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1 Introduction

Quantile regression has been widely recognized as a pivotal data analysis technique in many

applied fields such as biology, ecology, economics, environmental sciences, finance, medical

sciences, and psychology. In contrast to the conventional mean regressions that concentrate

on the conditional expectation of the model, quantile regressions pay more attention to the

distribution of the response variables. Especially, quantile regression model is much more

suitable to capture the structural features of the data when it follows a skewed or heavy tailed

distribution. As a result, modeling conditional quantiles has a wide range of applications in

many applied fields. For example, in finance and economics, value-at risk (VaR) is defined as

the quantile of future portfolio values conditional on current information, which has become

a standard measure of market risk as in Engle and Manganelli (2004). Besides, VaR and

other distribution information, such as variance, skewness, expected shortfall of returns and

other variables in financial market, appeal to many investors and decision makers as argued

in Linton and Xiao (2017). In genetic and genomic sciences, Briollais and Durrieu (2014)

provided a comprehensive review on real applications of quantile regression to the fields of

genetic and the emerging genomic studies and emphasized the motivation and benefits for

using quantile regression in genetic and genomic applications. Finally, in ecology and the

environmental sciences, quantile regression can provide a more complete view of possible

causal relationships between variables in ecological processes as described in Cade and Noon

(2003).

Since the seminal framework of quantile regression, proposed by Koenker and Bassett

(1978), there has been a large body of literature on estimating quantile regression models and

examining their econometric properties and applications, to name just a few, for example,

Cai (2002), Koenker and Xiao (2004), Koenker and Xiao (2006), Honda (2013), Bertsimas

and Mazumder (2014), Chen and Wang (2023), Cai et al. (2023), and references therein.

Especially, Xiao and Koenker (2009) studied the conditional quantiles estimation for the

GARCH type model and proposed a two-step approach of quantile regression estimation for
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linear GARCH time series, while Cai and Xu (2009) proposed nonparametric quantile esti-

mations for dynamic smooth coefficient models. Furthermore, Cai and Xiao (2012) extended

quantile regression to dynamic models with partially varying coefficients and estimated both

parametric and nonparametric functional coefficients. More recently, Nguyen et al. (2020)

applied a LASSO based quantile regression to investigate the tail-risk dependence in the

cryptocurrency markets.

With the advent of sophisticated information systems to collect a huge amount of data,

we face a large number of candidate conditional quantile models. A common approach to

deal with this issue is to apply a model selection approach by determining an optimal model

for prediction. There are several model selection strategies available for quantile regression

in the literature, like Bayesian information criterion in Lee et al. (2014), composite quan-

tile regression with adaptive LASSO studied by Zou and Yuan (2008), weighted composite

quantile regression with the smoothly clipped absolute deviation (SCAD) penalty proposed

in Jiang et al. (2012), and the Schwarz-like criterion as in Koenker (2011). However, model

selection may ignore some useful information, as addressed by Liao et al. (2019), and may

consequently yield poor forecast performance.

Different from model selection, model averaging provides a weighted average of all

potential candidate models, which is a sensible approach to reducing model uncertainty.

This strategy avoids to select a very poor candidate model and usually leads to a lower

risk of model misspecification as elaborated by Li et al. (2022). There are two main classes

of model averaging methods, i.e., Bayesian model averaging (BMA) and frequentist model

averaging (FMA). Given prior information, BMA assigns weights to the models by posterior

probability; see more details in Hoeting et al. (1999) and Brown et al. (2002). On the

other hand, FMA focuses on determining the weights of candidate models from frequentist

perspective. Most literature on FMA focuses on the strategies of determining the weights

and the asymptotic properties of estimators. For example, various weight choice schemes

have been proposed, like Mallows criterion as in Hansen (2007) and Wan et al. (2010), mean

squared error minimization in Liang et al. (2011), leave-one-out cross-validation procedure
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used by Hansen and Racine (2012), Kullback-Leibler (KL) type measures employed by Zhang

et al. (2016), weight choice criterion for linear measurement error models by Zhang et al.

(2019), time-varying local jackknife criterion proposed by Sun et al. (2021), and penalized

leave-h-out forward validation criterion investigated by Sun et al. (2023). Recently, for ultra-

high dimensional regressions with continuous responses, Ando and Li (2014, 2017) considered

a two-step model averaging approach with model screening in the first step. For divergent-

dimensional varying-coefficient multinomial logistic models, Li et al. (2022) proposed a least

squares criterion with the AdaBoost algorithm. Besides modeling the conventional point-

valued time series, Sun et al. (2022) proposed a model averaging procedure for interval-

valued data and proved that this procedure yielded predictors of mid-points and ranges with

an optimally asymptotic property.

However, the aforementioned literature focuses basically on the model averaging es-

timation for conditional mean models. To the best of our knowledge, there are only two

strategies designed explicitly for quantile regression model averaging. First, Lu and Su

(2015) constructed a jackknife model averaging (JMA) scheme for quantile regression with

low dimensional covariates, while Wang et al. (2023) further extended JMA to a two-step

process to accommodate high-dimensional quantile regression, where the marginal quantile

utility is used to screen the covariates and construct candidate models in the first step.

However, there are still several unsolved issues. First, model averaging can be considered

as a mega model with a high-dimensional set of predictors, some of which may be highly

multi-collinear to various extents or even redundant. But, the aforementioned approaches

are unable to eliminate these redundant predictors, which may result in unstable forecasts.

Second, the weight choice criteria of these approaches are essentially based on the classical

quantile regression estimators, which is equivalent to a special case of quasi likelihood estima-

tion (QMLE) with asymmetric Laplace density. Furthermore, these literature only focused

on the asymptotic optimality of the estimated weights, while whether the selected weights

is asymptotically consistent is unaddressed. Thus, it is highly desirable to construct a par-

simonious and general model averaging method for quantile regression to improve forecast
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accuracy and select important predictors simultaneously.

Our attempt in this paper is to propose a new model averaging strategy for high-

dimensional quantile regressions, for which we immediately face three challenges in contrast

to the existing literature. First, we need to develop a more general and parsimonious weight

choice criterion, which selects optimal combination weights and yields sparseness from vari-

ous potential covariates simultaneously. It has been shown that the aforementioned weight

choice criteria for quantile regressions focus on the selected weights and ignore deleting re-

dundant predictors. Also, the proposed criterion could reduce to some classic criteria in

the existing literature such as Lu and Su (2015). Second, it is expected to prove the re-

sultant model averaging estimators are asymptotically optimal when both the number of

candidate models and the number of predictors are divergent. Note that considering the

high-dimensional candidate models and relaxing the the conventional assumption of the

weights summing to one enhance the difficulty of proofs. Furthermore, this article is the first

to prove the asymptotic consistency of model averaging estimators for quantile regression,

which fills the gap in the quantile regression literature. Also, note that under time series

framework, the proof of the asymptotic consistency is much more difficult than the situation

when the model is correctly specified, where a commonly used tool is Theorem 1 of Fan and

Peng (2004). Specifically, the converging rate of this theorem can not been applied directly

due to the misspecified candidate models and the positive restriction of weights.

To address the first challenge, we construct a weight choice criterion based on the

KL loss with penalties, which provides a parsimonious model by obtaining the estimated

weights and selecting powerful predictors simultaneously. Moreover, it is worth noting that

our criterion could reduce to a Mallows-type criterion as in Lu and Su (2015)1 for asymmet-

ric Laplace density. To obtain the asymptotic optimality of the estimated weights, Lemma

1 later provides the rate of estimators in candidate models with a diverging number of

1Lu and Su (2015) also proposed a jackknife model averaging (JMA) for quantile regression. If the
leave-one-out cross-validation method is introduced to our QMLE-based weight choice criterion with the
asymmetric Laplace density, the proposed criterion in this paper also reduces to the JMA for quantile
regression as in Lu and Su (2015).
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predictors converging to the well-defined limits. Also, we provide some standard assump-

tions to indicate the relationships among the number of candidate models, the dimension

of covariates, the sample size, and the tuning parameters, which is helpful to deal with the

problems caused by high dimension and the relaxation of
󰁓M

m=1 wm = 1, where {wm}Mm=1

are the weights. Finally, we extend the consistent theory developed by Komunjer (2005)

and Fan and Peng (2004) to show that the model averaging estimators for high-dimensional

quantile regression are asymptotically consistent whether the model is correctly specified or

misspecified.

Besides, we also extend our methodology to the ultra-high dimensional scenarios by

introducing a model screening process before model averaging, and the related asymptotic

optimality is established. Furthermore, simulation studies are conducted to investigate the fi-

nite sample properties of our method under both homoscedastic and heteroscedastic settings,

to demonstrate that the proposed method is promising. Finally, an empirical application to

forecast S&P 500 stock returns in comparison with existing methods is examined to highlight

the merits of our proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the model

averaging estimation. Section 3 derives the asymptotic theories of the proposed method. Sec-

tion 4 extends our method to ultra-high dimensional scenarios and shows the corresponding

asymptotic optimality. Section 5 gives the simulation. Section 6 applies our method to

the empirical case. Section 7 concludes the paper. Mathematical proofs are relegated to

Appendix C.

2 Model Averaging Estimation

2.1 Model Framework

Let {yi,xi}ni=1 be a random sample (a stationary process), where yi is a scalar dependent

variable and xi = (xi1, xi2, ...)
′ is a covariate vector with countable infinite dimension. Here,
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xi is allowed to be a finite dimensional vector, say, a p× 1 vector of all possible predictors.

The τth (0 < τ < 1) conditional quantile of yi given xi is defined by

qτ (yi|xi) = µi,τ =
∞󰁛

j=1

θj,τxij, (1)

where θj,τ is an unknown coefficient. Alternatively, (1) can be re-expressed as

yi =
∞󰁛

j=1

θj,τxij + εi,τ , (2)

where εi,τ = yi − µi,τ is an unobservable error satisfying P (εi,τ ≤ 0|xi) = τ .

In this paper, we consider M candidate models to estimate the quantile regression

model (2), and M is allowed to be diverging as the sample size goes to infinity. Suppose

there are km regressors contained in the mth candidate model, where km is also allowed to

grow to infinity at some slower rates than the sample size n. As a result, the mth candidate

model is expressed as

yi = µ
(m)
i,τ + ε

(m)
i,τ =

km󰁛

j=1

θ
(m)
j,τ xij(m) + ε

(m)
i,τ = θ(m)′

τ xi(m) + ε
(m)
i,τ ,

where µ
(m)
i,τ is the conditional quantile of yi given xi(m), θ

(m)
τ = (θ

(m)
1,τ , · · · , θ

(m)
km,τ )

′ is a km × 1

vector of coefficients, xi(m) = (xi1(m), · · · , xikm(m))
′ is a km-dimensional sub-vector of xi, and

ε
(m)
i,τ = yi − θ(m)′

τ xi(m) is the error term of the mth candidate model.

To estimate each candidate quantile regression model, the estimator of θ(m)
τ is given

by the tick-exponential family, termed as QMLE as in Komunjer (2005), denoted as 󰁥θ
(m)

τ .

For the mth candidate model, suppose that the true conditional cumulative distribution

function (cdf) of yi is F0(y|xi(m)), and its probability density function (pdf) is denoted by

f0(y|xi(m)) ≡ dF0/dy. Notice that F0(·) and f0(·) are usually unknown.

Remark 1. The definition of quantile implies that the conditional quantile function of yi

given xi(m) and the cumulative distribution function (cdf) are inverse of each other, i.e.,

qτ (yi|xi(m)) = F−1
yi|xi(m)

(τ). Let {qτ (xi(m),θ
(m)
τ )} denote a model for the τ th quantile of yi given
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xi(m), and qτ (xi(m),θ
(m)
τ ) is allowed to be nonlinear. To estimate the parameters by QMLE,

Komunjer (2005) indicated that we could assume the density function f(yi, qτ (xi(m),θ
(m)
τ ), τ)

belongs to the tick-exponential family of densities, which leads to the estimator 󰁥θ
(m)

τ with a

well-defined limit.

Then, the logarithm likelihood function of the mth candidate model can be expressed

as

Ln(θ
(m)
τ ) =

n󰁛

i=1

ln f(yi, qτ (xi(m),θ
(m)
τ ), τ), (3)

and f(·) takes the following form

f(y, η, τ) = exp{−(1− τ)[a(η)− b(y)]1(y ≤ η) + τ [a(η)− c(y)]1(y > η)}, (4)

where a(η) is continuously differentiable, b(y) and c(y) are continuous, and a(η), b(η) and

c(η) are such functions to satisfy that
󰁕∞
−∞ f(y, η, τ)dy = 1 and

󰁕 η

−∞ f(y, η, τ)dy = τ . A

common member of the tick-exponential family densities is the asymmetric Laplace density

(see more details in Section 2.4), i.e.,

f(y, µ, τ) = τ(1− τ) exp{(1− τ)(y − µ)1(y ≤ µ)− τ(y − µ)1(y > µ)}.

Besides, for a given α ∈ N∗, let a(η) = 1
τ(1−τ)

sgn(η) ln(1 + |η|α) and b(y) = c(y) =

1
τ(1−τ)

sgn(y) ln(1 + |y|α). Then, (3) becomes

max
n󰁛

i=1

1

τ
[sgn(yi) ln(1 + |yi|α)− sgn(qτ (xi(m),θ

(m)
τ )) ln(1 + |qτ (xi(m),θ

(m)
τ )|α)]1(yi ≤ qτ (xi(m),θ

(m)
τ ))

− 1

1− τ
[sgn(yi) ln(1 + |yi|α)− sgn(qτ (xi(m),θ

(m)
τ )) ln(1 + |qτ (xi(m),θ

(m)
τ )|α)]1(yi > qτ (xi(m),θ

(m)
τ )),

which develops a new class of QMLEs for quantile regression.

Furthermore, the estimated τth conditional quantile of yi given xi(m) and 󰁥θ
(m)

τ in the
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mth candidate model can be expressed as:

󰁥µ(m)
i,τ = x′

i(m)
󰁥θ
(m)

τ , m = 1, ...,M, and i = 1, ..., n.

Denote the model averaging weight w = (w1, . . . , wM)′ ∈ W , where W = {w ∈ RM : 0 ≤

wm ≤ 1,m = 1, ...,M} is the weight vector space. Here, we relax the restriction that the

sum of weights should be one, unlike the weight in Lu and Su (2015). The estimation and

asymptotic properties given in Section 3 are not required this constraint. Then, the model

averaging estimator of the τth quantile is given by

󰁥µi,τ (w) =
M󰁛

m=1

wm󰁥µ(m)
i,τ =

M󰁛

m=1

wmx
′
i(m)

󰁥θ
(m)

τ = w⊤󰁥µi,τ .

where 󰁥µi,τ =
󰀓
󰁥µ(1)
i,τ , ..., 󰁥µ

(M)
i,τ

󰀔⊤
, which can be regarded as an approximate of the τth quantile

of yi given xi; that is qτ (yi|xi) ≈ w⊤󰁥µi,τ .

Now, 󰁥θτ denotes the set of estimator in all candidate models, i.e., {󰁥θ
(1)

τ , ..., 󰁥θ
(M)

τ } and

the estimated conditional quantile is 󰁥µτ (w) = (󰁥µ1,τ (w), ..., 󰁥µn,τ (w))′. In addition, the model

averaging estimators for quantile regression is defined as

󰁥θτ (w) =
M󰁛

m=1

wmΠ
(m)′󰁥θ

(m)

τ ,

where Π(m)′ is a matrix of p × km projecting 󰁥θ
(m)

τ to 󰁥θτ , and p is the number of all

predictors in the M candidate models. For instance, if all candidate models are nested,

Π(m) = (Ikm ,0km×(p−km)) and Ikm is a km × km-identity matrix.
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2.2 Weight Choice Criterion

In this section, we propose a penalized model averaging criterion to choose the optimal

w based on the KL loss, which is defined as:

KL(w) =
n󰁛

i=1

E0[ln(f0(yi|xi))− ln(f(yi|󰁥θτ (w),xi, τ))|xi],

where yi is a realization from the true conditional process f0(·|xi), f(yi|󰁥θτ (w),xi, τ) is a given

conditional pdf of yi, and E0[·|xi] is the conditional expectation with respect to f0(·|xi).

If the true conditional pdf f0(yi|xi) is known, we could obtain a weight by minimizing

KL(w). However, in most cases, it is infeasible to minimize the KL loss for the unknown

pdf f0(yi|xi) and the misspecification of candidate models. Denote the optimal weight w∗ =

argminw∈WKL(w).

Remark 2. There are two types of misspecification in our settings. One is the misspec-

ification of the set of regressors. This type of misspecification has been considered in the

literature and appears to be the focus of the model averaging literature (Sun et al., 2023;

Lu and Su, 2015). The second type refers to misspecify the conditional distribution of yi.

These motivate us to employ QMLE methods to estimate the coefficients and weights. We

also consider the asymptotic properties of model averaging for quantile regression under these

misspecification settings. For example, Lemma 1 indicates that, for each candidate model,

the difference between QMLE 󰁥θ
(m)

τ and the pseudo-true value θ(m)∗
τ converges in probability to

zero whether the regressors or the distribution is misspecified. The consistency of estimated

weights is shown in Theorem 2.

By the properties of expectation, we have

KL(w) =
n󰁛

i=1

E0[ln(f0(yi|xi))]−
n󰁛

i=1

E0[ln(f(yi|󰁥θτ (w),xi, τ))|xi],

in which, the first term has no effect on the choice of w. Then, we propose a feasible double
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penalized weight choice criterion as follows:

Gn(w) = −
n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ) + λn,1w
′k+

p󰁛

j=1

pλn,2(|󰁥θj,τ (w)|), (5)

where λn,1w
′k and pλn,2(|󰁥θτ,j(w)|) are penalty terms, λn,i(i = 1, 2) are the tuning parameters,

k = (k1, ..., kM)′ with km being the number of columns of x used in the mth candidate model,

󰁥θj,τ (w) =
M󰁛

m=1

wm(Π
(m)′󰁥θ

(m)

τ )j,

and (·)j denotes the jth member of the vector 󰁥θτ (w).

Remark 3. Note that λn,1w
′k is the penalty for the model complexity, which is widely

used in Zhang et al. (2016) and Zhang et al. (2020). Intuitively, the selected weights of

over-fitted (or some sufficiently large) candidate models may be shrunk to zero, if λn,1 is

going to infinity when the sample size is going to infinity. On the other hand, following

Sun et al. (2023), we employ pλn,2(|󰁥θj,τ (w)|) as a penalty for predictor sparsity, which can

remove the redundant predictors. pλn,2(|󰁥θj,τ (w)|) could be a class of penalties, including the

LASSO penalty as in Tibshirani (1996), the SCAD penalty as in Fan and Li (2001), and the

adaptive LASSO penalty as in Zou (2006). For example, suppose all the candidate models are

univariate models. Then, λn,1w
′k provides the same penalty for each candidate model, while

pλn,2(|󰁥θj,τ (w)|) can select important predictors and construct a parsimonious mega model

after model averaging. In addition, one can also use penalization methods at the estimation

stage of candidate models, especially when km > n. However, combining the M candidate

models still results in a mega model when estimating the weights. Thus, it is necessary to

employ penalties at the averaging stage. To sum up, with these two penalties, the proposed

weight choice criterion determines the optimal combination weights and yields sparseness for

various potential covariates simultaneously.

Remark 4. Furthermore, the proposed weight choice criterion Gn(w) could reduce to some

classical criteria in the existing literature. For instance, when all elements of w are 0 or

1 and λn,2 = 0, suppose λn,1 = 2, then our proposed criterion Gn(w) is equivalent to the
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AIC; and suppose λn,1 = lnn, then Gn(w) is the BIC. When yi follows the asymmetric

Laplace distribution and λn,2 = 0, suppose λn,1 = 2σ2 = 2var(εi|xi), then Gn(w) reduces to

a Mallows-type criterion for quantile regression in Lu and Su (2015).

As a result, the weight vector is obtained from

󰁥w = argminwGn(w),w ∈ W , (6)

where Gn(w) is defined in (5). Then, the model averaging estimator for quantile regression

is given by

󰁥θτ (󰁥w) =
M󰁛

m=1

󰁥wmΠ
(m)′󰁥θ

(m)

τ ,

and the estimated conditional quantile based on 󰁥θτ (󰁥w) is defined as

󰁥µτ (󰁥w) = (󰁥µ1,τ (󰁥w), ..., 󰁥µn,τ (󰁥w))′,

where 󰁥µi,τ (󰁥w) =
󰁓M

m=1 󰁥wm󰁥µ(m)
i,τ =

󰁓M
m=1 󰁥wmx

′
i(m)

󰁥θ
(m)

τ .

2.3 Implementation Algorithm

In this section, we suggest an algorithm for our proposed model averaging process for

an easy implementation, see more details in Algorithm 1. Note that we follow Fan and Li

(2001), Zou (2006) and Meier et al. (2008) to determine the tuning parameters λn,1 and

λn,2 in the proposed weight choice criterion by k-fold cross-validation. Specifically, we first

randomly divide the sample set into k mutually exclusive subsets of the same size. Then,

each time one subset is selected as the validation set, the remaining k − 1 subsets are used

as the training set. This process is repeated for k times until all subsets are taken as the

validation set. Finally, the optimal tuning parameters are determined by minimizing the

weight choice criterion on the validation sets.
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Algorithm 1 Penalized model averaging for quantile regression algorithm

Step 1. Construct potential candidate models.
Step 2. Calculate the estimated conditional quantile of each candidate model.

For m = 1 to M :

(a) Determine the conditional density function f(y, η) of quantile regression by the prior information,
including asymmetric Laplace density and other densities in the tick-exponential family (4);

(b) Estimate the parameter θ(m)
τ of each candidate models by QMLE;

(c) Set 󰁥µ(m)
i,τ = x′

i(m)
󰁥θ
(m)

τ .

Step 3. Calculate the model averaging weight based on the penalized KL criterion.

(a) For j = 1 to p: choose a proper kind of penalty pλn,2 for the predictors;

(b) Set f(yi|󰁥θτ (w),xi, τ) = f(yi,
󰁓M

m=1 wm󰁥µ(m)
i,τ );

(c) Construct the feasible double penalized weight choice criterion as:

Gn(w) = −
n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ) + λn,1w
′k+

p󰁛

j=1

pλn,2
(|󰁥θτ,j(w)|).

(d) Determine the tuning parameters λn,1 and λn,2;

(e) Solve the above penalized minimum negative likelihood problem and obtain the model averaging
weight:

󰁥w = min
w∈W

Gn(w);

Step 4. Compute the model averaging estimator:

The estimated conditional quantile 󰁥µτ (󰁥w) = (󰁥µ1,τ (󰁥w), ..., 󰁥µn,τ (󰁥w))′, and

󰁥µi,τ (󰁥w) =

M󰁛

m=1

󰁥wm󰁥µ(m)
i,τ =

M󰁛

m=1

󰁥wmx′
i(m)

󰁥θ
(m)

τ .

2.4 Application Based on Asymmetric Laplace Distribution

In this section, our intention is to study the proposed criterion for the popular case

that yi is supposed to follow the asymmetric Laplace distribution. As pointed out by Yu

and Moyeed (2001), minimizing the quantile loss function proposed by Koenker and Bassett

(1978) is equivalent to maximizing the parametric likelihood under the asymmetric Laplace

error distribution, and also, Komunjer (2005) stated that QMLE with asymmetric Laplace

density reduces to the classical quantile regression estimators. Based on the asymmetric

13



Laplace distribution, the probability density function of dependent variable yi is given by

f(y, µ, τ, σ) =
τ(1− τ)

σ
exp (−ρτ (y − µ)/σ) ,

where τ ∈ (0, 1), µ is the location parameter, σ is the scale parameter, and ρτ is the check

function as ρτ (y− µ) = (y− µ)(τ1(y− µ ≥ 0)− (1− τ)1(y− µ ≤ 0)) with 1(·) denoting the

indicative function. Then, the logarithmic likelihood function can be expressed as:

Ln(y,µ, τ, σ) = n ln(τ(1− τ)/σ)−
n󰁛

i=1

1

σ
ρτ (yi − µi),

where y = (y1, ..., yn), µ = (µ1, ..., µn), and µi =
󰁓M

m=1 wmx
′
i(m)

󰁥θ
(m)

τ . For a given τ ∈ (0, 1),

the selected weight vector is obtained as follows,

󰁥w = argminw∈W

󰀫
n󰁛

i=1

1

σ
ρτ

󰀣
yi −

M󰁛

m=1

wmx
′
i(m)θ

(m)

󰀤
+ λn,1w

′k+

p󰁛

j=1

pλn,2(|󰁥θτ,j(w)|)
󰀬
. (7)

Without any penalties in this criterion, i.e., λn,1 = λn,2 = 0, (7) is equivalent to the loss

function in Lu and Su (2015) and Wang et al. (2023). Also, using the jackknife technique, our

method reduces to Jacknife model averaging as in Lu and Su (2015), and further combining

with a covariate screening process before model averaging, our method becomes to that in

Wang et al. (2023). Thus, our proposed method is more general than the existing approaches

with respect to the form of weight choice loss function.

3 Asymptotic Theories

In this section, we investigate the asymptotic properties of the penalized model averaging

for quantile regression under time series framework. Specifically, the asymptotic optimality

and consistency of weight w estimated by (6) are shown in Theorems 1 and 2, and Theorem 3

states that the model averaging estimator 󰁥θτ (󰁥w) asymptotically converges to a well-defined

limit, even if all candidate models are misspecified. Let θ∗(m)
τ be the parameter vector

which minimizes the KL divergence between the true model with density f0(·) and the mth
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candidate model. First, the following assumptions are imposed although they might not be

the weakest possible.

Assumption 1. (i) Let {yi,xi,Fi} be an adapted stochastic sequence such that {yi,xi} are

stationary and ergodic process, where Fi is a σ-algebra, and also, the sequence {yi,xi}

is strong mixing with α0 size of −r0/(r0 − 2) with r0 > 2; (ii) the stochastic process

{ln f(yi|󰁥θτ (w),xi, τ)} satisfies that var[ln f(yi|󰁥θτ (w),xi, τ)] = σ2
f < ∞, E[ln f(yi|󰁥θτ (w),xi, τ)−

E[ln f(yi|󰁥θτ (w),xi, τ)]|F−r]
q.m.→ 0 in quadratic mean (q.m.) as r → ∞, and

󰁓∞
j=1 var(Rij)

1/2 <

∞, where Rij = E[ln f(yi|󰁥θτ (w),xi, τ)|Fi−j]− E[ln f(yi|󰁥θτ (w),xi, τ)|Fi−j−1].

Assumption 2. (i) ln f(yi|θ,xi, τ) is continuously differentiable with probability 1 with re-

spect to θ; (ii) E0[󰀂∂ ln f(yi|θ,xi,τ)
∂θ′ |θ=θ̃(w)󰀂|xi] is finite for every θ̃(w) between 󰁥θ(w) and θ∗(w),

where θ∗(w) =
󰁓M

m=1 wmθ
∗(m)
τ .

Assumption 3. M2npζ−2
n = o(1), where ζn = infw∈W KL∗(w) and

KL∗(w) =
n󰁛

i=1

󰁝
[f0(yi|xi) ln f0(yi|xi)− f0(yi|xi) ln f(yi|θ∗

τ (w),xi, τ)]dy.

Assumption 4. (i) λn,1 = O(n1/2p−1/2); (ii) For all j = 1, ..., p, p′λn,2
(󰁥θτ,j(w)) = O(n1/2p−1/2)

and p′′λn,2
(󰁥θτ,j(w)) = op(np

−1).

Assumption 5. For some positive finite constants C1 and C2, the conditional matrix

I(w∗) = E0

󰀗
∂ ln f(yi|󰁥θτ (w

∗),xi, τ)

∂w

∂ ln f(yi|󰁥θτ (w
∗),xi, τ)

∂w′

󰀘

satisfies 0 < C1 < λmin{I(w∗)} ≤ λmax{I(w∗)} < C2 for almost all xi with probability

1, where λmin and λmax denote the minimum and maximum eigenvalue of the matrix. In

addition, for m, s = 1, 2, . . . ,M and some positive finite constants C3 and C4,

E0

󰀗
∂ ln f(yi|󰁥θτ (w

∗),xi, τ)

∂wm

∂ ln f(yi|󰁥θτ (w
∗),xi, τ)

∂ws

󰀘2
< C3

and E0

󰀗
∂2 ln f(yi|󰁥θτ (w

∗),xi, τ)/∂wm∂ws

󰀘2
< C4, for almost all xi with probability 1.
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Assumption 6. For all w ∈ W, l,m, s = 1, ...,M , and some positive constant C5, there

exist functions Mlms such that

󰀏󰀏󰀏󰀏
∂3 ln f(yi|󰁥θ(w),xi, τ)

∂wl∂wm∂ws

󰀏󰀏󰀏󰀏 ≤ Mlms(yi|xi)

and E0[M
2
lms(yi|xi)|xi] < C5 < ∞, for almost all xi with probability 1.

Assumption 7. (i) M1/2n−δ/2 = o(1); (ii) M3/2ξ
1/2
n n−1/2+δ/2 = o(1); (iii) M1/2p1/2ξ

−1/2
n n−δ/2 =

o(1), where δ is a positive a positive constant and

ξn =
n󰁛

i=1

E0

󰀗󰀕
f(yi|󰁥θτ (w

∗),xi, τ)

f0(yi|xi)
− 1

󰀖2󰀘
.

Remark 5 (Discussions of Assumptions). Assumption 1 includes some regularity conditions

to derive some asymptotic theories for dependent identically distributed process, see, for ex-

ample, Chapter 5 in White (1984) and Condition (A4) in Komunjer (2005). Among various

mixing conditions used in literature, strong mixing is reasonably weak and is known to be

fulfilled for many stochastic processes, including many time series models, see, for exam-

ple, the paper by Cai (2002) for some examples. Assumption 2 is about the first derivative

of the density function f(·) with respect to θ, which can be verified from original condi-

tions in the existing literature such as White (1982), Komunjer (2005) and Zhang et al.

(2016). The continuous differentiability of f(·) is, for example, satisfied when for every θ,

∂ ln f(yi|θ,xi, τ)/∂θ
′ exists and is continuously for almost all (yi,xi). Assumption 3 requires

the infimum of KL∗(w) on W grows to infinity at a faster rate than M
√
np. Similar assump-

tions can be found in the existing literature, like Condition (C.7) in Liao et al. (2019) and

Condition (C.3) in Zhang et al. (2016). Assumption 4 provides constraints on the diverging

rate of penalties, which are commonly used in the literature about penalized regression, like

Tibshirani (1996), Fan and Peng (2004) and Zou (2006). The slower diverging rate of p than

n implies λn,1 → ∞ as n → ∞. When the second penalty is taken to be LASSO penalty, we

have p′′λn,2
(󰁥θτ,j(w)) = 0 and (ii) of Assumption 4 can be specified as n−1/2p1/2λn,2 = O(1).

Assumption 5 requires that the eigenvalues of I(w∗), each term of I(w∗) and the expecta-
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tion of ∂2 ln f(yi|󰁥θτ (w
∗),xi, τ)/∂wm∂ws are uniformly bounded. Assumption 6 is about the

third derivative of the log likelihood function. Assumptions 5 and 6 impose some restric-

tions on the derivative of log likelihood functions, and similar assumptions can be found in

Fan and Peng (2004). When all the candidate models are misspecified, Assumption 7 is

used to prove that 󰀂󰁥w − w∗󰀂 converges to zero at certain rate. It implies the relationships

among ξn, n, p, and M , where ξn measures the difference between the density function with

the model averaging estimator 󰁥θτ (w
∗) and the true conditional pdf. It is similar to Condi-

tion (C.10) in Liao et al. (2019) and Condition (C.6) in Zhang et al. (2016). For exam-

ple, suppose the m0th candidate model is the correctly specified model, f(yi|󰁥θτ (w
∗),xi, τ) =

τ(1 − τ) exp(−ρτ (y − 󰁥θ
(m0)

τ x′
i,m0

)) and f0(yi|xi) = τ(1 − τ) exp(−ρτ (y − θ0x
′
i,m0

)). Then,

we have ξn = O(n)Op([exp(1/
√
n) − 1]2) = O(1) for 󰀂󰁥θ

(m0)

τ − θ0󰀂 = Op(1/
√
n). Thus, it is

obvious to verify that ξn satisfies Assumption 7.

For the mth quantile regression with a diverging number of regressors, we establish

the consistency of the parameter estimators based on QMLE with its detailed proof given

in Appendix C.

Lemma 1. Suppose Conditions (A.1)-(A.5) in Appendix A are satisfied. Then, for any fixed

ε > 0, there exists a constant δε > 0, such that for any sufficiently large n and km, we have

P
󰀓√

nk−1/2
m 󰀂󰁥θ

(m)

τ − θ(m)∗
τ 󰀂 ≤ δε

󰀔
≥ 1− ε. (8)

Remark 6. Lemma 1 implies that 󰀂󰁥θ
(m)

τ − θ(m)∗
τ 󰀂 = Op(

√
kmn

−1/2) when km is diverg-

ing. Based on this, the convergence rate of model averaging estimator 󰁥θτ (w) can be ob-

tained as 󰀂󰁥θτ (w) − θ∗(w)󰀂 = 󰀂
󰁓M

m=1 wm(󰁥θ
(m)

τ − θ(m)∗
τ )󰀂 ≤ Op(Mk̄1/2n−1/2), where k̄ =

max{k1, ..., kM}. It is obviously that k̄ ≤ p. When all km for m = 1, · · · ,M and M are fixed,

(8) reduces to 󰀂󰁥θ
(m)

τ − θ(m)∗
τ 󰀂 = Op(n

−1/2), and thus we have 󰀂󰁥θτ (w)− θ∗(w)󰀂 = Op(n
−1/2).

Next, Theorem 1 gives the asymptotic optimality of the estimated weight w in the pe-

nalized model averaging for quantile regression with its detailed proof relegated to Appendix

C.
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Theorem 1. With Assumptions 1-4 and Equation (8), 󰁥w is asymptotically optimal in the

sense that
KL(󰁥w)

infw∈W KL(w)

p−→ 1

as n → ∞.

Theorem 1 implies that the proposed model averaging estimator is asymptotically

optimal in the sense that the KL loss obtained using the weight vector by (6) is asymptotically

equivalent to that of the infeasible best possible model averaging estimator for quantile

regression with its detailed proof presented in Appendix C.

Theorem 2. If Assumptions 1-7 and Equation (8) are satisfied, there is a local minimizer

󰁥w of Gn(w) such that

󰀂󰁥w −w∗󰀂 = Op

󰀃
ξ1/2n n−1/2+δ/2

󰀄
,

where ξn is defined in Assumption 7.

Theorem 2 shows that 󰁥w converges to the optimal weight w∗ at the rate ξ
−1/2
n n(−1+δ)/2.

It is worth noticing that ξn → ∞ if all candidate models are misspecified, and the slower the

rate of ξn → ∞, the faster the rate 󰁥w → w∗. When the candidate models include correctly

specified model, 󰁥w converges to the optimal weight w∗ in probability at the rate n−1/2+δ/2.

With Lemma 1 and Theorem 2, the consistency of the model averaging estimators in

misspecified models is given as follows, with its detailed proof depicted in Appendix C.

Theorem 3. Under the assumptions of Theorem 2 and pMξnn
−1+δ → 0, the model averaging

estimator 󰁥θτ (󰁥w) satisfies

󰀂󰁥θτ (󰁥w)− θ∗
τ (w

∗)󰀂 = Op

󰀃
p1/2M1/2ξ1/2n n−1/2+δ/2 +Mp1/2n−1/2

󰀄
,

where ξn is defined in Assumption 7.

Theorem 3 indicates that the model averaging estimator 󰁥θτ (󰁥w) converges to a well-

defined limit θ∗(w∗), even if all candidate models may be misspecified.
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4 Model Averaging for Ultra-High Dimensional Data

Section 3 has discussed the asymptotic properties of our method when p and M are

diverging. When modeling the ultra-high dimensional data, a large number of candidate

models will result in a heavy computational burden. Furthermore, the theoretical properties

in Section 3 will break down if p and M are larger than n. To solve these problems, we

introduce a two-step process to the model averaging for quantile regression in this section.

Inspired by Yuan and Yang (2005) and Zhang et al. (2013), we could select the candidate

models by penalized regression. And an intuitional method mentioned in Zhang et al. (2016)

for mean regression is threshold model screening, which is also suitable for quantile regression.

In the first step, we employ a model screening process to reduce the dimension of

candidate models and the complexity of our model. Therefore, we intend to eliminate the

poor candidate models by some rules and make the dimension of candidate models to be

smaller than n before doing the model averaging procedure for quantile regression. We

provide three model screening strategies to screen the candidate models. Ordering model

screening method follows the spirit of Ando and Li (2014, 2017).

In addition, if the number of predictors in some candidate models is also larger than

n, we could employ some variable selection method to estimate the candidate models, like

LASSO, elastic network, SCAD, and principal component analysis. Note that quantile re-

gression with different τ may lead to different screening results. Thus, we consider the

following three algorithms for model screening methods in practice.

Algorithm 2 Ordering model screening algorithm

Step 1. Employs some criteria to order the covariates and divide them into M + 1 groups.

(a) Employ the marginal quantile utility proposed by He et al. (2013) to calculate the marginal
utility between each predictor variable and the response variable when τ varies from 0 to 1.

(b) Partition the marginal utility of predictors into M +1 groups by their absolute values. The first
group has the highest values and the M + 1 group has values closest to zero.

(c) Construct one candidate model for each group and drop the M + 1 group.

Step 2. Estimate the weights of penalized model averaging on the M candidate models by
Algorithm 1.
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Algorithm 3 Top m model screening algorithm

Step 1. Screen the candidate model by regularized penalization.

(a) Construct a penalized likelihood estimation with LASSO (or adaptive LASSO, SCAD, etc.) to
estimate the full model.

(b) For any fixed τ , solve the solution path of the penalized model in the previous step as tuning
parameter changes.

(c) Select different regressors by M different tuning parameters on the solution path, and construct
M candidate models by the selected regressors.

Step 2. Estimate the weights of penalized model averaging on the M candidate models by
Algorithm 1.

Algorithm 4 Threshold model screening algorithm

Step 1. Screen the candidate model by a given threshold.

(a) Estimate the weight vector 󰁥w with all candidate models.

(b) Remove the models with weights smaller than a given threshold constant.

Step 2. Estimate the weights of penalized model averaging on the M candidate models by
Algorithm 1.

Having reduced the dimension of our model, the next step is to estimate the model

averaging weight with the screened candidate models. The weights of these eliminated

models will be restricted to zero. Define the subspace of W generated in the first step as

W∗ = {w ∈ W : wm = 0, if m /∈ M∗}, where M∗ is a subset of {1, ...,M}. Then, the model

averaging process in section 2 can be implemented based on this new space. The resultant

weight 󰁥w∗ of our method is solved by

󰁥w∗ = argminwGn(w),w ∈ W∗.

In the following, we provide an additional assumption required for proving the asymp-

totic optimality.

Assumption 8. (i) There exists a nonnegative constant series νn such that ζ−1
n νn → 0,

where ζn is defined in Assumption 3;

(ii) There exists a weight vector series wn ∈ W satisfying infw∈W KL(w) = KL(wn) − νn

and P (wn ∈ W∗) → 1, as n → ∞.
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The next theorem can be seen as a generalization of Theorem 1. Assumption 8 and the

assumptions of Theorem 1 ensure that the weight of model averaging after model screening

is also asymptotically optimal. Note that the detailed proof of the following theorem is given

in Appendix C.

Theorem 4. Under Assumption 8 and the assumptions of Theorem 1, the two-step weight

󰁥w∗ is asymptotically optimal in the sense that

KL(󰁥w∗)

infw∈W KL(w)

p−→ 1

as n → ∞.

Theorem 4 concludes that the model averaging estimator obtained based on subspace

W∗ yields the KL loss that is asymptotically identical to that of the estimator obtained from

the whole space.

5 Monte Carlo Simulations

In this section, we aim to investigate the finite sample performance of the proposed

model averaging method (namely, QMA) in comparison with existing methods, including

jackknife model averaging (JMA) as in Lu and Su (2015), Mallows-type information criterion

(QRIC) as in Lu and Su (2015), smoothed AIC (SAIC) and smoothed BIC (SBIC). The data

generation process (DGP) is given as follows.

DGP 1: First, we generate the data based on the following process:

yt =
1000󰁛

j=1

θjxtj + εt, t = 1, . . . , n,

where θj = cj−1 and c is varied such that the signal-noise ratio of the population R2 =

[var(yi) − var(εi)]/var(yi) = 0.1, 0.2, ..., 0.9. Following Sun et al. (2023), we set xi1 = 1,

xtj = 0.5x(t−1)j + 󰂃tj (j = 2, ..., 1000) being an AR(1) process, where 󰂃tj ∼ N(0, 1), i.i.d. over
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t, with corr(󰂃ti, 󰂃tj) = 0.75.2 For robustness check, we consider two settings for the error

term. In Setting I, the error is supposed to be homoscedastic and follows N(0, 1), which is

independent of xtj. Setting II considers a heteroscedastic process, where εt =
󰁓6

j=2 x
2
tj󰂃t and

󰂃t is N(0, 1) and independent of xtj.

To mimic the situation that the number of candidate modelsM is diverging, we consider

a nested class, and M is given by [4n1/4], where [x] denotes the largest integer not larger

than x. We set the training sample size n = 50, 100, and 150, and thus the corresponding

numbers of candidate models are 10, 12 and 13.

DGP 2: We consider the following sparse setup:

yi =
9󰁛

j=1

θjxij + εi, i = 1, . . . , n,

where {xij, j = 1, ..., 9} follows normal distribution N(0, 1) and the correlation between dif-

ferent xij is 0.75. We set the parameter θ = (θ1, ..., θ9) = c·(3, 0, 0, 1.5, 0, 0, 7, 0, 0)′, where c is

varied such that R2 = 0.1, 0.2, ..., 0.9. We also consider two settings for {εi} to check the ro-

bustness. In Setting I, for the homoscedasticity, εi is N(0, 1) and independent of xij. Setting

II considers εi =
󰁓9

j=1 j
−1xij󰂃i where 󰂃i is N(0, 1) and independent of xij. This data gener-

ating process is adopted from Zhang et al. (2016) and Zou (2006). In addition, we consider a

nested framework with M = 9 candidate models, namely {x1}, {x1,x2}, ..., {x1, ...,x9}, and

other settings are the same as those for DGP 1.

We consider three different quantiles with τ = 0.05, 0.5, 0.95, corresponding to lower

quartile, median, and upper quartiles. To examine forecast accuracy, we follow Lu and Su

(2015) and Wang et al. (2023) to define the regression quantile prediction error of the rth

2Following Lu and Su (2015), we also consider the case that x is generated by an i.i.d. process, namely
xi1 = 1 and xij ∼ N(0, 1), j = 2, ..., 1000. Other settings are the same as those for DGP 1. The performances
of QMA, JMA, SAIC, SBIC and QRIC under this process are shown in Figures B1 for Setting I and B2
for Setting II in Appendix B and the conclusions about Figures B1 and B2 are presented after each figure,
respectively.
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replication as follows:

FPE(r) =
1

nf

nf󰁛

s=1

ρτ

󰀣
yi −

M󰁛

m=1

󰁥wmx
′
i(m)

󰁥θ
(m)

τ

󰀤
.

The forecast sample size nf is set to be 100, and each experiment is repeated nsim = 1000

times. Then, we average the out-of-sample prediction error over nsim = 1000 replications:

FPE = 1
nsim

󰁓nsim

r=1 FPE(r), and we normalize the quantile prediction error by dividing the

prediction error of the infeasible optimal single candidate model.

We employ four methods as follows to compare with our model: jackknife model aver-

aging, Mallows-type information criterion as in Hansen (2007) for quantile regression model

averaging (QRIC), smoothed Akaike information criterion (SAIC), smoothed Bayesian in-

formation criterion (SBIC). The leave-one-out cross-validation criterion for JMA defined in

Lu and Su (2015) is

CV(w) =
1

n

n󰁛

i=1

ρτ (yi −
M󰁛

m=1

wmx
′
i(m)

󰁥θ
(m)

τ ).

The weight of QRIC can be obtained from 󰁥w = minw∈W QRIC(w), where

QRIC(w) =
n󰁛

i=1

ρτ (󰁥εi(w)) +
τ(1− τ)

f(F−1(τ))

M󰁛

m=1

wmkm

with 󰁥εi(w) =
󰁓M

m=1 wm(yi − x′
i(m)

󰁥θ
(m)

τ ), and f and F denoting the cdf and pdf of εi. And

the SAIC and SBIC weights for quantile regression model averaging are defined as

󰁥wAIC
m =

exp(−1
2
AICm)󰁓M

m=1(exp(−1
2
AICm))

and 󰁥wBIC
m =

exp(−1
2
BICm)󰁓M

m=1(exp(−1
2
BICm))

,

where AICm and BICm are information criteria for the mth candidate model, i.e., AICm =

An + 2km and BICm = An + ln(n)km, where An = 2n ln
󰀅
1
n

󰁓n
i=1 ρτ (yi − x′

i(m)
󰁥θ
(m)

τ )
󰀆
.

Figures 1 - 2 report forecast results under DGP 1 with settings I and II. When modeling

the homoscedastic process, several observations can obtained from Figure 1. First, QMA

outperforms the other competing methods including JMA for nearly all T , τ and R2. For
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example, when n = 50, τ = 0.05 and R2 = 0.50, QMA provides a prediction error of 1.0975,

which is 10.93%, 37.18%, 27.98% and 42.07% lower than the errors of JMA, SAIC, SBIC and

QRIC. Second, when τ = 0.05 and 0.95, QMA attains a slightly lower prediction error than

JMA in most cases. For τ = 0.50, we find evidence of a much larger difference in predic-

tion error between QMA and JMA. Third, JMA always produces smaller prediction errors

than SAIC, SBIC and QRIC with τ = 0.05 and 0.95, while it can no longer dominate other

methods with τ = 0.50. This highlights the merits of QMA over other competing methods.

Finally, the advantages of QMA are more pronounced when the sample size is small. One

possible explanation is that QMA with two penalties provides a more parsimonious mega

model than other model averaging methods and is suitable for selecting important predic-

tors. Furthermore, when we consider a heteroscedastic error process, QMA estimator still

frequently yields the most accurate estimates in most cases.

Figures 3 - 4 present the out-of-sample performance for DGP 2 with sparse settings

when τ = 0.05, 0.50 and 0.95. For the homoscedastic error, it can be observed that QMA

enjoys the smallest FPEs for all τ , T and R2. But JMA is no longer able to dominate SAIC,

SBIC and QRIC. In fact, no method other than QMA can dominate the rest methods in all

cases. And SAIC yields the worst outcomes when τ = 0.05. With τ = 0.50 and n = 100

and 150, SBIC is inferior to the other methods. One possible explanation for the strong

showing of our method is that the penalized process can capture the sparsity of the model

and produce more accurate predictions. In addition, it can be observed from Figure 4 that

our method also outperforms the others in the DGP with heteroskedasticity.

6 An Empirical Example

In this section, we apply the proposed estimation procedure to predict the quantiles

of excess stock returns. We consider the monthly excess stock returns of the U.S. S&P

500 Index as the dependent variable, and the dataset is from January 1994 to August 2021

with total number of observations n = 332. The excess stock returns is defined as the
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Figure 1: Out-of-sample performance of DGP 1 with homoscedasticity (Setting I).

monthly stock returns minus the treasury-bill rate, a proxy for the risk-free rate. The

series of 12 exogenous predictors consist of stock market, bond market, monetary market

and macroeconomic activity; see Table 1 for details. Most of these predictors are used in

Campbell and Thompson (2007), Jin et al. (2014) and Lu and Su (2015).

We summarize some basic statistics of the exogenous variables in Table 2, including

mean, median, standard deviation and data transformation. Note that an augmented Dickey-

Fuller (ADF) test is applied to all exogenous variables. We find that all these variables are

nonstationary. Thus, we transform these series to stationary time series by a logarithmic

differentiation process.
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Figure 2: Out-of-sample performance of DGP 1 with heteroskedasticity (Setting II).

We follow Lu and Su (2015) to construct nested candidate models. As the correlation

between the exogenous predictor and the dependent variable may perform differently at

different quantiles, we follow He et al. (2013) and Wang et al. (2023) to order the predictors

by the marginal quantile utility (MQU). The MQU of the j-th predictor xj is defined as

follows:

MQU(xj) =
1

n

n󰁛

t=1

󰀏󰀏󰀏󰀏xtj
󰁥βj − q(τ)

󰀏󰀏󰀏󰀏,

where 󰁥βj = argminβ

󰁓n
t=1 ρτ (yt − xtjβ) and q(τ) is the unconditional quantile of the sample

{yt}. Suppose the predictors {x1,x2, ...,x12} have been ranked in descending order of the
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Figure 3: Out-of-sample performance of DGP 2 with homoscedasticity (Setting I).

marginal quantile utility. Then, the 12 nested candidate models are {1,x1}, {1,x1,x2}, ...,

{1,x1,x2, ...,x12}, respectively.

We use a rolling window estimation to study the out-of-sample performance of our

method. Each time, we forecast the one-period-ahead quantiles of excess stock returns. To

verify the robustness of our model to the sample size, we take 7 different rolling window

sizes of 48, 60, 72, 84, 96, 108, and 120. For example, to construct the first forecast time at

January 1998 with a 48-observation fixed rolling window, we use the available observations

from January 1994 to December 1997 to estimate parameters for each candidate model and

model averaging weights, and then construct a combined one-step-ahead forecast. When

a new observation is available, we add it to the estimation sample and delete the earliest
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Figure 4: Out-of-sample performance of DGP 2 with heteroskedasticity (Setting II).

one, and recalculate a new set of model averaging weights with a 48-observation fixed rolling

window and obtain a combined forecast at February 1998. The one-step-ahead out-of-sample

forecast period is spanning from January 1998 to August 2021.

Following Campbell and Thompson (2007) and Lu and Su (2015), we define the out-

of-sample R2
o of quantile estimations to evaluate the performance of our method,

R2
o = 1−

󰁓n
t=n1+1 ρτ (yt − 󰁥qt(τ))󰁓n
t=n1+1 ρτ (yt − qt(τ))

,

where yt is the true excess stock return, 󰁥qt(τ) is the estimated conditional τ -th quantile of

the employed methods, qt(τ) is the unconditional τth quantile over the past n1 samples,
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Table 1: Explanatory variables and their explanations

Classification Variables Explanations

Stock Market Dividend Price Ratio The Dividend Price Ratio of S&P 500 is defined as the
difference between the log of dividends and the log of
prices, where dividends are 12-month moving sums of
dividends.

Earnings Price Ratio The Earnings Price Ratio of S&P 500 is defined as the
difference between the log of earnings and the log of
prices, where earnings are 12-month moving sums of
earnings.

Book-to-market Ratio The book-to-market ratio is the ratio of the book value
to the market value of the Dow Jones Industrial Aver-
age.

Lagged dependent variable The lagged dependent variable is the one-step lagged
value of excess stock returns of S&P 500 index.

Bond Market Default Yield Spread Default Yield Spread is the difference between BAA
and AAA-rated corporate bond yields, which can be
downloaded from Federal Reserve Economic Data.

Term Spread The Term Spread is the difference between the long-
term yields on government bonds and Treasury bills.

Treasury-bill Rate The 3-Month Treasury Bill: Secondary Market Rate.

Long Term Yield The U.S. 10-year Treasury yields.

Monetary Market Exchange Rate The US Dollar Index.

Money Supply The U.S. M2 money supply.

Macroeconomic Inflation The U.S. Consumer Price Index (CPI).

Labor The U.S. unemployment rate.

and n1 is the rolling window size. It is obvious that a larger R2
o implies a better out-of-

sample forecast. Following Kuester et al. (2005), we also employ the violation rate (%Viol)

to examine the model performance in terms of VaR violations. The violation rate can be

explained as the percentage of the actual values that are smaller than their predicted τ -th

quantiles, namely

%Viol =
1

n− n1

n󰁛

t=n1+1

1(yt < 󰁥qt(τ)),

which implies that the closer %Viol is to τ , the better the model performs. In addition,
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Table 2: Descriptive statistics and ADF test for the explanatory variables

Variables Mean Median std p-value Transformation

Dividend Price Ratio 1.9066 1.8962 0.4391 0.1937 ∆ ln
Earnings Price Ratio 20.6769 19.6086 4.7605 0.5608 ∆ ln
Book-to-market Ratio 3.3351 3.2896 1.0964 0.8669 ∆ ln
Default Yield Spread 0.9596 0.8800 0.4011 0.2847 ∆ ln
Term Spread 1.6488 1.5990 1.0698 0.1427 ∆ ln
Treasury-bill Rate 2.2486 1.6531 2.0895 0.2948 ∆ ln
Long Term Yield 3.8752 3.8550 1.7568 0.1713 ∆ ln
Exchange Rate 91.3774 90.5902 10.4205 0.5452 ∆ ln
Money Supply 8.5557 7.4272 4.2679 0.9990 ∆ ln
Inflation 205.7448 209.4860 35.1852 0.9990 ∆ ln
Labor 5.7970 5.4000 1.7875 0.2668 ∆ ln

Note: “Mean”, “Median” and “std” denote the sample mean, median and standard deviation of the
variables from January 1994 to August 2021. “p-value” is the p-value of ADF test for each variables.
∆ ln : Xt = lnSt − lnSt−1, where {St} is the original series.

JMA, SAIC, SBIC, and QRIC are employed here to work as the competing methods, and

we estimate the conditional quantiles with τ = 0.05, 0.50, and 0.95.

Panel A of Table 3 reports the out-of-sample R2
o of our model and the benchmark

models. Several observations can be obtained from Panel A. First, it is obvious that our

method dominates other competing methods for various rolling window sizes n1 and τ . For

example, when n1 = 120 and τ = 0.05, the out-of-sample R2
o of our method is 0.0976, which

is the only positive value among all the results provided by the five employed methods.

Second, as the sample size increases, the out-of-sample R2
o of all methods show an increasing

trend. For instance, the out-of-sample R2
o increase from -0.0086 to 0.0976 when n1 is ranged

from 48 to 120. Third, JMA performs the second best among all the methods; that is,

JMA provides a smaller out-of-sample R2
o than SAIC, SBIC, and QRIC. This observation

is consistent with the conclusions in Lu and Su (2015). For example, for n1 = 48 and

τ = 0.05, the out-of-sample R2
o of JMA is −0.1080, which is larger than −0.8387, −0.8002,

and −0.8648.

The out-of-sample violation rates are presented in Panel B of Table 3. First, it is

observed that QMA is frequently ranked on the top of all competing methods. For example,

QMA provides the violation rates closer to τ in almost all cases (except for τ = 0.95 and
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Table 3: Evaluation of the excess stock returns

Panel A: Out-of-sample R2
o Panel B: Out-of-sample violation rate

n1 τ QMA JMA SAIC SBIC QRIC QMA JMA SAIC SBIC QRIC

48 -0.0086 -0.1080 -0.8387 -0.8002 -0.8648 0.0739 0.1690 0.3415 0.3275 0.3310
60 -0.0090 -0.3520 -1.4105 -1.3919 -1.4250 0.0846 0.2243 0.3235 0.3199 0.3456
72 0.0840 -0.0341 -1.1869 -1.1975 -1.2993 0.0654 0.1731 0.2962 0.3000 0.2923
84 0.05 0.0712 0.0119 -1.0052 -0.9454 -1.0063 0.0565 0.1452 0.2944 0.2782 0.2823
96 0.0409 -0.0205 -0.7433 -0.7747 -0.6862 0.0508 0.1483 0.2839 0.2797 0.2627

108 0.0757 -0.0467 -0.5859 -0.4928 -0.5832 0.0446 0.1205 0.2991 0.2634 0.2723
120 0.0976 -0.0678 -0.5803 -0.5771 -0.5635 0.0613 0.1415 0.2689 0.2736 0.2689

48 0.0463 -0.0083 -0.1587 -0.0816 -0.0934 0.4930 0.5246 0.5211 0.4894 0.5246
60 0.0708 0.0056 -0.1022 -0.0556 -0.0154 0.5037 0.5551 0.5221 0.4926 0.5368
72 0.0695 0.0216 -0.1237 -0.0575 0.0042 0.4923 0.5269 0.5346 0.4885 0.5423
84 0.50 0.0977 0.0481 -0.0965 -0.0142 -0.0197 0.5000 0.5363 0.5605 0.5121 0.5524
96 0.0933 0.0264 -0.0975 -0.0102 -0.0205 0.4873 0.5551 0.5932 0.5424 0.5763

108 0.1220 0.0160 -0.1041 0.0104 -0.0041 0.5000 0.5357 0.6027 0.5089 0.5670
120 0.0987 0.0414 -0.0968 0.0255 0.0023 0.4906 0.5472 0.6038 0.5142 0.5802

48 0.0111 -0.1855 -1.7511 -1.5417 -1.9565 0.9120 0.8662 0.7077 0.7465 0.6796
60 0.0745 -0.1133 -0.8708 -0.7666 -0.9093 0.9412 0.8676 0.7574 0.7721 0.7426
72 0.0510 0.0302 -0.7008 -0.4850 -0.8267 0.9308 0.9192 0.7962 0.8154 0.7885
84 0.95 0.0749 -0.0004 -0.4844 -0.2645 -0.5124 0.9395 0.9073 0.8347 0.8669 0.8468
96 0.0436 0.0353 -0.1767 -0.0733 -0.2172 0.9322 0.8856 0.8602 0.8602 0.8729

108 0.1995 0.1918 -0.0112 0.0913 0.0304 0.9196 0.9152 0.8839 0.9107 0.9286
120 0.1990 0.1380 -0.0243 -0.0832 -0.0530 0.9434 0.9104 0.8726 0.8585 0.8774

Note: Our proposed method is denoted as QMA and the best result for each n1 and τ is shown in bold.

n1 = 108). Second, no methods except QMA can always outperform other methods in the

sense of violation rates. For example, we observe that JMA outperforms SAIC, SBIC and

QRIC for τ = 0.05, 0.95 but can not dominate these three methods for τ = 0.50. This

highlights the importance of using penalties in model averaging for quantile regression when

the time series may have a sparse representation. Furthermore, it is documented that the

QMA forecasts perform quite well when τ = 0.50. Especially, the estimated out-of-sample

violation rates exactly equal to 0.50 when n1 = 84 and 108 and τ = 0.50.

Overall, the average improvements of forecasts by QMA can be clearly evidenced over

other competing methods in terms of all evaluation criteria. Intuitively, the conventional

model averaging method is potentially equivalent to a mega model, and some covariates and

candidate models of this mega model may play a poor role in predicting conditional quantiles.

However, the QMA-based mega model may be parsimonious and yield spareness from various

potential predictors thanks to the use of penalties for both weights and predictors, which

can eliminate the redundant regressors. Thus, it is highly desirable to consider penalized
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model averaging schemes for quantile regression.

7 Conclusion

This paper proposes a novel parsimonious and general model averaging method for high-

dimensional quantile regression to reduce model uncertainty and improve forecast accuracy.

Both the number of candidate models and the dimension of predictors are allowed to be

diverging. The proposed KL based weight choice criterion with penalties selects the optimal

combination weights and important predictors simultaneously. We establish the asymptotic

optimality and asymptotic consistency of the proposed model averaging estimator. We also

develop a model screening process before model averaging for the ultra-high dimensional

data. Simulation studies and empirical application to stock returns forecasting illustrate

that the proposed method is promising.

The model averaging strategy proposed in this paper could be extend to other contexts.

First, it would be interesting to extend our method to the time-varying model averaging for

quantile regression with structural changes, which could capture the evolutionary changes

of economic structure and improve the time-varying predictive abilities of the quantile fore-

casting models. Besides, estimating the conditional quantile with complex data, like missing

data or censored data has been an important field in quantile regression and attracted much

attention; see, for instance, the papers by Wang and Xiao (2022), Chen and Wang (2023),

Chernozhukov et al. (2015) and references therein. How to develop a model averaging for

quantile regression with complex data is challenging and deserves future research. Finally,

we would like to mention that it is very interesting to investigate the quantile model aver-

aging for the case that some regressors might be nonstationary, as addressed in Cai et al.

(2023).
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Appendix

Appendix A

Following Fan and Peng (2004), to obtain the consistency of 󰁥θτ (m) with diverging dimen-

sions, Appendix A contains the additional conditions.

Condition (A.1). f belongs to the tick-exponential family. And ln f(yi|θ(m)
τ ,xi) is contin-

uously differentiable with probability 1.

Condition (A.2). Θ is compact, and θ(m)∗
τ is interior points of Θ.

Condition (A.3). For the mth candidate model, km is allowed to be diverging and satisfies

k4
m/n → 0.

Condition (A.4). The log likelihood function satisfies the following conditions with proba-

bility 1: The Fisher information matrix

I(θ(m)
τ ) = E

󰀗
∂ ln f(yi|θ(m)

τ ,xi)

∂θ(m)
τ

∂ ln f(yi|θ(m)
τ ,xi)

∂θ(m)′

τ

󰀘

satisfies 0 < C1 < λmin{I(θ(m)
τ )} ≤ λmax{I(θ(m)

τ )} < C2 < ∞. And for j, k = 1, ..., km,

E
󰀗
∂ ln f(yi|θ(m)

τ ,xi)

∂θ
(m)
τ,j

∂ ln f(yi|θ(m)
τ ,xi)

∂θ
(m)
τ,k

󰀘2
< C3 < ∞,

and

E
󰀗
∂2 ln f(yi|θ(m)

τ ,xi)

∂θ
(m)
τ,j ∂θ

(m)
τ,k

󰀘
.

Condition (A.5). There is a large enough open subset Ω ∈ Θ, which contains θ(m)∗
τ , such

that for almost all (yi,xi) ∂ ln f(yi|θ(m)
τ ,xi)/∂θ

(m)
τ,j ∂θ

(m)
τ,k ∂θ

(m)
τ,l exists for all θ(m)

τ ∈ Ω, with

probability 1. And there are functions Mjkl(xi) sunch that

󰀏󰀏󰀏󰀏∂ ln f(yi|θ
(m)
τ ,xi)/∂θ

(m)
τ,j ∂θ

(m)
τ,k ∂θ

(m)
τ,l

󰀏󰀏󰀏󰀏 ≤ Mjkl(xi)

for all θ(m)
τ ∈ Ω, and E[M2

jkl(xi)] < C5 < ∞, for all km, n and j, k, l.
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Appendix B

Appendix B contains the additional results for simulations for a comparison. Note that

the conclusions are made at the end of each figure.

Figure B1: Out-of-sample performance with homoscedasticity (Setting I).

Note: This DGP is the same as DGP 1 in Lu and Su (2015). The result with τ = 0.50 is not shown
because Lu and Su (2015) has stated that no method clearly dominated the others when τ = 0.50. It can
be observed that JMA, SAIC, SBIC and QRIC provide similar results as in Lu and Su (2015); namely JMA
clearly dominate other existing methods. Also, note that our method performs slightly better than JMA in
most cases.
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Figure B2: Out of sample performance with heteroscedasticity (Setting II).

Note: This DGP is the same as DGP 1 in Lu and Su (2015). The result with τ = 0.50 is not shown
because Lu and Su (2015) has stated that no method clearly dominated the others when τ = 0.50. It can
be observed that JMA, SAIC, SBIC and QRIC provide similar results as in Lu and Su (2015); namely JMA
clearly dominates other existing methods. Also, note that our method performs slightly better than JMA in
most cases.
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Appendix C

In this section, we present the detailed proofs of Lemma 1 and Theorems 1 - 4.

Proof of Lemma 1. Let αn =
󰁳

km/n and set 󰀂u󰀂 = C, where C is a large enough constant.

To prove (8), it is equivalent to prove for any given 󰂃 there is a large C and n such that

P{ sup
󰀂u󰀂=C

Ln(θ
(m)∗
τ + αnu) < Ln(θ

(m)∗
τ )} > 1− 󰂃. (C.1)

Notice that the conditions about the differentiability of ln f(yi|θ(m)
τ ,xi) are satisfied with

probability 1 and the set of non-differentiability has no effect on (C.1). More details can be

found in Remark 5.

Now, we have

Dn(u) = Ln(θ
(m)∗
τ + αnu)− Ln(θ

(m)∗
τ )

= αn∇′Ln(θ
(m)∗
τ )u+

1

2
u′∇2Ln(θ

(m)∗
τ )uα2

n +
1

6
∇′[u′∇2Ln(θ̃

(m)

τ )u]uα3
n

= Ψ1 +Ψ2 +Ψ3,

where θ̃
(m)

τ is between θ(m)∗
τ and θ(m)∗

τ + αnu. Following the spirit of Fan and Peng (2004),

we have

|Ψ1| = |αn∇′Ln(θ
(m)∗
τ )u| ≤ αn󰀂∇′Ln(θ

(m)∗
τ )󰀂 · 󰀂u󰀂 = Op(αn

󰁳
nkm)󰀂u󰀂.

For Ψ2, by Chebyshev inequality and Lemma 8 of Fan and Peng (2004), it can be observed

that

Ψ2 =
1

2
u′[

1

n
(∇2Ln(θ

(m)∗
τ )− E[∇2Ln(θ

(m)∗
τ )])]unα2

n −
1

2
u′I(θ(m)∗

τ )unα2
n

= −1

2
nα2

nu
′I(θ(m)∗

τ )u+ op(1)nα
2
n󰀂u󰀂2.

41



Then, for Ψ3, with Condition (A.5), we have

|Ψ3| =
󰀏󰀏󰀏󰀏
1

6

km󰁛

j,k,l=1

∂Ln(θ̃
(m)

τ )

∂θ
(m)
τ,j ∂θ

(m)
τ,k ∂θ

(m)
τ,l

ujukulα
3
n

󰀏󰀏󰀏󰀏 ≤
1

6

n󰁛

t=1

󰀗󰁛
M2

jkl(xt)

󰀘1/2
󰀂u󰀂3α3

n = Op(nk
2/3
m α3

n)󰀂u󰀂3.

With Conditions (A.1)-(A.5) and allowing 󰀂u󰀂 to be large enough, it can be obtained that

all the terms of Ψ1,Ψ2 and Ψ3 are dominated by Ψ2, which is negative. This implies that

(C.1) is true.

Proof of Theorem 1. Let 󰁨Gn = Gn +
󰁓n

i=1 E0[ln f0(yi|xi)]. It is obvious that

󰁥w = argminw∈W
󰁨Gn(w). (C.2)

From Zhang et al. (2016), Theorem 1 is equivalent to prove the following problems:

sup
w∈W

󰀗
|KL(w)−KL∗(w)|

KL∗(w)

󰀘
= op(1), (C.3)

and

sup
w∈W

󰀥
| 󰁨Gn(w)−KL∗(w)|

KL∗(w)

󰀦
= op(1). (C.4)

With conditions of this theorem, we have

󰀂󰁥θτ (w)− θ∗(w)󰀂 =

󰀐󰀐󰀐󰀐󰀐

M󰁛

m=1

wm(󰁥θ
(m)

τ − θ(m)∗
τ )

󰀐󰀐󰀐󰀐󰀐 ≤
M󰁛

m=1

wm󰀂󰁥θ
(m)

τ − θ(m)∗
τ 󰀂

≤M1/2󰀂w󰀂 · 󰀂󰁥θ
(m)

τ − θ(m)∗
τ 󰀂 = Op(M) ·Op(p

1/2n−1/2) = Op(Mp1/2n−1/2). (C.5)

Assumption 2 implies that E0

󰀐󰀐∂ ln f(yi|θ,xi,τ)
∂θ′ |θ=θ̃(w)

󰀐󰀐 = Op(1). Then, we have,

n󰁛

i=1

󰁝
f0(yi|xi)

󰀐󰀐󰀐󰀐
∂ ln f(yi|θ,xi, τ)

∂θ′ |θ=θ̃(w)

󰀐󰀐󰀐󰀐dy = Op(n). (C.6)

With Taylor formula and non-negativity of density function f0, the numerator of (C.3) can
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be expressed as

|KL(w)−KL∗(w)|

=

󰀏󰀏󰀏󰀏
n󰁛

i=1

󰁝
[f0(yi|xi) ln f(yi|θ∗(w),xi, τ)− f0(yi|xi) ln f(yi|󰁥θτ (w),xi, τ)]dy

󰀏󰀏󰀏󰀏

≤
n󰁛

i=1

󰁝
f0(yi|xi)

󰀐󰀐󰀐󰀐
∂ ln f(yi|θ,xi, τ)

∂θ′ |θ=θ̃(w)

󰀐󰀐󰀐󰀐 ·
󰀐󰀐󰁥θτ (w)− θ∗(w)

󰀐󰀐dy

=
󰀐󰀐󰁥θτ (w)− θ∗(w)

󰀐󰀐 ·
n󰁛

i=1

󰁝
f0(yi|xi)

󰀐󰀐󰀐󰀐
∂ ln f(yi|θ,xi, τ)

∂θ′ |θ=θ̃(w)

󰀐󰀐󰀐󰀐dy. (C.7)

By (C.5) and (C.6), we obtain that |KL(w)−KL∗(w)| = Op(M
√
np). With Assumption 1,

applying central limit theorem to ln f(yi|󰁥θτ (w),xi, τ) leads to

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ)− E[ln f(yi|󰁥θτ (w),xi, τ)]

󰀏󰀏󰀏󰀏 = Op(1/
√
n), (C.8)

where

E[ln f(yi|󰁥θτ (w),xi, τ)] =

󰁝󰁝
ln f(y|󰁥θτ (w),x, τ)f0(y|xi)g0(x)dxdy. (C.9)

Similarly, for Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi] ≡
󰁕
ln f(yi|󰁥θτ (w),xi, τ) ln f0(y|xi)dy, we have

󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]− Ex[Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]]

󰀏󰀏󰀏󰀏 = Op(1/
√
n),

(C.10)

where

Ex[Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]] =

󰁝
g0(x)Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]dx

=

󰁝
g0(x)

󰁝
f0(y|xi) ln f(y|󰁥θτ (w),x, τ)dydx =

󰁝󰁝
ln f(y|󰁥θτ (w),x, τ)f0(y|xi)g0(x)dxdy.

(C.11)

A combination of (C.9) and (C.11) gives that

Ex[Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]] = E[ln f(yi|󰁥θτ (w),xi, τ)],
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so that the numerator of (C.4) can be expressed as

| 󰁨Gn(w)−KL∗(w)|

=

󰀏󰀏󰀏󰀏−
n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ) +
n󰁛

i=1

󰁝
f0(yi|xi) ln f(yi|θ∗(w),xi, τ)dy

+ λn,1w
′k+

p󰁛

j=1

pλn,2(|󰁥θτ,j(w)|)
󰀏󰀏󰀏󰀏

≤
󰀏󰀏󰀏󰀏−

n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ) +
n󰁛

i=1

E[ln f(yi|󰁥θτ (w),xi, τ)]

󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏
n󰁛

i=1

Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]−
n󰁛

i=1

Ex[Ey|x[ln f(yi|󰁥θτ (w),xi, τ)|xi]]

󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏−
n󰁛

i=1

󰁝
f0(yi|xi) ln f(yi|󰁥θτ (w),xi, τ)dy +

n󰁛

i=1

󰁝
f0(yi|xi) ln f(yi|θ∗(w),xi, τ)dy

󰀏󰀏󰀏󰀏

+ |λn,1w
′k|+

p󰁛

j=1

pλn,2(|󰁥θτ,j(w)|). (C.12)

Again, it can be obtained from Assumption 4 that

λn,1w
′k = λn,1

M󰁛

m=1

wmkm ≤ λn,1p
M󰁛

m=1

wm = Op(M
√
np), (C.13)

and

p󰁛

j=1

pλn,2(|󰁥θτ,j(w)|) =
p󰁛

j=1

pλn,2(0) +

p󰁛

j=1

M󰁛

m=1

p′λn,2
(0)|θ(m)

τ,j |wm(1 + o(1))

= O(p) + pMOp(n
1/2p−1/2)(1 + o(1)) ≤ Op(M

√
np). (C.14)

Clearly, (C.8) and (C.10) conclude that the convergence rate of the first two absolute value is

Op(
√
n), the third part of (C.12) has been proved to be Op(M

√
np) in (C.7), and (C.13) and

(C.14) insure that λn,1w
′k = Op(M

√
np) and

󰁓p
j=1 pλn,2(|󰁥θτ,j(w)|) ≤ Op(M

√
np). There-

fore, | 󰁨Gn(w)− KL∗(w)| = Op(M
√
np). Finally, with Assumption 3, i.e., M2npζ−2

n = op(1),

(C.3) and (C.4) can be obtained easily from (C.7) and (C.12). This completes the proof of

Theorem 1.
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Proof of Theorem 2. Let αn = Op(ξ
1/2
n n−1/2+δ/2) and set 󰀂u󰀂 = C, where C is a large enough

constant. Following Fan and Peng (2004) and Chen et al. (2018), to prove the theorem, our

aim is to show that for any given 󰂃 there is a large enough constant C such that, for large n

we have

P

󰀫
sup

󰀂u󰀂=C,w∗+αnu∈W
Gn(w

∗ + αnu) ≥ Gn(w
∗)

󰀬
≥ 1− 󰂃,

where Gn(·) is the weight choice criterion defined as in (5), which implies that with proba-

bility tending to 1 there exists a minimum 󰁥wn in the ball {w∗ + αnu : 󰀂u󰀂 ≥ C}, such that

󰀂󰁥wn −w∗󰀂 = Op(αn). In the proof of lemma 1, note that the set of non-differentiability has

no effect on our proof process. For the sake of notes, we introduce these notations in the fol-

lowing proof: Ln(w
∗) =

󰁓n
i=1 ln f(yi|󰁥θτ (w

∗),xi), fi∗ = f(yi|󰁥θτ (w
∗),xi) being the estimated

conditional density function of y, fi0 = f0(yi|xi) being the true conditional density function

of y, and E[·] being the expectation with true conditional density function fi0.

By Taylor expansion of Ln(w
∗ + αnu) and pλn,2(|󰁥θτ,j(w

∗ + αnu)|) at w∗, we have

Dn(u) =Gn(w
∗ + αnu)−Gn(w

∗)

=− (Ln(w
∗ + αnu)− Ln(w

∗)) + λn,1(w
∗ + αnu)

′k − λn,1w
∗′k

+

p󰁛

j=1

pλn,2(|󰁥θτ,j(w
∗ + αnu)|)−

p󰁛

j=1

pλn,2(|󰁥θτ,j(w
∗)|)

=− (Ln(w
∗ + αnu)− Ln(w

∗)) + λn,1αnu
′k

+

p󰁛

j=1

󰀅
pλn,2(|󰁥θτ,j(w

∗ + αnu)|)− pλn,2(|󰁥θτ,j(w
∗)|)

󰀆

=− αn∇′Ln(w
∗)u− 1

2
α2
nu

′∇2Ln(w
∗)u− 1

6
α3
n∇′[u′∇2Ln(w̃)u]u+ λn,1αnu

′k

+

p󰁛

j=1

󰀗 M󰁛

m=1

p′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)
τ,j sgn(

󰁥θ(m)
τ,j )αnum +

M󰁛

m=1

p′′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)2

τ,j α2
nu

2
m{1 + o(1)}

󰀘

=− Ξn1 − Ξn2 +Xin3 + Ξn4,

where w̃ lies between w∗ and w∗ + αnu. Next, we consider each term Ξnj for 1 ≤ j ≤ 4.
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First, we consider Ξn1. By Assumption 5, we have

Ξn1 = αn∇′Ln(w
∗)u = αnn[

1

n
(∇′Ln(w

∗)− E[∇′Ln(w
∗)])]u+ αnE[∇′Ln(w

∗)]u

= Ξn11 + Ξn12.

Similar to the proof of Lemma 8 in Fan and Peng (2004), by applying Chebyshev inequality

to Ξn11, for any 󰂃 > 0, we have

P
󰀃
󰀂 1
n
(∇′Ln(w

∗)− E[∇′Ln(w
∗)])󰀂 ≥ 󰂃n−1/2+δ/2

󰀏󰀏x
󰀄

≤ 1

n2󰂃2n−1+δ
E
󰀗 M󰁛

m=1

󰀕
∂Ln(w

∗)

∂wm

− E
󰀗
∂Ln(w

∗)

∂wm

󰀘󰀖2󰀏󰀏󰀏󰀏x
󰀘
= O

󰀕
M

󰂃2nδ

󰀖
= o(1),

because the last equality holds because of Assumption 7, i.e., M1/2n−δ/2 → 0, which implies

that

󰀐󰀐󰀐󰀐
1

n
(∇′Ln(w

∗)− E[∇′Ln(w
∗)])

󰀐󰀐󰀐󰀐 = op(n
−1/2+δ/2).

Then,

|Ξn11| ≤ op(n
−1/2+δ/2)nαn󰀂u󰀂 ≤ op(n

1/2+δ/2αn)󰀂u󰀂.

For Ξn12, the fact that
󰁕

∂ ln fi∗
∂w

fi∗dy = 0, which comes from fi∗ being the density function

i.e.,
󰁕
fi∗dy = 1, concludes that

󰀂E[∇′Ln(w
∗)]󰀂 =

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰁝
∂ ln fi∗
∂w

fi0dy

󰀐󰀐󰀐󰀐

=

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰀕󰁝
∂ ln fi∗
∂w

fi0dy −
󰁝

∂ ln fi∗
∂w

fi∗dy

󰀖
+

n󰁛

i=1

󰁝
∂ ln fi∗
∂w

fi∗dy

󰀐󰀐󰀐󰀐

=

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰁝
∂ ln fi∗
∂w

(fi0 − fi∗)dy

󰀐󰀐󰀐󰀐 =

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰁝
∂ ln fi∗
∂w

󰁳
fi0 ·

fi0 − fi∗√
fi0

dy

󰀐󰀐󰀐󰀐

≤
n󰁛

i=1

󰀝 M󰁛

m=1

󰀗󰁝 󰀕
∂ ln fi∗
∂wm

󰀖2

fi0dy

󰀘󰀗󰁝 󰀕
fi0 − fi∗

fi0

󰀖2

fi0dy

󰀘󰀞1/2

=
n󰁛

i=1

󰀝 M󰁛

m=1

󰀗󰁝 󰀕
∂ ln fi∗
∂wm

󰀖2

fi0dy

󰀘󰀗󰁝 󰀕
1− fi∗

fi0

󰀖2

fi0dy

󰀘󰀞1/2
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=
n󰁛

i=1

󰀝 M󰁛

m=1

E
󰀗󰀕

∂ ln fi∗
∂wm

󰀖2󰀘󰀕
E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀖󰀞1/2

≤
󰁴

MC
1/2
3

√
n

󰀝 n󰁛

i=1

E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀞1/2

= Op(
󰁳

Mnξn).

The first inequality can be obtained from Cauthy-Schwarz inequality or Hölder inequality.

This implies that Ξn12 = Op(
√
Mnξnαn)󰀂u󰀂. As a result, we have

|Ξn1| = |Ξn11 + Ξn12| ≤ |Ξn11|+ |Ξn12| ≤ op(n
1/2+δ/2αn)󰀂u󰀂+Op(

󰁳
Mnξnαn)󰀂u󰀂. (C.15)

Now, for Ξn2, note that

Ξn2 =
1

2
α2
nu

′∇2Ln(w
∗)u

=
1

2
nα2

nu
′{ 1
n
(∇2Ln(w

∗)− E[∇2Ln(w
∗)])}u+

1

2
α2
nu

′E[∇2Ln(w
∗)]u

=Ξn21 +
1

2
α2
nu

′E[∇2Ln(w
∗)]u

=Ξn21 +
1

2
α2
nu

′
n󰁛

i=1

󰀝󰁝
∂2 ln fi∗
∂w∂w′ fi0dy −

󰁝
∂2 ln fi∗
∂w∂w′ fi∗dy

+

󰁝
∂2 ln fi∗
∂w∂w′ fi∗dy +

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ fi0dy −

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ fi0dy

󰀞
u

=Ξn21 +
1

2
α2
nu

′
n󰁛

i=1

󰀝󰁝
∂2 ln fi∗
∂w∂w′ (fi0 − fi∗)dy +

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ (fi0 − fi∗)dy

󰀞
u

− 1

2
α2
nu

′
󰀕 n󰁛

i=1

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ fi0dy

󰀖
u

=Ξn21 + Ξn22 − Ξn23.

The penultimate equality holds because

󰁝
∂2 ln fi∗
∂w∂w′ fi∗dy = −

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ fi∗dy.

Then, we obtain that

󰀐󰀐󰀐󰀐
1

n
(∇2Ln(w

∗)− E[∇2Ln(w
∗)])

󰀐󰀐󰀐󰀐 = op(Mn−1/2+δ/2). (C.16)
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Specifically, by Chebyshev inequality, we have

P (󰀂 1
n
(∇2Ln(w

∗)− E[∇2Ln(w
∗)])󰀂 ≥ 󰂃Mn−1/2+δ/2|x)

≤ 1

n2󰂃2M2n−1+δ
E
󰀝 M󰁛

m,s=1

󰀕
∂2Ln(w

∗)

∂wm∂ws

− E
󰀗
∂2Ln(w

∗)

∂wm∂ws

󰀘󰀖2󰀏󰀏󰀏󰀏x
󰀞

= O

󰀕
M2

󰂃2M2nδ

󰀖
= o(1).

Hence, it follows from (C.16) that

Ξn21 ≤
1

2
nα2

n󰀂u󰀂2op(Mn−1/2+δ/2) ≤ Op(Mn1/2+δ/2α2
n)󰀂u󰀂2. (C.17)

Next, for any 1 ≤ m, s ≤ M , by Cauthy-Schwarz inequality or Hölder inequality again, we

have

󰁝
∂2 ln fi∗
∂wm∂ws

(fi0 − fi∗)dy =

󰁝
∂2 ln fi∗
∂wm∂ws

󰁳
fi0 ·

fi0 − fi∗√
fi0

dy

≤
󰀝󰁝 󰀕

∂2 ln fi∗
∂wm∂ws

󰀖2

fi0dy

󰀞1/2

·
󰀝󰁝 󰀕

fi0 − fi∗
fi0

󰀖2

fi0dy

󰀞1/2

=

󰀝
E
󰀗󰀕

∂2 ln fi∗
∂wm∂ws

󰀖2󰀘󰀞1/2

·
󰀝
E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀞1/2

and

󰁝
∂ ln fi∗
∂wm

∂ ln fi∗
∂ws

(fi0 − fi∗)dy =

󰁝
∂ ln fi∗
∂wm

∂ ln fi∗
∂ws

󰁳
fi0 ·

fi0 − fi∗√
fi0

dy

≤
󰀝󰁝 󰀕

∂ ln fi∗
∂wm

∂ ln fi∗
∂ws

󰀖2

fi0dy

󰀞1/2

·
󰀝󰁝 󰀕

fi0 − fi∗
fi0

󰀖2

fi0dy

󰀞1/2

=

󰀝
E
󰀗󰀕

∂ ln fi∗
∂wm

∂ ln fi∗
∂ws

󰀖2󰀘󰀞1/2

·
󰀝
E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀞1/2

.

Thus, for Ξn22, by Assumption 5, we have

Ξn22 ≤
1

2

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰁝
∂2 ln fi∗
∂w∂w′ (fi0 − fi∗)dy

󰀐󰀐󰀐󰀐α
2
n󰀂u󰀂2

+
1

2

󰀐󰀐󰀐󰀐
n󰁛

i=1

󰁝
∂ ln fi∗
∂w

∂ ln fi∗
∂w′ (fi0 − fi∗)dy

󰀐󰀐󰀐󰀐α
2
n󰀂u󰀂2

≤1

2

n󰁛

i=1

󰀝 M󰁛

m,s

E
󰀗󰀕

∂2 ln fi∗
∂wm∂ws

󰀖2󰀘
E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀞1/2

α2
n󰀂u󰀂2
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+
1

2

n󰁛

i=1

󰀝 M󰁛

m,s

E
󰀗󰀕

∂ ln fi∗
∂wm

∂ ln fi∗
∂ws

󰀖2󰀘
E
󰀗󰀕

fi∗
fi0

− 1

󰀖2󰀘󰀞1/2

α2
n󰀂u󰀂2

≤1

2
M1/2C

1/2
3 n1/2ξ1/2n α2

n󰀂u󰀂2 +
1

2
M1/2C

1/2
4 n1/2ξ1/2n α2

n󰀂u󰀂2 = Op(
󰁳

Mnξnα
2
n)󰀂u󰀂2.

(C.18)

The last inequality holds because of the arithmetic and geometric means inequality. For

Ξn23, it can be obtained from Assumption 5 that

Ξn23 =
1

2
α2
nu

′
󰀕 n󰁛

i=1

E
󰀗
∂ ln fi∗
∂w

∂ ln fi∗
∂w′

󰀘󰀖
u =

1

2
nα2

nu
′I(w∗)u = Op(nα

2
n)󰀂u󰀂2. (C.19)

From (C.17), (C.18) and (C.19), we can get

Ξn2 = Op(Mn1/2+δ/2α2
n)󰀂u󰀂2 +Op(

󰁳
Mnξnα

2
n)󰀂u󰀂2 −Op(nα

2
n)󰀂u󰀂2. (C.20)

For Ξn3, by triangular inequality, Cauthy-Schwarz inequality and Assumption 6, we have

|Ξn3| =
󰀏󰀏󰀏󰀏
1

6
α3
n∇′[u′∇2Ln(w̃)u]u

󰀏󰀏󰀏󰀏 =
1

6

󰀏󰀏󰀏󰀏
M󰁛

l,m,s=1

∂Ln(w̃)

∂wl∂wm∂ws

ulumusα
3
n

󰀏󰀏󰀏󰀏

≤ 1

6

n󰁛

i=1

󰀗 M󰁛

l,m,s=1

M2
lms(yi|xi)

󰀘1/2
󰀂u󰀂3α3

n = Op(M
3/2nα3

n)󰀂u󰀂3. (C.21)

Finally, to deal with Ξn4, by Assumption 4, we have

Ξn4 =λn,1αnu
′k

+

p󰁛

j=1

󰀗 M󰁛

m=1

p′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)
τ,j sgn(

󰁥θ(m)
τ,j )αnum

+
M󰁛

m=1

p′′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)2

τ,j α2
nu

2
m{1 + o(1)}

󰀘

=Ξn41 + Ξn42.

It can be obtained from Assumption 4 that

Ξn41 = λn,1αnu
′k ≤ λn,1αn󰀂k󰀂󰀂u󰀂 = λn,1αnO(p

√
M)󰀂u󰀂 = Op(n

1/2p1/2M1/2αn)󰀂u󰀂.
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Then, by Assumption 4, Ξn42 can be expressed as

Ξn42 =

p󰁛

j=1

M󰁛

m=1

p′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)
τ,j sgn(

󰁥θ(m)
τ,j )αnum

+

p󰁛

j=1

M󰁛

m=1

p′′λn,2
(|󰁥θτ,j(w

∗)|)󰁥θ(m)2

τ,j α2
nu

2
m{1 + o(1)}

≤Op(n
1/2p−1/2) ·Op(p)αnM

1/2󰀂u󰀂+ op(np
−1) ·Op(p)α

2
n󰀂u󰀂2{1 + o(1)}

=Op(n
1/2p1/2M1/2αn)󰀂u󰀂+ op(nα

2
n)󰀂u󰀂2.

Thus,

Ξn4 ≤ Op(n
1/2p1/2M1/2αn)󰀂u󰀂+ op(nα

2
n)󰀂u󰀂2. (C.22)

Therefore, it can be obtained from the above proof that

Dn(u) = Ξn23 − Ξn11 − Ξn12 − Ξn21 − Ξn22 − Ξn3 + Ξn4 (C.23)

From the definition αn = Op(ξ
1/2
n n−1/2+δ/2), together with Assumption 7, (C.15), (C.20),

(C.21) and (C.22), it is easy to see that all terms of (C.23) are dominated by its first term

Ξn23, and the nonnegative property of Ξn23 implies thatDn(u) is asymptotically nonnegative,

which implies that 󰀂󰁥wn−w∗󰀂 = Op(ξ
1/2
n n−1/2+δ/2). The proof of Theorem 2 is complete.

Proof of Theorem 3. It can be obtained from Lemma 1 that

󰀂󰁥θ
(m)

τ − θ∗(m)
τ 󰀂 = Op(k

1/2
m n−1/2) ≤ Op(p

1/2n−1/2),

where p is the number of all regressors in the candidate models. Then, with the conditions,

we have

󰀂󰁥θτ (󰁥w)− θ∗
τ (w

∗)󰀂 = 󰀂(󰁥θτ (󰁥w)− 󰁥θτ (w
∗)) + (󰁥θτ (w

∗)− θ∗
τ (w

∗))󰀂

≤ 󰀂󰁥θτ (󰁥w)− 󰁥θτ (w
∗)󰀂+ 󰀂󰁥θτ (w

∗)− θ∗
τ (w

∗)󰀂

= 󰀂󰁥θτ (󰁥w −w∗)󰀂+ 󰀂(󰁥θτ − θ∗
τ )w

∗󰀂

≤ 󰀂󰁥θτ󰀂2 · 󰀂󰁥w −w∗󰀂+ 󰀂󰁥θτ − θ∗
τ󰀂2 · 󰀂w∗󰀂
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= σmax(󰁥θτ ) · 󰀂󰁥w −w∗󰀂+ σmax(󰁥θτ − θ∗
τ ) · 󰀂w∗󰀂

≤ Op(
󰁳

pM) ·Op(ξ
1/2
n n−1/2+δ/2) +Op(

󰁳
pMn−1) ·Op(M

1/2)

= Op(p
1/2M1/2ξ1/2n n−1/2+δ/2 +Mp1/2n−1/2) = op(1),

where 󰀂󰁥θτ󰀂2 is the 2-norm of matrix 󰁥θτ and σmax is the largest singular value of the matrix.

Therefore, Theorem 3 is established.

Proof of Theorem 4. It has been defined in the proof of Theorem 1 that

󰁨Gn = Gn +
n󰁛

i=1

E0[ln f0(yi|xi)]

= −
n󰁛

i=1

ln f(yi|󰁥θτ (w),xi, τ) +
n󰁛

i=1

E0[ln f0(yi|xi)] + λn,1w
′k+

p󰁛

j=1

pλn,2(|󰁥θτ,j(w)|).

To prove the asymptotic optimality of model averaging weight in the screened space W∗, for

any γ > 0, we have

P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w)

KL(󰁥w∗)
− 1

󰀏󰀏󰀏󰀏 > γ

󰀞
= P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w)−KL(󰁥w∗)

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ

󰀞

=P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + 󰁨Gn(󰁥w∗)−KL(󰁥w∗)− 󰁨Gn(󰁥w∗)

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ

󰀞
= Bn.

From (C.2), it follows that 󰁨Gn(󰁥w∗) = infw∈W∗ 󰁨Gn(w). Let an(w) = 󰁨Gn(w) − KL(w), we

have

Bn =P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + an(󰁥w∗)− infw∈W∗ 󰁨Gn(w)

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ

󰀞

=P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + an(󰁥w∗)− infw∈W∗(KL(w) + an(w))

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ

󰀞

=P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + an(󰁥w∗)− infw∈W∗(KL(w) + an(w))

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ,wn ∈ W∗
󰀞

+ P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + an(󰁥w∗)− infw∈W∗(KL(w) + an(w))

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ,wn /∈ W∗
󰀞
.

For infw∈W KL(w) − KL(󰁥w∗) ≤ 0 and infw∈W∗(KL(w) + an(w)) ≤ KL(wn) + an(wn), we
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have

Bn ≤P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w) + an(󰁥w∗)− (KL(wn) + an(wn))

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}

+ P{wn /∈ W∗}

=P

󰀝󰀏󰀏󰀏󰀏
KL(wn)− νn + an(󰁥w∗)− (KL(wn) + an(wn))

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}

+ P{wn /∈ W∗}

≤P

󰀝󰀏󰀏󰀏󰀏
νn

KL(󰁥w∗)

󰀏󰀏󰀏󰀏+
󰀏󰀏󰀏󰀏
an(󰁥w∗)

KL(󰁥w∗)

󰀏󰀏󰀏󰀏+
󰀏󰀏󰀏󰀏
an(wn)

KL(󰁥w∗)

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}+ P{wn /∈ W∗}

≤P

󰀝
sup
w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(󰁥w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(󰁥w)

KL(w)

󰀏󰀏󰀏󰀏+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)

󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏
an(wn)

infw∈W KL(w)

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}+ P{wn /∈ W∗}

≤P

󰀝
sup
w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(󰁥w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(󰁥w)

KL(w)

󰀏󰀏󰀏󰀏+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)

󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏
an(wn)

KL(wn)− νn

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}+ P{wn /∈ W∗}

≤P

󰀝
sup
w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(󰁥w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(󰁥w)

KL(w)

󰀏󰀏󰀏󰀏+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)

󰀏󰀏󰀏󰀏

+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)− νn

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
P{wn ∈ W∗}+ P{wn /∈ W∗}

Assumption 8 implies that P{wn /∈ W∗} → 0. Then, we have

Bn =P

󰀝󰀏󰀏󰀏󰀏
infw∈W KL(w)

KL(󰁥w∗)
− 1

󰀏󰀏󰀏󰀏 > γ

󰀞

≤P

󰀝
sup
w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(󰁥w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(󰁥w)

KL(w)

󰀏󰀏󰀏󰀏+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)

󰀏󰀏󰀏󰀏

+ sup
w∈W

󰀏󰀏󰀏󰀏
an(w)

KL∗(w)

󰀏󰀏󰀏󰀏 sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(wn)− νn

󰀏󰀏󰀏󰀏 > γ|wn ∈ W∗
󰀞
. (C.24)

For each term of (C.24), it follows from Assumption 8 that νn/infw∈W KL∗(w) → 0, which

implies

sup
w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(w)

󰀏󰀏󰀏󰀏 = op(1), (C.25)
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and by (C.3) and (C.4) in the proof of Theorem 1, we have

sup
w∈W

󰀏󰀏󰀏󰀏
󰁨Gn −KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏 = sup
w∈W

󰀏󰀏󰀏󰀏
󰁨Gn −KL∗ +KL∗ −KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏

≤ sup
w∈W

󰀏󰀏󰀏󰀏
󰁨Gn −KL∗

KL∗(w)

󰀏󰀏󰀏󰀏+ sup
w∈W

󰀏󰀏󰀏󰀏
KL∗ −KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏 = op(1). (C.26)

Then, note that

sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)

󰀏󰀏󰀏󰀏 =
󰀕

inf
w∈W

󰀏󰀏󰀏󰀏
KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀖−1

=

󰀕
inf
w∈W

󰀏󰀏󰀏󰀏
KL(w)−KL∗(w) + KL∗(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀖−1

=

󰀕
inf
w∈W

󰀏󰀏󰀏󰀏
KL(w)−KL∗(w)

KL∗(w)
+ 1

󰀏󰀏󰀏󰀏

󰀖−1

≤
󰀕

inf
w∈W

󰀝
1−

󰀏󰀏󰀏󰀏
KL(w)−KL∗(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀞󰀖−1

≤
󰀕
1− sup

w∈W

󰀏󰀏󰀏󰀏
KL(w)−KL∗(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀖−1

= (1− op(1))
−1 → 1. (C.27)

In addition, we can also obtain that

sup
w∈W

󰀏󰀏󰀏󰀏
KL∗(w)

KL(w)− νn

󰀏󰀏󰀏󰀏 =
󰀕

inf
w∈W

󰀏󰀏󰀏󰀏
KL(w)− νn
KL∗(w)

󰀏󰀏󰀏󰀏

󰀖−1

=

󰀕
inf
w∈W

󰀏󰀏󰀏󰀏
KL(w)

KL∗(w)
− νn

KL∗(w)

󰀏󰀏󰀏󰀏

󰀖−1

=

󰀕󰀏󰀏󰀏󰀏 inf
w∈W

󰀝󰀏󰀏󰀏󰀏
νn

KL∗(w)

󰀏󰀏󰀏󰀏−
󰀏󰀏󰀏󰀏
KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀞󰀏󰀏󰀏󰀏

󰀖−1

≤
󰀕󰀏󰀏󰀏󰀏 inf

w∈W

󰀏󰀏󰀏󰀏
νn

KL∗(w)

󰀏󰀏󰀏󰀏− sup
w∈W

󰀏󰀏󰀏󰀏
KL(w)

KL∗(w)

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏

󰀖−1

= |op(1)− 1|−1 → 1,

which, together with (C.24)-(C.27), yields that

KL(󰁥w∗)

infw∈W KL(w)
→ 1.

This concludes of Theorem 4.

53


