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1 Introduction

When evaluating the impact of policy interventions, one of the main challenges lies in

estimating unknown counterfactual outcomes. With observable covariates, a natural idea is
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to construct an outcome regression model. In practice, the classic linear regression model is

usually inadequate or even incorrect. To fully capture the relationship between the covariates

and the outcomes, researchers suggest using the nonparametric model which can avoid the

risk of model misspecification. However, the nonparametric model is challenged by the so-

called curse of dimensionality. Therefore, as a combination of the parametric model and

the nonparametric model, the semiparametric model has been conceived to overcome the

aforementioned limitations.

There is a vast literature concerning applying semiparametric techniques to estimate the

treatment effect and the existing research can be divided into two categories: estimating

the counterfactual outcomes directly and indirectly. For the former, various semiparametric

approaches have been used to estimate the conditional mean function or the conditional

quantile function. For example, Heckman, Ichimura and Todd (1998) propose a kernel-

matching-based estimator for the average treatment effect (ATE) and present a rigorous

distributional theory, while Chiburis (2010) discusses the semiparametric bounds on the av-

erage treatment effect of a binary treatment on a binary outcome. Under the framework

of the latent factor model to vary cross-section, Hsiao, Ching and Wan (2012) initiate an

approach, termed as the panel data approach (PDA), that offers more flexibility than the

DID, under a linear setting, and further, Ouyang and Peng (2015) extend the PDA approach

to the nonlinear setting by allowing the conditional mean of the outcome to have a semi-

parametric form. As for the latter one, under the ignorability assumption, many scholars

have proposed to first estimate the propensity score and then estimate the treatment effect

of our interest by either re-weighting or matching technique. For details, see, for example,

the papers by Abadie and Imbens (2006), Firpo (2007), Cattaneo (2010), Galvao and Wang

(2015) and references therein.

One of the most important semiparametric models is the single index model. Friedman

and Stuetzle (1981) propose the projection pursuit regression, which can be regarded as

the prototype of the single index model. On the one hand, the single index model projects

the multidimensional covariates into a one-dimensional single index variable by a linear

transformation. On the other hand, it assumes an unknown nonlinear link function for

the single index variable, which is greatly flexible. In the field of policy evaluation, the
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single index model is usually used to analyze the relationship between the covariates and

the treatment variables; see, instance, Park et al. (2021) and Sun, Yan and Li (2021). This

relationship is measured by the so-called propensity score. The propensity score is unknown

and needs to be estimated, which is sensitive to the model specification. As shown by Frölich

(2004) and Kang and Schafer (2007), the misspecification of the propensity score can lead

to misleading treatment effect estimates. Hence, using the single index model to flexibly

characterize this relationship is advantageous.

In this article, our focus is on the statistical inference for the average treatment effect

under the framework of the single index model. Our estimation procedure consists of two

steps. First, parameters in the single index model are estimated by the minimum average

variance estimation (MAVE) method proposed by Xia et al. (2002) and the penalized MAVE

method by combining the bridge regression with MAVE, considered in Wang, Xu and Zhu

(2013). In such a way, one can estimate the index with a possibility to take care of sparsity

and choose covariates. In the second step, a nonparametric kernel smooth technique can

be applied to estimate the weights for estimating the counterfactual outcomes. We make

several contributions to the literature. First, our method is the first attempt to conduct a

formal statistical inference for average treatment effects for single index models. Second,

by using the generalized U-statistic technique for two samples, we derive the asymptotic

inference theory for the corresponding ATE estimator. Third, we propose a properly designed

(hybrid) Bootstrap method by combining the wild Bootstrap and the classical nonparametric

Bootstrap and show that the carefully designed Bootstrap method provides valid inferences

theoretically and empirically. Finally, we provide a simple sufficient condition under which

the treatment effect estimator is uniquely determined and fast computing and show via

simulations and an empirical example that the proposed method, which is robust to nonlinear

model situations, can greatly enhance the applicability to estimating ATE. Therefore, our

work complements the existing inference work in the literature on treatment effects.

The rest of the paper is organized as follows. Section 2 first presents the model setup

for our method, and the estimation procedure is described in detail. Also, in this section,

the asymptotic theory for the proposed estimator is given and a carefully designed Boot-

strap method is provided with a theoretical justification for valid inferences. For choosing
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covariates and taking care of sparsity, the penalized MAVE method is developed in the same

section. A simulation study is conducted in Section 3 to illustrate the finite sample perfor-

mance. Section 4 is devoted to reporting the empirical analysis of using our quasi synthetic

control method to analyze the data from the National Supported Work (NSW) Demonstra-

tion. Finally, Section 5 concludes the paper. All detailed technical proofs are collected in

Appendix.

2 Quasi Synthetic Control Method

2.1 Setup

Assume we observe n units and some of units are exposed to the treatment or intervention

of our interest. The treatment status of unit i is indicated by a binary variable Di, where

Di = 1 if i unit is treated and Di = 0 otherwise. To define treatment effects, we adopt the

potential outcomes framework proposed by Rubin (1974). Formally speaking, for each unit

i, let Y1i and Y0i be the random variables representing potential outcomes under treatment

and under no treatment, respectively. Then, the observed outcome Yi can be written as

Yi = DiY1i + (1 − Di)Y0i; that is to say, we can only observe Y1i for the treated unit and

Y0i for the control unit. Besides, for each unit i, we can also observe a (d × 1) vector of

pre-treatment predictors of Y0i and denote it as Xi ∈ Rd, where d might be relatively large.

Assume there are n1 units receiving the treatment and the remaining n0 = n − n1 units

are not exposed to the treatment. For simplicity, we reorder these units so that the n0

control units come first in the data set. Then, the observable data set can be written as

{Yi, Di, Xi}ni=1 with j = 1, . . . , n0 being the control units and i = n0 + 1, . . . , n being the

treated units.

The quantities of our interest are the treatment effects at different levels. The basic one

is the individual treatment effect on the treated units i = n0 + 1, . . . , n, which is defined as

∆i = Y1i − Y0i. Given ∆i, the average treatment effect estimator is defined by:

∆ = E(∆i) = E(Y1i − Y0i). (1)

The difficulty of estimating ∆i and ∆ lies in the fact that {Y0i}ni=n0+1 are not observable.
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These unobservables are also named as the counterfactual outcomes and the estimation of

the counterfactual outcomes constitutes the core of the research on the treatment effect.

2.2 Estimation Procedure

To consider a general setting, we consider the prediction function based on the conditional

expectation of Y0i given Xi, denoted by m(x) = E(Y0i|Xi = x), in an index form as m(x) =

m(β⊤x) = m(z), where m(·) is an unknown function and z = β⊤x ∈ R1, which covers the

linear model as a special case. For the identification purpose, it is commonly assumed, in

what follows, that the first element of β is positive and ||β||2 =
󰁓d

k=1 β
2
k = 1. Then, for

i = n0 + 1, . . . , n, E(Y0i) = E [E(Y0i|Xi)] = E [E(Y0i|Zi)], where Zi = β⊤Xi for a given β,

so that the estimation of m(z) is one-dimensional and the so-called curse of dimensionality

in a nonparametric smoothing can be avoided. Under Assumption A1 in Section 2.3, the

kernel type (Nadaraya-Watson)1 estimate of m(z), based on the data {(Yj, Xj)}n0
j=1 from

pre-intervention, is given by

m̃(z) =

n0󰁛

j=1

cj,h(z)Yj, (2)

where cj,h(z) = Kh(Zj − z)/
󰁓n0

l=1 Kh(Zl − z), Kh(u) = K(u/h)/h, and K(u) is a kernel

function, and h is the bandwidth. Now, the infeasible prediction of Y0i is denoted by Ỹ0i

Ỹ0i = m̃(Zi) =

n0󰁛

j=1

cj,h(Zi)Yj (3)

for i = n0 + 1, . . . , n. Actually, (3) is infeasible since it is based on the unknown quantities

{Zj}n0
j=1. Accordingly, the infeasible estimate of ∆, ∆̃ is given by

∆̃ =
1

n1

n󰁛

i=n0+1

󰀥
Y1i −

n0󰁛

j=1

cj,h(Zi)Yj

󰀦
=

1

n1

n󰁛

i=n0+1

Yi −
1

n0

n0󰁛

j=1

aj,hYj, (4)

where aj,h = ah(Zj) and

ah(z) =
1

n1

n󰁛

i=n0+1

Kh(Zi − z)

󰀥
1

n0

n0󰁛

l=1

Kh(Zl − Zi)

󰀦−1

.

1Of course, one can use the kernel smoothing technique such as the local polynomial estimation method
as in Fan and Gijbels (1996).
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Clearly, under this nonlinear setting, we need to find the weights β such that β⊤Xi can

be the best to predict Y0i for i = 1, . . . , n0. In other words, we need to search for β such as its

conditional expectation of Y0i given Zi matches the conditional expectation of Y0i given Xi

as close as possible. Therefore, to do so, we suggest using the index model and its estimation

approach described in Section 2.4.

Interestingly, our method shares some similarities and differences with the synthetic con-

trol method (SCM) proposed by Abadie and Gardeazabal (2003), which has been described

as “arguably the most important innovation in the policy evaluation literature in the last

15 years” as argued by Athey and Imbens (2017). Although the SCM is originally designed

to deal with the panel data setting, Abadie and L’Hour (2021) present a penalized version

of the SCM for disaggregated data. For each treated unit i = n0 + 1, . . . , n, a synthetic

control can be represented by a n0 × 1 vector of weights, Wsc
i = (W sc

i,1, . . . ,W
sc
i,n0

)⊤. Given

a set of weights, Wsc
i , the synthetic control estimators (linear predictor) of Y0i and ∆i are

Ŷ0i =
󰁓n0

j=1 W
sc
i,jYj and ∆̂i = Y1i − Ŷ0i, respectively. Apparently, cj,h(Zi) in (3) is identical

to the SCM weights Wsc
i defined in Equation (4) in Abadie and L’Hour (2021). However,

different from Abadie and L’Hour (2021), our weights {cj,h(Zi)} takes care of both the best

prediction to resemble the characteristics of the treated unit before the intervention and

nonlinearity of prediction function since our model is in a semiparametric nature. Besides,

our approach does not require that weights aj,h should satisfy the standard constraints as

in Abadie and L’Hour (2021). Instead, our method is similar to that for the PDA as in

Hsiao, Ching and Wan (2012) and Wan, Xie and Hsiao (2018) as well as Ouyang and Peng

(2015), in the sense that it does not have constraints on weights such as nonnegative weights.

Therefore, our method is termed as the quasi synthetic control method (QSCM), although

both have different motivations.

Finally, from the above discussions, the QSCM estimation procedure for estimating ∆

consists of the following two steps. First, use (9) given in Section 2.4 to obtain β̂, and then,

set Ẑj = β̂⊤Xj for j = 1, · · · , n0 and Ẑi = β̂⊤Xi for i = n0 + 1, . . . , n. Second, compute the
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feasible estimate of ∆ based on (4), and ∆̂ is defined as

∆̂ =
1

n1

n󰁛

i=n0+1

󰀥
Y1i −

n0󰁛

j=1

ĉj,h(Ẑi)Yj

󰀦
=

1

n1

n󰁛

i=n0+1

Yi −
1

n0

n0󰁛

j=1

âj,hYj, (5)

where âj,h = âh(Ẑj) =
1
n1

󰁓n
i=n0+1 Kh(Ẑi − Ẑj)

󰁫
1
n0

󰁓n0

l=1 Kh(Ẑl − Ẑi)
󰁬−1

, which is similar to

W sc
j = (n0/n1)

󰁓n1

i=1 W
sc
i,j as in Equation (4) in Abadie and L’Hour (2021).

2.3 Asymptotic Theory

To describe the asymptotic properties of ∆̂, some notations are introduced. Let fc(z)

be the density of Zj for j = 1, . . . , n0 and ft(z) be the density of Zi for i = n0 + 1, . . . , n.

Define C1 to be the support of Zj for j = 1, . . . , n0 and C2 to be the support of Zi for

i = n0 + 1, . . . , n. Define the CDF of Y1i, FY1i
(·) and its density function F ′

Y1i
(y) = fY1i

(y).

Assumptions:

A1. Assume that the conditional expectation of outcome Y0j given predictor Xj for j =

1, . . . , n0, denoted by mp(x), is the same as the conditional expectation of outcome Y0i given

predictor Xi for i = n0 + 1, . . . , n, denoted by ma(x); that is, mp(x) = ma(x) = m(x). Also,

assume that m(x) is in the form of index z = β⊤x; that is, m(x) = m(z). Furthermore,

assume that the second order derivative of m(z) is continuous. Finally, assume that the first

element of β is positive and ||β||2 =
󰁓d

k=1 β
2
k = 1.

A2. {Y0i, Y1i, Xi}ni=1 are independent and identically distributed. Assume that E(|Yi|s) < ∞

for some s > 2, C2 ⊆ C1, and ft(z) ≥ M1 > 0. Also, assume that FY1i
(·) is twice differentiable

and fY1i
(·) > 0.

A3. Assume that 0 < λ < ∞, where limn1/n0 = λ, and n0 h
2 → ∞ and n0 h

4 → 0 as

n0 → ∞.

A4. The kernel function K(·) is symmetric and is bounded positive function as well as

satisfies a Lipschitz condition. And the first derivative of K(·) is continuous.

A5. Assume that the second order of derivative of r(z) is bounded, where r(z) = ft(z)/fc(z),

the ratio function to characterize the distributional changes of the single index between the

treated units and control units.
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A6. Assume that for any estimate of β, β̂ admits the following expression

√
n0

󰁫
β̂ − β

󰁬
=

1
√
n0

n0󰁛

j=1

φ(Xj, Yj) + op(1) → N(0,Σβ) (6)

for some function φ(·) with the finite variance Σβ =Var(φ(Xj, Yj)) for j = 1, . . . , n0.

Assumptions listed above are standard. In particular, Assumption A1 is to assume that

the conditional expectations before and after treatments are same, which is also imposed in

Hsiao, Ching and Wan (2012). Assumption A3 is under-smoothed in a nonparametric kernel

smoothing estimation, which makes the asymptotic bias negligible. Also, this assumption

leads the practical choice of h in application to be not difficult. Clearly, r(z) = 1 in Assump-

tion A5 if fc(z) = ft(z), which means that there is no distributional change of the single

index bewteen the treated units and control units. Indeed, r(z) is interpreted as “accep-

tance probability” in rejection sampling instead of “importance re-weighting”, or covariate

shift, in the machine learning literature; see, for example, Wu, Ren and Mu (2016) and

references therein. The assumption in A6 is common in the index model literature; see, for

example, Cai, Juhl and Yang (2015) and references therein. Indeed, under some regularity

conditions,
√
n0

󰁫
β̂ − β

󰁬
can be expressed as in (6), which holds true; see, for instance, Xia

(2006) or Section 2.4 for details. Finally, define σ2
3 = δ⊤a Σβδa, where δa = E

󰀅
m′(Zi)X

⊤
i

󰀆

for i = n0 + 1, . . . , n, where m′(z) is the first order derivative of m(z), and Σβ is given in

Assumption A6. Also, define Σ23 =Cov(φ(Xj, Yj), r(Zj)εj), where εj = Y0j −E(Y0j |Xj) for

j = 1, . . . , n0. Now, the asymptotic normality of ∆̂ is stated in the following theorem with

its theoretical proof relegated to Appendix, based on the generalized U-statistic theory for

two samples given in Serfling (1980, p.175).

Theorem 1: Under Assumptions A1 - A6, one has

√
n1

󰁫
∆̂−∆

󰁬
→ N(0, σ2

∆),

where σ2
∆ = σ2

1 + λ
󰀅
σ2
2 + σ2

3 + 2 δ⊤a Σ23

󰀆
with σ2

1 = Var (Y1i −m(Zi)) for i = n0 + 1, . . . , n

and σ2
2 = Var{r(Zj)εj} for j = 1, . . . , n0.

It follows from Theorem 1 that the asymptotic variance consists of four terms. In par-

ticular, the first term in σ2
∆ stands for the variance of Y1i −m(Zi), which is the same as the
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variance of ∆i + εi, the second term characterizes the variation for estimating Y0i, the third

term σ2
3 is the variation carried over from the estimation of β, and the last term depicts the

correlation between the first step and the second step. This is typical for a two-stage proce-

dure as addressed in Cai et al. (2006). Also, one can see that obtaining a consistent estimate

of σ2
∆ is not a straight forward task due to its complicated form of involving several terms.

However, a Bootstrap procedure can overcome this difficulty; see Section 2.5 for details.

2.4 MAVE Method for Estimating β

Now, it turns to discussing how to estimate β. To do so, let Y be a random variable and

X = (X1, · · · , Xd)
⊤ be a collection of d random variables. The single index model, one of

the most popular semiparametric models in statistica and econometrics, can be written as

Y = m(β⊤X) + ε = m(Z) + ε, (7)

where E(ε|X) = 0, m(·) is an unknown link function, and β = (β1, · · · , βd)
⊤ is the d × 1

index vector. If m(v) = v, the model in (7) reduces to the linear model in (5), so that our

model is in a semiparametric nature. For the sake of identification, it is usually assumed

that β1 = 1 or β⊤β = 1 with β1 > 0. From (7), one can see that the linear combination

Z = β⊤X = β1X1+ · · ·+βdXd captures all the information of X on Y . The estimation of the

index vector β has attracted extensive attentions. For example, Ichimura (1993) proposes

the semiparametric least squares estimation of the single index model based on the leave-

one-out technique. Due to the fact that the single index model shares a close connection with

the central mean subspace in the sufficient dimension reduction, Xia et al. (2002) propose

the (conditional) minimum average variance estimation method for the dimension reduction

problem and later, Xia (2006) shows that this method can be applied to the single index

model. Therefore, the MAVE method proposed in Xia (2006) is employed in our setting to

estimate β, described as follows.

Notice that under the least squares loss,

β = arg min
β̃∈Rd

E
󰁫
Y − E(Y |β̃⊤X)

󰁬2
. (8)
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In our setting, the index is estimated by the observed data for the control units, {Yj, Xj}n0
j=1.

Motivated by the local linear smoothing technique, the sample analogue of (8) is given by

β = arg min
β̃∈Rd:β̃⊤β̃=1

aj ,bj

n0󰁛

j=1

n0󰁛

i=1

󰁫
Yi − aj − bjβ̃

⊤(Xi −Xj)
󰁬2

wij, (9)

where wij = Kh0(β̃
⊤(Xi −Xj)) with Kh0(v) = K(v/h0)/h0 and K(·) being a kernel function

as well as h0 being the bandwidth. Define Xij = Xi −Xj, Xia (2006) proposes the following

algorithm for estimating β:

Step 1. Set an initial value β(0).

Step 2. For k ≥ 1, calculate

󰀣
âβ

(k−1)

j

b̂β
(k−1)

j h0

󰀤
=

󰀫
n0󰁛

j=1

Kh0

󰀓
β(k−1)⊤Xij

󰀔
Z

(k−1)
ij Z

(k−1)⊤

ij

󰀬−1 n0󰁛

j=1

Kh0

󰀓
β(k−1)⊤Xij

󰀔
Z

(k−1)
ij Yj,

where Z
(k−1)
ij =

󰀓
1, β(k−1)⊤Xij/h0

󰀔⊤
, and also, obtain

f̂β(k−1)(β(k−1)⊤Xj) =
1

n0

n0󰁛

i=1

Kh0(β
(k−1)⊤Xij), and ρ̂β

(k−1)⊤

j = ρn0(f̂β(k−1)(β(k−1)⊤Xj)),

where ρn0(·) is a trimming function for the boundary points. Following the suggestion from

Xia (2006), ρn0(v) is chosen as a bounded function with bounded derivative on R such that

ρn0(v) = I(v > 2c0n
−ε
0 ), where I(A) is the indicator function of set A.

Step 3. Calculate

β(k) =

󰀫
n0󰁛

i=1

n0󰁛

j=1

Kh0

󰀓
β(k−1)⊤Xij

󰀔
ρ̂β

(k−1)

j

󰀓
b̂β

(k−1)

j

󰀔2

XijX
⊤
ij/f̂β(k−1)

󰀓
β(k−1)⊤Xj

󰀔󰀬−1

×
n0󰁛

i=1

n0󰁛

j=1

Kh0

󰀓
β(k−1)⊤Xij

󰀔
ρ̂β

(k−1)

j b̂β
(k−1)

j Xij

󰀓
Yi − âβ

(k−1)

j

󰀔
/f̂β(k−1)

󰀓
β(k−1)⊤Xj

󰀔
.

Step 4. Set β(k) = sign(β
(k)
1 )β(k)/󰀂β(k)󰀂. Then, repeat Steps 2 and 3 until convergence

reaches.

Denote the ultimate estimator for β as β̂MAVE. Theoretically, Xia (2006) derives the

asymptotic normality for β̂MAVE and shows that the asymptotic covariance matrix of β̂MAVE

can achieve the information lower bound in the semiparametric sense. From Xia (2006),
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one can see that under some regularity conditions, β̂MAVE satisfies (6) with φ(Xj, Yj) =

W+
m0

m′(β⊤Xj)vβ(Xj)εj, where m′(z) is the first derivative of m(z), vβ(x) = E(X|β⊤X =

β⊤x)−x, Wm0 = E{m′(β⊤X)2vβ(X)v⊤β (X)}, and W+
m0

is the Moore-Penrose inverse of Wm0 ,

while its asymptotic variance is given as Σβ = [E{m′(β⊤X)2W (X)}]+E{m′(β⊤X)2W0(X)ε2}

[E{m′(β⊤X)2W (X)}]+, where W0(x) = vβ(x)v
⊤
β (x) and W (x) = E(XX⊤|β⊤X = β⊤x) −

E(X|β⊤X = β⊤x)E⊤(X|β⊤X = β⊤x). Therefore, the assumption in Assumption A6 is not

a big concern.

2.5 A Bootstrap Inference

Clearly, Theorem 1 provides the asymptotic distribution for ∆̂, so that an inference can

be made if σ2
∆ can be estimated consistently. But, one can see from Theorem 1 that the

form of σ2
∆ is complicated so that it is not easy to get a consistent estimate. Therefore, it is

a difficult task to construct a confidence interval (CI) for ∆. To facilitate an easy inference,

we propose the following (hybrid) Bootstrap procedure by combining the (conditional) wild

Bootstrap similar to that in Zhang, Huang and Liu (2020) for single index models and the

nonparametric Bootstrap, to estimate σ2
∆.

Step 1. Given {Yj, Xj}n0
j=1 and {Yi, Xi}ni=n0+1, estimate the treatment effect by (5) as ∆̂.

Step 2. Generate the wild Bootstrap sample {(Xj, Y
∗
j )}n0

j=1 of the control group, where for

1 ≤ j ≤ n0, Y
∗
j = Ŷj + ε∗j with ε∗j = (Yj − Ŷj)ξj and {ξj}n0

j=1 are i.i.d. random errors with

mean zero and unit variance conditional on the original sample {Xj, Yj}n0
j=1.

Step 3. Generate the nonparametric Bootstrap sample {(X∗
i , Y

∗
i )}ni=n0+1 of the treated

group by drawing with replacement from the original dataset {(Xi, Yi)}ni=n0+1.

Step 4. Using the wild Bootstrap sample {(Xj, Y
∗
j )}n0

j=1 to re-estimate the index parameter

as β̂∗. Set Ẑ∗
j = X⊤

j β̂
∗ for j = 1, . . . , n0 and Ẑ∗

i = (X∗
i )

⊤β̂∗ for i = n0 + 1, . . . , n. Then,

obtain the quasi synthetic control estimator ∆̂∗ as

∆̂∗ =
1

n1

n󰁛

i=n0+1

󰀥
Y ∗
i −

n0󰁛

j=1

ĉ∗j,h(Ẑ
∗
i )Y

∗
j

󰀦
=

1

n1

n󰁛

i=n0+1

Y ∗
i − 1

n0

n0󰁛

j=1

â∗j,hY
∗
j ,

where â∗j,h = â∗h(Ẑ
∗
j ) =

1
n1

󰁓n
i=n0+1 Kh(Ẑ

∗
i −Ẑ∗

j )
󰁫

1
n0

󰁓n0

l=1 Kh(Ẑ
∗
l − Ẑ∗

i )
󰁬−1

, which is the Boot-

strap version of âj,h in (5).
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Step 5. Repeat steps 2 to 4 a large number of times, say, B times to obtain {∆̂∗(b)}Bb=1.

Then σ2
∆ can be estimated as n1

󰁓B
b=1(∆̂

∗(b) − ∆̂)2/(B − 1), denoted as σ̂2
∆.

Note that the reason on proposing the above hybrid Bootstrap is that at Step 2, the wild

Bootstrap is used since both m(·) and β in (7) need to be re-estimated by the Bootstrap

sample of the control group and at Step 3, a simple nonparametric Bootstrap is employed

since there is no re-estimation involving the Bootstrap sample of the treated group. Finally,

a (1-α)100% Bootstrap CI for ∆ can be constructed as ∆̂ ± zα/2σ̂∆/
√
n1 based on the

asymptotic normality of ∆̂ in Theorem 1, where zα/2 is the (1 − α/2)th percentile of the

standard normal distribution. The theoretical validity of this Bootstrap procedure can be

confirmed by the following theorem with its detailed proof presented in Appendix, and

in Section 3, it is empirically illustrated by simulation to demonstrate the finite sample

performance of the proposed Bootstrap procedure.

Theorem 2: Under the conditions imposed in Theorem 1, conditional on the original sample

{Xj, Yj}n0
j=1 and {Xi, Yi}ni=n0+1 and in probability, one has

√
n1

󰀓
∆̂∗ − ∆̂

󰀔
d→ N(0, σ2

∆),

where σ2
∆ is defined in Theorem 1.

Alternatively, one might apply the subsampling technique as proposed in Li (2020) to

construct the CI for ∆. Li (2020) suggests to decompose the SCM-oriented ATE estimator ∆̂

into two terms as follows. The first term is related to the synthetic control weight estimator,

and the second term is unrelated to the weight estimator but depends on the sample size of

the treated units n1. The weight estimator is constrained so that the standard Bootstrap

method may be inconsistent when the true parameter lies on the boundary of the parameter

space as addressed in Li (2020), while the subsampling method is not distracted by this

constraint. Therefore, Li (2020) proposes a subsampling-Bootstrap method for the inference

of the synthetic control method, which applied the subsampling method to the term related

to the constrained estimator and applied the Bootstrap method to the remaining term.

Besides, our method shares a deep connection with the popular matching methods. Ac-

tually, Abadie and Imbens (2011) demonstrate that the standard Bootstrap method fails

12



to conduct inference for matching estimators. To overcome this problem, Otsu and Rai

(2017) propose asymptotically valid inference methods for matching estimators based on the

weighted Bootstrap. However, their method only deals with the case of a fixed number of

matches. Our method matches each treated unit with all control units, which means that

the number of matches increases with the size of the control group and is definitely not fixed.

2.6 Choosing Covariates

Based on the above discussion, we actually assume a single index model, as in (7), for Y0i.

For the single index model, when the number of predictor variables is large, it is necessary

to discriminate relevant variables from irrelevant variables, since the inclusion of irrelevant

variables may harm estimation accuracy and model interpretability. This negative effect of

including irrelevant variables may be amplified in our quasi synthetic control method due to

the fact that our method is intrinsically a two step procedure.

Many classical variable selection procedures have been generalized to the single index

model. For example, Naik and Tsai (2001) derive a bias-corrected version of Akaike’s infor-

mation criterion, AICc, for the single index model that selects not only relevant variables

but also a smoothing parameter for the unknown link function, while Kong and Xia (2007)

propose the separation validation technique for the variable selection in the single index

model.

From the discussion in Section 2.4, we know that the MAVE estimate of β is obtained

by solving the minimization problem (9). Generally, to select the relevant variables, we can

add a penalty term to the least-squares-form loss function in (9):

n0󰁛

j=1

n0󰁛

i=1

[Yi − aj − bjβ̃
⊤(Xi −Xj)]

2wij + n0

d󰁛

k=1

pλn0
(|β̃k|),

where pλ(·) denotes a penalty function and λn0 denotes the penalty parameter. Different

choices of pλ(·) can lead to different variable selection methods.

The simplest choice is to set pλn0
(|β̃j|) = λn0 |β̃j|, which corresponds to the well-known

least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996).

Indeed, Wang and Yin (2008) adopt this L1 norm penalty and proposed the sparse MAVE
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method and Zeng, He and Zhu (2012) further explore the idea of combining MAVE and

LASSO, and propose the sim-LASSO method. The sim-LASSO method not only penalizes

the L1 norm of the index parameter β, but also penalizes the terms {bj}n0
j=1 in (9). Since

bj = ∂m(u)/∂u|u=β⊤Xj
, adding this penalty contributes to excluding the data points with

less information on estimating β, which stabilizes and improves the estimation of β. Finally,

Wang, Xu and Zhu (2013) propose the penalized MAVE method by combining the bridge

regression with MAVE. In the case of the single-index-model, the penalized MAVE estimator

has the oracle property.

It is widely accepted that a good penalty function should lead to an unbiased, sparse

and continuous estimator. However, the LASSO estimator is biased for large parameters.

Alternatively, Fan and Li (2001) propose the smoothly clipped absolute deviation (SCAD)

penalty. The SCAD penalty is defined via its first derivative as p′λ(βk) = λI(βk ≤ λ)+(aλ−

βk)+I(βk > λ)/(a − 1) for some a > 2. Due to the oracle property of the SCAD penalty

justified by Fan and Li (2001), Peng and Huang (2011) explore the idea of introducing the

SCAD penalty into the single index model. Given that the dimension of β is a fixed constant,

the SCAD estimator has the oracle property. Hence, we can also combine the SCAD penalty

with MAVE, and modify the objective function in (9) as:

β = arg min
β̃∈Rd:β̃⊤β̃=1

aj ,bj

󰀫
n0󰁛

j=1

n0󰁛

i=1

󰁫
Yi − aj − bjβ̃

⊤(Xi −Xj)
󰁬2

wij + n0

d󰁛

k=1

pSCAD
λn0

(|β̃k|)
󰀬
, (10)

where wij = Kh1(β̃
⊤(Xi −Xj)) with Kh1(v) = K(v/h1)/h1 and K(·) being a kernel function

as well as h1 being the bandwidth. Similarly, the optimization problem in (10) can be solved

alternatively and iteratively, and the SCAD-MAVE algorithm can be summarized as follows:

Step 1. Given data {Yj, Xj}n0
j=1, calculate the initial estimator β̂0 by the MAVE method.

Set t = 1.

Step 2. Given β̂(t−1), calculate the refined weights as

w
(t−1)
ij = Kh1

󰁫
β̂⊤
(t−1)(Xi −Xj)

󰁬󰀱 n0󰁛

l=1

Kh1

󰁫
β̂⊤
t−1(Xl −Xj)

󰁬
.
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Then, solve the inner optimization problem for j = 1, . . . , n0:

min
aj ,bj

n0󰁛

i=1

󰁫
Yi − aj − bjβ̂

⊤
(t−1)(Xi −Xj)

󰁬2
w

(t−1)
ij

Clearly, this problem is analogous to the weighted least squares problem. We can easily

derive the analytical solutions and denote them as â
(t−1)
j and b̂

(t−1)
j .

Step 3. Given â
(t−1)
j and b̂

(t−1)
j , we solve the outer optimization problem:

min
β̃∈Rd:β̃⊤β̃=1

󰀫
n0󰁛

j=1

n0󰁛

i=1

󰁫
Yi − â

(t−1)
j − b̂

(t−1)
j β̃⊤(Xi −Xj)

󰁬2
wij + n0

d󰁛

k=1

pSCAD
λn0

(|β̃k|)
󰀬

Obviously, regardless of the constraint β̃⊤β̃ = 1, we can rewrite the first part in least squares

form, then we can use the ncvreg package in R to optimize it and obtain the estimator β̂(t).

Let β̂(t) = sign(β̂
(t)
1 )β̂(t)

󰀑
󰀂β̂(t)󰀂.

Step 4. Check whether 󰀂β̂(t)− β̂(t−1)󰀂2 < c, where c is an arbitrarily small positive constant,

if not, set t = t+ 1 and go to Step 2. Denote the final estimator as β̂SCAD-MAVE.

Based on the above discussion, we can use the SCAD-MAVE method to select relevant

variables at first, then, set Ẑj = β̂⊤
SCAD-MAVEXj for j = 1, . . . , n0 and Ẑi = β̂⊤

SCAD-MAVEXi for

i = n0 + 1, . . . , n. Finally, we can estimate the treatment effect by (5), denoted by ∆̂SCAD.

To derive the asymptotic property of ∆̂SCAD, we make following assumptions.

B1. For l = 1, . . . , n, Y0l = m(β⊤Xl) + εl, where E(εl|Xl) = 0, E(ε2l |Xl) = σ2 > 0, and

E(ε4l |Xl) exists.

B2. The marginal density of X⊤β̃ is positive and uniformly continuous in a neighborhood

of β. Furthermore, X⊤β̃ has a positive density on its support.

B3. Assume that the density function of X has a continuous second derivative and Cov(X)

is nonsingular. Furthermore, assume that for any vector v, if v⊤Cov(X)β = 0, then v⊤Σv >

c||v||2, where Σ = E
󰁱
[m′(Z)]2

󰀅
X − E

󰀃
X|Z = β⊤X

󰀄󰀆 󰀅
X − E

󰀃
X|Z = β⊤X

󰀄󰀆⊤󰁲
.

B4. n0 h
3
1 → ∞ and n0 h

4
1 → 0 as n0 → ∞.

On can see that the above assumptions are indeed regularity assumptions, also listed in

Peng and Huang (2011). Without loss of generality, we assume that the first s components

of β are non-zeros, i.e. β is partitioned as βA = (β1, . . . , βs)
⊤ and βAC = (0, . . . , 0)⊤ with

d− s components. Under these assumptions, we can conclude that β̂SCAD-MAVE satisfies (6)
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by Theorem 2 in Peng and Huang (2011).

Lemma 1: Under Assumptions B1 - B4, if the tuning parameter λn0 satisfies λn0 → 0 and
√
n0λn0 → ∞, then, with probability approaching 1, we have:

(a) Sparsity: β̂SCAD-MAVE,AC = 0.

(b) Asymptotic normality:

√
n0

󰁫
β̂SCAD-MAVE,A − βA

󰁬
d→ N(0,Σβ,A),

where Σβ,A = σ2J−1
0 with J0 = E

󰀅
{XAm

′(β⊤
AXA)}{XAm

′(β⊤
AXA)}⊤

󰀆
−E

󰁱
E
󰀅
{XAm

′(β⊤
AXA)}

󰀏󰀏β⊤
AXA = U

󰀆
E
󰀅
{XAm

′(β⊤
AXA)}|β⊤

AXA = U
󰀆⊤ 󰁲

.

The consequence of Lemma 1 is that β̂SCAD-MAVE,A satisfies Assumption A6 with

√
n0

󰀓
β̂SCAD-MAVE,A − βA

󰀔
=

1
√
n0

n0󰁛

j=1

φA(Xj, Yj) + op(1),

where φA(Xj, Yj) = J−1
0

󰀋
E
󰀅
XAm

′(β⊤
AXA)|β⊤

AXA = U
󰀆
−XAm

′(β⊤
AXA)

󰀌
εj. Denote δa,A =

E
󰀅
m′(Zi)X

⊤
i,A

󰀆
. Similar to Theorem 1, the following theorem holds true with its proof given

in Appendix.

Theorem 3: Under the conditions imposed in Theorem 1 and Assumptions B1 - B4, one

has
√
n1

󰀓
∆̂SCAD −∆

󰀔
d→ N

󰀃
0, σ2

∆,SCAD

󰀄
,

where σ2
∆,SCAD = σ2

1 + λ
󰀃
σ2
2 + σ2

3,A + 2δa,AΣ23,A
󰀄
, σ2

1 and σ2
2 defined in Theorem 1, σ2

3,A =

δa,AΣβ,Aδ
⊤
a,A, Σβ,A =Var(φA(Xj, Yj)) and Σ23,A = Cov(r(Zj)εj,φA(Xj, Yj)) for j = 1, . . . , n0.

3 Monte Carlo Simulation Studies

In these simulation studies, we investigate the finite sample performances for our proposed

estimator, the proposed method to choose covariates, and the proposed Bootstrap procedure.

3.1 Evaluating the Proposed Estimator

In this subsection, we evaluate our proposed estimators ∆̂ for ATE in (5) through a series

of Monte Carlo simulations. To illustrate the universality of our method, we consider both
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linear and nonlinear potential models for outcomes. Notice that the SCM method implicitly

requires that the predictors of the treated and control observations are positively correlated,

while our method is not restricted by this positive correlation requirement. Hence, we also

evaluate our method in the cases where the predictors of the treated and control observations

are potentially negatively correlated. In each setting, we set the dimension of covariates as

d = 5 and d = 10. When d = 5, the true index vector is β = (1, 0.7, −0.5, 0.25, 0.8)⊤, and

β = (1, 0.7, −0.5, 0.5, −0.75, 0.8, −0.4, 1, −0.2, 0.2)⊤ for d = 10. In total, we consider the

following data generating processes.

Example 1: (linear and nonlinear potential outcomes) We consider the following linear and

nonlinear models for the potential outcomes, Y (0) = m
󰀃
β⊤X

󰀄
+ε and Y (1) = Y (0)+2, where

for j = 1, · · · , d, Xj ∼ N(0, 1) for the control units, and Xj ∼ U(−
√
3,
√
3) for the treated

units, and ε ∼ N(0, 1). The sample sizes are n0 = 100, 200, 500 and n1 = 100, 200, 500.

In this DGP, we consider two cases: linear model as m(u) = u and nonlinear model as

m(u) = u2, respectively.

In the simulation studies, we consider several choices of h. For simplicity, we present the

results for only bandwidth h = 0.5n
−1/3
0 , which satisfies clearly the assumption requirements.

Here, the Gaussian kernel K(v) = 1√
2π

exp(−v2/2) is used. For each setting, we conduct

500 Monte Carlo simulations and we compare our method with the SCM method. We

can see that under each setting, the true ATE is ∆ = 2. For each setting, among all

500 simulations, both the root mean square error (RMSE), which is defined by RMSE =󰀗󰁓500
k=1

󰀓
∆̂k −∆

󰀔2

/500

󰀘1/2
, and the mean of 500 absolute deviation errors (MADE), which

is given by ADEk =
󰀏󰀏󰀏∆̂k −∆

󰀏󰀏󰀏, where ∆̂k is the estimate for the kth simulation, are recorded

for two estimators. The Monte Carlo simulation results are shown in Table 1 for the linear

model in the top panel and nonlinear model in the bottom panel. Note that for different

choices of h as long as h satisfies the assumption requirements, the finite sample performances

are almost same and the results are available upon request.

Now, we discuss the performances of our method and the SCM in detail. First, one can

see clearly from the results given in the top panel in Table 1 form(u) = u, where the potential

outcome model is linear, that both methods perform well and our method is slightly better
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Table 1: Different estimators for ∆ in Example 1.

m(u) = u

n0 = 100 n0 = 200 n0 = 500

n1 d method RMSE MADE RMSE MADE RMSE MADE

100
5

SCM 0.2059 0.1653 0.1710 0.1357 0.1475 0.1186
QSCM 0.1600 0.1251 0.1243 0.0979 0.1099 0.0871

10
SCM 0.2131 0.1685 0.1701 0.1354 0.1405 0.1111

QSCM 0.1618 0.1273 0.1274 0.0983 0.1116 0.0887

200
5

SCM 0.1857 0.1505 0.1487 0.1180 0.1261 0.0991
QSCM 0.1331 0.1069 0.1013 0.0771 0.0822 0.0664

10
SCM 0.1967 0.1577 0.1432 0.1139 0.1158 0.0932

QSCM 0.1368 0.1079 0.1019 0.0795 0.0837 0.0674

500
5

SCM 0.1728 0.1359 0.1393 0.1121 0.1152 0.0920
QSCM 0.1197 0.0946 0.0847 0.0657 0.0621 0.0501

10
SCM 0.1748 0.1360 0.1291 0.1050 0.0986 0.0773

QSCM 0.1238 0.0971 0.0873 0.0678 0.0627 0.0506

m(u) = u2

n0 = 100 n0 = 200 n0 = 500

n1 d method RMSE MADE RMSE MADE RMSE MADE

100
5

SCM 1.5115 1.3871 1.9292 1.8537 2.4095 2.3735
QSCM 0.1747 0.1378 0.1370 0.1089 0.1102 0.0877

10
SCM 1.3799 1.1350 1.6911 1.5168 2.2791 2.1884

QSCM 0.2579 0.2022 0.1750 0.1335 0.1246 0.0981

200
5

SCM 1.5321 1.4126 1.9098 1.8434 2.4005 2.3664
QSCM 0.1619 0.1264 0.1155 0.0915 0.0820 0.0664

10
SCM 1.4186 1.1595 1.7042 1.5464 2.2657 2.1955

QSCM 0.2388 0.1833 0.1547 0.1227 0.0948 0.0746

500
5

SCM 1.5411 1.4073 1.8588 1.7988 2.4045 2.3730
QSCM 0.1478 0.1205 0.0978 0.0763 0.0653 0.0519

10
SCM 1.3649 1.1149 1.6627 1.5183 2.1978 2.1430

QSCM 0.2401 0.1860 0.1438 0.1091 0.0756 0.0611

than the SCM. Next, from the results shown in the bottom panel in Table 1 for m(u) = u2,

where the potential outcome model is nonlinear, it is obvious that the SCM is invalid and

our method performs much better, especially with smaller sample size and higher dimension

of covariates.

In summary, the finite sample performance of the proposed estimator is well-behaved

in the sense that both the RMSE and MADE values are generally small. The RMSE and
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MADE values decrease as no matter the sample size n0 or n1 increases. This is in line with

our expectation in the sense that, as in Theorem 1, the asymptotic results of the proposed

estimator is related to both n0 and n1. Clearly, the estimation is compromised by the

dimension of the covariates. However, this negative effect of the dimension of the covariates

on the estimation is faint in our quasi synthetic control method as expected.

3.2 Evaluating the Proposed Variable Selection Method

In this subsection, we conduct a series of Monte Carlo simulations to evaluate the effec-

tiveness combining our QSCM estimator with the variable selection methods introduced in

Section 2.6. For simplicity, we only illustrate the performance in Example 1 in Section 3.1.

The dimension of covariates is set as d = 20 with β = (1, 0.7, −0.5, 0.25, 0.8, 0, . . . , 0)⊤ as

a 20-dimensional vector with only five nonzero entries. This choice of β indicates that only

the first five covariates are predictable for the outcome variable.

As in Section 3.1, we still set the bandwidth h = 0.5n
−1/3
0 and use the Gaussian kernel.

For each setting, the simulation is repeated 500 times. We also use the RMSE and the

MADE as main evaluation metrics for the estimation of the treatment effect. We compare

the QSCM estimator without variable selection in (5) and the penalized QSCM estimator.

As conventionally, we evaluate the performance of variable selection by the mean of true

positive rate (TPR) and false positive rate (FPR) based on 500 replications. The TPR and

FPR are the most widely used evaluation metrics in the field of variable selection. Adapting

to our setting, the TPR and FPR are defined as follows: TPR = #{1 ≤ j ≤ 5 : β̂j ∕= 0}/5

and FPR = #{6 ≤ j ≤ 20 : β̂j ∕= 0}/15. The top panel in Table 2 summarizes the simulation

results under m(u) = u. We can see that the proposed variable selection method works well,

since the true positive rate is close to 1 and the false positive rate is relatively small and

tends to 0 as the sample size n0 increases. After selecting relevant variables in the first step

of estimating the index parameter β, the treatment effect estimator in the second step also

behaves well. Both RMSE and MADE are comparably small and decrease as no matter the

sample size n0 or n1 increases.

The simulation results under m(u) = u2 are presented in the bottom panel in Table 2.

The true positive rate is exactly 1 for all settings, indicating that the proposed variable
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Table 2: Simulation results for the variable selection procedure.

m(u) = u

QSCM pen-QSCM Variable Selection

n0 n1 RMSE MADE RMSE MADE TPR FPR

100
100 0.1719 0.1365 0.1683 0.1316 0.9032 0.0980
200 0.1437 0.1143 0.1434 0.1152 0.8892 0.0872
500 0.1373 0.1089 0.1272 0.1003 0.8900 0.0900

200
100 0.1302 0.1041 0.1300 0.1024 0.9464 0.0453
200 0.1074 0.0835 0.1060 0.0821 0.9412 0.0453
500 0.0902 0.0708 0.0878 0.0682 0.9384 0.0493

500
100 0.1111 0.0871 0.1110 0.0880 0.998 0.0263
200 0.0854 0.0683 0.0838 0.0677 0.9924 0.0223
500 0.0634 0.0516 0.0621 0.0503 0.9936 0.0225

m(u) = u2

QSCM pen-QSCM Variable Selection

n0 n1 RMSE MADE RMSE MADE TPR FPR

100
100 0.2009 0.1585 0.1887 0.1484 0.9992 0.0273
200 0.1806 0.1428 0.1705 0.1353 0.9984 0.0303
500 0.1563 0.1248 0.1439 0.1132 0.9988 0.0332

200
100 0.1458 0.1179 0.1391 0.1110 1.0000 0.0073
200 0.1210 0.0937 0.1149 0.0880 1.0000 0.0089
500 0.0961 0.0730 0.0949 0.0745 1.0000 0.0084

500
100 0.1142 0.0917 0.1105 0.0877 0.998 0.0049
200 0.0887 0.0711 0.0859 0.0695 1.0000 0.0027
500 0.0668 0.0536 0.0649 0.0523 1.0000 0.0035

selection method can correctly select all relevant variables and the false positive rate is tiny,

indicating that the proposed variable selection method can exclude most irrelevant variables.

3.3 Evaluating the Proposed Bootstrap Procedure

In this subsection, a series of Monte Carlo simulations are conducted to evaluate the va-

lidity of the Bootstrap procedure proposed in Section 2.5. We use the same data generating

process as in Section 3.1 except that now for j = 1, . . . , d, Xj ∼ U(−
√
2,
√
2) for the treated

units, and the Bootstrap replication is set as B = 500. As in Section 3.1, we still set the

bandwidth h = 0.5n
−1/3
0 and use the Gaussian kernel. For each setting, the simulation is

repeated 1000 times. Given the significance level α, we evaluate the corresponding cover-

age rate of the confidence interval constructed by the proposed Bootstrap procedure. The
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Table 3: Simulation results for inference based on the proposed Bootstrap procedure.

m(u) = u m(u) = u2

n1 d α n0 = 100 n0 = 200 n0 = 500 n0 = 100 n0 = 200 n0 = 500

100

5
0.9 0.894 0.900 0.911 0.899 0.914 0.920
0.95 0.950 0.954 0.954 0.954 0.959 0.957
0.99 0.991 0.989 0.997 0.993 0.991 0.995

10
0.9 0.906 0.900 0.903 0.924 0.926 0.912
0.95 0.945 0.950 0.961 0.965 0.971 0.962
0.99 0.988 0.986 0.998 0.993 0.993 0.999

200

5
0.9 0.893 0.902 0.914 0.895 0.902 0.917
0.95 0.945 0.947 0.959 0.940 0.954 0.957
0.99 0.987 0.992 0.992 0.986 0.992 0.992

10
0.9 0.888 0.907 0.920 0.912 0.933 0.921
0.95 0.932 0.955 0.958 0.959 0.960 0.967
0.99 0.982 0.991 0.990 0.993 0.996 0.994

500

5
0.9 0.875 0.910 0.911 0.903 0.915 0.912
0.95 0.941 0.958 0.958 0.950 0.953 0.963
0.99 0.995 0.989 0.992 0.994 0.994 0.991

10
0.9 0.873 0.899 0.913 0.905 0.938 0.921
0.95 0.930 0.949 0.962 0.949 0.979 0.967
0.99 0.986 0.995 0.997 0.992 0.996 0.999

simulation results for α = 0.10, 0.05, 0.01 are depicted in Table 3, from which, we can see

that, under different settings, the proposed Bootstrap procedure results in reasonably good

estimated coverage probabilities.

4 Revisit of the NSW Data

In this section, we study an empirical application by using our quasi synthetic control

method to analyze the data from the National Supported Work Demonstration. The NSW

program was a labor market program for underprivileged workers operated during the mid-

1970s in the United States. By providing these workers with subsidized job for 9 to 18

months, the NSW program aimed to strengthen their job skills and enhance their employ-

ment opportunities. The NSW program randomly assigned the qualified applicants to the

treatment and control groups, making the program a randomized controlled trial, which is

universally recognized as the golden standard to learn the treatment effect. This appealing

feature of the NSW program motivates numerous researches.
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Lalonde (1986) first analyzes the male sub-sample of the NSW program, which contains

n1 = 297 treated units and n0 = 425 control units. In the Lalonde sample, the outcome of

interest is the annual earnings in 1978. Additionally, the Lalonde sample also collects several

individual characteristics: age, education, black, hispanic, married, no degree, and annual

earnings in 1975. Based on the Lalonde sample, the average treatment effect is $886. The

Lalonde sample only collects one year of pre-treatment earnings (the annual earning in 1975).

However, the existing literature has pointed out that it is necessary to include more than

one year of pre-treatment earnings since many applicants for training programs experience

a drop in their earnings just prior to joining the training program. Therefore, Dehejia and

Wahba (1999) reorganize the Lalonde sample and collected the annual earnings in 1974.

By excluding the individuals with the annual earnings in 1974 missed, the Dehejia-Wahba

sample consists of n1 = 185 treated units and n0 = 260 control units, and the ATT estimate

based on the Dehejia-Wahba sample is $1794, termed as the experimental benchmark value2.

Note that the Dehejia-Wahba sample has been widely used in many empirical studies. For

example, Dehejia and Wahha (2002) apply the propensity score matching method to this

dataset by using the the Dehejia-Wahba sample. However, as pointed out by Smith and

Todd (2005), estimates of the impact of NSW based on propensity score matching are highly

sensitive to the set of variables included in the propensity score model, while Abadie &

Imbens (2011) evaluate the performance of various matching estimators by analyzing the

NSW data. For more literature on analyzing this dataset, the reader is referred to the paper

by Abadie and L’Hour (2021) and references therein.

Both the Lalonde and the Dehejia-Wahha samples are based on experimental data and

provide us with two unbiased estimates of the ATE. To evaluate different estimators for

treatment effects, it is recommended to use a non-experimental control group and estimate

the treatment effect based on the experimental treated and non-experimental control groups.

Lalonde (1986) constructs six non-experimental control groups from the Panel Study of

Income Dynamics (PSID) and the Current Population Survey, as well as further subsets

subtracted from these two basic control groups. Referring to the existing literature, we use

2For details on how to compute this benchmark value, please refer to the paper by Dehejia and Wahba
(1999) or Abadie and L’Hour (2021).
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Figure 1: Scatterplot of Y0 versus Z in PSID group, together with the lowess estimate of
the unknown function m(·) in the dashed red line with its pointwise 95% confidence interval
presented by the shaded area and a least-squares fitting of m(·) in the solid blue line.

the experimental treated group from the Dehejia-Wahha sample (n1 = 185) and the non-

experimental group from the Population Survey of Income Dynamics (n0 = 2490) to illustrate

our quasi synthetic control method. The outcome variable Yi is the annual earnings in 1978

and 10 covariates in Xi are considered. Table 4 presents summary statistics for the three

groups used in our analysis.

First, we would like to see if there exists a nonlinear relationship between the outcome and

the index. To do so in a visual way, using data from PSID group, we plot the outcome Y0 (y-

axis) versus the estimated single index Z (x-axis) in Figure 1, together with a nonparametric

estimate (lowess in R, locally-weighted polynomial regression technique) of the unknown

function m(·) in the dashed red line (with its pointwise 95% confidence interval presented by

the shaded area), and a least-squares fitting of m(·) in the solid blue line. From Figure 1, it

is clear that there does exist a nonlinear relationship between Y0i and Zi and this supports

strongly that our nonlinear model is appropriate for this real data.

Now, to compute the QSCM estimator ∆̂, as in Monte Carlo simulations, we use the

Gaussian kernel and the bandwidth h is selected by an ad hoc approach, which is 0.23,

in the sense that it minimizes the absolute value of the bias of the estimated ATE. Also,
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we compare our quasi synthetic control estimator with a series of existing estimators: the

conventional synthetic control estimator (SCM), the penalized synthetic control estimator

which minimizes the bias (Pen. SCM) as in Abadie and L’Hour (2021), and the one-match

nearest neighbor matching estimator (1-Matching).3 Table 5 reports the empirical results.

These four estimators yield treatment effects ranging from $1801.22 to $2138.8. Given the

Table 5: Non-experimental estimates for the NSW data.

Method Benchmark QSCM SCM Pen.SCM 1-Matching

Treatment effect 1794.34 1801.22 2118.61 1881.40 2138.80

Note: The QSCM estimate is computed based on the optimal bandwidth h = 0.23, which minimizes the
absolute value of the bias of the estimated ATE. The results for Pen SCM and 1-Matching in this table
come from Abadie and L’Hour (2021).

experimental benchmark ∆ = $1794.34, our QSCM estimator is best in the sense that it

has the smallest bias from the target ∆ = $1794.34. This result indicates that our method

captures well the unknown features of the NSW data with a possible nonlinear relationship

between Y0i and Zi.

Finally, it is also very interesting to notice that in this empirical example, the conventional

SCM needs to optimize a 2490× 1 vector of weights for each out of total 185 treated units,

which is computationally expensive in practice. Our computing is carried out on a IBM

X3550M4 dual processors server equipped with Twenty-four Core Intel Xeon E5-2620 v2 @

2.10GHz CPU, 64 GB RAM running Windows Server 2019. Using parallel computing in R

language, it takes us 1.69 hours to compute the conventional SCM estimate. Whereas, given

a selected bandwidth, the computation time for our QSCM estimate is 13.6 seconds without

parallel computation. To gauge this phenomenon, indeed, as pointed out by Abadie and and

L’Hour (2021), the best synthetic control may not be unique with many treated units and/or

many control units. Therefore, to search for the best synthetic control, the computing is too

heavy so that our method can save a huge computing time.

3Here, the one-match nearest neighbor matching estimator means that, for each unit in the treated group,
we find its nearest neighbor in PSID group with respect to the distance between covariates. And units in
PSID group can be reused and matched to multiple treated units.
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5 Conclusion

The SC method is a popular and powerful way of estimating ATE as addressed by

Athey and Imbens (2017). But, as pointed in the literature, the SC methods have some

shortcomings. To overcome these difficulties, this paper proposes a QSC method, which can

accommodate nonlinearity and feature a fast computing. In particular, this article provides

the inference theory for the QSC method and we derive the asymptotic distribution of the

QSC ATE estimators with and without penalty term. Also, due to complex structure of

the asymptotic variances of the proposed estimators, we resolve the difficulty by proposing

a carefully designed and easy-to-implement Bootstrap method and establish the validity of

subsampling method for inference. Our work complements the conventional SC method

and its variants. In addition, our simulations show that the QSC method performs well

in practice. Finally, we apply the QSC method to estimate ATE for the NSW data. The

empirical application demonstrates that when the conventional SC method fits the data

poorly, the QSC method can fit the data well and provide reasonable ATE estimation results.

Finally, it is worth to note that under the current framework, one might extend eas-

ily the proposed methodology to estimate the quantile (distributional) treatment effects as

investigated in Cai et al. (2022), which is warranted as a future research topic.
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Appendix: Mathematical Proofs

To establish the asymptotic theory of ∆̂, we first state some preliminaries, stated here for

convenience without their proofs. Indeed, Lemma 2 comes from Theorem 5.4A in Serfling

(1980, p.190) for the generalized U-statistic for two samples and Lemma 3 comes from Lemma

1 in Heckman, Ichimura and Todd (1998).

Lemma 2: Suppose {M0,j}n0
j=1 and {M1,i}ni=n0+1 are independent and within each group and

they are i.i.d. Define the generalized U-statistic,

Un0(ψn0,n1) =
1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

ψn0,n1(M0,j,M1,i)

with E{ψn0,n1(M0,j,M1,i)} = 0, and its projection

Ûn0(ψn0,n1) =
1

n0

n0󰁛

j=1

p0(M0,j) +
1

n1

n󰁛

i=n0+1

p1(M1,i),

where p0(M0,j) = E{ψn0,n1(M0,j,M1,i)|M0,j} and p1(M1,i) = E{ψn0,n1(M0,j,M1,i)|M1,i}, re-
spectively. If 0 < limn1/n0 = λ < ∞, where n = n0 + n1 and E{ψn0,n1(M0,j,M1,i)

2} =

o(n0) + o(n1), then,

nE
󰁫
(Un0ψn0,n1 − Ûn0ψn0,n1)

2
󰁬
= o(1),

which is an extension of Theorem 5.4A in Serfling (1980, p.191) for two samples.

Lemma 3: Under our setting, consider the function g(z) = E(Y0i|Zi = z). Suppose that

ẑ − z =
1

n0

n0󰁛

j=1

ψn0(Xj, Yj) + op(n
−1/2
0 ) and ĝ(z)− g(z) =

1

n0

n0󰁛

j=1

ωn0(Xj, Yj) + op(n
−1/2
0 )

Also, suppose that ∂ĝ(z)/∂z and ẑ are uniformly consistent and converge to ∂g(z)/∂z and

z, respectively and ∂g(z)/∂z is continuous. Then, we have

ĝ(ẑ)− g(z) =
1

n0

n0󰁛

j=1

[ωn0(Xj, Yj) + ∂g(z)/∂z · ψn0(Xj, Yj)] + op(n
−1/2
0 ).

Proof of Theorem 1: If {Zj}n0
j=1 and {Zi}ni=n0+1 are known, we can estimate E(Y0i|Xi) for
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i = n0 + 1, . . . , n as

m̃(Zi) =

󰁓n0

j=1 Kh(Zj − Zi)Yj󰁓n0

l=1 Kh(Zl − Zi)
=

1
n0

󰁓n0

j=1 Kh(Zj − Zi)Yj

f̃p(Zi)
, (A.1)

where f̃p(u) denotes the kernel density estimator of fp(u) using the pre-treatment indexes

{Zj}n0
j=1. However, we can only use {Ẑj}n0

j=1 and {Ẑi}ni=n0+1 to estimate E(Y0i|Xi) for i =

n0 + 1, . . . , n as

m̂(Ẑi) =

󰁓n0

j=1 Kh(Ẑj − Ẑi)Yj
󰁓n0

l=1 Kh(Ẑl − Ẑi)
=

1
n0

󰁓n0

j=1 Kh(Ẑj − Ẑi)Yj

f̂p(Ẑi)
, (A.2)

where f̂p(u) denotes the kernel density estimator of fp(u) using the pre-treatment estimators

{Ẑj}n0
j=1. By (A.2) we can write ∆̂ as

∆̂ =
1

n1

n󰁛

i=n0+1

󰁫
Y1i − m̂(Ẑi)

󰁬
, (A.3)

and

√
n1

󰀓
∆̂−∆

󰀔
=

1
√
n1

n󰁛

i=n0+1

[∆i −∆− εi]−
1

√
n1

n󰁛

i=n0+1

󰁫
m̂(Ẑi)−m(Zi)

󰁬
= I1 − I2, (A.4)

where I1 and I2 are well defined. Next, we discuss the asymptotics of I2. For i = n0+1, . . . , n,

denote vi = (Z1, . . . , Zn0 , Zi)
⊤ and v̂i = (Ẑ1, . . . , Ẑn0 , Ẑi)

⊤, and define g(z1, . . . , zn0 , zi) =
󰁓n0

j=1 Kh(zj − zi)Yj [
󰁓n0

l=1 Kh(zl − zi)]
−1
. Thus, m̃(Zi) = g(vi) and m̂(Ẑi) = g(v̂i). Again,

notice that

v̂i − vi =

󰀳

󰁅󰁅󰁅󰁃

X⊤
1
...

X⊤
n0

X⊤
i

󰀴

󰁆󰁆󰁆󰁄

󰀓
β̂ − β

󰀔
=

1

n0

n0󰁛

l=1

A⊤
i φ(Xl, Yl) + o(n

−1/2
0 ), (A.5)

where A⊤
i = (X⊤

1 , . . . , X
⊤
n0
, X⊤

i ). For any i = n0 + 1, . . . , n, Yj = m(Zj) + εj = m(Zi) +

(m(Zj)−m(Zi)) + εj, which implies that

1

n0

n0󰁛

j=1

Kh(Zj − Zi)Yj =
1

n0

n0󰁛

j=1

Kh(Zj − Zi) [m(Zi) + (m(Zj)−m(Zi)) + εj]

= f̃p(Zi)m(Zi) +
1

n0

n0󰁛

j=1

Kh(Zj − Zi) [m(Zj)−m(Zi) + εj] . (A.6)
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Combining (A.1) and (A.6) leads to

m̃(Zi) = m(Zi) +
1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)
.

Then,

g(vi)− E(Y0i|Xi) = m̃(Zi)−m(Zi) =
1

n0

n0󰁛

j=1

Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]
1
n0

󰁓n0

l=1 Kh(Zl − Zi)
. (A.7)

Again, by combining (A.5) and (A.7), and using Lemma 3, we have

m̂(Ẑi)−m(Zi) =
1

n0

n0󰁛

j=1

󰀫
Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

1
n0

󰁓n0

l=1 Kh(Zl − Zi)
+m′(Zi)X

⊤
i φ(Xj, Yj)

󰀬

=
1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]
1
n0

󰁓n0

l=1 Kh(Zl − Zi)
+m′(Zi)X

⊤
i

1

n0

n0󰁛

j=1

φ(Xj, Yj)

=
1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)
+m′(Zi)X

⊤
i

1

n0

n0󰁛

j=1

φ(Xj, Yj).

Hence,

I2 =
1

√
n1

n󰁛

i=n0+1

1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)

+
1

√
n1

n󰁛

i=n0+1

m′(Zi)X
⊤
i

1

n0

n0󰁛

j=1

φ(Xj, Yj) = I21 + I22,

where both I21 and I22 are defined in an obvious manner. Now, I21 is re-expressed as follows

I21 =
1

√
n1

n󰁛

i=n0+1

1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

ψn0,n1(Yj, Zj, Zi),
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where ψn0,n1(Yj, Zj, Zi) = Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]/f̃p(Zi). Notice that

E [ψn0,n1(Yj, Zj, Zi)] = E
󰁱
E
󰁫
ψn0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Zi

󰁬󰁲

= E

󰀫
E

󰀫
Kh(Zj − Zi) [m(Zj)−m(Zi)]

f̃p(Zi)

󰀏󰀏󰀏Zi

󰀬󰀬
,

and

E

󰀫
Kh(Zj − Zi) [m(Zj)−m(Zi)]

f̃p(Zi)

󰀏󰀏󰀏Zi

󰀬

=
1

h

󰁝
K( z−Zi

h
) [m(z)−m(Zi)]

f̃p(Zi)
fp(z)dz

=
1

fp(Zi)

󰀝󰁝
K(t) [m(Zi + ht)−m(Zi)] fp(Zi + ht)dt

󰀞
·
󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘

=
1

fp(Zi)

󰀝󰁝
K(t)

󰀗
htm′(Zi) +

h2t2

2
m′′(Zi)

󰀘 󰀅
fp(Zi) + htf ′

p(Zi)
󰀆
dt

󰀞

×
󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘
= Op(h

2),

where m′′(z) is the second order derivative of m(z) and f ′
p(z) is the first order derivative of

fp(z). Clearly E
󰁫
ψn0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Zi

󰁬
= O(h2) and E [ψn0,n1(Yj, Zj, Zi)] = O(h2). Now, de-

fine ψ̃n0,n1(Yj, Zj, Zi) = ψn0,n1(Yj, Zj, Zi)−E [ψn0,n1(Yj, Zj, Zi)]. Thus, E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Zi

󰁬
=

O(h2) and E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰁬
= 0. Meanwhile,

E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁬
= E

󰁱
ψn0,n1(Yj, Zj, Zi)− E [ψn0,n1(Yj, Zj, Zi)]

󰀏󰀏󰀏Yj, Zj

󰁲

= E
󰁱
ψn0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁲
+Op(h

2).

Notice that

E
󰁱
ψn0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁲
=

1

h

󰁝
K(

Zj−z

h
) [m(Zj)−m(z) + εj]

f̃p(z)
fa(z)dz

=

󰀝󰁝
K(t) [m(Zj)−m(Zj + ht) + εj] r(Zj + ht)dt

󰀞
·
󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘

=

󰀝󰁝
K(t) [m(Zj)−m(Zj + ht)] r(Zj + ht)dt+ εj

󰁝
K(t)r(Zj + ht)dt

󰀞

×
󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘
.
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It is obvious that

󰁝
K(t) [m(Zj + ht)−m(Zj)] r(Zj + ht)dt

=

󰁝
K(t)

󰀗
htm′(Zj) +

h2t2

2
m′′(Zj)

󰀘
[r(Zj) + htr′(Zj)] dt = Op(h

2).

Also,

󰁝
K(t)r(Zj+ht)dt =

󰁝
K(t)

󰀗
r(Zj) + htr′(Zj) +

h2t2

2
r′′(Zj) + o(h2t2)

󰀘
dt = r(Zj)+Op(h

2),

where r′′(z) is the second order derivative of r(z). Then,

E
󰁱
ψn0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁲
= Op(h

2)+

󰀝
r(Zj)

󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘
+Op(h

2)

󰀞
εj,

and

E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁬
=

󰀝
r(Zj)

󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘
+O(h2)

󰀞
εj +Op(h

2).

Next, I21 is rewritten as

I21 =
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

ψn0,n1(Yj, Zj, Zi)

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

󰁱
ψ̃n0,n1(Yj, Zj, Zi) + E [ψn0,n1(Yj, Zj, Zi)]

󰁲

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

ψ̃n0,n1(Yj, Zj, Zi) + op(1)

= Ĩ21 + op(1).

It follows from Lemma 2 that Ĩ21 is asymptotically equivalent to

√
n1

󰀫
1

n0

n0󰁛

j=1

E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Yj, Zj

󰁬
+

1

n1

n󰁛

i=n0+1

E
󰁫
ψ̃n0,n1(Yj, Zj, Zi)

󰀏󰀏󰀏Zi

󰁬󰀬

=

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

󰀝
r(Zj)

󰀗
1 +Op(h

2) +Op

󰀕
1√
n0h

󰀖󰀘
+O(h2)

󰀞
εj + op(1)

=

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

r(Zj)εj + op(1),
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so that

I21 =

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

r(Zj)εj + op(1). (A.8)

Now, we rewrite I22 as

I22 =

󰁵
n1

n0

󰀥
1

n1

n󰁛

i=n0+1

m′(Zi)X
⊤
i

󰀦󰀥
1

√
n0

n0󰁛

j=1

φ(Xj, Yj)

󰀦

=

󰁵
n1

n0

[δa + op(1)]

󰀥
1

√
n0

n0󰁛

j=1

φ(Xj, Yj)

󰀦
=

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

δaφ(Xj, Yj) + op(1), (A.9)

where δa = E
󰀅
m′(Zi)X

⊤
i

󰀆
. By (A.8) and (A.9), we have

I2 =
√
λ

1
√
n0

n0󰁛

j=1

[r(Zj)εj + δaφ(Xj, Yj)] + op(1) (A.10)

Based on (A.4) and (A.10), we have

√
n1

󰀓
∆̂−∆

󰀔
= I1 −

√
λ

1
√
n0

n0󰁛

j=1

[r(Zj)εj + δaφ(Xj, Yj)] + op(1),

from which, it is easy to see that I1 and the second term on the right hand side is inde-

pendent. Obviously, by the central limit theorem, I1
d→ N(0, σ2

1), where σ2
1 = Var(∆i) +

Var(εi)) − 2Cov(∆i, εi) given in Theorem 1. Again, it follows by the central limit theorem

that 1√
n0

󰁓n0

j=1 [r(Zj)εj + δaφ(Xj, Yj)] converges to a normal distribution with mean 0 and

variance σ2
2 + σ2

3 + 2δaΣ23, where σ2
2, σ

2
3, and Σ23 are given in Theorem 1. Therefore,

√
n1

󰀓
∆̂−∆

󰀔
d→ N

󰀃
0, σ2

∆

󰀄
,

where σ2
∆ = σ2

1 + λ (σ2
2 + σ2

3 + 2δaΣ23) given in Theorem 1. This completes the proof of

Theorem 1.

Proof of Theorem 2: Before embracing on the proof of Theorem 2, let P denote the

distribution of {Xl, Yl}nl=1 and use P ∗ to denote the Bootstrap distribution, which is the dis-

tribution of {Xj, Y
∗
j }n0

j=1 and {X∗
i , Y

∗
i }ni=n0+1 conditional on {Xj, Yj}n0

j=1 and {Xi, Yi}ni=n0+1.

Also, we use E∗ to denote the expectation with respect to P ∗. Furthermore, let S1, S2 . . .

be a sequence of random variables and a1, a2, . . . be a sequence of positive real numbers.

Define Sn = o∗p(an) if for any ε > 0 and 󰂃 > 0, limn→∞ P{P ∗(|Sn/an| > 󰂃) > ε} = 0.

Similarly, Sn = O∗
p(an) means that if for any ε > 0 and 󰂃 > 0, there exists M > 0 such that
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lim supn→∞ P{P ∗(|Sn/an| > M) > ε} < 󰂃.

Notice that

√
n1(∆̂

∗ − ∆̂) =
1

√
n1

n󰁛

i=n0+1

󰀫󰁫
Y ∗
i − m̂∗

󰀓
(X∗

i )
⊤β̂∗

󰀔󰁬
−

󰀥
1

n1

n󰁛

i=n0+1

Yi −
1

n1

n󰁛

i=n0+1

m̂(X⊤
i β̂)

󰀦󰀬

=
1

√
n1

n󰁛

i=n0+1

󰀫󰀣
Y ∗
i − 1

n1

n󰁛

i=n0+1

Yi

󰀤
−

󰀥
m̂∗

󰀓
(X∗

i )
⊤β̂∗

󰀔
− 1

n1

n󰁛

i=n0+1

m̂(X⊤
i β̂)

󰀦󰀬

=
1

√
n1

n󰁛

i=n0+1

󰀫󰀣
Y ∗
i − 1

n1

n󰁛

i=n0+1

Yi

󰀤
−

󰀥
m̂

󰀓
(X∗

i )
⊤β̂

󰀔
− 1

n1

n󰁛

i=n0+1

m̂(X⊤
i β̂)

󰀦󰀬

− 1
√
n1

n󰁛

i=n0+1

󰁫
m̂∗

󰀓
(X∗

i )
⊤β̂∗

󰀔
− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬

= I∗1 − I∗2 ,

where both I∗1 and I∗2 are well defined and

m̂∗((X∗
i )

⊤β̂∗) =

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂
∗ − (X∗

i )
⊤β̂∗

󰀔
Y ∗
j

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂
∗ − (X∗

i )
⊤β̂∗

󰀔 =

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂
∗ − (X∗

i )
⊤β̂∗

󰀔
Y ∗
j

f̂ ∗
p

󰀓
(X∗

i )
⊤β̂∗

󰀔

with f̂ ∗
p (u) denoting the kernel density estimator of fp(u) using the pre-treatment estimators

{X⊤
j β̂

∗}n0
j=1. Next, we discuss the term I∗2 . To apply Lemma 3, define

m̃∗
󰀓
(X∗

i )
⊤β̂

󰀔
=

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔
Y ∗
j

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔 =

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔
Y ∗
j

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔 .

(A.11)

Also, denote v̂i =
󰀓
X⊤

1 β̂, . . . , X
⊤
n0
β̂, (X∗

i )
⊤β̂

󰀔⊤
and v̂∗i =

󰀓
X⊤

1 β̂
∗, . . . , X⊤

n0
β̂∗, (X∗

i )
⊤β̂∗

󰀔⊤
for

i = n0 + 1, . . . , n, and define

g(z1, . . . , zn0 , zi) =

󰁓n0

j=1 Kh(zj − zi)Y
∗
j󰁓n0

j=1 Kh(zj − zi)
.

Thus, m̃∗
󰀓
(X∗

i )
⊤β̂

󰀔
= g(v̂i) and m̂∗

󰀓
(X∗

i )
⊤β̂∗

󰀔
= g(v̂∗i ). Furthermore, by following the
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proof of Theorem 1 in Zhang, Huang and Liu (2020), one has

v̂∗i − v̂i =

󰀳

󰁅󰁅󰁅󰁃

X⊤
1
...

X⊤
n0

(X∗
i )

⊤

󰀴

󰁆󰁆󰁆󰁄

󰀓
β̂∗ − β̂

󰀔
= A⊤

i

󰀥
1

n0

n0󰁛

j=1

φ(Xj, Yj)ξj + op(n
−1/2
0 )

󰀦

=
1

n0

n0󰁛

j=1

A⊤
i φ(Xj, Yj)ξj + op(n

−1/2
0 ), (A.12)

where A⊤
i =

󰀃
X⊤

1 , . . . , X
⊤
n0
, (X∗

i )
⊤󰀄 and φ(Xj, Yj) is the same as in Assumption A6. For any

i = n0 + 1, . . . , n,

Y ∗
j = Ŷj + ε∗j = m̂

󰀓
(X∗

i )
⊤β̂

󰀔
+
󰁫
m̂(X⊤

j β̂)− m̂
󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j ,

which implies that

1

n0

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔
Y ∗
j

=
1

n0

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱

m̂
󰀓
(X∗

i )
⊤β̂

󰀔
+
󰁫
m̂(X⊤

j β̂)− m̂
󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

=f̂p

󰀓
(X∗

i )
⊤β̂

󰀔
m̂

󰀓
(X∗

i )
⊤β̂

󰀔
+

1

n0

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲
.

(A.13)

Combining (A.11), (A.12) and (A.13) leads to

m̃∗
󰀓
(X∗

i )
⊤β̂

󰀔
= m̂

󰀓
(X∗

i )
⊤β̂

󰀔
+

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔 ,

which means that

g(v̂i)− m̂(Ẑi) =
1

n0

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

1
n0

󰁓n0

l=1 Kh

󰀓
X⊤

l β̂ − (X∗
i )

⊤β̂
󰀔 . (A.14)
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A combination of (A.11) - (A.14), together with Lemma 3, implies that

m̂∗
󰀓
(X∗

i )
⊤β̂∗

󰀔
− m̂

󰀓
(X∗

i )
⊤β̂

󰀔
=

1

n0

n0󰁛

j=1

󰀻
󰀿

󰀽
Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

1
n0

󰁓n0

l=1 Kh

󰀓
X⊤

l β̂ − (X∗
i )

⊤β̂
󰀔

+
∂m̂

󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i φ(Xj, Yj)ξj

󰀼
󰁀

󰀾

=

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔

+
∂m̂

󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i

1

n0

n0󰁛

j=1

φ(Xj, Yj)ξj.

Hence,

I∗2 =
1

√
n1

n󰁛

i=n0+1

󰁫
m̂∗

󰀓
(X∗

i )
⊤β̂∗

󰀔
− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬

=
1

√
n1

n󰁛

i=n0+1

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔

+
1

√
n1

n󰁛

i=n0+1

∂m̂
󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i

1

n0

n0󰁛

j=1

φ(Xj, Yj)ξj = I∗21 + I∗22,

where both I∗21 and I∗22 are defined in an obvious manner. First, we consider I∗21. To this

end, I∗21 is re-expressed as

I∗21 =
1

√
n1

n󰁛

i=n0+1

1
n0

󰁓n0

j=1 Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
+ ε∗j

󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔 .

Easily, one can show that

√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔󰁱󰁫

m̂(X⊤
j β̂)− m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬󰁲

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔 = o∗p(1).
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Then,

I∗21 =
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔
ε∗j

f̂p

󰀓
(X∗

i )
⊤β̂

󰀔 + o∗p(1)

=
√
n1

1

n0 · n1

n󰁛

i=n0+1

n0󰁛

j=1

ψn0,n1(Y
∗
j , (X

∗
i )

⊤β̂) + o∗p(1) = Ĩ∗21 + o∗p(1)

where ψn0,n1(Y
∗
j , (X

∗
i )

⊤β̂) = Kh

󰀓
X⊤

j β̂ − (X∗
i )

⊤β̂
󰀔
ε∗j/f̂p

󰀓
(X∗

i )
⊤β̂

󰀔
.

Obviously,

E∗
󰁫
ψn0,n1(Y

∗
j , (X

∗
i )

⊤β̂)
󰁬
= 0 and E∗

󰁫
ψn0,n1(Y

∗
j , (X

∗
i )

⊤β̂)
󰀏󰀏󰀏 (X∗

i )
⊤β̂

󰁬
= 0.

Meanwhile, following the same arguments as in the proof of Theorem 1, we can show that

E∗
󰁫
ψn0,n1

󰀓
Y ∗
j , (X

∗
i )

⊤β̂
󰀔 󰀏󰀏󰀏Y ∗

j

󰁬
= O∗

p(h
2) +

󰀝
r(X⊤

j β̂)

󰀗
1 +O∗

p(h
2) +O∗

p

󰀕
1√
n0h

󰀖󰀘
+O∗

p(h
2)

󰀞
ε∗j .

Then, it follows from Lemma 2 that Ĩ∗21 is asymptotically equivalent to

√
n1

1

n0

n0󰁛

j=1

E∗
󰁫
ψ̃n0,n1

󰀓
Y ∗
j , X

⊤
j β̂, (X

∗
i )

⊤β̂
󰀔 󰀏󰀏󰀏Y ∗

j , X
⊤
j β̂

󰁬

=

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

󰀝
r(X⊤

j β̂)

󰀗
1 +O∗

p(h
2) +O∗

p

󰀕
1√
n0h

󰀖󰀘
+O∗(h2)

󰀞
ε∗j + o∗p(1)

=

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

r(X⊤
j β̂)ε

∗
j + o∗p(1),

so that

I∗21 =

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

r(Ẑj)ε
∗
j + o∗p(1). (A.15)

By Taylor expansion, we have

r(Ẑj) = r(Zj) + r′(Zj)X
⊤
j (β̂ − β) +

1

2
r′′(Z̃j)(β̂ − β)⊤XjX

⊤
j (β̂ − β),

which implies that

1
√
n0

n0󰁛

j=1

r(Ẑj)ε
∗
j =

1
√
n0

n0󰁛

j=1

r(Zj)ε
∗
j +

1

n0

n0󰁛

j=1

r′(Zj)ε
∗
jX

⊤
j

√
n0(β̂ − β) +Rn0 ,

39



where

Rn0 =
1

2

√
n0(β̂ − β)⊤

1

n
3/2
0

n0󰁛

j=1

r′′(Z̃j)ε
∗
jXjX

⊤
j

√
n0(β̂ − β).

It can be shown easily that Rn0 = o∗p(1) and
1
n0

󰁓n0

j=1 r
′(Zj)ε

∗
jX

⊤
j

√
n0(β̂−β) = o∗p(1). Hence,

(A.15) becomes to

I∗21 =

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

r(Zj)ε
∗
j + o∗p(1) (A.16)

Now, we consider I∗22. Notice that

I∗22 =

󰁵
n1

n0

󰀵

󰀷 1

n1

n󰁛

i=n0+1

∂m̂
󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i

󰀶

󰀸
󰀥

1
√
n0

n0󰁛

j=1

φ(Xj, Yj)ξj

󰀦
.

Then, as n1 → ∞, it is easy to see that

1

n1

n󰁛

i=n0+1

∂m̂
󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i =
1

n1

n󰁛

i=n0+1

∂m
󰀓
(X∗

i )
⊤β̂

󰀔

∂v̂i
A⊤

i + o∗p(1)

=
1

n1

n󰁛

i=n0+1

m′
󰀓
(X∗

i )
⊤β̂

󰀔
(X∗

i )
⊤ + o∗p(1).

Then,

I∗22 =

󰁵
n1

n0

󰀥
1

n1

n󰁛

i=n0+1

m′
󰀓
(X∗

i )
⊤β̂

󰀔
(X∗

i )
⊤ + o∗p(1)

󰀦󰀥
1

√
n0

n0󰁛

j=1

φ(Xj, Yj)ξj

󰀦

Again, notice that 1
n1

󰁓n
i=n0+1 m

′
󰀓
(X∗

i )
⊤β̂

󰀔
(X∗

i )
⊤ = E∗

󰁫
m′

󰀓
(X∗

i )
⊤β̂

󰀔
(X∗

i )
⊤
󰁬
+ o∗p(1), and

E∗
󰁫
m′

󰀓
(X∗

i )
⊤β̂

󰀔
(X∗

i )
⊤
󰁬
=

1

n

n󰁛

i=n0+1

m′(Ẑi)X
⊤
i = E

󰀅
m′(Zi)X

⊤
i

󰀆
+ op(1).

Hence,

I∗22 =

󰁵
n1

n0

1
√
n0

n0󰁛

j=1

δaφ(Xj, Yj)ξj + o∗p(1), (A.17)

where δa is defined in Theorem 1. Combining (A.16) and (A.17), we have

I∗2 =
√
λ

1
√
n0

n0󰁛

j=1

󰀅
r(Zj)ε

∗
j + δaφ(Xj, Yj)ξj

󰀆
+ o∗p(1).
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Therefore,

√
n1

󰀓
∆̂∗ − ∆̂

󰀔
= I∗1 −

√
λ

1
√
n0

n0󰁛

j=1

󰀅
r(Zj)ε

∗
j + δaφ(Xj, Yj)ξj

󰀆
+ o∗p(1),

from which, it is easy to see that I∗1 and the second term on the right hand side is independent.

Obviously, conditional on the original sample {Xi, Yi}ni=n0+1,

E∗(Y ∗
i ) =

1

n1

n󰁛

i=n0+1

Yi and E∗
󰁫
m̂

󰀓
(X∗

i )
⊤β̂

󰀔󰁬
=

1

n1

n󰁛

i=n0+1

m̂(X⊤
i β̂).

Then, it follows from the central limit theorem that, conditional on the original sample

{Xi, Yi}ni=n0+1, I
∗
1

d→ N(0, σ2
1), where

σ2
1 = lim

n1→∞
Var

󰀓
Yi − m̂(X⊤

i β̂)
󰀔
= Var(Y1i) + Var (m(Zi))− 2Cov (Y1i,m(Zi)) .

Again, by the central limit theorem, conditional on the original sample {Xj, Yj}n0
j=1,

1
√
n0

n0󰁛

j=1

󰀅
r(Zj)ε

∗
j + δaφ(Xj, Yj)ξj

󰀆 d→ N
󰀃
0, σ2

2 + σ2
3 + 2δaΣ23

󰀄
,

where σ2
2 = lim

n0→∞
Var

󰀃
r(Zjε

∗
j)
󰀄
= Var (r(Zj)εj), σ

2
3 = lim

n0→∞
Var (δaφ(Xj, Yj)ξj) = δ⊤a Σβδa,

and Σ23 = lim
n0→∞

Cov
󰀃
φ(Xj, Yj)ξj, r(Zj)ε

∗
j

󰀄
= Cov (φ(Xj, Yj), r(Zj)εj). That is to say, condi-

tional on the original sample {Xj, Yj}n0
j=1 and {Xi, Yi}ni=n0+1,

√
n1

󰀓
∆̂∗ − ∆̂

󰀔
d→ N(0, σ2

∆),

where σ2
∆ is defined in Theorem 1. This establishes the proof of Theorem 2.

Proof of Theorem 3: Following the arguments in the proof of Theorem 1, we have

√
n1

󰀓
∆̂SCAD −∆

󰀔
=

1
√
n1

n󰁛

i=n0+1

{∆i −∆− εi}−
1

√
n1

n󰁛

i=n0+1

󰁫
m̂(Ẑi)−m(Zi)

󰁬
= J1 − J2,

where J1
d→ N(0, σ2

1) with σ2
1 defined in Theorem 1. Furthermore,

J2 =
1

√
n1

n󰁛

i=n0+1

1
n0

󰁓n0

j=1 Kh(Zj − Zi) [m(Zj)−m(Zi) + εj]

f̃p(Zi)

+
1

√
n1

n󰁛

i=n0+1

m′(Zi)X
⊤
i,A

1

n0

n0󰁛

j=1

φA(Xj, Yj) = J21 + J22,

41



where J21 =
√
λ 1√

n0

󰁓n0

j=1 r(Zj)εj+op(1) and J22 =
√
λ 1√

n0

󰁓n0

j=1 δa,AφA(Xj, Yj)+op(1) with

δa,A defined in Theorem 3. Then,

J2 =
√
λ

1
√
n0

n0󰁛

j=1

[r(Zj)εj + δa,AφA(Xj, Yj)] + op(1)
d→ N

󰀃
0, σ2

2 + σ2
3,A + 2δa,AΣ23,A

󰀄
,

where σ2
2, σ

2
3,A, δa,A, and Σ23,A are given in Theorem 3. Hence,

√
n1

󰀓
∆̂SCAD −∆

󰀔
d→ N

󰀃
0, σ2

∆,SCAD

󰀄
,

where σ2
∆,SCAD is defined in Theorem 3. This concludes the proof of Theorem 3.
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