by choosing W accordingly, we use the asymptotic risk, ρ(Gb̂w,W),

to approximate the first term on the right hand side of the MSFE. This along with E
(
u′T+1uT+1

)
corresponds to the one-step-ahead MSFE. As the second term in (31), E

(
u′T+1uT+1

)
, does not

depend on τ , minimizing the MSFE is equivalent to minimizing the asymptotic risk. Similarly, we

define the MSFE for the minimal mean squared error estimator. Theorem 5 summarizes the results

of MSFE for the estimators.
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Theorem 5: Under Assumptions 1-3, the mean squared forecast errors of the Stein-like shrinkage

estimator is

MSFE(Gb̂w) ≤ MSFE(Gb̂ur)−

[
tr(ϕ)− 2λmax(ϕ)

]2
(c+ 1)tr(ϕ)

, (32)

and the mean squared forecast error of the minimal mean squared errors estimator is

MSFE(Gb̂γ) ≤ MSFE(Gb̂ur)−
tr(ϕ)− 4λmax(ϕ)

(c+ 1)
, (33)

where ϕ ≡ W1/2GVurR
′
[
RVurR

′
]−1

RVurG
′W1/2, and W = x∗T+1x

∗′
T+1. ■

Theorem 5 shows that the MSFE of the Stein-like shrinkage estimator is smaller than that of

the unrestricted estimator when d = tr(ϕ)
max(ϕ) > 2, whereas the similar condition for the minimal

mean squared error estimator is d > 4.

Remark 4: The proposed Stein-like shrinkage estimator can be generalized to account for the

possibility of multiple common breaks. Similar to the single break case, the unrestricted estimator

uses the observations within each regime separately, and the restricted estimator uses the full-

sample of observations. In case of forecasting, the shrinkage estimator is the weighted average of

the restricted estimator and the unrestricted estimator using the observations after the most recent

break point.8 □

4 Monte Carlo simulations

This section employs Monte Carlo simulations to examine the performance of the theoretical results

obtained in the paper. To do this, we consider the following data generating process

yi,t =


x′i,tβi(1) + ui,t for i = 1, . . . , N, t = 1, . . . , T1,

x′i,tβi(2) + ui,t for i = 1, . . . , N, t = T1 + 1, . . . , T,

(34)

8We note that other restricted estimators can be considered using different restriction matrices. For example, in a
two breaks case, a subsample estimate using the second and third subsamples can be combined with the unrestricted
estimator.
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where xi,t ∼ N(0, 1), and we set the first column of that to be a vector of ones in order to allow

for the fixed effect. Let the time series dimension be T = 100, the number of individual units be

N = 5, and k ∈ {1, 3}. We consider different values for true break points, which are proportional

to the sample size, b1 ≡ T1
T ∈ {0.2, 0.8}.9

Let βi(2) be a vector of ones, and δi = βi(1) − βi(2) =
i

N−1 × s shows the true break size in the

coefficients, where s varies from 0 to 1 in increments of 0.1. Moreover, define ξ1(1) ∼ N
(
0, σ2

(1)

)
and ξ1(2) ∼ N

(
0, σ2

(2)

)
, and let q ≡ σ(1)/σ(2) with q ∈ {0.5, 1, 2}. To allow for the cross-sectional

dependence, we consider


ui(1) = 0.5ξ1(1) + vi(1) for i = 1, . . . , N, t = 1, . . . , T1

ui(2) = 0.5ξ1(2) + vi(2) for i = 1, . . . , N, t = T1 + 1, . . . , T,

(35)

where vi(1) ∼ N(0,
√
i σ2

(1)), and vi(2) ∼ N(0,
√
i σ2

(2)). As the break point, break sizes in the

slope coefficients and the error variances are unknown in practice, we estimate them to incorporate

the uncertainty regarding the estimation of these parameters in our analysis. The break point is

estimated using the method proposed by Qu and Perron (2007).

In this study, we compare the performance of the Stein-like shrinkage estimator, the minimal

mean squared error estimator, the unrestricted estimator, and the pre-test estimator. We calculate

the pre-test estimator, denoted by b̂PT, as

b̂PT = b̂r I(DT < cv) + b̂ur I(DT ≥ cv), (36)

where cv is the 5% critical value from the chi-square distribution, and DT is the Wald-type test

statistic in (9). Thus, the pretest estimator selects a restricted estimator when the Wald statistic

is insignificant and selects the unrestricted estimator when the Wald statistic is significant. We

report the relative mean squared error (MSE), and set the unrestricted estimator as the benchmark

estimator so that the relative MSE of the unrestricted estimator is equal to one, i.e., the relative

MSEs are ρ(b̂w,W)

ρ(b̂ur,W)
,

ρ(b̂γ ,W)

ρ(b̂ur,W)

ρ(b̂PT,W)

ρ(b̂ur,W)
, and ρ(b̂ur,W)

ρ(b̂ur,W)
. The relative MSE is a good measure for

evaluating the estimation accuracy of different methods. In addition, it measures how different

methods are compared with each others and what are the gains of methods relative to each other.

9Additional Monte Carlo results with other specifications are available in the Supplementary Online Appendix.
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Figure 1 shows the results over 1000 Monte Carlo replications when N = 5. Since we consider

different break sizes for individuals, we show the proportion of the break size in the coefficients (s)

in the horizontal axis. The vertical axis shows the relative MSE.

4.1 Simulation results

Based on the results of Figure 1, the Stein-like shrinkage estimator has better performance than the

unrestricted estimator, in the sense of having a smaller MSE, for any break sizes and break points.

Figure 1 shows the results with k = 1 and k = 3. Based on Figure 1, for the small to medium

break sizes in the coefficients, the Stein-like shrinkage estimator performs much better than the

unrestricted estimator. In this case, the shrinkage estimator assigns more weight to the restricted

estimator to gain from its efficiency. As the break size in the coefficients increases, the Stein-like

shrinkage estimator performs close to the unrestricted estimator, but still slightly better. This may

be related to the large bias that the restricted estimator adds to the shrinkage estimator under large

break sizes. Therefore, the shrinkage estimator assigns more weight to the unrestricted estimator

and less weight to the restricted estimator. We note that even for the large break sizes, we still

do not observe the under-performance of the Stein-like shrinkage estimator over the unrestricted

estimator. When q = 0.5 the error variance of the pre-break data is less than that of the post-break

data while the opposite holds for q = 2. Looking at Figures 1(a)–1(c), we see the performance

of the Stein-like shrinkage estimator is improving. When q = 0.5 and T1 = 20, Figure 1(a), the

pre-break estimator performs poorly as it only has 20 observations. When we combine it with the

restricted estimator, it cannot benefit significantly, as the post-break observations are more volatile

(q = 0.5). However, for q = 2 and T1 = 20, Figure 1(c), when we combine the pre-break estimator

with the restricted estimator, the estimator performs better, since the post-break observations are

less volatile (q = 2). For T1 = 80 and q = 0.5, Figure 1(d), the post-break estimator performs

poorly since it only has 20 observations. When we combine it with the restricted estimator, it

benefits more compared to the previous case that T1 = 20, because the pre-break observations

are less volatile (q = 0.5). This pattern is observed for k = 3 as well. Besides, as we increase

the number of regressors, the gain obtained from the Stein-like shrinkage estimator increases. In

addition, the Stein-like shrinkage estimator performs better than the minimal mean squared error

estimator for the small-to-medium break sizes in the coefficients. For large break sizes, these two
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estimators perform almost equally.

All simulation results confirm the results of Theorems 3 and 4 that the performance of the Stein-

like shrinkage estimator and the minimal mean squared error estimator are uniformly better than

the unrestricted estimator in the sense of having lower MSE, for any break points, break sizes in the

coefficients, and any q. Generally, for large break sizes, large N or large number of regressors, k, the

shrinkage estimators have equal performance. This confirms our theoretical findings in Remark 3.

The pretest estimator either uses the restricted estimator or the unrestricted estimator depending

on the Wald test results. Generally, the MSE of the pretest estimator is similar to the restricted

estimator for a small break size and is similar to the unrestricted estimator for a large break size,

because these two extreme cases are better caught by the test statistic. For a moderate break size,

however, the pretest estimator performs worse than the unrestricted estimator.

In order to see how the Stein-like shrinkage estimator assigns weights to the restricted and

unrestricted estimators, we plot the estimated weights, ŵT , for the simulation results of Figures

1(a) and 1(g). The estimated weights are shown in Figure 2, in which the horizontal axis shows the

break size in the mean, and the vertical axis shows the estimated Stein-like shrinkage weights. The

results show that for small break sizes, the Stein-like shrinkage estimator mainly assigns a higher

weight to the restricted estimator (estimated weight is small), while as the break size increases it

assigns a larger weight to the unrestricted estimator (estimated weight is large). As the number of

regressors increases, the range of the estimated weight becomes smaller. Similar patterns are seen

under other specifications which are omitted to save space.

5 Empirical analysis

This section provides some empirical analysis for forecasting the growth rate of real output using

a quarterly data set in G7 countries from 1995:Q1 to 2016:Q4.10 The predictors for each country

are the log real equity prices, the real short term interest rate, and the difference between the long

and short-term interest rates. The data are taken from the Global VAR (GVAR) dataset (2016

vintage). The data are available with the GVAR Toolbox, Mohaddes and Raissi (2018).

We evaluate the out-of-sample forecasting performance of the proposed Stein-like shrinkage

10The seven countries are Canada, France, Germany, Italy, Japan, the UK, and the USA.
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(a) T1 = 20, q = 0.5, k = 1 (b) T1 = 20, q = 1, k = 1 (c) T1 = 20, q = 2, k = 1

(d) T1 = 80, q = 0.5, k = 1 (e) T1 = 80, q = 1, k = 1 (f) T1 = 80, q = 2, k = 1

Figure 1: Monte Carlo results for T = 100, N = 5

estimator and the minimal mean squared error estimator with a range of alternative methods

in terms of their MSFEs. The first two alternative methods are the SUR model that estimates

the post-break slope coefficients across the entire cross-section (the unrestricted estimator), and

the pre-test estimator. We also consider some of the existing univariate time-series forecasting

approaches that provide forecasts independently in each cross-section series as alternative methods,

that is, these time-series methods ignore the cross-sectional dependence. These are the method

proposed by Pesaran et al. (2013) (labeled as “PPP” in tables), the five methods used in Pesaran

and Timmermann (2007), namely, “Postbk”, “Troff”, “Pooled”, “WA”, “CV”, the full-sample

forecast that ignores the break and uses the full-sample of observations (“Full”), the average window

forecast proposed by Pesaran and Pick (2011) (“AveW”), the method proposed by Lee et al. (2022a)

(“LPU”), and the forecast using the optimal window size proposed by Inoue et al. (2017) (“IJR”),
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(g) T1 = 20, q = 0.5, k = 3 (h) T1 = 20, q = 1, k = 3 (i) T1 = 20, q = 2, k = 3

(j) T1 = 80, q = 0.5, k = 3 (k) T1 = 80, q = 1, k = 3 (l) T1 = 80, q = 2, k = 3

Figure 1: Monte Carlo results for T = 100, N = 5 (Cont.)

(a) k = 1 (b) k = 3

Figure 2: Boxplot for the estimated Stein-like shrinkage weight
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which is designed for smoothly time varying parameters.

We compute h-step-ahead forecasts (h = 1, 2, 3, 4) for different forecasting methods described

above, using both rolling and expanding windows. The rolling window forecasts is based on the

most recent 10 years (40 quarters) of observations, the same window size used by Stock and Watson

(2003). For the expanding window, we divide the sample of observations into two parts. The first

T observations are used as the initial in-sample estimation period, and the remaining observations

are the pseudo out-of-sample evaluation period. The initial estimation period is from 1995:Q1 to

2004:Q4 (T = 40), which leaves the out-of-sample period from 2005:Q1 to 2016:Q4. In both rolling

and expanding window approaches, we initially estimate the break point using the Qu and Perron

(2007) approach. Then, we generate h-quarters-ahead forecasts.11 Furthermore, we present the

forecasting results using the approach proposed by Clark and McCracken (2010) (labeled as “CM”

in tables), which is the equally weighted average of the rolling and expanding window forecasts.

To evaluate the performance of our proposed estimators, we compute their MSFE and compare

them with those of the alternative estimators. Tables 1–2 present the cross-country averages MSFE

results for different methods across different forecast horizons. In the aggregation of the individual

country MSFEs, we use both GDP with Purchasing Power Parity based weights (GDP-PPP) and

the equal weights. The GDP weighted average uses weights wi = Yi/(
∑s

j=1 Yj), where Yi is the

2008 GDP in purchasing power terms for country i available from the GVAR data set and s = 7

is the number of countries. The equal weights average uses wi = 1/s. The results of cross country

averages with GDP-PPP scheme are presented in Table 1, while the results for the equal weights

are presented in Table 2. In each of these tables, Panels A–C show the MSFE results of different

methods using the rolling window of most recent 40 observations, the expanding window, and the

Clark and McCracken (2010) method, respectively.

Based on the results in Tables 1–2, the forecasts based on the Stein-like shrinkage estimator

and the minimal mean squared error estimator provide improved forecasts over the unrestricted

estimator for different forecast horizons. With the GDP-PPP weighted average scheme, for the

Stein-like shrinkage estimator (and the minimal mean squared error estimator), the improvement

ranges from 2.7 to 11.3 (1.8 to 7.5) percent for the rolling window, from 2 to 16 (1.1 to 7.5) for

11For example, with the expanding window, when the in-sample period is from 1995:Q1-2007:Q7, the estimated
break date is 1999:Q4 which is related to the dot-com bubble, while when the in-sample period includes the 2008 and
beyond, the estimated break date is 2008:Q1 which is related to the financial crisis.
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the expanding window, and from 3.1 to 13.9 (1.7 to 7.6) percent for the CM method. With the

equally weighted average scheme, these improvement range from 5.5 to 12.9 (2.9 to 9.5) percent for

the rolling window, from 4.6 to 17.5 (2.4 to 8.6) for the expanding window, and from 5.1 to 15.3

(2.7 to 9.5) percent for the CM method. The results suggest that improvement using the equally

weighted average scheme are slightly higher than those of the GDP-PPP weighted average scheme.

Besides, the MSFE of the Stein-like shrinkage estimator is less than the minimal mean squared

error estimator. All these results are consistent with our theoretical findings in Theorems 3–4, and

Remark 3.

Furthermore, the MSFEs of the Stein-like shrinkage estimator outperform the other alternative

estimators. To determine whether the Stein-like shrinkage estimator significantly outperforms the

alternative methods, we report the panel version of the Diebold and Mariano (1995) test (DM)

introduced by Pesaran et al. (2009) in Tables 1–2, in which we take each of the alternative methods

as a benchmark (i.e., DMi is the benchmark method in which i represent the alternative methods

such as MMSE, Unres., Pretest, Postbk, PPP, Troff, CV, WA, Pooled, Full, AveW, and IJR,

respectively). In Tables 1–2, an asterisk represents statistically significance evidence in favor of the

Stein-like shrinkage estimator according to the panel Diebold–Mariano test statistic. The 1%, 5%,

and 10% significance levels are denoted by ∗∗∗, ∗∗ and ∗, respectively. The results show that the

Stein-like shrinkage estimator significantly outperforms all benchmark models in the majority of

cases at the 1%, 5%, and 10% levels, for various forecast horizons, h = 1, 2, 3, 4. Overall, the results

show the advantages of using the SUR model in forecasting relative to a univariate time-series

model in terms of providing lower MSFE. As discussed in Bai et al. (1998), and Qu and Perron

(2007), the break-point problem is one in which there are substantial payoffs for using multivariate

rather than univariate techniques. The accuracy of break point estimation can be significantly

improved by adding series that have common breaks, and the precision of the estimates increases

with the number of equations in the system. The more accurate the break point is estimated, the

better estimate of slope coefficients is obtained, which ultimately helps to have a better forecasts.

Besides, the SUR model uses the cross-sectional information rather than ignoring them which helps

to have a better estimate and hence forecast.
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Table 1: Empirical results for forecasting output growth

h Stein MMSE Unres. Pretest Postbk LPU PPP Troff CV WA Pooled Full AveW IJR

Panel A: Rolling, GDP weighted average

1 0.590 0.615∗∗ 0.665∗∗∗ 0.655∗∗ 0.691∗∗∗ 0.646∗∗ 0.690∗∗∗ 0.709∗∗∗ 0.667∗ 0.649∗ 0.652∗ 0.654∗ 0.663∗ 0.653∗∗

2 1.974 1.993∗∗ 2.029∗∗ 2.065∗ 2.597∗∗∗ 2.302∗∗∗ 2.561∗∗∗ 2.687∗∗∗ 2.668∗∗∗ 2.295∗∗ 2.347∗∗ 2.348∗ 2.323∗∗ 2.328∗∗

3 3.919 4.044∗∗ 4.244∗∗∗ 4.215∗∗∗ 5.162∗∗∗ 4.534∗∗ 5.154∗∗∗ 5.258∗∗∗ 5.236∗∗ 4.596∗∗ 4.749∗∗ 4.544∗ 4.675∗ 4.750∗∗

4 6.173 6.293 6.441∗∗ 6.416∗∗ 8.800∗∗∗ 7.745∗∗∗ 8.771∗∗∗ 8.551∗∗∗ 8.655∗∗∗ 7.585∗∗ 7.752∗∗ 7.926∗∗ 7.302∗∗∗ 7.283∗∗∗

Panel B: Expanding, GDP weighted average

1 0.615 0.657∗∗∗ 0.732∗∗∗ 0.733∗∗∗ 0.767∗∗∗ 0.636∗ 0.754∗∗∗ 0.787∗∗∗ 0.637∗ 0.622∗ 0.626∗ 0.653∗ 0.656∗ –

2 2.063 2.114∗∗ 2.175∗∗ 2.175∗∗ 2.610∗∗∗ 2.139∗∗ 2.590∗∗∗ 2.680∗∗∗ 2.293∗∗ 2.150∗ 2.169∗ 2.229∗ 2.362∗ –

3 3.981 4.111∗∗ 4.254∗∗ 4.254∗∗ 5.147∗∗∗ 4.348∗ 5.137∗∗∗ 5.385∗∗ 4.728∗∗ 4.390∗∗ 4.410∗∗ 4.382∗ 4.775∗ –

4 6.061 6.113 6.184∗∗ 6.184∗∗ 8.469∗∗∗ 7.380∗∗∗ 8.438∗∗∗ 8.383∗∗∗ 7.963∗∗ 7.245∗ 7.173∗ 7.621∗∗ 7.541∗∗ –

Panel C: CM, GDP weighted average

1 0.602 0.636∗∗∗ 0.699∗∗∗ 0.694∗∗∗ 0.729∗∗∗ 0.641∗∗ 0.722∗∗∗ 0.748∗∗∗ 0.652∗∗ 0.635∗ 0.639∗∗ 0.653∗ 0.659∗ –

2 2.018 2.053∗∗ 2.102∗ 2.120∗∗ 2.603∗∗∗ 2.220∗∗ 2.575∗∗∗ 2.684∗∗∗ 2.480∗∗ 2.223∗∗ 2.258∗ 2.289∗∗ 2.343∗∗ –

3 3.954 4.077∗∗ 4.249∗∗ 4.235∗∗ 5.154∗∗∗ 4.441∗∗ 5.146∗∗∗ 5.321∗∗ 4.982∗ 4.493∗∗ 4.576∗∗ 4.463∗ 4.725∗ –

4 6.117 6.203 6.312∗∗ 6.300∗∗ 8.635∗∗∗ 7.562∗∗∗ 8.605∗∗∗ 8.467∗∗ 8.309∗∗ 7.415∗∗ 7.462∗∗ 7.774∗∗ 7.421∗∗ –

Note: This table presents the 1000 × MSFE for different estimators. h in the first column shows the forecast horizon. Panels
A-C report the results based on the GDP weighted average with rolling window of most recent 40 observations, the expanding
window with the initial in-sample estimation period of 10 years, and the Clark and McCracken (2010) method (CM), respectively.
The GDP weighted average uses weights wi = Yi/(

∑s
j=1 Yj), where Yi is the 2008 GDP in purchasing power terms for country i

available from the GVAR data base and s = 7 is the number of countries. In the heading of the table, Stein shows the MSFE for
the proposed Stein-like shrinkage estimator, MMSE is for the proposed minimal mean squared error estimator, Unres. is for the
unrestricted estimator, Pretest is for the pre-test estimator, LPU is the one proposed by Lee et al. (2022a), PPP is the one proposed
by Pesaran et al. (2013), Postbk, Troff, CV, WA, and Pooled are the five methods used in Pesaran and Timmermann (2007),
Full uses the full-sample of observations by ignoring the break, AveW is the method proposed by Pesaran and Pick (2011) with
wmin = 0.1 and twenty windows, and IJR is the optimal window method proposed by Inoue et al. (2017) with R = max(1.5T 2/3, 20)
and R = min(4T 2/3, T − h). This table also shows the panel Diebold and Mariano (DM) test statistic for the Stein-like shrinkage
forecast relative to each of the alternative methods as the benchmark. An asterisk represents statistically significance evidence in
favor of the Stein-like shrinkage estimator according to the panel Diebold–Mariano test statistic. The 1%, 5%, and 10% significance
levels are denoted by ∗∗∗, ∗∗ and ∗, respectively.
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Table 2: Empirical results for forecasting output growth

h Stein MMSE Unres. Pretest Postbk LPU PPP Troff CV WA Pooled Full AveW IJR

Panel A: Rolling, Equally weighted average

1 0.590 0.613∗∗ 0.677∗∗ 0.673∗∗ 0.690∗∗ 0.632∗∗ 0.691∗∗ 0.694∗∗ 0.673∗ 0.636∗ 0.642∗∗ 0.633 0.654∗ 0.650∗∗

2 1.941 1.961 2.063∗ 2.111∗ 2.661∗∗∗ 2.257∗∗∗ 2.628∗∗∗ 2.691∗∗∗ 2.635∗∗ 2.241∗∗ 2.313∗∗∗ 2.258∗∗ 2.453∗∗ 2.308∗∗∗

3 4.074 4.228∗∗ 4.478∗∗ 4.461∗∗ 5.413∗∗ 4.436∗∗ 5.371∗∗ 5.412∗∗ 5.376∗ 4.449∗ 4.643∗∗ 4.509∗ 5.145∗ 4.989∗

4 6.223 6.394∗∗ 6.587∗∗ 6.555∗∗ 8.843∗∗∗ 7.287∗∗∗ 8.762∗∗∗ 8.524∗∗∗ 8.589∗∗∗ 7.125∗∗∗ 7.341∗∗∗ 7.383∗∗ 7.748∗ 7.590∗∗

Panel B: Expanding, Equally weighted average

1 0.593 0.637∗∗∗ 0.719∗∗ 0.725∗∗ 0.745∗∗∗ 0.608∗ 0.742∗∗∗ 0.757∗∗∗ 0.601 0.598 0.597 0.666∗∗ 0.646∗ –

2 2.060 2.125∗∗ 2.222∗∗ 2.222∗∗ 2.740∗∗∗ 2.073∗∗ 2.719∗∗∗ 2.711∗∗ 2.254∗∗ 2.082∗ 2.087∗ 2.127∗ 2.471∗∗ –

3 4.097 4.277∗∗ 4.490∗∗ 4.490∗∗ 5.451∗∗ 4.119∗ 5.438∗∗ 5.467∗∗ 4.810∗∗ 4.138∗ 4.205∗ 4.295∗ 5.091∗∗ –

4 6.072 6.217∗ 6.368∗ 6.368∗ 8.583∗∗∗ 7.298∗∗∗ 8.548∗∗∗ 8.380∗∗∗ 7.895∗∗ 6.603∗ 6.606∗ 7.004∗ 7.732∗∗ –

Panel C: CM, Equally weighted average

1 0.591 0.625∗∗ 0.698∗∗ 0.699∗∗ 0.717∗∗∗ 0.620∗∗ 0.716∗∗∗ 0.726∗∗∗ 0.641∗∗ 0.617∗ 0.612∗ 0.649∗ 0.650∗ –

2 2.005 2.047∗ 2.143∗ 2.166∗∗ 2.705∗∗∗ 2.165∗∗ 2.673∗∗∗ 2.701∗∗∗ 2.445∗∗ 2.161∗ 2.200∗∗ 2.192∗ 2.462∗∗ –

3 4.085 4.252∗∗ 4.484∗∗ 4.475∗∗ 5.432∗∗ 4.277∗ 5.409∗∗ 5.439∗∗ 5.118∗ 4.293∗ 4.424∗ 4.402∗ 5.118∗ –

4 6.147 6.306∗ 6.478∗ 6.462∗ 8.713∗∗∗ 7.292∗∗∗ 8.655∗∗∗ 8.452∗∗∗ 8.242∗∗ 6.864∗∗ 6.974∗∗ 7.194∗∗ 7.740∗∗ –

Note: See the notes to Table 1. The equal weights average uses wi = 1/s with s = 7.
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6 Conclusion

In this paper, we introduce two estimators for estimating the slope coefficients of seemingly unrelated

regression models with cross-sectional dependence under structural breaks, which are then used for

forecasting. The proposed Stein-like shrinkage estimator and the minimal mean squared error

estimator are the weighted averages of the unrestricted estimator (i.e., using observations within

each regime separately) and the restricted estimator. The averaging weight is proportional to the

difference between the restricted and unrestricted estimators. Thus, for a large break size, a lower

weight is assigned to the restricted estimator (which is biased) and more weight is assigned to the

unrestricted estimator. The opposite is true for a small break size. We establish the asymptotic

distribution and asymptotic risk for the proposed estimators and find the conditions under which

they uniformly outperform the unrestricted estimator for any break size and break point. We also

analytically and numerically compare the performance of the two proposed estimators. The results

show that the Stein-like shrinkage estimator performs better than the minimal mean squared error

estimator due to its smaller asymptotic risk. This out-performance is more clear under small break

sizes. Monte Carlo simulations and the empirical application of forecasting output growth rates of

G7 countries show the significant superiority of using the Stein-like shrinkage estimator over the

alternative estimators.
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A Appendix: Mathematical details

Lemma 1: Suppose C and D are two matrices, where Cn×n and Dn×m, then

D′CD ≤ (D′D)λmax(C)

in which λmax(C) is the maximum eigenvalue of C. See Bernstein (2005), page 271 for the proof.

□

A.1 Proof of Theorem 1

Define ỹt =
(
y1,t, . . . , yN,t

)′
, x̃t = diag

(
x′1,t, . . . , x

′
N,t

)
and ũt =

(
u1,t, . . . , uN,t

)′
. By stacking the

model over individuals, i = 1, . . . , N , for each time, we have

ỹt = x̃tβ(t) + ũt, for t = 1, . . . , T, (A.1)

where

β(t) ≡


β(1) for t = 1, . . . , T1,

β(2) for t = T1 + 1, . . . , T,

(A.2)

in which β(1) =
(
β′
1(1), . . . , β

′
N(1)

)′
and β(2) =

(
β′
1(2), . . . , β

′
N(2)

)′
are Nk × 1 vectors of the slope

coefficients. Define 2Nk ×Nk selection matrices

G1 =



Ik 0 0 0 . . . 0

0 0 0 0 . . . 0

0 Ik 0 0 . . . 0

...

0 0 0 0 . . . 0


, (A.3)
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and

G2 =



0 0 0 0 . . . 0

Ik 0 0 0 . . . 0

0 0 0 0 . . . 0

...

0 0 0 0 . . . Ik


, (A.4)

such that b = G1β(1) +G2β(2).

Rewrite Ω in (6) as Ω = Σ(1) ⊗ J(1) +Σ(2) ⊗ J(2), where

Σ(1) =


σ11(1) . . . σ1N(1)

...
...

...

σN1(1) . . . σNN(1)

 , (A.5)

Σ(2) =


σ11(2) . . . σ1N(2)

...
...

...

σN1(2) . . . σNN(2)

 , (A.6)

are N ×N matrices, J(1) =

 IT1 0T1×T−T1

0T−T1×T1 0T−T1×T−T1

, and J(2) =

 0T1×T1 0T1×T−T1

0T−T1×T1 IT−T1

.
In the rest of the proof, we show the asymptotic normality of the feasible unrestricted estimator,

b̂ur = G1β̂
fgls
(1) +G2β̂

fgls
(2) . Initially, we derive the asymptotic distribution of the infeasible pre-break

and post-break estimators, denoted by β̂gls
(1) and β̂gls

(2) , respectively.

√
T
(
β̂gls
(1) − β(1)

)
=

1√
b1

( T1∑
t=1

x̃′tΣ
−1
(1)x̃t

T1

)−1( T1∑
t=1

x̃′tΣ
−1
(1)ũt√
T1

)

=
1√
b1
Q−1

1

( T1∑
t=1

x̃′tΣ
−1
(1)ũt√
T1

)
+

1√
b1

(( T1∑
t=1

x̃′tΣ
−1
(1)x̃t

T1

)−1
−Q−1

1

)( T1∑
t=1

x̃′tΣ
−1
(1)ũt√
T1

)

=
1√
b1
Q−1

1

( T1∑
t=1

x̃′tΣ
−1
(1)ũt√
T1

)
+ op(1),

(A.7)

where the last equality holds because
∑T1

t=1

x̃′
tΣ

−1
(1)

x̃t

T1

p−→ E
(
x̃′tΣ

−1
(1)x̃t

)
≡ Q1 which is implied by
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Assumptions 1 and 3. Also, we note that

var
( T1∑

t=1

x̃′tΣ
−1
(1)ũt√
T1

)
=

(
1/T1

)
E
( T1∑

t=1

x̃′tΣ
−1
(1)x̃t

)
= Q1 = O(1) < ∞, (A.8)

which implies that
∑T1

t=1

x̃′
tΣ

−1
(1)

ũt
√
T1

= Op(1). Therefore, by central limit theorem,

√
T
(
β̂gls
(1) − β(1)

) d−→ N
(
0, Q−1

1 /b1
)
. (A.9)

Similarly, the asymptotic distribution of the infeasible post-break estimator is

√
T
(
β̂gls
(2) − β(2)

)
=

1√
1− b1

( T∑
t=T1+1

x̃′tΣ
−1
(2)x̃t

T − T1

)−1( T∑
t=T1+1

x̃′tΣ
−1
(2)ũt√

T − T1

)
d−→ N

(
0, Q−1

2 /(1− b1)
)
,

(A.10)

where
∑T

t=T1+1

x̃′
tΣ

−1
(2)

x̃t

T−T1

p−→ E
(
x̃′tΣ

−1
(2)x̃t

)
≡ Q2.

Now, we provide the asymptotic distribution of the feasible pre-break estimator, β̂fgls
(1) .

√
T
(
β̂fgls
(1) − β(1)

)
=

1√
b1

( T1∑
t=1

x̃′tΣ̂
−1
(1)x̃t

T1

)−1( T1∑
t=1

x̃′tΣ̂
−1
(1)ũt√
T1

)
=

√
T
(
β̂gls
(1) − β(1)

)
+

1√
b1

[
Π1 +Π2 +Π3

]
,

(A.11)

where

Π1 ≡
[( T1∑

t=1

x̃′tΣ̂
−1
(1)x̃t

T1

)−1
−
( T1∑

t=1

x̃′tΣ
−1
(1)x̃t

T1

)−1][( T1∑
t=1

x̃′tΣ̂
−1
(1)ũt√
T1

)
−
( T1∑

t=1

x̃′tΣ
−1
(1)ũt√
T1

)]
, (A.12)

Π2 ≡
( T1∑

t=1

x̃′tΣ
−1
(1)x̃t

T1

)−1[( T1∑
t=1

x̃′tΣ̂
−1
(1)ũt√
T1

)
−
( T1∑

t=1

x̃′tΣ
−1
(1)ũt√
T1

)]
, (A.13)

and

Π3 ≡
[( T1∑

t=1

x̃′tΣ̂
−1
(1)x̃t

T1

)−1
−
( T1∑

t=1

x̃′tΣ
−1
(1)x̃t

T1

)−1]( T1∑
t=1

x̃′tΣ
−1
(1)ũt√
T1

)
. (A.14)
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We note that ̂̃ut = ỹt − ũtβ̂
ols
(1)

= ũt − x̃t
(
β̂ols
(1) − β(1)

)
= ũt + op(1),

(A.15)

where β̂ols
(1) =

(
β̂ols

′

1(1), . . . , β̂
ols

′

N(1)

)′
. Therefore, Σ̂(1) = 1

T1

∑T1
1

̂̃ut̂̃u′t = Σ(1) + op(1). It follows that(∑T1
t=1

x̃′
tΣ̂

−1
(1)

x̃t

T1

)
−

(∑T1
t=1

x̃′
tΣ

−1
(1)

x̃t

T1

)
= op(1),

(∑T1
t=1

x̃′
tΣ̂

−1
(1)

x̃t

T1

)−1
−

(∑T1
t=1

x̃′
tΣ

−1
(1)

x̃t

T1

)−1
= op(1), and(∑T1

t=1

x̃′
tΣ̂

−1
(1)

ũt
√
T1

)
−

(∑T1
t=1

x̃′
tΣ

−1
(1)

ũt
√
T1

)
= op(1). Thus, Π1 = op(1),Π2 = op(1) and Π3 = op(1). As a

result, using central limit theorem, the asymptotic distribution of the feasible pre-break estimator

in (A.11) is
√
T
(
β̂fgls
(1) − β(1)

)
=

√
T
(
β̂gls
(1) − β(1)

)
+ op(1),

d−→ N
(
0, Q−1

1 /
√
b1

)
.

(A.16)

Similarly, the asymptotic distribution of the feasible post-break estimator is

√
T
(
β̂fgls
(2) − β(2)

) d−→ N
(
0, Q−1

2 /(1− b1)
)
. (A.17)

Therefore, it immediately follows that

√
T
(
b̂ur − b

) d−→ Z ∼ N
(
0, Vur

)
, (A.18)

where Vur =
(
E
(
X′Ω−1X

T

))−1
.

Furthermore, the asymptotic distribution of the restricted estimator is

√
T
(
b̂r − b

)
=

√
T
(
b̂ur − b

)
−
(
X ′Ω̂−1X

)−1
R′

[
R

(
X ′Ω̂−1X

)−1
R′

]−1√
T
(
Rb̂ur − r −Rb+Rb

)
d−→ Z − VurR

′
[
RVurR

′
]−1

R(Z + h),

(A.19)

where Rb = r + Rh/
√
T . Thus, the difference between the restricted and unrestricted estimators

is
√
T
(
b̂ur − b̂r

) d−→ VurR
′
[
RVurR

′
]−1

R(Z + h). (A.20)

Using (A.20), distribution of DT in (17) is straightforward. Also, using (A.18) and (A.20), the
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asymptotic distribution of the Stein-like shrinkage estimator is

√
T
(
b̂w − b

)
=

√
T
(
b̂ur − b

)
− wT

√
T
(
b̂ur − b̂r

)
d−→ Z − w(Z)VurR

′
[
RVurR

′
]−1

R(Z + h).

(A.21)

This completes the proof of Theorem 1. ■

A.2 Proof of Theorem 2

By having the results of Theorem 1, we follow along the lines of Hansen (2016) to prove Theorem 2.

We derive the asymptotic risk of the Stein-like shrinkage estimator for any positive definite weight

matrix W. Ultimately, we set W = V −1
ur which gives the results presented in Theorem 2. The

asymptotic risk of the Stein-like shrinkage estimator can be calculated as

ρ(b̂w,W) = T E
[(
b̂w − b

)′W (
b̂w − b

)]
= T E

[(
b̂ur − b

)
− wT

(
b̂ur − b̂r

)]′
W

[(
b̂ur − b

)
− wT

(
b̂ur − b̂r

)]
= ρ(b̂ur,W) + τ2 E

[ 1

(Z + h)′B(Z + h)

]
− 2τ E

[(Z + h)′R′(RVurR
′)−1

RVur WZ

(Z + h)′B(Z + h)

]
= ρ(b̂ur,W) + τ2 E

[ 1

(Z + h)′B(Z + h)

]
− 2τ E

[
η(Z + h)′R′(RVurR

′)−1
RVur WZ

]
,

(A.22)

where η(x) =
(

1
x′Bx

)
x. Using the Stein’s lemma (see lemma 2 in the appendix of Hansen (2016)),

we simplify the last term in (A.22) as

E
[
η(Z + h)′R′(RVurR

′)−1
RVur WZ

]
= E tr

[ ∂

∂(Z + h)
η(Z + h)′R′(RVurR

′)−1
RVur WVur

]
= E tr

[
R′(RVurR

′)−1
RVur WVur

(Z + h)′B(Z + h)

]

− 2E tr

[
B(Z + h)(Z + h)′R′(RVurR

′)−1
RVur WVur(

(Z + h)′B(Z + h)
)2

]

= E tr

[
W1/2 VurR

′(RVurR
′)−1

RVur W1/2

(Z + h)′B(Z + h)

]

− 2E tr

[
(Z + h)′R′(RVurR

′)−1
RVur WVurB (Z + h)(

(Z + h)′B(Z + h)
)2

]
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= E

[
tr(A)

(Z + h)′B(Z + h)

]
− 2E tr

[
(Z + h)′B′

1AB1 (Z + h)(
(Z + h)′B(Z + h)

)2

]

≥ E

[
tr(A)

(Z + h)′B(Z + h)

]
− 2E

[
λmax(A)

(Z + h)′B(Z + h)

]
,

(A.23)

where A ≡ W1/2 VurR
′
[
RVurR

′
]−1

RVur W1/2, B ≡ R′
[
RVurR

′
]−1

RVur WVurR
′
[
R VurR

′
]−1

R,

B1 ≡ W1/2 VurR
′(RVurR

′)−1
R, R′(RVurR

′)−1
RVur WVurB = B′

1AB1, and B′
1B1 = B. Note that

∂
∂xη(x)

′ = ( 1
x′Bx)I −

2
(x′Bx)2

Bxx′. Also, we use Lemma 1 to get the last inequality. Plugging (A.23)

into (A.22) produces

ρ(b̂w,W) < ρ(b̂ur,W) + τ2 E
[ 1

(Z + h)′B(Z + h)

]
− 2τ

[ tr(A)− 2λmax(A)

(Z + h)′B(Z + h)

]
= ρ(b̂ur,W)− τ E

[2(tr(A)− 2λmax(A)
)
− τ

(Z + h)′B(Z + h)

]
< ρ(b̂ur,W)− τ

[2(tr(A)− 2λmax(A)
)
− τ

E(Z + h)′B(Z + h)

]
= ρ(b̂ur,W)− τ

[2(tr(A)− 2λmax(A)
)
− τ

(c+ 1)tr(A)

]
,

(A.24)

where the last inequality is based on the Jensen’s inequality. Notice that

E(Z + h)′B(Z + h) = h′Bh+ E(Z ′BZ)

= h′Bh+ tr
(
B E(ZZ ′)

)
= h′Bh+ tr(BVur)

= h′Bh+ tr(A)

≤ (c+ 1)tr(A), (A.25)

in which for any 0 < c < ∞, we define a ball such that H(c) = {h : h′Bh ≤ tr(A) c}. When

W = V −1
ur , tr(A) = Nk. This completes the proof of Theorem 2. ■
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A.3 Proof of Eq. (26)

Here, we obtain the optimal weight, γ̂∗opt, for the minimal mean squared error estimator for any

positive definite weight matrix W. Using the asymptotic distribution of the estimators in (15) and

(16), the asymptotic risk for the minimal mean squared error estimator is

ρ(b̂γ ,W) = ρ(b̂ur,W) + γ2 E
[
(Z + h)′R′(RVurR

′)−1
RVur WVurR

′(RVurR
′)−1

R(Z + h)
]

− 2γ E
[
(Z + h)′R′(RVurR

′)−1
RVur WZ

]
= ρ(b̂ur,W) + γ2h′Bh+ γ2 trE

(
ZZ ′B

)
− 2γ trE

(
ZZ ′R′(RVurR

′)−1
RVur W

)
= ρ(b̂ur,W) + γ2

(
h′Bh+ tr(A)

)
− 2γ tr(A),

(A.26)

where tr(VurB) = tr(A). By minimizing the asymptotic risk with respect to γ in (A.26), the optimal

value of the weight denoted by γ∗opt is

γ∗opt =
tr(A)

h′Bh+ tr(A)
. (A.27)

To find an unbiased estimator for the denominator of the weight in (A.27), we note that

E(ĥ′Bĥ) = T E
[
(b̂ur − b̂r)

′B(b̂ur − b̂r)
]

= h′Bh+ tr(A),

(A.28)

where the unbiased estimator for h′Bh is E(ĥ′Bĥ)− tr(A). By plugging this into the denominator

of (A.27) we have

γ̂∗opt =
tr(A)

ĥ′Bĥ
=

tr(A)

T (b̂ur − b̂r)′W(b̂ur − b̂r)
=

tr(A)

DT
, (A.29)

where the second equality holds noting that VurR
′
[
RVurR

′
]−1

R(b̂ur − b̂r) = b̂ur − b̂r. ■

A.4 Proof of Theorem 4

The asymptotic risk of the minimal mean squared error estimator after plugging the optimal value

of the weight in (A.29) is

ρ(b̂γ ,W) = ρ(b̂ur,W) +
(
tr(A)

)2 E [ 1

(Z + h)′B(Z + h)

]
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− 2 tr(A)E
[
η(Z + h)′R′(RVurR

′)−1
R
(
X ′Ω−1X

)−1WZ
]

≤ ρ(b̂ur,W) +
(
tr(A)

)2 E [ 1

(Z + h)′B(Z + h)

]
− 2 tr(A)

[
tr(A)− 2λmax(A)

]
E
[ 1

(Z + h)′B(Z + h)

]
≤ ρ(b̂ur,W)− tr(A)− 4λmax(A)

(c+ 1)
, (A.30)

where in the last two inequalities we use (A.23) and the Jensen’s inequality, respectively. Plugging

W = V −1
ur completes the proof of Theorem 4.

Furthermore, the difference between the asymptotic risk of the Stein-like shrinkage estimator

and that of the minimal mean squared error estimator for any positive definite matrix W is

ρ(b̂w,W)− ρ(b̂γ ,W) =
−4 λmax(A)

(c+ 1) d
< 0, (A.31)

where d ≡ tr(A)/λmax(A). Therefore, the Stein-like shrinkage estimator has a smaller asymptotic

risk than the minimal mean squared error estimator. ■
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