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Abstract

We unify and generalize the equilibrium theory of foundational models of complementarities used widely
in economics and other disciplines. Widely used results for existence of extremal equilibrium, nonempty
complete lattice structure of the equilibrium set, and monotone comparative statics (MCS) of extremal
equilibria are unified and generalized, subsuming the results for standard and neostandard models as
special cases and allowing for new situations. Structure theorems due to Tarski (1955) and Zhou (1994)
are generalized without using the strong set order or subcompleteness. Defining new set orders, we
formulate new theories for structural comparisons of equilibrium sets, and prove new theorems for MCS
of the infimum equilibrium set, the supremum equilibrium set, and the full equilibrium set. Order
comparability of equilibrium sets provides a new theory of order approximation of equilibria as well.
Our off-the-shelf theorems apply regardless of the manner in which individual choices are made as long
as they satisfy our weak conditions, which are proved to hold in standard and neostandard models.
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1 Introduction

Complementarities arise in many areas of socioeconomic interaction in economics and other

disciplines. For example, complementarities arise in microeconomics (consumer theory, pro-

ducer theory), macroeconomics (coordination failures, bank runs, macro policy), econometrics

(peer effects, neighborhood effects), game theory (games with strategic complements, monotone

equilibrium selections, Bayesian coordination games), equilibrium theory (existence, stability,
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comparative statics), industrial organization (competitive strategy, mergers, antitrust policy),

education (peer effects, conventions), global games (contagion effects), political science (regime

change), sociology (riots), urban and regional economics (agglomeration effects), networks (co-

ordination, technology adoption, peer effects), computer science (algorithm design, auction

implementation), development (growth traps, micro lending), market design, marketing, fi-

nance, banking, and more.

Theoretical foundations for socioeconomic situations with complementarities have been

proposed in a series of lattice-based models, including Topkis (1978), Topkis (1979), Mil-

grom and Roberts (1990), Shannon (1990), Vives (1990), Milgrom and Shannon (1994), Zhou

(1994), and others. Collectively, we term these standard models with complementarities. A

series of newer models are proposed in Quah and Strulovici (2009), Prokopovych and Yannelis

(2017), Che, Kim, and Kojima (2021), and others. We term these neostandard models with

complementarities. Each model has some specialized features but they share the following

common structural characteristics. Decentralized optimal behavior manifests in some form of

an increasing correspondence for each individual. Systemic responses are expressed as a joint

or aggregate of individual correspondences. Equilibrium predictions are formulated as fixed

points of the joint correspondence. Parameters formalize the effect of environmental variables

on individual, systemic, and equilibrium outcomes.

We isolate the common structural foundations of these models and study their equilibrium

properties in a unified and general manner, as follows. Consider a finitely indexed collection

(Xi,⪯i, Fi)
I
i=1, where for each individual i, (Xi,⪯i) is a nonempty, complete lattice of possible

actions or choices for individual i and Fi : Xi ×X−i → R is the payoff to i from choosing xi

when others choose x−i. For each x−i, let Φi(x−i) = argmaxξ∈Xi
Fi(ξ, x−i). Let Φ : X ⇒ X

be given by Φ(x) = ×I
i=1Φi(x−i). Equilibrium of the collective system is given by the set

of fixed points of Φ, denoted E(Φ). We define the associated lattice model for this system

as (X,⪯,Φ), where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the joint best

response correspondence, as above. Parameters are included in a natural manner as a poset

(T,⪯T ) with appropriately generalized parametric joint behavior modeled as a correspondence

Φ : X × T ⇒ X, parametric equilibrium E(Φt) defined as the fixed point set of the t-section of

Φ, and the equilibrium correspondence given by E : T ⇒ X, t 7→ E(Φt).
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As a first contribution, we show that the patterns of decentralized interdependent behavior

in all the different standard and neostandard models are unified in terms of the same isotone

properties on the joint correspondence Φ. This means that the theory of equilibrium in all the

standard and neostandard models is unified by studying the equilibrium set of the associated

lattice model in which Φ has these properties. Moreover, our framework allows for situations

that cannot be subsumed in any of the standard models.

As a second contribution, we show that the main equilibrium benefits of different models

with complementarities, such as existence of extremal equilibria and monotone comparative

statics (MCS) of extremal equilibria hold in the general model using only isotone infimum and

isotone supremum selections from Φ. Intuitively, a general model (X,⪯X ,Φ) or a parametric

general model ((X,⪯X), (T,⪯T ),Φ) derived from decentralized individual behavior has an

isotone infimum selection when the set of maximizers of each individual has a smallest element

that is isotone in parameters, and similarly for isotone supremum selection. This is true in all

the standard and neostandard models in a natural manner, thereby including their equilibrium

properties as special cases of the results for the general model. Moreover, our conditions are

strictly weaker allowing for cases that cannot be subsumed in the standard models. No other

conditions are imposed on Φ. It is not assumed to have any continuity properties, it is not

assumed to be isotone in the strong set order, and the images Φ(x) are not assumed to be

complete lattices (or even lattices).

As a third contribution, we provide weaker conditions on correspondences under which the

equilibrium set is a nonempty, complete lattice, generalizing the well-known structure theorems

of Zhou (1994), Vives (1990), and Tarski (1955). We provide two sets of conditions in isotone

models: One based on isotone infimum selection on upper intervals and another based on

isotone supremum selection on lower intervals (these are defined in the next section).

We prove that both conditions hold in all the standard and neostandard models, and

both are strictly weaker, allowing for cases not included in those models. This is important

because widely used results in the literature imply that the set of maximizers in a general

model is a complete sublattice, but this does not necessarily imply that it is subcomplete,

which is a stricter condition. Subcompleteness is a requirement in Zhou (1994) to prove that
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the equilibrium set is a complete lattice. This leaves a gap in the general theory between

individual behavior and structure of the systemic equilibrium set. Our results plug this gap.

Our conditions don’t use the strong set order and are strictly more general. (For nonempty

subsets A,B of lattice X, A is lower than B in the strong set order, denoted A ⊑s B, if

∀x ∈ A, ∀y ∈ B, x ∧ y ∈ A and x ∨ y ∈ B.) This is important because additional classes of

situations are being identified where the strong set order may not necessarily hold (for example,

Che, Kim, and Kojima (2021) and Prokopovych and Yannelis (2017)). Moreover, even though

widely used results in the literature imply that the set of maximizers is isotone in the strong

set order, this does not necessarily imply that the equilibrium set is isotone in the strong set

order. Indeed, this may not hold even in canonical situations, as shown below. Our results

include these situations in a natural manner and provide a unified and more general solution.

Our conditions don’t use subcompleteness and are strictly more general. Both subcom-

pleteness and isotone in strong set order are requirements in Zhou’s theorem. Moreover, our

conditions don’t use the uniform set order as in Vives (1990). (For nonempty subsets A,B

of poset (X,⪯), A is lower than B in the uniform set order, denoted A ⊑u B, if ∀x ∈ A,

∀y ∈ B, x ⪯ y.) Our results subsume these situations in a natural manner and provide a

unified solution.

A long-standing problem in the theory of complementarities is lack of structural compara-

bility of the equilibrium set at a lower parameter value with one at a higher parameter value.

Comparability of the equilibrium set in the uniform set order or the strong set order does not

obtain even in standard examples, as shown below. MCS of extremal equilibria implies that

the equilibrium set is isotone in the weak set order. (For nonempty subsets A,B of poset

(X,⪯), A is lower than B in the weak set order, denoted A ⊑w B, if ∀x ∈ A, ∃y ∈ B, x ⪯ y,

and ∀y ∈ B, ∃x ∈ A, x ⪯ y.) This does not necessarily provide tight bounds for an equilibrium

(or subset of equilibria) at a lower parameter value using equilibria at the higher parameter

value, or vice versa.

As a fourth contribution, we formulate two new relations to compare nonempty subsets of

a partially ordered set: Star complete set order and star lattice set order. These relations help

solve the problem of structural comparability of equilibrium sets. They use a natural process
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for order bounding one set using elements of a different set, as follows. For nonempty subsets E

and A of poset X, supAE is defined to be an element of A that is an upper bound of E and is

the smallest upper bound of E among elements of A. Similarly, infAE is an element of A that

is a lower bound of E and is the largest lower bound of E among elements of A. When these

exist, infAE and supAE provide natural and tight order bounds of E from the set A. We say

that A is lower than B in the star complete set order, denoted A ⊑∗c B, if for every nonempty

E ⊆ A, supB E exists (in B), and for every nonempty E ⊆ B, infAE exists (in A). We say

that A is lower than B in the star lattice set order, denoted A ⊑∗ℓ B, if ∀x ∈ A and ∀y ∈ B,

supB{x, y} ∈ B and ∀x ∈ A and ∀y ∈ B, infA{x, y} ∈ A. We prove that on every lattice X,

the star lattice set order is an intermediate notion between strong set order and weak set order:

A ⊑s B ⇒ A ⊑∗ℓ B ⇒ A ⊑w B. We prove that when comparing lattices A and B, the star

complete set order is a strengthening of star lattice set order: A ⊑∗c B ⇒ A ⊑∗ℓ B ⇒ A ⊑w B.

Additional properties are proved as well.

As a fifth contribution, we show that these set orders are an appropriate modification of

the strong set order to prove new theorems for MCS of the entire equilibrium set and identify

previously unknown structural relationships among equilibrium sets in these models. We say

that a general parametric model with complementarities has MCS of the full equilibrium set

in the star complete set order, if the mapping t 7→ E(Φt) is isotone in the star complete set

order (t̂ ⪯T t̃ ⇒ E(Φt̂) ⊑∗c E(Φt̃)). A similar statement defines MCS of the full equilibrium set

in the star lattice set order.

We prove that in every general parametric model with complementarities, if the correspon-

dence Φt satisfies our conditions for E(Φt) to be a nonempty complete lattice, then the model

has MCS of the full equilibrium set in both the star complete set order and the star lattice

set order. Every standard and neostandard model satisfies these conditions, and therefore, all

the standard and neostandard models with complementarities necessarily have MCS of the full

equilibrium set in both the star complete set order and the star lattice set order. This is not

true for the strong set order (or the uniform set order).

General results are available with fewer assumptions as well. If the model only has an

isotone infimum selection, denoted Φ, we can still conclude that the model has MCS of the
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infimum equilibrium set (denoted E(Φt)) in both the star complete set order and the star lattice

set order (t̂ ⪯T t̃ ⇒ E(Φt̂) ⊑∗c E(Φt̃) and E(Φt̂) ⊑∗ℓ E(Φt̃)). Similarly, if the model has an

isotone supremum selection, then it has MCS of the supremum equilibrium set in both the star

complete set order and the star lattice set order. Every standard and neostandard model falls

naturally under one of these situations. Moreover, under natural conditions, we also prove

that for every t, E(Φt) ⊑∗c E(Φt) ⊑∗c E(Φt) and E(Φt) ⊑∗ℓ E(Φt) ⊑∗ℓ E(Φt).

As a sixth contribution, we show that order comparability of equilibrium sets provides a

new and general theory of order approximation of equilibria in general models with comple-

mentarities. For example, we prove that in every general model (X,⪯X ,Φ) with an isotone

infimum selection Φ, it must be that E(Φ) ⊑∗c E(Φ). Therefore, for every nonempty E ⊆ E(Φ),

infE(Φ)E ∈ E(Φ). In other words, if a nonempty subset E of equilibria formalizes a specialized

equilibrium notion of interest, it can be uniquely and tightly approximated from below in a

formal order theoretic manner using equilibria from the infimum selection. In the special case

that E = {e∗} is a singleton, this proves that every equilibrium e∗ ∈ E(Φ) can be uniquely

order approximated from below by an equilibrium using only the infimum selection. This is

particularly useful if the infimum selection is easier to work with or has some useful computa-

tional, dynamic, or theoretical properties. Our result requires very little structure in the model

(only isotone infimum selection). We prove an analogous result for every general model with a

supremum selection (E(Φ) ⊑∗c E(Φ)), and similar results are proved for parametric models as

well. Every standard and neostandard model falls under one of these situations.

As a seventh contribution, we focus on the equilibrium theory of models with complemen-

tarities. That is, we study systemic influences of interdependence among individual choices

and their equilibrium impact, given individual choice behavior. We take individual choice be-

havior as given. It can be the solution to an optimization problem, but we do not require that

in the general case. Anything that is an accurate description of the situation being studied

is permissible as long as it satisfies our weak conditions. This has several benefits. First, it

provides unified, off-the-shelf theorems that apply regardless of the manner in which individual

choices are made as long as they satisfy weak conditions. Second, our conditions are naturally

satisfied in the standard and neostandard models, they are intuitively easy to check, and they

allow for new situations. Third, our results can guide new research lines to discover more
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general properties of individual behavior that do not fall under the purview of the standard

models but satisfy complementarities in our weaker setting. Fourth, our study isolates salient

properties of equilibrium that generalize to important and large classes of applications beyond

the scope of lattice-based models.

In this paper, we focus on models with complementarities in which the underlying space

X is a nonempty complete lattice. In several classes of models this is not necessarily true,

for example, models based on probability spaces with partial orders on probability measures.

Such models include kernel systems, stochastic dynamical systems, dynamic macroeconomic

models, and Markov decision processes. Those models require different methods to study

equilibrium and its properties. Some examples are available in Hopenhayn and Prescott (1992),

Amir (1996), Acemoglu and Jensen (2013), Acemoglu and Jensen (2015), Balbus, Dziewulski,

Reffett, and Woźny (2019), Balbus, Dziewulski, Reffett, and Woźny (2022), Schlee and Khan

(2022b), Schlee and Khan (2022a), and others. Structural properties of equilibrium in these

types of models are unified and generalized in Sabarwal (2023b). Structural properties for

models with continuity properties are unified and generalized in Sabarwal (2023a).

The paper is organized as follows. Section 2 defines general models with complementarities

and proves the main results for existence of equilibrium, existence of extremal equilibrium,

and nonempty complete lattice structure of the equilibrium set. Section 3 formulates the new

set orders and proves comparative statics of the infimum equilibrium set, the supremum equi-

librium set, and the full equilibrium set. It also formalizes the theory of order approximation

of equilibria. Section 4 defines general parametric models with complementarities, proves the

analogous results for these models, and includes the additional results on parametric monotone

comparative statics of the equilibrium set. Section 5 concludes.

2 General models with complementarities

A partial order on a set X is a binary relation ⪯ that is reflexive, antisymmetric, and transitive.

A partially ordered set (or, poset), is a set X along with a partial order ⪯ on it, denoted

(X,⪯). For a poset (X,⪯) and subset A of X, the relative partial order on A is the usual

one: For every x, x′ ∈ A, x ⪯A x′ ⇔ x ⪯ x′. It follows that (A,⪯A) is a poset in the
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relative partial order. For posets (X,⪯X) and (Y,⪯Y ), the Cartesian product X × Y is a

poset under the product partial order given by (x, y) ⪯ (x′, y′) ⇔ x ⪯X x′ and y ⪯Y y′. For

posets (X,⪯X) and (Y,⪯Y ), a function f : X → Y is isotone if for every x̂ and x̃ in X,

x̂ ⪯X x̃ =⇒ f(x̂) ⪯Y f(x̃).

Two points x, y in a poset (X,⪯) are comparable (or ordered), if x ⪯ y or y ⪯ x. In this

case, we say that x is lower than y when x ⪯ y, or x is higher than y when y ⪯ x. Points x, y

are strictly comparable (or strictly ordered), if they are comparable and x ̸= y. In this case,

we say x is strictly lower than y, denoted x ≺ y, or x is strictly higher than y, denoted y ≺ x,

as the case may be. A partial order is complete if every pair of points is comparable. A poset

with a complete order is a chain. In other words, a chain is a poset in which every pair of

points is comparable. Two points x, y are incomparable (or noncomparable, or unordered), if

they are not comparable, that is, x ̸⪯ y and y ̸⪯ x.

Let X be a poset and E a nonempty subset of X. An upper bound for E is an element

x ∈ X such that for every e ∈ E, e ⪯ x. The sup of E in X, denoted supX E, is an element

e ∈ X such that (1) e is an upper bound for E and (2) for every x ∈ X that is an upper bound

for E, e ⪯ x. A lower bound for E is an element x ∈ X such that for every e ∈ E, x ⪯ e.

The inf of E in X, denoted infX E, is an element e ∈ X such that (1) e is a lower bound for

E and (2) for every x ∈ X that is a lower bound for E, x ⪯ e. When convenient, we denote

x = infX X and x = supX X.

A lattice is a poset (X,⪯) in which for every x, y ∈ X,x ∧ y := infX{x, y} ∈ X and

x ∨ y := supX{x, y} ∈ X. A lattice (X,⪯) is complete , if for every nonempty subset E of X,

infX E ∈ X and supX E ∈ X. It follows that if X is a complete lattice, then infX X ∈ X and

supX X ∈ X. Subset A of lattice X is subcomplete , if for every nonempty B ⊆ A, infX B ∈ A

and supX B ∈ A.

For subsets A and B of lattice X, A is lower than B in the strong set order (SSO),

A ⊑s B, if for every a ∈ A and b ∈ B, a ∧ b ∈ A and a ∨ b ∈ B. Topkis (1978) attributes

the strong set order to Veinott (1989). Milgrom and Shannon (1994) use the term strong set

order. Other terms used are the induced set ordering in Topkis (1998) and the lattice set order

in Sabarwal (2021). Two other set orders used in the literature are: A is lower than B in
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the weak set order , denoted A ⊑w B, if for every x ∈ A there is y ∈ B such that x ⪯ y, and

for every y ∈ B there is x ∈ A such that x ⪯ y, and A is lower than B in the uniform set

order , denoted A ⊑u B, if for every x ∈ A and for every y ∈ B, x ⪯ y. It follows immediately

that for nonempty A,B ⊆ X, A ⊑u B ⇒ A ⊑s B ⇒ A ⊑w B.

For arbitrary sets X and Y , a correspondence from X to Y , denoted Φ : X ⇒ Y ,

is a function from X to the power set of Y , Φ : X → P(Y ). It is nonempty valued, if for

every x ∈ X, Φ(x) ̸= ∅. It is singleton valued, if for every x in X, Φ(x) is a singleton subset

of Y . A function f : X → Y is viewed as a correspondence that is singleton valued, and

conversely (and in this case, we’ll use either notation without further mention). A selection

from correspondence Φ is a function f : X → Y such that f(x) ∈ Φ(x) for every x ∈ X.

For a correspondence Φ : X ⇒ X, a point x ∈ X is a fixed point of Φ, if x ∈ Φ(x), and the

fixed point set of Φ is E(Φ) = {x ∈ X | x ∈ Φ(x)}.

A lattice model is a triple (X,⪯,Φ), where (X,⪯) is a nonempty complete lattice and

Φ : X ⇒ X is a correspondence. An equilibrium in the model is a fixed point of Φ. The

equilibrium set of the model is the fixed point set E(Φ).

A general model with complementarities (or, general model) is a lattice model

(X,⪯,Φ) with an isotone selection. A lattice model (X,⪯,Φ) is isotone supremum if for

every x ∈ X, Φ(x) := supΦ(x)Φ(x) ∈ Φ(x), and x 7→ Φ(x) is isotone. It is isotone infimum

if for every x ∈ X, Φ(x) := infΦ(x)Φ(x) ∈ Φ(x), and x 7→ Φ(x) is isotone. These definitions

only require the weaker conditions that infimum or supremum to be taken over Φ(x) not X (it

is easy to check that infX Φ(x) ∈ Φ(x) ⇒ infΦ(x)Φ(x) = infX Φ(x) ∈ Φ(x), and similarly for

supremum). No other conditions are imposed on Φ. It is not assumed to have any continuity

properties, Φ(x) is not assumed to be subcomplete in X, or a complete lattice, or even a lattice,

and Φ is not assumed to be isotone in strong set order.

A general model arises from decentralized individual behavior in the following standard

manner. Consider a finitely indexed collection (Xi,⪯i,Φi)
I
i=1, where ∀i, (Xi,⪯i) is a nonempty,

complete lattice and ∀i, Φi : X−i ⇒ Xi is a correspondence. Here, X−i = ×I
j=1,j ̸=iXj with the

product order. Each Xi is viewed as the choice (or action) space of individual i and Φi(x−i)

are the decentralized choices (or actions) of individual i that can depend on what others
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Figure 1: Standard S-model

are doing. As shown below, Φi is typically the solution to an optimization problem given

individual-specific payoff functions, but we do not require that in the general case. Anything

that is an accurate description of the situation being studied is permissible. Let Φ : X ⇒ X

be given by Φ(x) = ×I
i=1Φi(x−i). Equilibrium of the collective system is given by E(Φ). The

associated lattice model is (X,⪯,Φ), where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi

is the product correspondence. It is easy to check that if each Φi has an isotone infimum

(respectively, supremum) selection then so does Φ, and the associated lattice model is a general

model that is isotone infimum (respectively, supremum). All standard and neostandard models

with complementarities are unified as special cases of this general framework.

Example 1 (Standard S-model). Figure 1 shows a correspondence version of the standard

S-model commonly used to motivate models with complementarities. Here, (X,⪯) is a chain,

and ∀x ∈ X, Φ(x) is the interval given by Φ(x) = [Φ(x),Φ(x)]. This model (X,⪯,Φ) is an

isotone infimum model and an isotone supremum model. If Φ(x) is deleted from this example,

the resulting model is isotone infimum but not isotone supremum, and if Φ(x) is deleted from

this example, the resulting model is isotone supremum but not isotone infimum. If both

Φ(x) and Φ(x) are deleted from this example, the resulting model is a general model with

complementarities that is neither isotone infimum nor isotone supremum.

Example 2 (Topkis model). Following Topkis (1978) and Topkis (1979), the Topkis model

is a finitely indexed collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, compact

sublattice of Rmi in the natural product order (and using product order on products of Xi),
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for each i, Fi : Xi×X−i → R has decreasing differences in (xi, x−i), and for each x−i, Fi(·, x−i)

is submodular and lower semicontinuous on Xi. The definitions of decreasing differences and

submodular are the standard ones. On posets X,Y , a function f : X × Y → R satisfies

decreasing differences if for every x̂ ⪯ x̃, the difference f(x̃, y)− f(x̂, y) is (weakly) decreasing

in y. On a latticeX, a function f : X → R is submodular if for every x, y ∈ X, f(x∧y)−f(x) ≤

f(y) − f(x ∨ y). Let X = ×I
i=1Xi with the product order, denoted ⪯. For each x, y ∈ X,

let G(x, y) =
∑I

i=1 Fi(yi, x−i) and let Φ : X ⇒ X be given by Φ(x) = argminy∈X G(x, y).

Equilibrium of the Topkis model is given by E(Φ). Therefore, equilibrium properties of the

Topkis model can be studied equivalently using its associated lattice model (X,⪯,Φ), where

X = ×I
i=1Xi, ⪯ is product order, and Φ is the correspondence as above. Topkis (1979) gives

several concrete applications, including games with complementary products, minimum cut

games, and competitive pricing with substitute products. Many additional applications are

provided in Topkis (1998).

Example 3 (Vives model). Following Vives (1990), the Vives model is a finitely indexed

collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, complete lattice (and using

product order on products of Xi), for each i, Fi : Xi × X−i → R has increasing differences

in (xi, x−i), and for each x−i, Fi(·, x−i) is supermodular and upper semicontinuous in Frink

(1942)’s order interval topology on Xi. For each x−i, let Φi(x−i) = argmaxξ∈Xi
Fi(ξ, x−i). Let

Φ : X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). Equilibrium properties of the Vives model can

be studied equivalently using its associated lattice model (X,⪯,Φ), where X = ×I
i=1Xi,

⪯ is product order, and Φ = ×I
i=1Φi is the product correspondence as above. Vives (1990)

gives several concrete applications of oligopoly games such as Bertrand, Cournot, and product

selection with complementary products.

The Vives model may be viewed naturally as the model dual to the Topkis model. This can

be formalized by invoking the duality between supermodular and submodular functions and

between maximization and minimization, and by reformulating the correspondence in Topkis in

the manner in Vives. With this identification, Vives model generalizes Topkis model by working

with complete lattices rather than subcomplete lattices in finite-dimensional Euclidean spaces.

In every Vives model, for every x ∈ X, Φ(x) is a nonempty, complete sublattice and Φ is

isotone in the strong set order: x̂ ⪯ x̃ ⇒ Φ(x̂) ⊑s Φ(x̃).
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Example 4 (MR model). Following Milgrom and Roberts (1990), the MR model is a finitely

indexed collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, complete lattice (and

using product order on products of Xi), for each i, Fi : Xi × X−i → R has increasing dif-

ferences in (xi, x−i), for each x−i, Fi(·, x−i) is supermodular and upper semicontinuous in

Frink (1942)’s order interval topology on Xi, and Fi is order continuous on X−i. For each

x−i, let Φi(x−i) = argmaxξ∈Xi
Fi(ξ, x−i). Let Φ : X ⇒ X be given by Φ(x) = ×I

i=1Φi(x−i).

The associated lattice model is (X,⪯,Φ), where X = ×I
i=1Xi, ⪯ is product order, and

Φ = ×I
i=1Φi is the product correspondence as above. Milgrom and Roberts (1990) give sev-

eral concrete applications including a Diamond-type search model, a Bertrand model, an arms

race model, a Hendricks-Kovenock oil drilling model, and a Milgrom-Roberts model of modern

manufacturing.

Example 5 (GMS model). Following Shannon (1990) and Milgrom and Shannon (1994), the

generalized Milgrom and Shannon model, or GMS model is a finitely indexed collection

(Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, complete lattice (and using product order

on products of Xi), for each i, Fi : Xi × X−i → R has single crossing property in (xi, x−i),

and for each x−i, Fi(·, x−i) is quasisupermodular and upper semicontinuous in Frink (1942)’s

order interval topology on Xi. For each x−i, let Φi(x−i) = argmaxξ∈Xi
Fi(ξ, x−i). Let Φ :

X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). The definitions of quasisupermodular and single

crossing property are the same as in Milgrom and Shannon (1994). The associated lattice

model is (X,⪯,Φ), where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the product

correspondence as above.

As increasing differences implies single crossing property and supermodular implies qua-

sisupermodular, the MR model is a special case of the GMS model. The GMS model here

is more general than the corresponding one postulated in section 5 in Milgrom and Shannon

(1994), because we do not impose the additional condition that for every i, Fi is continuous

on X−i. Milgrom and Shannon (1994) (and Milgrom and Roberts (1990)) use this continuity

property to prove existence of extremal equilibria in their model. We do not use this property

in this paper. Deleting this property has the additional benefit that it nests the Vives model

as a special case and provides unified theorems for general models with complementarities.

Results in Milgrom and Shannon (1994) show that in the GMS model, for every x ∈ X, Φ(x)
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is a nonempty, complete sublattice and Φ is isotone in the strong set order.

Example 6 (Zhou model). Following Zhou (1994), the Zhou model is a lattice model (X,⪯

,Φ) in which Φ is isotone in the strong set order and for every x, Φ(x) is nonempty and

subcomplete.

Example 7 (CKK model). Che, Kim, and Kojima (2021) propose a model with weaker

assumptions than Milgrom and Shannon (1994) using a weak dominance property formulated

for pairs of objective functions: For f, g : X → R, f ⪯w g, if for every x̃ ̸⪯ x̂ in X, f(x̃) ≥ (>

)max{f(x̂ ∧ x̃), f(x̂)} ⇒ max{g(x̃), g(x̂ ∨ x̃)} ≥ (>) g(x̂). With this property, their Theorem

2 shows that for every sublattice S ⊆ X, argmaxS f ⊑w argmaxS g, whenever both sets

are nonempty. For a parameterized collection of functions, we define the weak dominance

property analogously: For a lattice X and poset T , a function F : X × T → R has weak

dominance property in (x, t), if for every x̃ ̸⪯X x̂ and for every t̂ ⪯T t̃, F (x̃, t̂) ≥ (>)max{F (x̂∧

x̃, t̂), F (x̂, t̂)} ⇒ max{F (x̃, t̃), F (x̂ ∨ x̃, t̃)} ≥ (>) F (x̂, t̃). It follows that for every t̂ ⪯T t̃,

Ft̂ ⪯w Ft̃, where subscripts denote section of the function determined by the subscript.

A benefit of the formulation in Che, Kim, and Kojima (2021) is that it places no restriction

on a given function, in the following sense: It is easy to check that for every function f : X → R

on a lattice X, f ⪯w f and argmaxS f ⊑w argmaxS f (whenever the set of maximizers

is nonempty). The latter property follows because every nonempty subset A of a poset X

satisfies A ⊑w A, and therefore, no conditions on f (or S) are needed to obtain this property.

As shown in section 5 in Che, Kim, and Kojima (2021), additional topological and order

theoretic assumptions are needed to guarantee existence of fixed points and weak monotone

comparative statics. Instead of those assumptions, we assume that the set of maximizers has

either a smallest or a largest element (rather than just nonempty). This can follow from

assumptions commonly used in the literature, for example, by assuming that the objective

function is upper semicontinuous and quasisupermodular in the decision variable.

The above is translated into our framework as follows. The CKK-1 model is a finitely

indexed collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, complete lattice (and

using product order on products of Xi) and for each i, Fi : Xi×X−i → R has weak dominance

property in (xi, x−i). For each i, fix a sublattice Si ⊆ Xi, and for every x−i, let Φi(x−i) =
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argmaxξ∈Si
Fi(ξ, x−i), and suppose that Φi(x−i) := infΦi(x−i)Φi(x−i) ∈ Φi(x−i). Let Φ :

X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). The associated lattice model is (X,⪯,Φ),

where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the product correspondence as

above. As a second version, the CKK-2 model is a CKK-1 model in which the property that

infimum exists is replaced with the property that supremum exists, that is, for each i and x−i,

Φi(x−i) := supΦi(x−i)Φi(x−i) ∈ Φi(x−i), and other aspects remain the same. ACKK model is

one that is both CKK-1 and CKK-2. As mentioned above, if, instead, we add the assumption

that for each i, Si is subcomplete, and for each x−i, Fi(·, x−i) is upper semicontinuous in

Frink (1942)’s order interval topology and quasisupermodular, then the set of maximizers

has both a smallest and a largest element. (As an aside, recall that quasisupermodularity is

automatically satisfied if each Xi is a chain and as mentioned in Che, Kim, and Kojima (2021),

on a chain, their model is the same as the GMS model and implies a correspondence isotone in

the strong set order.) Che, Kim, and Kojima (2021) give several concrete applications including

Pareto optimal choices, beauty contest game, stable many-to-one matchings, multidivisional

organization, and matching with constraints.

Example 8 (ICKK model). Che, Kim, and Kojima (2021) propose a further weakening for

optimization on intervals using a weak interval dominance property: For f, g : X → R, f ⪯wI g,

if for every x̂, x̃ ∈ X, if x̃ ̸⪯ x̂ and ∀x ∈ J(x̂, x̃), f(x̃) ≥ (>) f(x) and g(x̂) ≥ (>) g(x), then

f(x̃) ≥ (>) maxξ∈J(x̂∧x̃,x̂) f(ξ) ⇒ maxξ∈J(x̃,x̂∨x̃) g(ξ) ≥ (>) g(x̂). Here, J(x, y) := [x∧ y, x∨ y]

is the smallest interval containing x and y. With this property, their Theorem 3 implies that

for every subinterval S in X, argmaxS f ⊑w argmaxS g, whenever both sets are nonempty.

For a parameterized collection of functions, we define the weak interval dominance property

analogously: For a lattice X and poset T , a function F : X × T → R has weak interval

dominance property in (x, t), if for every x̃ ̸⪯X x̂ and for every t̂ ⪯T t̃, if ∀x ∈ J(x̂, x̃),

F (x̃, t̂) ≥ (>) F (x, t̂) and F (x̂, t̃) ≥ (>) F (x, t̃), then F (x̃, t̂) ≥ (>) maxξ∈J(x̂∧x̃,x̂) F (ξ, t̂) ⇒

maxξ∈J(x̃,x̂∨x̃) F (ξ, t̃) ≥ (>) F (x̂, t̃).

As above, assuming that the argmax either has a smallest element or a largest element

(rather than just nonempty), this is translated into our framework as follows. The ICKK-1

model is a finitely indexed collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, com-

plete lattice (and using product order on products of Xi) and for each i, Fi : Xi×X−i → R has

14



weak dominance property in (xi, x−i). For each i, fix a subinterval Si in Xi, and for every x−i,

let Φi(x−i) = argmaxξ∈Si
Fi(ξ, x−i) and suppose that Φi(x−i) := infΦi(x−i)Φi(x−i) ∈ Φi(x−i).

Let Φ : X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). The associated lattice model is (X,⪯,Φ),

where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the product correspondence as

above. As a second version, the ICKK-2 model is an ICKK-1 model in which the property

that infimum exists is replaced with the property that supremum exists, that is, for each i

and x−i, Φi(x−i) := supΦi(x−i)Φi(x−i) ∈ Φi(x−i), and other aspects remain the same. An

ICKK model is one that is both ICKK-1 and ICKK-2. As earlier, if, instead, we add the

assumption that for each i and x−i, Fi(·, x−i) is upper semicontinuous in Frink (1942)’s order

interval topology and quasisupermodular, then the set of maximizers has both a smallest and

a largest element.

Example 9 (GQS model). Quah and Strulovici (2009) propose an interval dominance order

and show that with their property, maximizers on an interval are isotone in the strong set order.

Che, Kim, and Kojima (2021) provide a generalization using the interval dominance property:

For f, g : X → R, f ⪯I g, if for every x̂, x̃ ∈ X, if x̃ ̸⪯ x̂ and ∀x ∈ J(x̂, x̃), f(x̃) ≥ (>) f(x)

and g(x̂) ≥ (>) g(x), then f(x̃) ≥ (>) f(x̂ ∧ x̃) ⇒ g(x̂ ∨ x̃) ≥ (>) g(x̂). With this property,

their Theorem S1 implies that for every subinterval S in lattice X, argmaxS f ⊑s argmaxS g,

whenever both sets are nonempty. Moreover, f ⪯I g ⇒ f ⪯wI g. For a parameterized

collection of functions, we define the interval dominance property analogously: For a lattice X

and poset T , a function F : X × T → R has interval dominance property in (x, t), if for every

x̃ ̸⪯X x̂ and for every t̂ ⪯T t̃, if ∀x ∈ J(x̂, x̃), F (x̃, t̂) ≥ (>) F (x, t̂) and F (x̂, t̃) ≥ (>) F (x, t̃),

then F (x̃, t̂) ≥ (>) F (x̂ ∧ x̃, t̂) ⇒ F (x̂ ∨ x̃, t̃) ≥ (>) F (x̂, t̃).

The generalized Quah Strulovici infimum model, or GQS-1 model is a finitely indexed

collection (Xi,⪯i, Fi)
I
i=1, where for each i, Xi is a nonempty, complete lattice (and using

product order on products of Xi), and for each i, Fi : Xi ×X−i → R has interval dominance

property in (xi, x−i). For each i, fix a subinterval Si in Xi, and for every x−i, let Φi(x−i) =

argmaxξ∈Si
Fi(ξ, x−i) and suppose that Φi(x−i) := infΦi(x−i)Φi(x−i) ∈ Φi(x−i). Let Φ :

X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). The associated lattice model is (X,⪯,Φ),

where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the product correspondence as

above. As a second version, the GQS-2 model is a GQS-1 model in which the property that

15



infimum exists is replaced with the property that supremum exists, that is, for each i and x−i,

Φi(x−i) := supΦi(x−i)Φi(x−i) ∈ Φi(x−i), and other aspects remain the same. A GQS model

is one that is both GQS-1 and GQS-2. As above, if, instead, we add the assumption that for

each i and x−i, Fi(·, x−i) is upper semicontinuous in Frink (1942)’s order interval topology and

quasisupermodular, then the set of maximizers has both a smallest and a largest element.

Example 10 (GCKK model). For convenience, we summarize the models based on Che, Kim,

and Kojima (2021) as follows. A generalized CKK-1 model, or GCKK-1 model , is one that

is either a CKK-1 model or a ICKK-1 model or a GQS-1 model. A generalized CKK-2 model,

or GCKK-2 model , is one that is either a CKK-2 model or a ICKK-2 model or a GQS-2

model. A generalized CKK model, or GCKK model , is one that is either a CKK model or

a ICKK model or a GQS model.

Example 11 (PY model). Prokopovych and Yannelis (2017) propose a model with weaker

conditions on payoff functions than those assumed in standard models in the case when deci-

sions take values in compact chains. Following Prokopovych and Yannelis (2017), the PY-1

(respectively, PY-2) model is a finitely indexed collection (Xi,⪯i, Fi)
I
i=1, where for each

i, (Xi,⪯i) is a nonempty, complete chain (hence compact in the order interval topology), and

using product order on products of Xi, for each i, Fi : Xi ×X−i → R is transfer weakly upper

semicontinuous in xi, and Fi satisfies the downward (respectively, upward) transfer single cross-

ing property in (xi, x−i). We use the same definitions of these properties as Prokopovych and

Yannelis (2017) and as they show, these conditions allow for new classes of games not covered

by standard models or by Reny (1999). For each x−i, let Φi(x−i) = argmaxξ∈Xi
Fi(ξ, x−i).

Let Φ : X ⇒ X be given by Φ(x) = ×I
i=1Φi(x−i). The associated lattice model is (X,⪯,Φ),

where X = ×I
i=1Xi, ⪯ is product order, and Φ = ×I

i=1Φi is the product correspondence as

above. A PY model is one that is both PY-1 and PY-2. Prokopovych and Yannelis (2017)

give several concrete applications including partnership game, Bertrand duopoly, and war of

attrition.

Example 12 (Standard and neostandard models). Finally, a standard model with com-

plementarities, or standard model , is one that is either a Topkis model, or Vives model,

or MR model, or GMS model. A neostandard model is on that is either GCKK or PY. A
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neostandard-1 model is one that is either GCKK-1 or PY-1, and a neostandard-2 model

is one that is either GCKK-2 or PY-2.

Theorem 1 shows that the patterns of decentralized interdependent behavior in all the

different standard and neostandard models are unified in terms of the same isotone properties

on the joint correspondence Φ.

Theorem 1. Consider the class of standard and neostandard models with complementarities.

1. For every Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model, the associated lattice

model (X,⪯,Φ) is isotone infimum and isotone supremum.

2. For every GCKK-1, for every PY-1 (respectively, GCKK-2, PY-2) model, the associated

lattice model (X,⪯,Φ) is isotone infimum (respectively, supremum).

Proof. In statement (1), the result for Topkis model follows from Theorem 1.2 in Topkis (1979),

for Vives model from Theorem 3.1 in Vives (1990), for MR and GMS model from Theorems

4 and A4 in Milgrom and Shannon (1994), for Zhou model, it follows immediately from the

assumptions in the Zhou model, and for GCKK and for PY models, it follows from statement

(2). To prove statement (2), consider a CKK-1 model (Xi,⪯i, Fi)
I
i=1 and its associated lattice

model (X,⪯,Φ). Fix i and sublattice Si, suppose x̂−i ⪯ x̃−i, and let ai = infΦi(x̂−i)Φi(x̂−i) ∈

Φi(x̂−i) and bi = infΦi(x̃−i)Φi(x̃−i) ∈ Φi(x̃−i). Theorem 2 in Che, Kim, and Kojima (2021)

implies that Φi(x̂−i) ⊑w Φi(x̃−i), and therefore, there is z ∈ Φi(x̂−i) with z ⪯ bi, from which

it follows that ai ⪯ z ⪯ bi. As i is arbitrary and using the product partial order, it follows

that x 7→ Φ(x) is isotone. The proof for ICKK-1 and GQS-1 model is similar, using Theorem

3 and Theorem S1 in Che, Kim, and Kojima (2021), respectively. The statements for CKK-2,

ICKK-2 and GQS-2 models are proved similarly. For a PY-1 model (Xi,⪯i, Fi)
I
i=1, Theorem

1 in Prokopovych and Yannelis (2017) shows that ∀i,∀x−i, infXi Φi(x−i) ∈ Φi(x−i). Fix i and

suppose x̂−i ⪯ x̃−i. Let ai = infXi Φi(x̂−i) and bi = infXi Φi(x̃−i). Lemma 5 in Prokopovych

and Yannelis (2017) implies that there is z ∈ Φi(x̂−i) with z ⪯ bi, from which it follows that

ai ⪯ z ⪯ bi. As i is arbitrary and using the product partial order, it follows that x 7→ Φ(x) is

isotone. The proof for PY-2 model is similar.
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F2

L ML MH H

F1

L 2, 2 1, 1 0, 0 0, 0

ML 1, 1 2, 2 0, 1 0, 0

MH 2, 0 1, 1 1, 2 1, 1

H 1, 0 2, 0 2, 1 2, 2

Table 1: Discrete Bertrand duopoly

An example shows that the general model includes isotone infimum and supremum models

that cannot be realized from the standard models.

Example 13 (Discrete Bertrand duopoly). Consider two restaurants competing as Bertrand

duopolists. Each restaurant can choose to sell lower quality restaurant meal for lower prices or

higher quality restaurant meal for higher prices. There are four quality-price categories ranked

from low (L) to medium-low (ML) to medium-high (MH) to high (H), with L ≺ ML ≺

MH ≺ H. Suppose market conditions are as follows. If firm 2 prices low, it is in firm 1’s

best interest to price either low or medium-high (that is, at the lower end of low quality/price

segment or lower end of high quality/price segment). It can survive if it prices medium-low or

high but at a lower profit. Similarly, if firm 2 prices medium-low, it is in firm 1’s best interest

to price either medium-low or high (that is, at the higher end of low quality/price segment or

higher end of high quality/price segment). It can survive if it prices low or medium-high but

at a lower profit. If firm 2 prices medium-high or high, it is in firm 1’s best interest to price

at the high end. It can survive at lower profit if it prices medium-high but cannot survive

otherwise. For firm 2, the incentives are straightforward, that is, to copy firm 1 action. An

assignment of payoffs with these features is given in the bimatrix in Table 1.

It is easy to see that this Example 13 does not fit any of the standard models, because each

of these models would require best response of each firm to be isotone in the strong set order,

but the best response of firm 1, denoted Φ1, violates this property, because Φ1(L) ̸⊑s Φ1(ML).

On the other hand, it is easy to check that the associated lattice model is both isotone infimum

and isotone supremum. Similarly, Feng and Sabarwal (2020) show a limitation of applying the

standard model to subgames in two stage dynamic games. Three additional examples that

violate standard assumptions but fit in our framework are the following.
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Figure 2: Not isotone in strong set order

Example 14 (Not isotone in strong set order). Consider the correspondence Φ on a chain

X = {a, b, c, d} with a ≺ b ≺ c ≺ d given by Φ(a) = {a, c},Φ(b) = {b, d},Φ(c) = Φ(d) = {d},

as shown in Figure 2. In the corresponding lattice model (X,⪯,Φ), Φ is not isotone in the

strong set order because Φ(a) ̸⊑s Φ(b) as b ∧ c ̸∈ Φ(a) and also b ∨ c ̸∈ Φ(b). It is easy to

check that the model is isotone infimum and isotone supremum. This gives one of the simplest

examples in which the correspondence looks very isotone but is not isotone in the strong set

order.

Example 15 (Not isotone in weak set order). Let X = {1, 2, 3, 4} with the natural order

and Φ : X ⇒ X be given by Φ(1) = {2, 4}, Φ(2) = {1, 3}, Φ(3) = {3}, and Φ(4) = {1, 4}.

Then Φ is not isotone in the weak set order, because 4 ∈ Φ(1), but there is no y ∈ Φ(2) such

that 4 ⪯ y, and also 1 ∈ Φ(4), but there is no y ∈ Φ(3) such that y ⪯ 1. Nevertheless, the

selection f(1) = 2, f(2) = 3, f(3) = 3, f(4) = 4 is isotone and the model is a general model

with complementarities. This example shows that our framework allows for cases not covered

by Smithson (1971). See Sabarwal (2023b) for a more detailed discussion.

Example 16 (Not subcomplete valued). Consider the constant correspondence: Φ(x) = [3, 4)∪

{5}, for x ∈ [0, 10], as shown in Figure 3. For every x, Φ(x) is a nonempty, complete sublattice

but Φ(x) is not subcomplete. The corresponding lattice model (X,⪯,Φ) with X = [0, 10] ⊂ R

with the natural order model does not fit the Zhou model which requires subcompleteness.

Moreover, it does not fit other standard models such as GMS, Vives, or Topkis, because those

models imply that the correspondence is compact valued. On the other hand, it is easy to see

that the model is isotone infimum and isotone supremum.
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Figure 3: Model without subcompleteness

Theorem 2 shows that an equilibrium always exists in general models with complementar-

ities, a smallest equilibrium always exists in isotone infimum models (and it is the same as the

smallest equilibrium of the model with only the infimum selection from Φ), and a largest equi-

librium always exists in isotone supremum models (and it is the same as the largest equilibrium

of the model with only the supremum selection from Φ).

Theorem 2. Consider the class of lattice models.

1. Every general model with complementarities has an equilibrium.

2. In every isotone supremum model (X,⪯,Φ), the equilibrium set E(Φ) contains a nonempty,

complete lattice E(Φ) such that supE(Φ) E(Φ) = supE(Φ) E(Φ). In particular, every isotone

supremum model has a largest equilibrium.

3. In every isotone infimum model (X,⪯,Φ), the equilibrium set E(Φ) contains a nonempty,

complete lattice E(Φ) such that infE(Φ) E(Φ) = infE(Φ) E(Φ). In particular, every isotone

infimum model has a smallest equilibrium.

4. Every general model that is isotone infimum and isotone supremum has a smallest and

a largest equilibrium.

Proof. Statement (1) follows immediately by applying Tarski (1955) to the isotone selection

f from Φ to show that E(f) is a nonempty complete lattice, and noting that E(f) ⊆ E(Φ).

It is included here for cases (like Example 15) that are outside the scope of statements (2)
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and (3). To prove statement (2), let (X,⪯,Φ) be an isotone supremum model. Statement

(1) implies that E(Φ) is a nonempty, complete lattice in E(Φ). Let e∗ = supX A, where

A = {x ∈ X | x ⪯ Φ(x)}. We know from Tarski’s theorem that e∗ = supE(Φ) E(Φ) ∈ E(Φ).

As E(Φ) ⊆ E(Φ), it follows that e∗ ∈ E(Φ). Let e ∈ E(Φ) be an arbitrary equilibrium in

the model (X,⪯,Φ). Then e ⪯ Φ(e), and therefore, e ∈ A, whence e ⪯ e∗. This shows

that e∗ = supE(Φ) E(Φ) = supE(Φ) E(Φ). In other words, e∗ is also the largest equilibrium in

the general model (X,⪯,Φ). Statement (3) is proved similarly. Statement (4) follows from

statements (2) and (3).

Corollary 3. Consider the class of standard and neostandard models.

1. Every Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model has a smallest and a

largest equilibrium.

2. Every GCKK-1, PY-1 (respectively, GCKK-2, PY-2) model has a smallest (respectively,

largest) equilibrium.

Proof. Follows from Theorem 1 and Theorem 2.

The theorem and corollary provide unified results for existence of extremal equilibria in

standard and neostandard models with complementarities. For reference, existence of extremal

equilibria in the Topkis model is shown in Theorem 3.1 in Topkis (1979), in the Vives model

in Theorem 4.2 in Vives (1990), and in the Zhou model it follows from Theorem 1 in Zhou

(1994). Milgrom and Shannon (1994) prove existence of extremal equilibria using the additional

assumption that for every i, Fi is order continuous on X−i.

Example 17 (Standard S-model, continued). Figure 1 shows that E(Φ) = [a, b]∪ [c, d]∪ [e, f ],

E(Φ) = {a, d, e}, and E(Φ) = {b, c, f}. Consistent with Theorem 2, infE(Φ) E(Φ) = a =

infE(Φ) E(Φ) and supE(Φ) E(Φ) = f = supE(Φ) E(Φ).

Example 18 (Not isotone in strong set order, continued). Figure 2 shows that E(Φ) = {a, b, d},

E(Φ) = {a, b, d}, and E(Φ) = {d}. Consistent with Theorem 2, infE(Φ) E(Φ) = a = infE(Φ) E(Φ)

and supE(Φ) E(Φ) = d = supE(Φ) E(Φ).

Example 19 (Not isotone in weak set order, continued). The model in Example 15 has an
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isotone selection and is a general model with complementarities (but it is neither isotone

infimum nor isotone supremum). The equilibrium set is E(Φ) = {3, 4}.

Example 20 (Not subcomplete valued, continued). Figure 3 shows that E(Φ) = [3, 4) ∪ {5},

E(Φ) = {3}, and E(Φ) = {5}. Therefore, infE(Φ) E(Φ) = 3 = infE(Φ) E(Φ) and supE(Φ) E(Φ) =

5 = supE(Φ) E(Φ), consistent with Theorem 2.

Theorem 2 guarantees that the equilibrium set contains a nonempty complete lattice.

Theorem 4 strengthens this by presenting conditions that guarantee that the equilibrium set is

a nonempty complete lattice. We provide two sets of conditions. Both sets hold in the standard

models due to Vives (1990) and Zhou (1994), and both are strictly weaker, allowing for cases

not included in those models.

In a lattice model (X,⪯,Φ), for each nonempty X̂ ⊆ X, the model restricted to X̂ is

(X̂, ⪯̂, Φ̂), where ⪯̂ is the restriction of the partial order ⪯ to X̂ and Φ̂ is the restriction of Φ to

X̂ given by Φ̂(x) = Φ(x)∩ X̂. When convenient, the same notation ⪯ is used for the restricted

partial order ⪯̂. A lattice model (X,⪯,Φ) is isotone supremum on lower intervals if it

is an isotone supremum model in which ∀x̂ ∈ X such that Φ(x̂) ⪯ x̂, the model restricted to

X̂ = [x, x̂] is an isotone supremum model. It is isotone infimum on upper intervals if

it is an isotone infimum model in which ∀x̂ ∈ X such that x̂ ⪯ Φ(x̂), the model restricted to

X̂ = [x̂, x] is an isotone infimum model. As earlier, these definitions do not use any continuity

properties, strong set order, subcompleteness, or uniform set order.

Theorem 4. Consider the class of lattice models.

1. In every isotone supremum model (X,⪯,Φ) that is isotone infimum on upper intervals,

E(Φ) is a nonempty complete lattice.

2. In every isotone infimum model (X,⪯,Φ) that is isotone supremum on lower intervals,

E(Φ) is a nonempty complete lattice.

Proof. To prove statement (1), let (X,⪯,Φ) be an isotone supremum model that is isotone

infimum on upper intervals. Statement (3) of Theorem 2 shows that E(Φ) is nonempty and

infE(Φ) E(Φ) ∈ E(Φ). To show that E(Φ) is sup-complete, let E ⊆ E(Φ) be nonempty. Let
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e = supX E ∈ X, which exists because X is complete. Then e ∈ E implies e ⪯ Φ(e) ⪯ Φ(e),

where the second inequality follows because Φ is isotone, and therefore, Φ(e) is an upper bound

for E, whence e ⪯ Φ(e). By assumption, the restricted model ([e, x],⪯, Φ̂) is an isotone infimum

model and therefore, by statement (3) of Theorem 2, the restricted model has a smallest

equilibrium, say, e∗. As e∗ ∈ Φ̂(e∗) = Φ(e∗)∩ [e, x] ⊂ Φ(e∗), it follows that e∗ is an equilibrium

in (X,⪯,Φ). As e ⪯ e∗, it follows that e∗ is an upper bound for E in E(Φ). Let e ∈ E(Φ) be

an arbitrary upper bound for E. Then e ∈ [e, x] and therefore, e ∈ Φ(e) ∩ [e, x] = Φ̂(e). As e∗

is the smallest equilibrium for Φ̂, it follows that e∗ ⪯ e. Thus e∗ = supE(Φ)E ∈ E(Φ).

To show that E(Φ) is inf-complete, let E ⊆ E(Φ) be nonempty. Let A = {x ∈ E(Φ) | ∀e ∈

E, x ⪯ e}. The set A is nonempty, because infE(Φ) E(Φ) ∈ A. Let e∗ = supE(Φ)A ∈ E(Φ),

which exists because E(Φ) is sup-complete. Then ∀e ∈ E and ∀x ∈ A, x ⪯ e, and therefore,

∀e ∈ E, e is an upper bound for A, whence ∀e ∈ E, e∗ ⪯ e, showing that e∗ is a lower bound

for E. Let x ∈ E(Φ) be an arbitrary lower bound for E. Then x ∈ A and consequently, x ⪯ e∗.

This shows that e∗ = infE(Φ)E ∈ E(Φ). Statement (2) is proved similarly.

Theorem 4 provides a unified result generalizing existing results that guarantee the equi-

librium set is a nonempty complete lattice. The proof is more general than the different

approaches in the proofs in Zhou (1994) and Vives (1990).

The sufficient conditions in Theorem 4 are weaker than those in Zhou (1994), which requires

a correspondence that is isotone in the strong set order and subcomplete valued. It is easy

to check that Example 14 (Not isotone in strong set order) depicted in Figure 2 is an isotone

supremum model that is isotone infimum on upper intervals. The correspondence in that

example is not isotone in the strong set order. Similarly, it is easy to check that Example 16

(Not subcomplete valued) depicted in Figure 3 is an isotone supremum model that is isotone

infimum on upper intervals. The correspondence in that example is not subcomplete valued.

The conditions in Theorem 4 are weaker than those in Vives (1990), which requires a

correspondence that is isotone in the uniform set order. The correspondences in Example 14

(Not isotone in strong set order) and Example 16 (Not subcomplete valued) are not isotone

in uniform set order. In the special case of singleton valued correspondences, both conditions

collapse to an isotone function, recovering the theorem due to Tarski (1955).
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Theorem 5. Consider the class of standard and neostandard models.

1. For every GMS, GCKK, and PY model, the associated lattice model is isotone infimum

on upper intervals and isotone supremum on lower intervals.

2. Every Zhou model is isotone infimum on upper intervals and isotone supremum on lower

intervals.

3. In every Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model, the equilibrium set

E(Φ) is a nonempty complete lattice.

Proof. For statement (1), consider a GMS model (Xi,⪯i, Fi)
I
i=1 and its associated lattice

model (X,⪯,Φ). Theorem 1 shows that (X,⪯,Φ) is isotone infimum and isotone supremum.

Suppose x̂ ⪯ Φ(x̂) and consider the restricted model (X̂,⪯, Φ̂). Then ∀i, x̂i ⪯i Φi(x̂−i).

Now, ∀i and ∀x−i ∈ [x̂−i, x−i], let Ψi(x−i) = argmaxxi∈[x̂i,xi] Fi(xi, x−i), and ∀x ∈ X̂, let

Ψ(x) = ×I
i=1Ψi(x−i). From Theorem 1, it follows that x 7→ Ψ(x) has an isotone infimum

selection and an isotone supremum selection. We show that ∀x ∈ X̂, Ψ(x) = Φ̂(x). Fix i

and x−i ∈ [x̂−i, x−i] arbitrarily. Suppose ξ ∈ Φ̂i(x−i). Then ξ ∈ [x̂i, xi] and ∀xi ∈ [x̂i, xi],

Fi(ξ, x−i) ≥ Fi(xi, x−i), whence ξ ∈ Ψi(x−i). Suppose ξ ∈ Ψi(x−i). Then x̂i ⪯i Φi(x̂−i) ⪯i

Φi(x−i), where the second inequality follows from isotone supremum. Consequently, ∀xi ∈

Xi, Fi(ξ, x−i) ≥ Fi(Φi(x−i), x−i) ≥ Fi(xi, x−i), where the first inequality follows from ξ is a

maximizer on [x̂i, xi] and the second from Φi(x−i) is a maximizer onXi. Therefore, ξ ∈ Φ̂i(x−i).

It follows that Ψi(x−i) = Φ̂i(x−i), whence Ψ(x) = Φ̂(x). It follows that (X,⪯,Φ) is isotone

infimum on upper intervals. Similarly, it is isotone supremum on lower intervals. The statement

for every GCKK model and every PY model is proved similarly.

For statement (2), consider a Zhou model (X,⪯,Φ). Theorem 1 shows that it is an isotone

infimum model. To show that it is isotone infimum on upper intervals, consider x̂ ∈ X such that

x̂ ⪯ Φ(x̂) and consider the restricted model (X̂,⪯, Φ̂) where X̂ = [x̂, x] and Φ̂(x) = Φ(x)∩[x̂, x].

Then x̂ ⪯ Φ(x̂) implies that for every x ∈ X̂, x̂ ⪯ Φ(x̂) ⪯ Φ(x) ⪯ x, where the second inequality

follows from Φ is isotone in strong set order. This shows that Φ̂ is nonempty valued. Moreover,

Φ̂(x) is subcomplete, because Φ(x) and [x̂, x] are both subcomplete, and therefore, for every

x ∈ X̂, Φ̂(x) := infΦ̂(x) Φ̂(x) ∈ Φ̂(x). Furthermore, Φ̂ is isotone in strong set order, because
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Φ is isotone in the strong set order and the correspondence constant at [x̂, x] is also isotone

in the strong set order. Therefore, x 7→ Φ̂(x) is isotone. This shows that the restricted model

(X̂,⪯, Φ̂) is an isotone infimum model. The proof that (X,⪯,Φ) is an isotone supremum model

on lower intervals is similar.

Statement (3) follows from Theorem 1, Theorem 4, and statements (1) and (2) here.

Theorem 5 shows that the foundational models due to Topkis, Vives, Milgrom and Roberts,

Shannon, Milgrom and Shannon, and Zhou are all subsumed as special cases of Theorem 4.

This is important because widely used results in the literature (for example, see Milgrom and

Shannon (1994), Appendix, page 179) imply that the set of maximizers is a complete sublattice,

and therefore, has a greatest and least element. But this does not necessarily imply that it is

subcomplete, which is a stricter condition, as can also be seen in Example 16 (Not subcomplete

valued). Subcompleteness is a requirement in Zhou (1994) to prove that the equilibrium set is

a complete lattice. This leaves a gap between individual maximization behavior and structure

of the equilibrium set in standard models with complementarities. Our results plug this gap.

3 Equilibrium set comparisons

A long-standing problem in the theory of complementarities is lack of structural comparability

of equilibrium sets. Comparability in the strong set order does not obtain even in standard

examples (see below) and comparability in the weak set order does not provide tight bounds

for subsets of equilibria.

Example 21 (Noncomparability of equilibrium sets in strong set order in standard S-model).

Consider the canonical model (X,⪯,Φ) in Example 1 (Standard S-model) depicted in Fig-

ure 1. Here, X = [0, x] ⊂ R and for every x ∈ X, Φ(x) is the interval given by Φ(x) =

[Φ(x),Φ(x)]. The domain X is a subcomplete chain in R, the correspondence Φ is nonempty

valued, subcomplete valued, and isotone in the strong set order. The equilibrium set is

E(Φ) = [a, b] ∪ [c, d] ∪ [e, f ]. This shows that the model has uncountably many equilibria, the

equilibrium set is a chain, and it is subcomplete in X. The infimum selection Φ(x) is isotone

and the equilibrium set corresponding to the infimum selection is E(Φ) = {a, d, e}. The supre-
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mum selection Φ(x) is isotone and the equilibrium set corresponding to it is E(Φ) = {b, c, f}.

Each of E(Φ) and E(Φ) is a finite chain and is subcomplete in R.

The three equilibrium sets E(Φ), E(Φ), and E(Φ) have a lot of structure. Each is nonempty,

a chain, and subcomplete in R. Moreover, E(Φ) and E(Φ) are finite sets and E(Φ) is a finite

union of compact, convex intervals.

Given the order structure of the equilibrium sets, the structure and isotonicity of Φ, Φ,

and Φ, and the natural ranking of their images in the strong set order, Φ(x) ⊑s Φ(x) ⊑s Φ(x),

for every x ∈ X, it may be expected that the corresponding equilibrium sets E(Φ), E(Φ), and

E(Φ) are ranked similarly in the strong set order as well.

In fact, no two distinct equilibrium sets are comparable in the strong set order: E(Φ) ̸⊑s

E(Φ), because infX{d, c} ̸∈ E(Φ); E(Φ) ̸⊑s E(Φ), because supX{d, c} ̸∈ E(Φ); and E(Φ) ̸⊑s

E(Φ), because infX{d, c} ̸∈ E(Φ) and also, supX{d, c} ̸∈ E(Φ). The other pairings are less

interesting but also incomparable in the strong set order: E(Φ) ̸⊑s E(Φ), because supX{e, f} ̸∈

E(Φ); E(Φ) ̸⊑s E(Φ), because infX{a, b} ̸∈ E(Φ); and E(Φ) ̸⊑s E(Φ), because infX{a, b} ̸∈ E(Φ)

and also, supX{e, f} ̸∈ E(Φ).

An insight here is that the equilibrium sets are comparable in the following sense. Consider

d ∈ E(Φ) and y ∈ [c, d) ⊂ E(Φ). Then a ∈ E(Φ) is lower than both d and y, and among

elements of E(Φ), a is the largest of the lower bounds for both d and y. More generally, for

every x ∈ E(Φ) and y ∈ E(Φ), there is e ∈ E(Φ) such that e is lower than x and y, and for

every e ∈ E(Φ) that is lower than x and y, e ⪯ e. Similarly, for y ∈ (c, d] ⊂ E(Φ) and c ∈ E(Φ),

f ∈ E(Φ) is higher than both y and c, and among elements of E(Φ), f is the smallest of the

upper bounds for both y and c. More generally, for every x ∈ E(Φ) and y ∈ E(Φ), there is

e ∈ E(Φ) such that e is higher than x and y, and for every e ∈ E(Φ) that is higher than x and

y, e ⪯ e.

We show that this insight holds much more generally. It does not require that X is a

subset of the reals, or an interval, or finite dimensional, or convex, or even a vector space.

It does not require that any of the equilibrium sets is a chain or is subcomplete in X. It

does not require that the correspondence satisfy continuity properties such as upper or lower

hemicontinuity. We show that this insight holds in every model that is isotone infimum and/or
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isotone supremum.

In fact, we show that another strong result holds in such models. For every nonempty

E ⊆ E(Φ), infE(Φ)E ∈ E(Φ) and supE(Φ)E ∈ E(Φ), where infE(Φ)E and supE(Φ)E are defined

below in a suitable manner generalizing the ideas above. This shows that every subset of

equilibria in a model with complementarities has a largest lower bound among equilibria of the

corresponding infimum model and smallest upper bound among equilibria of the corresponding

supremum model.

In order to develop a formal language to compare equilibrium sets, we define the following

new concepts to formalize order bounds of one set using a different set. The definitions are

stated for arbitrary posets.

For nonempty subsets E and A of poset X, the sup of E in A, denoted supAE, is an

element e ∈ A such that (1) e is an upper bound for E and (2) for every a ∈ A that is an

upper bound for E, e ⪯ a. The inf of E in A, denoted infAE, is an element e ∈ A such that

(1) e is a lower bound for E and (2) for every a ∈ A that is a lower bound for E, a ⪯ e. Notice

that A = X gives the standard definition, as stated above, and E ⊆ A ⊆ X gives the standard

definition in the relative partial order. More generally, as E and A are arbitrary nonempty

subsets of X, supAE and infAE might not exist in general even if X is a complete lattice.

When they exist, they have some natural properties, as follows.

Theorem 6. Let X be a poset, E ⊆ X be nonempty, and A ⊆ B ⊆ X with A nonempty.

1. infAE ⪯ infB E ⪯ supB E ⪯ supAE, whenever these exist.

2. infAE = infB E ⇐⇒ infB E ∈ A

3. supB E = supAE ⇐⇒ supB E ∈ A

Proof. For statement (1), suppose infAE and infB E exist. Then infAE ∈ A ⊆ B implies

that infAE ∈ B and infAE is a lower bound for E. As infB E is the largest of such bounds in

B, it follows that infAE ⪯ infB E. Now suppose infB E and supB E exist. Let b ∈ B. Then

infB E ⪯ b ⪯ supB E. Finally, suppose supB E and supAE exist. Then supAE ∈ A ⊆ B

implies that supAE ∈ B and supAE is an upper bound for E. As supB E is the smallest of

such bounds, it follows that supB E ⪯ supAE.
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For statement (2), if infAE = infB E, then infAE ∈ A implies infB E ∈ A. If infB E ∈ A,

then combined with infB E is a lower bound for E and infAE is the largest of such lower bounds,

it follows that infB E ⪯ infAE. Combined with statement (1), it follows that infAE = infB E.

Statement (3) is proved similarly.

These order bounds are used to define new set orders useful for equilibrium set comparisons,

as follows.

For nonempty subsets A,B of poset X, A is sup-complete in B, if for every nonempty

E ⊆ A, supB E ∈ B, and B is inf-complete in A, if for every nonempty E ⊆ B, infAE ∈ A.

Set A is lower than B in the star complete set order , denoted A ⊑∗c B, if A is sup-

complete in B and B is inf-complete in A.

For nonempty subsets A,B in a poset X, A is join-complete in B, if for every x ∈ A

and y ∈ B, supB{x, y} ∈ B. Similarly, B is meet-complete in A, if for every x ∈ A and

y ∈ B, infA{x, y} ∈ A. Set A is lower than B in the star lattice set order , denoted

A ⊑∗ℓ B, if A is join-complete in B and B is meet-complete in A.

Some properties of the star complete set order and star lattice set order and their relation

to strong set order and weak set order are as follows.

Theorem 7. Let X be a poset and A,B,C be nonempty subsets of X.

1. Star complete set order

(a) A ⊑∗c A ⇐⇒ A is a complete lattice (in the relative partial order from X)

(b) A ⊑∗c B =⇒ infAA ⪯ infB B and supAA ⪯ supB B, whenever these exist

(c) A ⊑∗c B =⇒ A ⊑w B.

2. Star lattice set order

(a) A ⊑∗ℓ A ⇐⇒ A is a lattice (in the relative partial order from X)

(b) A ⊑∗ℓ B =⇒ infAA ⪯ infB B and supAA ⪯ supB B, whenever these exist

(c) A ⊑∗ℓ B =⇒ A ⊑w B.

3. Cross comparisons
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(a) If B is inf-complete in A and A is a lattice, then B is meet-complete in A.

(b) If A is sup-complete in B and B is a lattice, then A is join-complete in B.

(c) If A and B are lattices, then A ⊑∗c B =⇒ A ⊑∗ℓ B =⇒ A ⊑w B.

(d) If X is a lattice, then A ⊑s B =⇒ A ⊑∗ℓ B =⇒ A ⊑w B.

Proof. For (1)(a), if A ⊑∗c A, then for every nonempty E ⊆ A, infAE ∈ A and supAE ∈ A,

showing that A is a complete lattice. If A is a complete lattice, the reverse argument shows

that A ⊑∗c A. For (1)(b), suppose A ⊑∗c B and suppose a = infAA and b = infB B exist.

Then A ⊑∗c B implies a′ = infA{b} ∈ A, whence a ⪯ a′ ⪯ b. Similarly, supAA ⪯ supB B. For

(1)(c), suppose A ⊑∗c B and consider arbitrary a ∈ A. Let b′ = supB{a} ∈ B. Then a ⪯ b′.

Similarly, for b ∈ B there is a′ = infA{b} ∈ A such that a′ ⪯ b.

For (2)(a), if A ⊑∗ℓ A, then for every x, y ∈ A, infA{x, y} ∈ A and supA{x, y} ∈ A,

showing that A is a lattice. If A is a lattice, the reverse argument shows that A ⊑∗ℓ A. For

(2)(b) suppose A ⊑∗ℓ B and suppose infAA and infB B exist. By definition, infAA ∈ A

and infB B ∈ B, and therefore, z = infA{infAA, infB B} ∈ A. Combined with infAA ⪯ z,

it follows that infAA = z ⪯ infB B, where the inequality follows from z is a lower bound

for {infAA, infB B}. Similarly, supAA ⪯ supB B whenever these exist. For (2)(c), suppose

A ⊑∗ℓ B and consider x ∈ A. As B is nonempty, let y ∈ B, and by hypothesis, supB{x, y} ∈ B.

As supB{x, y} is an upper bound for {x, y}, it follows that x ⪯ supB{x, y}. Similarly, for y ∈ B,

let x be any element of A. Then infA{x, y} ∈ A is such that infA{x, y} ⪯ y.

For (3)(a), suppose B is inf-complete in A and A is a lattice. Let x ∈ A, y ∈ B. Let

E = {y} ⊂ B and let ŷ = infAE ∈ A, which exists because B is inf-complete in A. Then

ŷ is a lower bound for E and for every z ∈ A that is a lower bound for E, z ⪯ ŷ. In other

words, ŷ ⪯ y and for every z ∈ A such that z ⪯ y, it must be that z ⪯ ŷ. As A is a lattice, let

â = infA{x, ŷ} ∈ A. Then ŷ ⪯ y implies that â is a lower bound for {x, y}. Suppose z ∈ A is a

lower bound for {x, y}. Then z ∈ A and z ⪯ y implies z ⪯ ŷ and therefore, z is a lower bound

for {x, ŷ}, whence z ⪯ â. This shows that infA{x, y} = â ∈ A. Statement (3)(b) is proved

similarly and (3)(c) follows from (3)(a), (3)(b) and (2)(c).

For (3)(d), suppose X is a lattice and A ⊑s B. Consider x ∈ A and y ∈ B. By hypothesis,

infX{x, y} ∈ A and therefore, by statement (2) of Theorem 6, infA{x, y} = infX{x, y} ∈ A.
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Similarly, supB{x, y} = supX{x, y} ∈ B. This shows that A ⊑∗ℓ B. The implication A ⊑w B

is a special case of (2)(c).

As shown in Theorem 7, the star complete set order and the star lattice set order are both

stronger than the weak set order, and imply isotone infimum and supremum when these exist.

When comparing lattices A and B, the star complete set order is stronger than the star lattice

set order. On a lattice X, the star lattice set order is an intermediate notion between weak set

order and strong set order.

Recall that the strong set order is reflexive on the class of sublattices of a lattice, and is a

partial order on this class. The weak set order is reflexive on the class of nonempty subsets of

a poset, is not antisymmetric, but is transitive. Theorem 7 shows that the star complete set

order is reflexive on the class of complete lattices in a poset, and the star lattice set order is

reflexive on lattices in a poset. Like the weak set order, it is easy to see that neither relation

is necessarily antisymmetric. In fact, neither is necessarily transitive either, as shown by the

following. Let X = {(x1, x2) ∈ R2 | (0, 0) ⪯ (x1, x2) ⪯ (3, 1)} with the product partial order.

Let A = {(t, 0) ∈ X | 0 ≤ t < 2} ∪ {(3, 0)}, B = {(1, 1), (3, 1)}, and C = {(2, 1), (3, 1)}. It is

easy to check that A ⊑∗ℓ B and B ⊑∗ℓ C, but A ̸⊑∗ℓ C, because infA{(3, 0), (2, 1)} does not

exist in A. Similarly, it is easy to check that A ⊑∗c B and B ⊑∗c C, but A ̸⊑∗c C, because

infA{(2, 1)} does not exist in A. In terms of strong set order, it is easy to check that A ̸⊑s B,

B ̸⊑s C, and A ̸⊑s C, and in terms of weak set order, A ⊑w C. For this reason, transitivity

cannot be taken for granted and must be proved every time it appears in a theorem. We prove

this in all the general results in this paper.

Star complete set order and star lattice set order are useful to compare different versions

of the equilibrium set in general models with complementarities. They help provide natural

comparisons among the entire equilibrium set, the equilibrium set corresponding to the infimum

selection, and the equilibrium set corresponding to the supremum selection, as follows.

Theorem 8. Consider the class of lattice models.

1. In every isotone infimum model, E(Φ) ⊑∗c E(Φ). Moreover, if E(Φ) is a lattice, then

E(Φ) ⊑∗ℓ E(Φ).
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2. In every isotone supremum model, E(Φ) ⊑∗c E(Φ). Moreover, if E(Φ) is a lattice, then

E(Φ) ⊑∗ℓ E(Φ).

3. In every lattice model that is isotone infimum and supremum, in addition to (1) and (2),

E(Φ) ⊑∗c E(Φ) and E(Φ) ⊑∗ℓ E(Φ).

Proof. For statement (1), to show that E(Φ) is inf-complete in E(Φ), consider nonempty E ⊂

E(Φ). Let e = infX E ∈ X, which exists because X is a complete lattice. Let Ψ : [x, e] → [x, e]

be given Ψ(x) = Φ(x). Then e ∈ E implies Φ(e) ⪯ Φ(e) ⪯ e, and therefore, Φ(e) is a lower

bound for E, whence Φ(e) ⪯ e. Moreover, for every x ∈ [x, e], x ⪯ Φ(x) ⪯ Φ(e) ⪯ e. This

shows that Ψ is well-defined and therefore, ([e, x],⪯X ,Ψ) is a lattice model in which Ψ is an

isotone function. Let ê be the largest fixed point of Ψ. Then ê = Ψ(ê) = Φ(ê) implies that

ê ∈ E(Φ), and ê ⪯ e implies that ê is a lower bound for E. If e ∈ E(Φ) is an arbitrary lower

bound for E, then e ⪯ e and e = Φ(e) = Ψ(e), showing that e is a fixed point of Ψ, whence

e ⪯ ê. Therefore, infE(Φ)E = ê ∈ E(Φ).

To show that E(Φ) is sup-complete in E(Φ), consider nonempty E ⊂ E(Φ). Let ē =

supX E ∈ X, which exists as X is complete. Consider Ψ : [e, x] ⇒ [e, x] given by Ψ(x) =

Φ(x)∩ [e, x]. Then e ∈ E ⊂ E(Φ) implies e = Φ(e) ⪯ Φ(e). Therefore, Φ(e) is an upper bound

for E, whence e ⪯ Φ(e). Moreover, for every x ∈ [e, x], e ⪯ Φ(e) ⪯ Φ(x) ⪯ x. This shows that

Φ(x) ∈ Ψ(x), and therefore, Ψ is nonempty valued and ([e, x],⪯X ,Ψ) is an isotone infimum

model. Let ê be the smallest fixed point of Ψ. Then ê ∈ Ψ(ê) = Φ(ê) ∩ [e, x] =⇒ ê ∈ E(Φ)

and e ⪯ ê =⇒ ê is an upper bound for E. If e ∈ E(Φ) is an arbitrary upper bound for E,

then e ⪯ e and e ∈ Φ(e) ∩ [e, x] = Ψ(e), showing that e is a fixed point of Ψ, whence ê ⪯ e.

Therefore, supE(Φ)E ∈ E(Φ).

The statement E(Φ) ⊑∗ℓ E(Φ) follows from statement (3)(c) in Theorem 7. Statement (2)

is proved similarly. Statement (3) is proved by following the proof of statement (1) with E(Φ)

instead of E(Φ) and the proof of statement (2) with E(Φ) instead of E(Φ).

Statement (3) in Theorem 8 does not follow automatically from statements (1) and (2),

because transitivity cannot be assumed. That is, even when E(Φ) ⊑∗c E(Φ) and E(Φ) ⊑∗c E(Φ),

we must still prove that E(Φ) ⊑∗c E(Φ). The proof shows how to do this in a natural manner.
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In addition to comparative statics of the entire equilibrium set, Theorem 8 provides a

foundation for a formal theory of order approximation of equilibria. Statement (1) shows that

in models with an isotone infimum selection, every subset of equilibria has a largest lower bound

among equilibria that arise using the infimum selection. Therefore, if E ⊆ E(Φ) formalizes a

specialized equilibrium notion or an equilibrium refinement, it can be uniquely approximated

from below in a formal order theoretic manner using equilibria from the infimum selection. In

the special case that E = {e∗} is a singleton, this proves that every equilibrium e∗ ∈ E(Φ) can be

uniquely order approximated from below by an equilibrium in E(Φ). This may be particularly

useful if the infimum selection is easier to work with or have some useful computational,

dynamic, or theoretical properties (see, for example, Becker and Rincón-Zapatero (2021)).

This result requires very little structure for the lattice model (only isotone infimum selection).

Moreover, if E(Φ) is a lattice, then E(Φ) ⊑∗ℓ E(Φ) implies that for every equilibrium

x̂ ∈ E(Φ) and x̃ ∈ E(Φ), if x̂ ̸⪯ x̃, then there is a different and unique equilibrium x̂ ∈ E(Φ)

that is the largest equilibrium in E(Φ) smaller than both of these equilibria.

Similarly, statement (2) formalizes the notion that in models with an isotone supremum

selection, every nonempty subset E of equilibria can be uniquely approximated from above

as a smallest upper bound using equilibria from the supremum selection. In the special case

that E = {e∗} is a singleton, this proves that every equilibrium e∗ ∈ E(Φ) can be uniquely

order approximated from above by an equilibrium in E(Φ). This result also requires very little

structure for the lattice model (only isotone supremum selection). For example, Rostek and

Yoder (2020) show that in matching with complementarities, stable outcomes are characterized

by the largest fixed point of a monotone operator.

In models with both isotone infimum and supremum selections, both sets of results hold.

Theorem 8 implies corresponding comparisons among equilibrium sets in all standard mod-

els with complementarities and order approximation of equilibria in these models as well.

Corollary 9. In every Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model,

1. (a) E(Φ) ⊑∗c E(Φ) (b) E(Φ) ⊑∗c E(Φ) (c) E(Φ) ⊑∗c E(Φ)

2. (a) E(Φ) ⊑∗ℓ E(Φ) (b) E(Φ) ⊑∗ℓ E(Φ) (c) E(Φ) ⊑∗ℓ E(Φ)
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Proof. Special cases of statements (1), (2), and (3) in Theorem 8.

If only the infimum or supremum selection is available, Theorem 8 implies that in every

CKK-1, ICKK-1, GQS-1, and PY-1 model, E(Φ) ⊑∗c E(Φ) and in every CKK-2, ICKK-2,

GQS-2, and PY-2 model, E(Φ) ⊑∗c E(Φ).

As shown in Example 21, comparability of equilibrium sets in the strong set order may

fail even in the standard S-model used to motivate complementarities. On the other hand,

our results show that the equilibrium sets in Example 21 are naturally comparable in star

complete set order and in the star lattice set order. That is, E(Φ) ⊑∗c E(Φ); E(Φ) ⊑∗c E(Φ);

and E(Φ) ⊑∗c E(Φ); and also, E(Φ) ⊑∗ℓ E(Φ); E(Φ) ⊑∗ℓ E(Φ); and E(Φ) ⊑∗ℓ E(Φ).

Example 22 (Extended S-model). Consider the extended S-model depicted in Figure 4 with

correspondence Φ(x) = [Φ(x),Φ(x)] and the same interpretation as Figure 1. The full equilib-

rium set is E(Φ) = [x1, x2]∪[x3, x4]∪[x5, x6]∪[x7, x7]∪[x7, x10], the equilibrium set correspond-

ing to the infimum selection is E(Φ) = {x1, x4, x5, x8, x9}, and the one corresponding to to the

supremum selection is E(Φ) = {x2, x3, x6, x6, x10}. In this case, supX{x4, x3} = x4 ̸∈ E(Φ),

but supE(Φ){x4, x3} = x6 ∈ E(Φ) as guaranteed by the star lattice set order using Theorem

8, and similarly, infX{x8, x6} = x6 ̸∈ E(Φ), but infE(Φ){x8, x6} = x5 ∈ E(Φ). Moreover, this

shows a distinction between using the star complete set order to compare equilibrium sets and

a standard application of the weak set order using extremal equilibria, as follows. We know

that E(Φ) ⊑w E(Φ), because ∀b ∈ E(Φ), x1 ⪯ b and ∀a ∈ E(Φ), a ⪯ x10, but this does not

give tight bounds for a given equilibrium. The star complete set order is more specific and

gives the closest order approximation, for example, supE(Φ){x4} = x6 ∈ E(Φ), and this is the

“closest equilibrium” to x4 (in terms of order) when considering equilibria in E(Φ), and simi-

larly, infE(Φ){x7} = x5 ∈ E(Φ), and more generally, a similar computation for every subset E

of equilibria. It is easy to modify this example to provide order approximations of equilibria

in parametric models as well, even when the strong set order fails to apply.

These results extend to models with parametric complementarities, as shown next.
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Figure 4: Extended S-model

4 General parametric models with complementarities

Parametric models are used to study the effect of exogenous parameters on the decision making

environment and the corresponding equilibrium. We include these effects in a general man-

ner by positing a partially ordered set T of parameters. A parametric lattice model is a

collection ((X,⪯X), (T,⪯T ),Φ), where (X,⪯X) is a nonempty, complete lattice, (T,⪯T ) is a

nonempty poset, and Φ : X × T ⇒ X is a correspondence. For each t ∈ T , the lattice model

at t is the triple (X,⪯X ,Φt) where Φt is the t-section of Φ.

An equilibrium at t is a fixed point of Φt, that is, a point x ∈ X such that x ∈ Φ(x, t).

The equilibrium set at t is E(Φt) = {x ∈ X | x ∈ Φ(x, t)}. The equilibrium correspon-

dence is E : T ⇒ X, t 7→ E(Φt). An equilibrium selection is a selection from the equilibrium

correspondence. An isotone equilibrium selection is an equilibrium selection that is an iso-

tone function. A parametric lattice model ((X,⪯X), (T,⪯T ),Φ) has monotone comparative

statics (MCS) of equilibrium if its equilibrium correspondence has an isotone selection.

A general parametric model with complementarities is a parametric lattice model

((X,⪯X), (T,⪯T ),Φ) with an isotone selection. A parametric lattice model ((X,⪯X), (T,⪯T

),Φ) is isotone supremum if ∀(x, t) ∈ X × T , Φ(x, t) := supΦ(x,t)Φ(x, t) ∈ Φ(x, t), and the
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function (x, t) 7→ Φ(x, t) is isotone. It is isotone infimum if ∀(x, t) ∈ X × T , Φ(x, t) :=

infΦ(x,t)Φ(x, t) ∈ Φ(x, t), and the function (x, t) 7→ Φ(x, t) is isotone. As earlier, neither strong

set order nor completeness nor subcompleteness nor continuity properties are used in these

definitions.

Example 23 (Parametric Topkis model). The parametric Topkis model is a finitely in-

dexed collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete lattice,

T is a poset (and using product order on Cartesian products), for each i, Fi : Xi×X−i×T → R

has decreasing differences in (xi, x−i) (∀t), and decreasing differences in (xi, t) (∀x−i), and for

each (x−i, t), Fi(·, x−i, t) is submodular onXi and upper semicontinuous in order interval topol-

ogy. For each x, y ∈ X and t ∈ T , let G(x, y, t) =
∑I

i=1 Fi(yi, x−i, t) and let Φ : X × T ⇒ X

be given by Φ(x, t) = argminy∈X G(x, y, t). The associated parametric lattice model is

((X,⪯X), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is product order, (T,⪯T ) is a poset, and Φ is

the correspondence as above.

Example 24 (Parametric Vives model). The parametric Vives model is a finitely indexed

collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete lattice, T is

a poset (and using product order on Cartesian products), for each i, Fi : Xi ×X−i × T → R

has increasing differences in (xi, x−i) (∀t), and increasing differences in (xi, t) (∀x−i), and for

each (x−i, t), Fi(·, x−i, t) is supermodular on Xi and upper semicontinuous in order interval

topology. For each (x−i, t), let Φi(x−i, t) = argmaxξ∈Xi
Fi(ξ, x−i, t). Let Φ : X × T ⇒ X be

given by Φ(x, t) = ×I
i=1Φi(x−i, t). The associated parametric lattice model is ((X,⪯X

), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯ is product order, (T,⪯T ) is a poset, and Φ = ×I

i=1Φi is

the product correspondence as above.

Example 25 (Parametric GMS model). The parametric GMS model is a finitely indexed

collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete lattice, T is

a poset (and using product order on Cartesian products), for each i, Fi : Xi ×X−i × T → R

has single crossing property in (xi, x−i) (∀t), and single crossing property in (xi, t) (∀x−i),

and for each (x−i, t), Fi(·, x−i, t) is quasisupermodular on Xi and upper semicontinuous in

order interval topology. For each (x−i, t), let Φi(x−i, t) = argmaxξ∈Xi
Fi(ξ, x−i, t). Let Φ :

X × T ⇒ X be given by Φ(x, t) = ×I
i=1Φi(x−i, t). The associated parametric lattice
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model is ((X,⪯X), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is product order, (T,⪯T ) is a poset,

and Φ = ×I
i=1Φi is the product correspondence as above. The parametric MR model is

nested as a special case of the parametric GMS model.

Example 26 (Parametric Zhou model). The parametric Zhou model is a parametric lattice

model ((X,⪯X), (T,⪯T ),Φ) in which Φ is isotone in the strong set order and for every (x, t),

Φ(x, t) is nonempty and subcomplete.

Example 27 (Parametric CKK model). The parametric CKK-1 model is a finitely indexed

collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete lattice, T is a

poset (and using product order on Cartesian products), for each i, Fi : Xi ×X−i × T → R has

weak dominance property in (xi, x−i) (∀t), and weak dominance property in (xi, t) (∀x−i). For

each i, fix a sublattice Si ⊆ Xi, and for every (x−i, t), let Φi(x−i, t) = argmaxξ∈Si
Fi(ξ, x−i, t),

and suppose that Φi(x−i, t) := infΦi(x−i,t)Φi(x−i, t) ∈ Φi(x−i, t). Let Φ : X × T ⇒ X be

given by Φ(x, t) = ×I
i=1Φi(x−i, t). The associated parametric lattice model is ((X,⪯X

), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is product order, (T,⪯T ) is a poset, and Φ = ×I

i=1Φi is

the product correspondence as above. As a second version, the parametric CKK-2 model

is a parametric CKK-1 model in which the property that infimum exists is replaced with

the property that supremum exists and other aspects remain the same. A parameteric

CKK model is one that is both parametric CKK-1 and parametric CKK-2. As mentioned

above, if, instead, we add the assumption that for each i and (x−i, t), Fi(·, x−i, t) is upper

semicontinuous in order interval topology and quasisupermodular, then the set of maximizers

has both a smallest and a largest element.

Example 28 (Parametric ICKK model). The parametric ICKK-1 model is a finitely

indexed collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete

lattice, T is a poset (and using product order on Cartesian products), for each i, Fi : Xi×X−i×

T → R has weak interval dominance property in (xi, x−i) (∀t), and weak interval dominance

property in (xi, t) (∀x−i). For each i, fix a subinterval Si ⊆ Xi, and for every (x−i, t), let

Φi(x−i, t) = argmaxξ∈Si
Fi(ξ, x−i, t) and suppose that Φi(x−i, t) := infΦi(x−i,t)Φi(x−i, t) ∈

Φi(x−i, t). Let Φ : X × T ⇒ X be given by Φ(x, t) = ×I
i=1Φi(x−i, t). The associated

parametric lattice model is ((X,⪯X), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is product order,

36



(T,⪯T ) is a poset, and Φ = ×I
i=1Φi is the product correspondence as above. As a second

version, the parametric ICKK-2 model is a parametric ICKK-1 model in which the property

that infimum exists is replaced with the property that supremum exists and other aspects

remain the same. A parametric ICKK model is one that is both parametric ICKK-1 and

parametric ICKK-2. As mentioned above, if, instead, we add the assumption that for each i and

(x−i, t), Fi(·, x−i, t) is upper semicontinuous in order interval topology and quasisupermodular,

then the set of maximizers has both a smallest and a largest element.

Example 29 (Parametric GQS model). The parametric GQS-1 model is a finitely indexed

collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, Xi is a nonempty, complete lattice, T

is a poset (and using product order on Cartesian products), for each i, Fi : Xi × X−i ×

T → R has interval dominance property in (xi, x−i) (∀t), and interval dominance property in

(xi, t) (∀x−i). For each i, fix a subinterval Si ⊆ Xi, and for every (x−i, t), let Φi(x−i, t) =

argmaxξ∈Si
Fi(ξ, x−i, t) and suppose that Φi(x−i, t) := infΦi(x−i,t)Φi(x−i, t) ∈ Φi(x−i, t). Let

Φ : X × T ⇒ X be given by Φ(x, t) = ×I
i=1Φi(x−i, t). The associated parametric lattice

model is ((X,⪯X), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is product order, (T,⪯T ) is a poset,

and Φ = ×I
i=1Φi is the product correspondence as above. As a second version, the parametric

GQS-2 model is a parametric GQS-1 model in which the property that infimum exists is

replaced with the property that supremum exists and other aspects remain the same. A

parametric GQS model is one that is both parametric GQS-1 and parametric GQS-2. As

mentioned above, if, instead, we add the assumption that for each i and (x−i, t), Fi(·, x−i, t)

is upper semicontinuous in order interval topology and quasisupermodular, then the set of

maximizers has both a smallest and a largest element.

Example 30 (Parametric GCKK model). The above models based on Che, Kim, and Kojima

(2021) are summarized as follows. A generalized parametric CKK-1 model, or parametric

GCKK-1 model is one that is either a parametric CKK-1 model or a parametric ICKK-1

model or a parametric GQS-1 model. A generalized parametric CKK-2 model, or parametric

GCKK-2 model is one that is either a parametric CKK-2 model or a parametric ICKK-2

model or a parametric GQS-2 model. A generalized parametric CKK model, or parametric

GCKK model is one that is either a parametric CKK model or a parametric ICKK model

or a parametric GQS model.
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Example 31 (Parametric PY model). A parametric PY-1 (respectively, PY-2) model is

a finitely indexed collection ((Xi,⪯i, Fi)
I
i=1, (T,⪯T )), where for each i, (Xi,⪯i) is a nonempty,

complete chain (hence compact in the order interval topology), and using product order on

products of Xi, for each i, Fi : Xi × X−i × T → R is transfer weakly upper semicontinu-

ous in xi, and Fi satisfies the downward (respectively, upward) transfer single crossing prop-

erty in (xi, x−i) for each t, and in (xi, t) for each x−i. For each (x−i, t), let Φi(x−i, t) =

argmaxξ∈Xi
Fi(ξ, x−i, t). Let Φ : X × T ⇒ X be given by Φ(x, t) = ×I

i=1Φi(x−i, t). The

associated parametric lattice model is ((X,⪯X), (T,⪯T ),Φ), where X = ×I
i=1Xi, ⪯X is

product order, (T,⪯T ) is a poset, and Φ = ×I
i=1Φi is the product correspondence as above. A

parametric PY model , is one that is both parametric PY-1 and parametric PY-2.

Example 32 (Parametric standard and neostandard models). Finally, a standard paramet-

ric model with complementarities, or standard parametric model , is one that is either

a parametric Topkis model, or parametric Vives model, or parametric MR model, or paramet-

ric GMS model. A parametric neostandard model is on that is either parametric GCKK

or parametric PY. A parametric neostandard-1 model is one that is either parametric

GCKK-1 or parametric PY-1, and a parametric neostandard-2 model is one that is either

parametric GCKK-2 or parametric PY-2.

Theorem 10 shows that the patterns of decentralized interdependent behavior in all the

different standard and neostandard parametric models are unified in terms of the same isotone

properties on the joint correspondence Φ.

Theorem 10. Consider the class of standard and neostandard parametric models.

1. For every parametric Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model, its asso-

ciated parametric lattice model is isotone infimum and isotone supremum.

2. For every parametric GCKK-1, PY-1 (respectively, GCKK-2, PY-2) model, its associated

parametric lattice model is isotone infimum (respectively, supremum).

Proof. Similar to that of Theorem 1.

Theorem 11. Consider the class of parametric lattice models.
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1. In every general parametric model with complementarities, there are two isotone equi-

librium selections. In particular, every general parametric model with complementarities

has MCS of equilibrium.

2. (a) Every parametric isotone supremum model has two isotone equilibrium selections:

t 7→ supE(Φt)
E(Φt) and t 7→ infE(Φt)

E(Φt). The two selections are different if, and

only if, there is even one t such that E(Φt) has multiple equilibria.

(b) The supremum selection t 7→ supE(Φt)
E(Φt) selects the largest equilibrium in the

general model at t, for every t ∈ T .

(c) Every parametric isotone supremum model has MCS of supremum equilibrium.

3. (a) Every parametric isotone infimum model has two isotone equilibrium selections:

t 7→ infE(Φt)
E(Φt) and t 7→ supE(Φt)

E(Φt). The two selections are different if, and

only if, there is even one t such that E(Φt) has multiple equilibria.

(b) The infimum selection t 7→ infE(Φt)
E(Φt) selects the smallest equilibrium in the

general model at t, for every t ∈ T .

(c) Every parametric isotone infimum model has MCS of infimum equilibrium.

4. Every parametric isotone infimum and supremum model has MCS of extremal equilib-

rium.

Proof. To prove statement (1), let ((X,⪯X), (T,⪯T ),Φ) be a general parametric model with

complementarities and f : X×T → X be an isotone selection. Letting ft denote the section of

f determined by t, it follows that ∀t ∈ T , (X,⪯, ft) is a general model with complementarities.

As ft is an isotone function, Tarski’s theorem implies that the equilibrium set E(ft) is a

nonempty complete lattice. Let e(t) = supE(ft) E(ft) ∈ E(ft) ⊆ E(Φt) Then t 7→ e(t) is an

equilibrium selection. To see that it is isotone, fix t̂ ⪯T t̃. We know that e(t̂) = supX A,

where A = {x ∈ X | x ⪯X f(x, t̂)} and that e(t̂) ∈ A. Similarly, e(t̃) = supX B, where

B = {x ∈ X | x ⪯X f(x, t̃)}. As f is isotone, A ⊆ B, and therefore, e(t̂) ∈ B, whence

e(t̂) ⪯ e(t̃), as desired. Similarly, it can be shown that t 7→ e(t) := infE(ft) E(ft) is an isotone

equilibrium selection.
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Statement (2)(a) is proved similarly and the second part of (2)(a) follows from the fact

that ∀t, infE(Φt)
E(Φt) = supE(Φt)

E(Φt) ⇔ E(Φt) is a singleton. Statement 2(b) follows from

Theorem 2. Statement (2)(c) follows from (2)(b). Statement (3) is proved similarly. Statement

(4) follows from statements (2)(c) and (3)(c).

Statements 2(a) and 3(a) in Theorem 11 prove that there are other isotone equilibrium

selections in general models with complementarities besides the extremal ones under weak

conditions, that is, if there is even one t for which there are multiple equilibria at t for the

corresponding equilibrium set. Thus, if we typically expect multiple equilibria in models with

complementarities, we may also expect more isotone equilibrium selections than the extremal

ones commonly identified in standard models. This shows another new structural feature of

equilibrium in general models with complementarities.

Corollary 12. Consider the class of standard and neostandard parametric models.

1. Every parametric Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model has MCS of

extremal equilibrium.

2. Every parametric GCKK-1, PY-1 (respectively, GCKK-2, PY-2) model has MCS of in-

fimum (respectively, supremum) equilibrium.

Proof. Follows from Theorem 10 and Theorem 11.

Theorem 13 generalizes Theorem 11 to provide results for parameteric comparisons of entire

equilibrium sets (as compared to particular equilibrium selections).

Theorem 13. Consider the class of parametric lattice models.

1. In every parametric isotone infimum model, for every t̂ ⪯ t̃,

(a) E(Φt̂) ⊑∗c E(Φt̃), (b) E(Φt̂) ⊑∗c E(Φt̃) and (c) E(Φt̂) ⊑∗ℓ E(Φt̃).

Moreover, (d) if E(Φt̃) is a lattice, then E(Φt̂) ⊑∗ℓ E(Φt̃).

2. In every parametric isotone supremum model, for every t̂ ⪯ t̃,

(a) E(Φt̂) ⊑∗c E(Φt̃), (b) E(Φt̂) ⊑∗c E(Φt̃) and (c) E(Φt̂) ⊑∗ℓ E(Φt̃).

Moreover, (d) if E(Φt̂) is a lattice, then E(Φt̂) ⊑∗ℓ E(Φt̃).
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3. In every parametric lattice model that is isotone infimum and isotone supremum, for

every t̂ ⪯ t̃, in addition to (1) and (2), E(Φt̂) ⊑∗c E(Φt̃) and E(Φt̂) ⊑∗ℓ E(Φt̃).

4. In every parametric lattice model that is isotone infimum and isotone supremum, if for

every t, (X,⪯X ,Φt) is either isotone supremum on lower intervals or isotone infimum

on upper intervals, then for every t̂ ⪯ t̃, in addition to (1), (2) and (3), E(Φt̂) ⊑∗c E(Φt̃)

and E(Φt̂) ⊑∗ℓ E(Φt̃).

Proof. For statement (1), fix t̂ ⪯ t̃. To show that E(Φt̂) is sup-complete in E(Φt̃), consider

nonempty E ⊆ E(Φt̂). Let ē = supX E ∈ X, as X is complete. Consider Ψ : [e, x] → [e, x] given

by Ψ(x) = Φt̃(x). Then e ∈ E ⊆ E(Φt̂) and Φ(x, t) is isotone imply e = Φt̂(e) ⪯ Φt̂(e) ⪯ Φt̃(e).

Therefore, Φt̃(e) is an upper bound for E, whence e ⪯ Φt̃(e). Moreover, for every x ∈ [e, x],

e ⪯ Φt̃(e) ⪯ Φt̃(x) ⪯ x. This shows that Ψ is well-defined and therefore, ([e, x],⪯X ,Ψ) is a

lattice model in which Ψ is an isotone function. Let ê be the smallest fixed point of Ψ. Then

e ⪯ ê =⇒ ê is an upper bound for E and ê ∈ Ψ(ê) = Φt̃(ê) =⇒ ê ∈ E(Φt̃). Let e ∈ E(Φt̃) be

an arbitrary upper bound for E. Then e ⪯ e and e = Φt̃(e) = Ψ(e), showing that e is a fixed

point of Ψ, whence ê ⪯ e. This shows that supE(Φt̃)
E = ê ∈ E(Φt̃).

To show that E(Φt̃) is inf-complete in E(Φt̂), consider nonempty E ⊆ E(Φt̃). Let e =

infX E ∈ X. Consider Ψ : [x, e] → [x, e] given by Ψ(x) = Φt̂(x). Then e ∈ E ⊆ E(Φt̃) and

Φ(x, t) is isotone imply e = Φt̃(e) ⪰ Φt̃(e) ⪰ Φt̂(e). Therefore, Φt̂(e) is a lower bound for

E, whence e ⪰ Φt̂(e). Moreover, for every x ∈ [x, e], e ⪰ Φt̂(e) ⪰ Φt̂(x) ⪰ x. This shows

that Ψ is well-defined and therefore, ([e, x],⪯X ,Ψ) is a lattice model in which Ψ is an isotone

function. Let ê be the greatest fixed point of Ψ. Then e ⪰ ê =⇒ ê is a lower bound for E

and ê ∈ Ψ(ê) = Φt̂(ê) =⇒ ê ∈ E(Φt̂). Let e ∈ E(Φt̂) be an arbitrary lower bound for E. Then

e ⪰ e and e = Φt̂(e) = Ψ(e), showing that e is a fixed point of Ψ, whence ê ⪰ e. This shows

that infE(Φt̂)
E = ê ∈ E(Φt̂). It follows that E(Φt̂) ⊑∗c E(Φt̃).

To show that E(Φt̂) is sup-complete in E(Φt̃), consider nonempty E ⊆ E(Φt̂). Let ē =

supX E ∈ X. Consider Ψ : [e, x] ⇒ [e, x] given by Ψ(x) = Φt̃(x) ∩ [e, x]. Then e ∈ E ⊆ E(Φt̂)

and Φ(x, t) is isotone imply e = Φt̂(e) ⪯ Φt̂(e) ⪯ Φt̃(e). Therefore, Φt̃(e) is an upper bound

for E, whence e ⪯ Φt̃(e). Moreover, for every x ∈ [e, x], e ⪯ Φt̃(e) ⪯ Φt̃(x) ⪯ x. This shows

that Φt̃(x) ∈ Ψ(x), and therefore, Ψ is nonempty valued and ([e, x],⪯X ,Ψ) contains an isotone
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infimum model. Let ê be the smallest fixed point of Ψ. Then ê ∈ Ψ(ê) = Φt̃(ê) ∩ [e, x] implies

ê ∈ E(Φt̃) and e ⪯ ê implies that ê is an upper bound for E. Let e ∈ E(Φt̃) be an arbitrary

upper bound for E. Then e ⪯ e and e ∈ Φt̃(e) ∩ [e, x] = Ψ(e), showing that e is a fixed point

of Ψ, and consequently, ê ⪯ e. Therefore, supE(Φt̃)
E ∈ E(Φt̃).

Finally, E(Φt̃) is inf-complete in E(Φt̂) can be proved in a manner very similar to the proof

for E(Φt̃) is inf-complete in E(Φt̂). It follows that E(Φt̂) ⊑∗c E(Φt̃). Statements (1)(c) and

(1)(d) follow from Theorem 7, statement (3)(c).

Statement (2) is proved similarly. For statement (3), E(Φt̂) is sup-complete in E(Φt̃) can

be proved in a manner very similar to the proof for E(Φt̂) is sup-complete in E(Φt̃), and

E(Φt̃) is inf-complete in E(Φt̂) can be proved in a manner very similar to the proof for E(Φt̃)

is inf-complete in E(Φt̂). This shows that E(Φt̂) ⊑∗c E(Φt̃). Theorem 7 now implies that

E(Φt̂) ⊑∗ℓ E(Φt̃).

For statement (4), to show that E(Φt̂) is sup-complete in E(Φt̃), consider nonempty E ⊆

E(Φt̂). The hypotheses imply that supE(Φt̃)
E(Φt̃) is an upper bound of E in E(Φt̃) and E(Φt̃)

is complete. Therefore, ê = infE(Φt̃)
{x ∈ E(Φt̃) | x is an upper bound of E} ∈ E(Φt̃), whence

supE(Φt̃)
E = ê ∈ E(Φt̃). Similarly, E(Φt̃) is inf-complete in E(Φt̂). This shows that E(Φt̂) ⊑∗c

E(Φt̃). Theorem 7 now implies that E(Φt̂) ⊑∗ℓ E(Φt̃).

In Theorem 13, transitivity of any of the equilibrium correspondences in t cannot be as-

sumed automatically, but it follows immediately from transitivity of the partial order on T ,

⪯T , as follows. For example, in statement (1) in Theorem 13, consider a parametric iso-

tone infimum model and fix arbitrarily t1 ⪯T t2 and t2 ⪯T t3. Then E(Φt1) ⊑∗c E(Φt2) and

E(Φt2) ⊑
∗c E(Φt3). To conclude that E(Φt1) ⊑

∗c E(Φt3), we use transitivity of ⪯T to conclude

that t1 ⪯T t3 and then apply statement (1) using t1 ⪯T t3.

Theorem 13 provides a foundation for new theories of monotone comparative statics of

the full equilibrium set, the infimum equilibrium set, and the supremum equilibrium set. A

parametric lattice model ((X,⪯X), (T,⪯T ),Φ) has monotone comparative statics (MCS)

of the full equilibrium set in the star complete set order if the mapping t 7→ E(Φt) is

isotone in the star complete set order; that is, for every t̂ ⪯ t̃, E(Φt̂) ⊑∗c E(Φt̃). It has MCS of

the infimum equilibrium set in the star complete set order if the mapping t 7→ E(Φt̂)
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is isotone in the star complete set order, and it has MCS of the supremum equilibrium

set in the star complete set order if the mapping t 7→ E(Φt̂) is isotone in the star complete

set order. Statements for MCS in the star lattice set order are defined analogously.

Corollary 14. Consider the class of parametric lattice models.

1. Every parametric isotone infimum model has MCS of the infimum equilibrium set in the

star complete set order and in the star lattice set order.

2. Every parametric isotone supremum model has MCS of the supremum equilibrium set in

the star complete set order and in the star lattice set order.

3. Every parametric isotone infimum and supremum model in which for every t, (X,⪯X ,Φt)

is either isotone supremum on lower intervals or isotone infimum on upper intervals has,

in addition to (1) and (2), MCS of the full equilibrium set in the star complete set order

and in the star lattice set order.

Proof. Follows from Theorem 13.

Statements (1) and (2) in Corollary 14 require very little structure on the parametric model

(just isotone infimum or isotone supremum). Statement (1) in Corollary 14 generalizes to the

entire infimum equilibrium set the statement about MCS of the infimum equilibrium point in

Theorem 11, statement (2) generalizes to the entire supremum equilibrium set the statement

about MCS of the supremum equilibrium point, and statement (3) provides two generalizations

of the statement about MCS of extremal equilibria, one to MCS of the extremal equilibrium

sets and the other to MCS of the entire equilibrium set. These results complement theories of

monotone selections of equilibrium, as in Echenique (2002), and theories based on the uniform

set order, as in Shannon (1995) and Echenique and Sabarwal (2003).

Indeed, when Φ is singleton valued, every general parametric model with complementarities

satisfies the assumptions in every statement in Theorem 13 and Corollary 14, leading to the

following corollary.

Corollary 15. For every general parametric model with complementarities (X,⪯,Φ) in which

Φ is singleton valued, the model necessarily has MCS of the full equilibrium set in both the star

complete set order and the star lattice set order.
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Proof. Follows from Theorem 13 and Corollary 14.

Correspondence Φ is singleton valued is a common situation in applications and is also the

framework in Tarski (1955), and therefore, this corollary necessarily applies to both situations

without additional assumptions. This is not true for the strong set order (or the uniform set

order). Example 21 shows that comparability of parametric equilibrium sets may not hold in

the strong set order even in the canonical S-model used to motivate complementarities. This

can be seen by parameterizing the model in Example 21 by T = {0, 1, 2}, and defining Φ0, Φ1,

and Φ2 as follows: Φ0(x) = Φ(x), Φ1(x) = [Φ(x),Φ(x)], and Φ2(x) = Φ(x). Similarly, Example

22 shows a distinction between standard applications of the weak set order using extremal

equilibrium selections and the “closest approximation” (in terms of order) guaranteed here.

Theorem 13 implies the following corollaries about standard parametric models.

Corollary 16. In every parametric Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model,

1. For every t̂ ⪯ t̃,
(a) E(Φt̂) ⊑∗c E(Φt̃) (b) E(Φt̂) ⊑∗c E(Φt̃) (c) E(Φt̂) ⊑∗c E(Φt̃)

(d) E(Φt̂) ⊑∗c E(Φt̃) (e) E(Φt̂) ⊑∗c E(Φt̃) (f) E(Φt̂) ⊑∗c E(Φt̃)

2. For every t̂ ⪯ t̃,
(a) E(Φt̂) ⊑∗ℓ E(Φt̃) (b) E(Φt̂) ⊑∗ℓ E(Φt̃) (c) E(Φt̂) ⊑∗ℓ E(Φt̃)

(d) E(Φt̂) ⊑∗ℓ E(Φt̃) (e) E(Φt̂) ⊑∗ℓ E(Φt̃) (f) E(Φt̂) ⊑∗ℓ E(Φt̃)

Proof. Follows from Theorem 13.

Corollary 17. Every parametric Topkis, Vives, MR, GMS, Zhou, GCKK, and PY model has

MCS of the infimum equilibrium set, the supremum equilibrium set, and the full equilibrium

set in star complete set order and star lattice set order.

Proof. Follows from Corollary 16.

Corollary 18. 1. In every parametric GCKK-1, PY-1 model, for every t̂ ⪯ t̃, E(Φt̂) ⊑∗c

E(Φt̃), E(Φt̂) ⊑∗c E(Φt̃), and E(Φt̂) ⊑∗ℓ E(Φt̃). Therefore, every parametric GCKK-1,

PY-1 model has MCS of the infimum equilibrium in set star complete set order and star

lattice set order.

2. In every parametric GCKK-2, PY-2 model, for every t̂ ⪯ t̃, E(Φt̂) ⊑∗c E(Φt̃), E(Φt̃) ⊑∗c

E(Φt̂) ⊑∗c, and E(Φt̂) ⊑∗ℓ E(Φt̃). Therefore, every parametric GCKK-2, PY-2 model
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has MCS of the supremum equilibrium set in star complete set order and star lattice set

order.

Proof. Follows from Theorem 13.

5 Conclusion

We unify and generalize the theory of equilibrium in standard models with complementarities

prevalent in the literature. We show that the patterns of decentralized interdependent behavior

in all the different standard and neostandard models are unified in terms of the same isotone

properties of their joint correspondence. We prove that the main benefits of different standard

models with complementarities such as existence of extremal equilibria and MCS of extremal

equilibria hold in the general model using only isotone infimum and isotone supremum selec-

tions. These results do not require continuity, strong set order, subcompleteness, or even lattice

valued correspondences. We provide weaker conditions on correspondences under which the

equilibrium set is a nonempty complete lattice, generalizing the well-known structure theorems

of Zhou (1994) and Tarski (1955). This helps plug a gap in the literature between individual

behavior and structure of systemic equilibrium outcomes.

We formulate two new set orders and show that these relations formalize equilibrium set

comparisons in general models with complementarities. Using these set orders, we prove new

theorems for MCS of the infimum equilibrium set, the supremum equilibrium set, and the

full equilibrium set. These theorems hold in all the standard and neostandard models under

natural conditions and allow for additional new cases. Moreover, our results provide a new

theory of order approximation of equilibria using only the infimum selection or the supremum

selection. Taken together, these results unify and expand the theory of equilibrium in models

with complementarities, increase its scope of application, identify previously unknown struc-

tural relationships among equilibrium sets in such models, and formulate new theories of MCS

of equilibrium sets.
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