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Abstract

The paper investigates model specification problems for nonlinear stochastic differential equa-

tions with delay (SDDE). Compared to the model specification for conventional stochastic dif-

fusions without delay, the observed sequence does not admit a Markovian structure so that the

classical testing procedures fail. To overcome this difficulty, we propose a moment estimator

from the ergodicity of SDDEs and its asymptotic properties are established. Based on the

proposed moment estimator, a testing procedure is derived for our model specification testing

problems. Particularly, the limiting distributions of the proposed test statistic are derived un-

der null hypotheses and the test power is obtained under some specific alternative hypotheses.

Finally, a Monte Carlo simulation is conducted to illustrate the finite sample performance of

the proposed test.

Keywords: Model specification test, Stochastic differential equation with delay, Moment estima-

tor, Ergodicity, Invariant measure, Non-Markovian property.

Mathematics subject classification. Primary 62F05, Secondary 62M07.

Statement on Conflict of Interest. The authors claim there are no conflict of interest about

the manuscript submitted.

∗Department of Economics, The University of Kansas, Lawrence, KS 66045, caiz@ku.edu,
†Corresponding author. Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409,

hongwei.mei@ttu.edu.
‡Department of Economics, The University of Kansas, Lawrence, KS 66045. rui.wang@ku.edu.



1 Introduction

Consider a d-dimensional stochastic differential equation with delay

dX(t) = b0(Xt)dt+ σ0(Xt)dW (t), (1)

where X(t) denotes the state of the system at time t and Xt = {X(t + s) : −τ ≤ s ≤ 0} is

called the segment process which includes the all information of X(·) on [t − τ, t]. The τ > 0

is a fixed constant representing the delay structure. The two coefficient functions b0(·) and σ0(·)
are appropriate mappings of the segment process and W (t) is a r-dimensional standard Brownian

motion. We are interested in testing the joint parametric family P = {(b(·; θ),σ(·; θ)) : θ ∈ Θ},
where Θ is a compact subset of Rm. The parametric family P provides explanatory power of

understanding the underlying dynamics. This is to say that our aim is to test if the following null

hypothesis holds or not

H0 : b0(·) = b(·; θ), σ0(·) = σ(·; θ) for some θ ∈ Θ.

Throughout the paper, we always write the true parameter θ = θ∗ ∈ Θ if H0 is true even though the

value of θ∗ may not be given. This test is about to see if a parametric (linear) model is appropriate

for a real application.

When b0(Xt) = b0(X(t)) and σ0(Xt) = σ0(X(t)) for some appropriate functions b0(·) and σ0(·)
on Rd, the SDDE model in (1) reduces to a classical stochastic differential equation (SDE) without

delay. The model specification testing problem for such special case has been a very important

topic in the previous literature since the pioneer work by Aı̈t-Sahalia (1996). For example, there

are some extensions to the method in Aı̈t-Sahalia (1996), by Hong and Li (2005), Chen, Gao

and Tang (2008), and Aı̈t-Sahalia, Fan and Peng (2009), especially, see Hong and Li (2005) for

the kernel estimation for transition density, Chen, Gao and Tang (2008) for transitional density

using the empirical likelihood, and Aı̈t-Sahalia, Fan and Peng (2009) for a specification test for the

transition density of a discretely sampled continuous-time jump-diffusion process.

Different from the aforementioned papers, we will assume that the joint parametric family P
admits a delay dependence structure in our paper. The motivation of delay dependence stems

from the fact that many of the phenomena witnessed in applications do not have an immediate

effect from the moment of their occurrence. With such an important feature, SDDEs are widely

used in stochastic modeling in practice. For example, applied works focusing on SDDEs in the

literature, include, to name just a few, the work by Mao (2007), Bratsun, Volfson, Tsimring and

Hasty (2005), Hobson and Rogers (1998), Steiner, Stewart and Matějka (2017), Marschak (1971),

Lawrence (2012), Lei and Mackey (2007), Rihan (2021), Stoica (2005), Karatzas (1996), Hale and

Lunel (2013), Chen and Yu (2014), Ivanov and Swishchuk (2008), Arriojas, Hu, Mohammed and Pap

(2007), and references therein, with particular applications in the analysis of stability in automatic

control in stochastic systems, gene regulation, inertia and delay in decision-making, stochastic

volatility, stochastic games, economics of information systems, optimal control in economics, and

a delayed Black-Schole formulation and option pricing in finance.

The parameter estimation and statistical inference for SDDEs also receive lots of attention in

the literature, see, for example, Benke and Pap (2017), Gushchin and Küchler (1999), Küchler and

Kutoyants (2000), Küchler and Sørensen (2010, 2013), Reiss (2005), and references therein. In the
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literature, it is commonly assumed that the drift coefficient is linear and the diffusion coefficient is

a constant, and the observations are in real-time in aforementioned papers. For a different small

perturbation approach, the reader is referred to the paper by Kutoyants (2021) and references

therein. To the best of our knowledge, there is no work yet concerning with the model specification

problem for general nonlinear SDDEs especially with discrete-time observations. The paper aims

to fill this gap by providing an efficient testing procedure for those general cases.

More specifically, we will construct a testing procedure using the ergodicity of non-linear SDDEs

for the model specification problem. Such a generalization allows us to work on more complex model

specification problems with delay in practice. Due to the non-Markovian structure, the classical

testing method using transition probability for Markovian observations as in Aı̈t-Sahalia (1996),

Hong and Li (2005), Chen, Gao and Tang (2008), and Aı̈t-Sahalia, Fan and Peng (2009), is not

directly applicable here. To propose a testing procedure, our approach consists of two steps. First,

we will introduce a moment estimator and provide its asymptotic properties. Our estimator is

inspired by the ergodicity of SDDEs similar to Küchler and Sørensen (2013) and different from

the small perturbation approach in Kutoyants (2021). Then, based on the proposed moment

estimator, we construct a statistic and establish its limiting distributions, which can be used in

our model specification problem for SDDEs. Because the diffusion coefficient can be estimated

non-parametrically using in-fill asymptotics, our methods are designed particularly for testing the

drift coefficients. Therefore, we will assume σ0(·) being independent of θ in the future.

The well-posed results (such as the existence and uniqueness) for the SDDE in (1) can be

found in Mao (2007). Define an operator on A for any twice continuously differentiable function

f(·) : Rd → R by

Af(η; θ) = 〈b(η; θ),∇f(η(0))〉+ 1

2
trace


σ(η)σ⊤(η)D2f(η(0))


,

where η denotes a possible path of the segment process (see (3) below), ∇f is the gradient of f ,

and D2f is the Hessian matrix of f . We also write A0f(η) = Af(η; θ∗) for the true θ = θ∗. It

follows from Hale and Lunel (2013) that for a regular function f(·), the following process

f(X(t))− f(X(0))−
 t

0
A0f(Xs)ds

is a local martingale. Actually, A can be seen as the infinitesimal generator for the segment

process {Xt}. To work on the testing problem in our paper, we need to assume the solution

process to be exponential ergodic with a unique invariant measure µ. In such case, the observation

is asymptotically stable which coincides with the classical stable assumptions for observations in

the previous literature. The results concerning with the exponential ergodicity can be found in

Appendix.

The rest of the paper is arranged as follows. We present the definition of moment estimator and

prove its limit theorems in Section 2. Then, a testing procedure for testing our model specification

problem is developed in Section 2 too. Some simulation results to justify our theory are illustrated

in Section 3. We summarize our conclusions in Section 4. The mathematical proofs of the main

results are relegated to Section 5. Finally in Appendix, some limit theorems for SDDEs are recalled,

especially on the exponential ergodicity theory.
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2 A Specification Test

2.1 Moment Estimator

In this section, our aim is on presenting the definition of our estimator which is called a moment

estimator since the definition depends on H0 and takes a moment estimator form.

Suppose we observe the SDDE in (1) with a time-window ∆ and obtain a sequence of ob-

servations {Zi}ni=0, where Zi = X(i∆), and that there also exists a set of regular functions

f = {fk : k = 1, · · · ,m}. To emphasize the dependence of θ, we write by µ(·; θ) the unique

invariant measure of Xt (see Appendix). It is well-known that for k = 1, · · · ,m,



C
Afk(η; θ

∗)µ(dη; θ∗) = 0.

As X is exponential ergodic, by the law of large numbers (LLN); see, for instance, Mao (2007), we

have
1

T

 T

τ
Afk(Xt; θ

∗)dt →


C
Afk(η; θ

∗)µ(dη; θ∗) = 0

almost surely as T → ∞, where C is defined in (3) later. Replacing the continuous-time process X

above by the sequence of discrete time observations {Zi}ni=0, we define

An,∆(fk; θ)

=
1

n

n

i=m∆


b̃⊤∆(Zi−m∆ , · · ·, Zi; θ)∇fk(Zi)+

1

2
trace


[σ̃⊤

∆σ̃∆](Zi−m∆ ,· · ·, Zi)D
2fk(Zi)


,

where m∆ = ⌊τ/∆⌋, the largest integer smaller than or equal to τ/∆, and b̃∆(·) and σ̃∆(·) are

some appropriately approximations chosen for b(·) and σ(·) in (1). Here, note that different from

b(·) and σ(·), b̃∆(·) and σ̃∆(·) are finitely dimensional functions. For such case, the An,∆(fk; θ) is

essentially an approximation of

An∆(fk; θ) =
1

n∆

 n∆

τ


b⊤(Xt; θ)∇fk(X(t)) +

1

2
trace


[σ⊤σ](Xt)D

2fk(X(t)


dt.

A natural idea of defining the moment estimator is to solve the following equations for θ,

An,∆(fk; θ) = 0, k = 1, · · · ,m.

Because the solution may not exist, in our paper, we define the moment estimator θn,∆(f) as an

m-dimensional vector in the compact set Θ by

θn,∆(f) = argmin
θ∈Θ

m

k=1

 An,∆(fk; θ)
 . (2)

As Θ is compact, θn,∆(f) is well-defined. Write the error term (after an appropriate scaling) by

γn,∆ =
√
n∆

m

k=1

 An,∆(fk; θn,∆(f))
 =

√
n∆ inf

θ∈Θ

m

k=1

 An,∆(fk; θ)
 ,
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and then, the limit behavior of the error γn,∆ will play an important role in the later analytic study.

It is always assumed throughout the paper that ∆ = ∆n → 0, n → ∞ and n∆n → ∞. The

last n∆n → ∞ allows us to apply the LLN and the central limit theorem (CLT) for SDDEs and

is also sufficient for (n − m∆n)/n → 1. Here, we would like to emphasize that the assumption

∆n → 0 is to guarantee our moment estimator being unbiased in our paper. The unbiasedness of

the moment estimator is critical in our testing procedure. In fact, without loss of generality, we also

assume that
∞

n=1∆n < ∞ in the following asymptotic theory. Otherwise, we take a subsequence

(nj ,∆nj ) of (n,∆n) such that
∞

j=1∆nj < ∞. Until now, we have unveiled the definition of our

moment estimator θn,∆n(f) given in (2). Our main goal is to study the consistency and asymptotic

normality so that one can construct a test statistic for the testing problem. In the sequel, L is a

tentative constant which may vary from place to place. We also write Op(1) and op(1) by a term

which is bounded and converges to 0 in probability respectively.

2.2 Asymptotic Properties

First, we establish the consistency of our moment estimator if H0 is true. Our proof relies on the

ergodicity theory for SDDEs in Appendix. To this end, define the space

C =

η : [−τ, 0] → Rd|η(·) is continuous on [−τ, 0]


, (3)

equipped with the sup-norm metric ηC = sup−τ≤s≤0 |η(s)|. For any η ∈ C , we write the δ-

increment functional by

wδ(η) = sup
−τ ≤ u ≤ v ≤ 0

|u − v| ≤ δ

|η(u)− η(v)|.

Now, we need the following assumption to investigate the large sample theory.

Assumption 1. Suppose that fk ∈ f is twice continuous differentiable with bounded second order

derivatives satisfying:

(i) θ∗ is the unique solution


C
Afk(η; θ)µ(dη; θ

∗) = 0 for all k = 1, · · · ,m.

Here, we recall that µ is the unique invariant measure of Xt.

(ii) The rank of the matrix R(θ∗) = (r1(θ
∗), · · · , rm(θ∗)) is m, where

rk(θ) =



C
∂θAfk(η; θ)µ(dη; θ). (4)

(iii) For any η ∈ C , there exist b̃∆ : (Rd)m∆+1×Θ → Rd and σ̃∆ : (Rd)m∆+1×Θ → Rd×r such that

|b̃∆

η(−m∆ ∗∆), · · · , η(0); θ


|+ |σ̃∆


η(−m∆ ∗∆), · · · , η(0)


| ≤ L(1 + θ)(1 + ηC ),

|∂θb(η; θ)|+ |∂2
θb(η; θ)|+ |∂θ b̃∆(η(−m∆ ∗∆), · · · , η(0); θ)|

+ |∂2
θ b̃∆(η(−m∆ ∗∆), · · · , η(0); θ)| ≤ L(1 + ηC ),

|b(η; θ)− b̃∆

η(−m∆ ∗∆), · · · , η(0); θ


|+ |σ(η; θ)− σ̃∆


η(−m∆ ∗∆), · · · , η(0); θ


|

≤ L(1 + |θ|)w∆(η),

|∂θb(η; θ)− ∂θ b̃∆(η(−m∆ ∗∆), · · · , η(0); θ)| ≤ Lw∆(η).
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To prove the consistency, we proceed with the following proposition.

Proposition 1. Suppose Assumptions 1 and 2 hold. It follows that

lim
n→∞

sup
θ∈Θ

 An,∆n(fk; θ)−


C
Afk(η; θ)µ(dη; θ

∗)
 = 0

almost surely, where Assumption 2 is provided in Section 5.

Now, let us present the consistency of the estimator under H0 with its proof given in Section 5.

Theorem 1 (Consistency). Suppose Assumptions 1 and 2 hold. Under H0, it follows that

θn,∆n → θ∗ (5)

almost surely as n → ∞. Consequently, the moment estimator is consistent.

Next, we will prove the asymptotic normality for the moment estimator θn,∆n(f) defined in (2).

We proceed with the following estimate for the error term γn,∆n with its proof given in Section 5.

Lemma 1. Under Assumptions 1 and 2, if Θ has neighborhood of θ∗, then γn,∆n = 0 when n is

large.

From the estimate for γn,∆n in Lemma 1, we will divide our testing problem into two different

cases (I): Θ has a neighborhood of θ∗; (II): Θ = {θ∗}. We want to mention that we do not have

γn,∆n → 0 in probability for Case II. It is obvious that Case II is trivial in the estimator step so

that our focus is only on Case I. The following is our result on the asymptotic normality of θn,∆n(f)

with its proof given in Section 5.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1 and 2 hold and Θ has a neighborhood

of θ∗. As n → ∞ with
√
n∆n → 0, then under H0, it follows that


n∆n

θn,∆n(f)− θ∗

→ N (0,Σ(f ; θ∗)) (6)

in distribution, where Σ(f ; θ∗) is defined as

r⊤k (θ
∗)Σ(f ; θ∗)rk(θ

∗) =



C
|σ⊤(η)∇fk(η(0))|2µ(dη; θ∗) for all k = 1, · · · ,m, (7)

with rk(θ) defined in (4).

Note that the true θ∗ is not obtainable, we provide the following asymptotic normality with

variance being independent of θ∗. Together with Lemma 2 in Appenidx, we have the following

proposition.

Proposition 2. Suppose assumptions in Lemma 2 in Appendix and Assumption 1 hold. As n → ∞
with

√
n∆n → 0, under H0, it follows that


n∆n · Σ−1/2(f ; θn,∆n(f))


θn,∆n(f)− θ∗


→ N (0, 1)

in distribution.

Until now, we have obtained the asymptotic normality for our moment estimator θn,∆(f). While

we can not directly apply such asymptotic normality to our hypothesis testing problem as the true

θ∗ is not obtainable. Therefore, we will continue to construct a statistic for our model testing

problem in Section 2.3.
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2.3 Test Statistic

In this section, we will propose a statistic and present the corresponding testing procedure for our

model testing problem. Let f0 : Rd → R and define the statistic as follows:

An,∆(f0; θn,∆(f)) =
∆

n

n

i=m∆


b̃⊤∆(Zi−m∆ , · · ·, Zi; θn,∆(f))∇f0(Zi)+

1

2
trac


[σ̃⊤

∆σ̃∆](Zi−m∆ ,· · ·, Zi)D
2f0(Zi)



Now, we are ready to present the our main results of the paper. The first theorem concerns

with the asymptotic normality for Case I in Theorem 3 and the second theorem is for Case II in

Theorem 4 with their proofs given in Section 5.

Theorem 3. Let all assumptions in Proposition 2 hold. Suppose that f0 is twice continuous dif-

ferentiable with bounded second order derivatives. Under H0, if σ(f0, f ; θ
∗) ∕= 0, as n → ∞ with√

n∆n → 0, we have

Tn,∆n(f0, f ;
θn,∆n(f)) = σ−1(f0, f ; θn,∆n(f)) · An,∆n(f0;

θn,∆n(f)) → N(0, 1) (8)

in distribution, where

r0(θ) =



C
∂θAf0(η; θ)µ(dη; θ),

σ2(f0, f ; θ) =



C





R−1(θ)r0(θ)

⊤



σ⊤(η)∇f1(η(0))

...

σ⊤(η)∇fm(η(0))



− σ⊤(η)∇f0(η(0))





2

µ(dη; θ).

Here f0 can not be a linear combination of f because σ2(f0, f ; θ) = 0 in such a case. This

coincides with our intuition from the definition of our moment estimator as an infimium point

using f . We need more information of the observations through applying a new f0 to construct the

test statistic to fulfill asymptotic normality.

Theorem 4. Let H0 : θ = θ0 and H1 : θ = θ1 with θ0 ∕= θ1. Under H0, as n → ∞ with
√
n∆n → 0

if v−1(Af0(·; θ0); θ0) ∕= 0, we have

v−1(Af0(·; θ0); θ0) · An,∆n(f0; θ0) → N(0, 1) (9)

in distribution. Moreover, under H1, if f0 satisfies

C Af0(η; θ0)µ(dη; θ1) ∕= 0, then

v−1(Af0(·; θ0); θ0) · An,∆n(f0; θ0) → ∞

in probability so that the test power converges to 1 with a rate of (n∆n)
−1.

Remark 1. (1) Even though the closed forms of σ(f0, f ; θ) and v(Af(·; θ); θ) as functions of θ may

not be obtainable, their values can be computed numerically through an independent Monte-Carlo

method without using the observations. Therefore, we can treat σ(f0, f ; θ) and v(Af(·; θ); θ) as

known functions in testing procedure.

(2) When selecting f0, it is important that

C Af0(η; θ

∗)µ(dη; θ1) ∕= 0 for a good test power. We

will present a concrete example to illustrate this in simulation study later.
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With the above limiting results, our testing procedure can be summarized as follows:

Case I (i.e. Θ has a neighborhood of θ∗): reject H0 if |σ−1(f0, f ; θn,∆n(f)) · An,∆n(f0,
θn,∆n(f))| ≥

zα/2, where zα/2 is the 100(1− α/2) percentile of a standard normal distribution.

Case II (i.e H0 : θ = θ∗): reject H0 if |v−1(Af0(·; θ∗); θ∗) · An,∆n(f0, θ
∗)| ≥ zα/2.

Our theory established above concludes that the probabilities of falsely rejecting H0 for both

Case I and Case II are asymptotically α as n → ∞, ∆n → 0, n∆n → ∞ and
√
n∆n → 0.

3 Simulation Study

We consider testing a generalized Vasicek model as in Vasicek (1977) with delay,

dX(t) = [a0 − b0X(t) + θb1(X(t− τ))]dt+ σdW (t)

for some θ ∈ Θ = [−l, l]. As we mainly focus on the delay structure in our paper, we will set a0,

b0, and σ as given constants in our simulation example. The b1 will be a non-linear function which

distinguishes our results from the previous result in Küchler and Sørensen (2013) and so on.

As the parameter θ is one dimensional in our example, we only pick a function f : R → R such

that

C f ′(η(0))η(−1)µ(dη; θ∗) ∕= 0. Our moment estimator is defined by

θn,∆ = Π

n
i=m∆

[(b0Zi − a0)f
′(Zi)− σ2f ′′(Zi)/2]n

i=m∆
[b1(Zi−m∆)f

′(Zi)]


,

where Π is the projection from R to [−l, l]. By (20), a simple calculation yields that

r(θ) =



C
f ′(η(0))b1(η(−τ))µ(dη; θ)( ∕= 0) and r0(θ) =



C
f ′
0(η(0))b1(η(−τ))µ(dη; θ)

It is not difficult to see that

σ2(f0, f ; θ) = σ2



C


f ′
0(η(0))−

r0(θ)

r(θ)
f ′(η(0))

2
µ(dη; θ).

Now, let us present a concrete example to illustrate our results. Set a0 = 0, b0 = 5, σ = 1,

τ = 0.1, b1(x) = I(|x| < 1), and f(x) = x, f0(x) = x2/2. For this case the moment estimator and

testing statistic are

θn,∆(f) = Π

n
i=m∆

[b0Zi − a0]n
i=m∆

b1(Zi−m∆)



Tn,∆(f0, f ; θn,∆(f)) = σ−1(f0, f ; θn,∆(f))


∆

n

n

i=m∆


Zi[a0 − b0Zi + θn,∆(f)b1(Zi−m∆)] + 1/2


,

σ2(f0, f ; θ) = σ2



C


η(0)− r0(θ)

r(θ)

2
µ(dη; θ)

where Π is the projection from R to Θ. Here, we note that σ2(f0, f ; ·) can be calculated by

an independent Monte-Carlo simulation without using the observations. When simulating the

observations, we use step size δ = ∆/10 and work out nδ = 10∗n recursions {Yi}nδ
i=0 for the SDDE,

where Yi = X(iδ). Then, our observation is taken by {Zi}ni=0, where Zi = Yi∗∆/δ.
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We have four tables in the sequel in which 500 replications of simulations are performed. Table

1 reports the test sizes for different numbers of sample size n. From Table 1, we can see clearly

that the test size converges to the nominal size when the sample size n becomes large (proportional

to the observation window ∆).

In Table 2, we list the test powers if the alternative hypothesis takes H1 : b(η) = a0 − b0η(0) +

θ∗b1(η(−0.1)) with a0 ∕= 0 (i.e. θ1 = θ∗). Such alternatives corresponds to the cases when the

perturbation of H1 from H0 is a constant in the drift coefficient. When a0 departures from 0, the

test power tends to one quickly. This means that indeed, the proposed test is powerful.

In Table 3, we consider the hypothesis set as H0 : b(η; θ) = a0 − b0η(0) + θ0b1(η(−0.1)) versus

H1 : b(η; θ) = a0 − b0η(0) + θ1b1(η(−0.1)), where H1 is indexed by θ1. The new feature for such an

example is that γn,∆ → 0 in probability fails. For this case, we have θn,∆(f) = 1 and the testing

statistic becomes



C
[η(0)]2µ(dη; θ∗)

−1/2 An,∆(f0; θ
∗)

=


C
[η(0)]2µ(dη; θ∗)

−1/2


∆

n

n

i=m∆


[a0 − b0Zi + θ0b1(Zi−m∆ < 1)]Zi + 1/2


.

Note that the true value of

C [η(0)]

2µ(dη; θ∗) is 0.1392 by performing an independent Monte-Carlo

simulation in prior. Table 3 summarizes the test powers for this case. From Table 3, we also can

observe that when θ1 departures from 1, the test power tends to one quickly, which implies that

the proposed test works reasonably well.

In the final Table 4, we list the test powers for different θ0 and a0 if the stochastic diffusion

admits no delay structure in H1. When a0 = 1, we can see that the power tends to 1 very quickly

when θ0 departs from the true value 0. This concludes our test is very powerful in distinguishing the

delay structure from conventional stochastic diffusions. While if a0 = 0, our tests are not becoming

more powerful when θ0 departs from 0. The reason is that

C Af0(η; θ0)µ(dη; θ1) = 0 in such a

case, which justifies our second conclusion in Remark 1. To make our tests powerful, a different f0
rather than f0(x) = x2/2 should be selected.

Table 1: The test sizes for different significance levels α and number of observations n

with ∆ = 10−3 and θ∗ = 1.

α 0.01 0.05 0.10

n=104 0.006 0.030 0.064

n=106 0.012 0.054 0.110

Table 2: The test powers for different values of a0 in H1 : b(η; θ) = a0 − b0η(0) +

θ1b1(η(−0.1)) with θ1 = 1, α = 0.05, n = 106 and ∆ = 10−3.

α = 0.05

a0 0.3 0.2 0.1 0 -0.1 -0.2 -0.3

Power 1.000 0.998 0.588 0.048 0.454 0.898 0.982
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Table 3: The test powers for different values of θ1 under H0 : b(η; θ) = −b0η(0) +

θ0b1(η(−0.1)) versus H1 : b(η; θ) = −b0η(0) + θ1b1(η(−0.1)) with α = 0.05, n = 106

and ∆ = 10−3.

α = 0.05

θ1 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Power 0.936 0.770 0.286 0.048 0.460 0.962 1.000

Table 4: The test powers for different values of θ0 and a0 under H0 : b(η; θ) = a0 −
b0η(0) + θ0b1(η(−0.1)) versus H1 : b(η; θ) = a0 − b0η(0) with α = 0.05, n = 106 and

∆ = 10−3.

a0 = 1

θ0 0 0.3 0.5 1

Power 0.056 0.9960 1.000 1.000

a0 = 0

θ0 0 0.3 0.5 1

Power 0.044 0.048 0.044 0.046

4 Conclusions

We have proposed a model specification test for SDDEs using its ergodicity. Compared to model

specification problems for stochastic diffusions without delay, the observation does not admit a

Markovian structure. The proposed method allows us to work with the case that the stochas-

tic diffusions have nonlinear coefficients and admits a delay structure under the null hypothesis.

Through Monte Carlo simulation, we observe that the proposed test has a good test size and is

indeed powerful.

Before we finalize our conclusion, we want to discuss how to apply our method if the observed

window ∆ is fixed. Such a case for linear SDDEs with additive diffusions has been studied in

Küchler, U. and Søensen, M. (2013). Due to the special structure assumed there, it is asserted

that the conditional distribution of Xi+1∆ on X∆, · · · , Xi∆ is normal which plays an essential role

in their study. Otherwise, a biased estimator can be concluded in Küchler, U. and Søensen, M.

(2011). Because the diffusions are assumed non-linear in our problem, such a property fails and

their method is not applicable here.

In our paper, the key of selecting Afk(·) as moment functions lies in the fact that An,∆(fk; θ
∗)

is asymptotic to 0 (independent of θ∗). While for fixed ∆, the limit of An,∆(fk; θ
∗) will depends on

θ∗ and therefore the moment functions {Afk(·)} would not be appropriate in this case. To propose

an appropriate moment estimator for such case, we need to find g∆(η; θ) such that g∆(η; θ) depends

on the observable part in η only and

C g∆(η; θ

∗)µ(dη; θ∗) = 0. The choice is not easy in general

because the explicit form of the invariant measure for the segment process is not obtainable. We

will leave this problem for future study. To summarize, in this paper, we let ∆ → 0 which leads to

the closed forms of mean and variance in the asymptotic normality. Our problem can be seen as a

model specification testing problems for non-linear SDDEs with high-frequency data.
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5 Mathematical Proofs

Proof of Proposition 1: Note that

E
 An,∆(fk; θ)− (n∆)−1

 n∆

τ
Afk(Xt; θ)dt


2
≤ Ln−1E



i=1

(1 + Xi∆C )
2 · w∆(Xi∆)

2

≤ Ln−1
n

i=1


E(1 + Xi∆C )4 · Ew∆(Xi∆)4 = L∆

As
∞

n=1∆n < ∞ mentioned in the introduction, we have

∞

n=1

E
 An,∆n(fk; θ)− (n∆n)

−1
 n∆n

τ
Afk(Xt; θ)dt


2
≤ L

∞

n=1

∆n < ∞.

By Borel-Cantelli lemma, together with the LLN in (17), we have

An,∆n(fk; θ) →


C
Afk(η; θ)µ(dη; θ

∗)

almost surely for each θ ∈ Θ. To prove the uniform convergence, it suffices to show An,∆(fk; θ) is

equi-continuous on each sample path. Note that

sup
θ∈Θ

|∂θ An,∆n(fk; θ)| ≤ n−1
n

i=1

sup
θ∈Θ

|∂θ b̃⊤∆n
(Zi−m∆n

, · · ·, Zi; θ)∇fk(Zi)|

≤ Ln−1
n

i=1

(1 + Xi∆n2C ) → a constant

almost surely. This essentially says that An,∆n(fk; θ) is uniformly Lipschitz on each sample path.

The proof is complete.

Proof of Theorem 1: By Proposition 1, it follows that

m

k=1




C
Afk(η; θn,∆n(f))µ(dη; θ

∗)


≤
m

k=1

sup
θ∈Θ

 An,∆n(fk; θ)−


C
Afk(η; θ)µ(dη; θ

∗)
+

m

k=1

 An,∆n(fk;
θn,∆n(f))



≤
m

k=1

sup
θ∈Θ

 An,∆n(fk; θ)−


C
Afk(η; θ)µ(dη; θ

∗)
+ inf

θ∈Θ

m

k=1

 An,∆n(fk; θ)


≤2

m

k=1

sup
θ∈Θ

 An,∆n(fk; θ)−


C
Afk(η; θ)µ(dη; θ

∗)
+ inf

θ∈Θ

m

k=1




C
Afk(η; θ)µ(dη; θ

∗)
 → 0.

By the uniqueness of θ∗ as the solution to

C Afk(η; θn,∆n(f))µ(dη; θ

∗) = 0, we have θn,∆n(f) → θ∗

almost surely.

Proof of Lemma 1: Without loss of generality, we assume that



C
∂θAf1(η; θ

∗)µ(dη; θ∗), · · · ,


C
∂θAfk(η; θ

∗)µ(dη; θ∗)

= I,
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otherwise we perform a local linear transformation. In the small neighborhood of θ∗, we have the

following Taylor’s expansion



C
Af1(η; θ)µ(dη; θ

∗), · · · ,


C
Afm(η; θ)µ(dη; θ∗)


= θ − θ∗ + o(|θ − θ∗|).

One can steadily checked that the condition for the well-known Poincaré-Miranda theorem is met.

As the convergence of An,∆(fk; ·) to

C Afk(η; θ)µ(dη; θ

∗) is uniform, the Poincaré-Miranda theorem

is applicable for An,∆(fk; ·), which yields that An,∆(fk; ·) = 0 admits a solution in Θ. The proof is

complete.

Proof of Theorem 2: By the definition of θn,∆(f) in (2), we notice that An,∆(fk; θn,∆(f)) = γn,∆.

Recalling the definition (18) (with m(Afk) = 0) and

√
n∆An∆(fk; θ

∗) =
1√
n∆

 n∆

τ
Afk(Xt; θ

∗)dt.

Note that |∂2
θAfk(η; θ)| ≤ L(η2C + 1) by Assumption 1. Using Taylor’s expansion of θ, we have

√
n∆An∆(fk; θ

∗) =
√
n∆[An∆(fk; θ

∗)−An∆(fk; θn,∆(f)]

+
√
n∆[An∆(fk; θn,∆(f))− An,∆(fk; θn,∆(f))] +

√
n∆γn,∆

= −
√
n∆(θn,∆(f)− θ∗)⊤[

1

n∆

 n∆

τ
∂θAfk(Xs; θ

∗)ds]

+O(1)
√

n∆|θn,∆(f)− θ∗|2
 1

n∆

 n∆

τ
(1 + Xs2C )ds



+O(1)


∆

n

n

i=m∆


w∆n(Xi∆)(1 + Xi∆C )


+ γn,∆n . (10)

By (16), we have


∆n

n

n

i=m∆n

E[w∆n(Xi∆)(1 + Xi∆nC )] ≤


∆n

n

n

i=m∆


Ew2

∆(Xi∆n)(1 + EXi∆n2C ) = O(
√
n∆n).

Again, by (5), we have

(n∆n)
1
2 |θn,∆n(f)− θ∗|2 = op(1)(n∆n)

1
2 (θn,∆n(f)− θ∗).

The LLN in (17) yields that

1

n∆n

 n∆n

τ
(1 + Xs2C )ds → constant and

1

n∆n

 n∆n

τ
∂θAfk(Xs; θ

∗)ds → rk, a.s.

By (10), the asymptotic normality for An∆(fk; θ0) defined in (18) yields that for any {αk : k =

1, · · · ,m}


n∆n

m

k=1

αk〈rk(θ∗), θn,∆n(f)− θ∗〉 → N


0, v2


m

k=1

αkA0fk



in distribution. Since R(θ∗) = (r1(θ
∗), · · · , rm(θ∗)) has a rank of m, there exists a unique Σ(f ; θ∗)

which is m × m-dimensional non-negative definite, symmetric matrix such that r⊤k Σ(f ; θ
∗)rk =

12



v2(A0fk; θ
∗) for all 1 ≤ k ≤ m given in (7). Then, (6) holds for such Σ(f ; θ∗). The proof is

established.

Proof of Proposition 2: By Lemma 2 and the consistency of θn,∆n(f), we know that Σ−1/2(f ; θn,∆n(f)) →
Σ−1/2(f ; θ∗) in probability. Therefore, Proposition 2 is a direct consequence of Theorem 2.

Proof of Theorem 3: Note that

An,∆(f0; θn,∆(f)) =

An,∆(f0; θn,∆(f))− An,∆(f0; θ

∗)


+

An,∆(f0; θ

∗)−An∆(f0; θ
∗)

+An∆(f0; θ

∗). (11)

The Itô formula yields that

An∆(f0; θ
∗) =

1√
n∆


f0(X(t))− f0(X(τ))−

 n∆

τ
σ⊤(Xt)∇f0(X(t))dWt


(12)

in distribution. Also, note that

E
 An,∆(f0; θ

∗)−An∆(f0; θ
∗)


=


∆

n
E


n

i=m∆


b̃⊤∆(Zi−m∆ , · · ·, Zi; θn,∆(f))∇f0(Zi)

+
1

2
trace


[σ̃⊤

∆σ∆](Zi−m∆ ,· · ·, Zi)D
2f0(Zi)



−
n

i=m∆


b⊤(Xi∆; θ

∗)∇f0(X(i∆)) +
1

2
trace


[σ⊤σ]Xi∆)D

2f0(X(i∆))


+
1√
n∆

E




n

i=m∆


 (i+1)∆

i∆
b⊤(Xt; θ

∗)∇f0(X(t))− b⊤(Xi∆; θ
∗)∇f0(X(i∆))dt







+
1

2
√
n∆

E




n

i=m∆

trace
 (i+1)∆

i∆
[σ⊤σ](Xt)D

2f0(X(t))− [σ⊤σ](Xi∆)D
2f0(X(i∆))


dt






≤ L


∆

n
E




n

i=m∆

w∆(Xi∆) · (Xi∆C + 1)





≤ L


∆

n

n

i=m∆


Ew2

∆(Xi∆) · (1 + EXi∆2C ) ≤ L
√
n∆. (13)

Using Taylor’s expansion, we have

An,∆(f0; θn,∆(f))− An,∆(f0; θ
∗)

=


∆

n

n

i=m∆


[b̃∆(Zi−m∆ , · · ·, Zi; θn,∆(f))− b̃∆(Zi−m∆ , · · ·, Zi; θ

∗)]⊤∇f0(Zi)


=
√
n∆ ·M⊤

n,∆(
θn,∆(f)− θ∗) +O(1)

√
n∆|θn,∆(f)− θ∗|2 ·


n−1

n

i=m∆

(1 + Xi∆C )
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= M⊤
n,∆[R

−1(θ∗)]⊤
√

n∆R⊤(θ∗)(θn,∆(f)− θ∗)

+O(1)

√
n∆|θn,∆(f)− θ∗|2 ·


n−1

n

i=m∆

(1 + Xi∆C )


= M⊤
n,∆[R

−1(θ∗)]⊤




1√
n∆

 n∆

τ




σ⊤(Xt)∇f1(X(t))

...

σ⊤(Xt)∇fm(X(t))



 dWt



+ op(1)

+O(1)
√
n∆|θn,∆(f)− θ∗|2 ·


n−1

n

i=m∆

(1 + Xi∆C )


(14)

where

Mn,∆ =
1

n






n

i=m∆

∂θ b̃
⊤
∆(Zi−m∆ , · · ·, Zi; θ

∗)∇f0(Zi)




 .

By the LLN, Mn,∆n →

C ∂θAf0(η; θ

∗)µ(dη; θ∗) almost surely as n → ∞. Together with Lemma 2,

(11)–(14) imply that

An,∆n(f0;
θn,∆n(f)) = 〈R−1(θ∗)r0(θ

∗),
1√
n∆n

 n∆

τ




σ⊤(Xt)∇f1(X(t))

...

σ⊤(Xt)∇fm(X(t))



 dWt〉

− 1√
n∆n

 n∆n

τ
σ⊤(Xt)∇f0(X(t))dWt + op(1).

Therefore, our central limit theorem holds.

Proof of Theorem 4: In this case θn,∆ = θ∗ = θ0 and the asymptotic normality in (9) follows

the same way as proof of Theorem 3. Under H1, the testing statistic satisfies

1√
n∆n

An,∆n(f0, θ
∗) →



C
Af0(η; θ

∗)µ(dη; θ1),

almost surely by the LLN. Moreover, using the exponential ergodicity of SDDE (1) for θ = θ1, we

have

lim
n,∆

E

An,∆n(f0, θ

∗)−


n∆n



C
Af0(η(0), η; θ

∗)µ(dη; θ1)
2

< ∞.

Then, Chebyshev’s inequality yields that

P

|v−1(Af0; θ

∗) ·An,∆n(f0, θ
∗)| ≤ zα/2



≤ P
v−1(Af0; θ

∗) · [An,∆n(f0, θ
∗)−


n∆n



C
Af0(η(0), η; θ

∗)µ(dη; θ1)]
 ≥ L


n∆n − zα/2



≤ L(n∆n)
−1,

which implies that the probability of Type II error converges to 0 with a rate of (n∆n)
−1. In other

words, the test power converges to one. Therefore, the proof is complete.
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Appendix: General Results on SDDEs

In this appendix, we will recall the ergodicity theory for SDDEs for our problem from Bao et al.

(2020). In the sequel, we need the following assumption.

Assumption 2. (A1). σ is Lipschitz continuous; b : C × Θ → Rd and σ : C × Θ → Rd×r is

continuous, and bounded on bounded subsets of C .

(A2). There exist two constants λ1,λ2 > 0 such that λ1 > λ2e
−λ1τ such that

2〈ξ(0)− η(0), b(ξ; θ∗)− b(η; θ∗)〉 ≤ −λ1|ξ(0)− η(0)|2 + λ2ξ − η2C .

(A3). σσ⊤(·, θ∗) is invertible with

sup
C


|σσ⊤(·, θ∗)|+ |(σσ⊤)−1(·, θ∗)|


< ∞.

and |∂θb(η; θ)| ≤ L(1 + ηC ), |∂θσ(η; θ)| ≤ L.

The following theorem is taken from Bao et al. (2020) concerning about the exponential ergod-

icity of SDDEs.

Theorem 5. Suppose Assumption 2 holds. Then the following are true.

(i) The Markov process {Xt} admits a unique invariant measure µ on C with for any p ≥ 1

sup
t≥0

EXt2pC < Lp (15)

and

sup
t≥0

δ−pEw2p
δ (Xt) < Lp (16)

where Lp is a constant independent of δ.

(ii) If |g(η)| ≤ Lη2C for some L > 0, we have the law of large numbers

1

T

 T

τ
g(Xt)dt → m(g) =



C
g(η)µ(dη; θ) (17)

almost surely.

(iii) For any h : C → R satisfying

|h(η)− h(ξ)| ≤ Lη − ξC ,

we have

AT (h; θ
∗) =

1√
T

 T

τ
[h(Xt)−m(h)]dt → N


0, v2(h; θ)


(18)

in distribution, where Xη
t is the solution to (1) with initial X0 = η,

Rf (η) =

 ∞

τ
Ef(Xη

t )−m(f)dt

17



and

v2(h; θ) =



C
µ(dη; θ)


E

 1

τ
f(Xη

t )dt+Rf (X
η
1 )−Rf (η)



. (19)

In particular, if h(η) = Af(η(0), η; θ∗) some twice continuously differentiable f with bounded second

order derivatives, we have

v2(A0f ; θ
∗) =



C
|σ⊤(η; θ∗)∇f(η(0))|2µ(dη; θ∗). (20)

For our testing problem, we finish the Appendix with a lemma concerning with the continuity

of the invariant measure µ(·; θ) with respect to θ.

Lemma 2. Assume Assumption 2 holds and supθ∈Θ supt≥0 EXt2C < ∞. We further assume that

|σ(ξ, θ) − σ(η, θ)| ≤ λ3|ξ − η|C with λ1 > (λ2 + λ3)e
−λ1τ . Then as θ → θ∗, µ(·; θ) → µ(·; θ∗) in

distribution with 

C
η2Cµ(dη; θ) →



C
η2Cµ(dη; θ∗). (21)

Proof. Suppose X(t) and Y (t) be the solution of SDDE (1) with same initial and θ = θ∗ and θ1

respectively. Note that

d(X(t)− Y (t)) = [b(Xt; θ
∗)− b(Yt; θ1)]dt+ [σ(Xt; θ

∗)− σ(Yt; θ1)]dW (t)

= [b(Xt; θ
∗)− b(Yt; θ

∗)]dt+ [σ(Xt; θ
∗)− σ(Yt; θ

∗)]dW (t)

+[b(Yt; θ
∗)− b(Yt; θ1)]dt+ [σ(Yt; θ

∗)− σ(Yt; θ1)]dW (t)

Therefore taking δ > 0 such that λ1 > (λ2 + λ3 + δ)e−λ1τ , we have

d|X(t)− Y (t)|2 ≤

2〈X(t)− Y (t), b(Xt; θ

∗)− b(Yt; θ
∗)〉+ |σ(Xt; θ

∗)− σ(Yt; θ
∗)|2

+L(YtC |X(t)− Y (t)|+ |θ1 − θ∗|+ 1)|θ1 − θ∗|]dt+ dM

≤ [−λ1|X(t)− Y (t)|2 + (λ2 + λ3 + δ)Xt − Yt2C + L
 1

4δ
Yt2C + |θ1 − θ∗|+ 1


|θ1 − θ∗|


dt+ dM,

where M is a martingale. Similar to the proof of Lemma 3.1 in Bao et al. (2020), we have

lim
t→∞

EXt − Yt2C ≤ Lδ|θ1 − θ∗|.

As (Xt, Yt) is an asymptotic coupling of µ(·; θ∗) and µ(·; θ1), this proves that µ(·; θ1) → µ(·; θ∗) in
distribution and (21) holds. The proof is complete.

Finally, we would like to make a remark that the condition in above lemma is sufficient but far

from necessary. How to get a better condition is beyond the scope of our paper and thus omitted

here.
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