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We establish the asymptotic distribution for rolling linear regression models using
various window widths. The limiting distribution depends on the width of the rolling
window and on a ‘‘bias process’’ that is typically ignored in practice. Based on the
asymptotic distribution, we tabulate critical values used to find uniform confidence
intervals for the average values of regression parameters over the windows. We propose
a corrected rolling regression technique that removes the bias process by rolling over
smoothed parameter estimates. The procedure is illustrated using a series of Monte Carlo
experiments. The paper includes an empirical example to show how the confidence
bands suggest alternative conclusions about the persistence of inflation.

© 2022 Published by Elsevier B.V.

1. Introduction

Rolling regression is often employed in empirical studies as a method to characterize changing economic relationships
ver time. As a simple robustness check, regression parameters are estimated using some fraction of the data early in
he sample. The fixed fraction is then ‘‘rolled’’ through the sample, so that the estimated regression parameters may vary
ver time. This intuitive procedure is one of conventional methods to examine the stability of statistical relationships over
ime. A cursory search should reveal that there are rolling regression routines written in languages or packages such as
, STATA, Matlab, RATS, Python, Eviews and Excel.
As part of the prototypical exercise of reporting rolling regression estimates, researchers often plot bands around the

oint estimates as a way to conduct a type of ocular inference about whether there are changes in the relationships
ver time. The regression bands are constructed using estimated standard errors from the regression parameters in the
elevant time period for the rolling window. Then, these estimated standard errors are multiplied by critical values from
he standard normal distribution. Recent papers using rolling regression with confidence bands include but not limited
o the papers by Swanson and Williams (2014), Linnainmaa and Roberts (2018), Adrian et al. (2015), Blanchard and Gali
2009), Blanchard (2018), Georgiev et al. (2018), Jimeńez et al. (2017) and Løpez-Salido et al. (2017), among others.1
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1 Rolling regression is also used in forecasting in the paper by Clark and McCracken (2009) in a framework that allows for structural change in
regression parameters.
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In this paper, we characterize the population parameters that rolling regression is attempting to estimate and find
the distribution of the rolling estimator. We provide new critical values that are used to construct asymptotically correct
confidence bands for the estimated function. As part of this exercise, we show that rolling regression contains a bias
process that may inhibit inference about the true population parameters. We develop a new procedure to estimate rolling
regression parameters that is not affected by the bias process.

The original idea of rolling regression is an intuitive one, in that one wants to use regression over different time
intervals to examine how the relationship may have changed. The window width may appear to be ad-hoc, but it is often
based on equating the window width with some number of observations that seems appropriate for time series estimation,
or based on decades, or some other relevant time frame. However, the results of this paper suggest that rolling regression
is a compromise of the usual bias variance tradeoff. In particular, one can obtain the usual parametric convergence rates
for rolling regression estimates (rather than nonparametric ones), although with a different limiting distribution.

The remainder of the paper is structured as follows. In Section 2, we develop the model, assumptions and asymptotic
distribution results for the existing rolling regression procedures. In Section 3, a new procedure is proposed to deal with
the bias process. Our procedure is discussed. Section 4 provides Monte Carlo evidence for the competing procedures. An
empirical example is treated in Section 5 to illustrate differences in results based on our techniques versus the traditional
confidence bands for the persistence of inflation. Section 6 concludes the paper, together with the theoretical derivations
relegated to Appendix.

2. Model and assumptions

2.1. Model

It is natural to ask what we are attempting to estimate by employing rolling regression. To answer this question, let
us consider a standard regression model given by

yt = x⊤

t β + ϵt ,

here β is a p × 1 vector of parameters. Let λ be the fraction of the total sample of T observations that is used in the
olling sample of data. The rolling regression estimator uses the [Tλ] observations, where [x] denotes the integer part of
x, and each of the periods is indexed as r , so that we have

β̂λ(r) =

(
1
Tλ

[rT ]∑
s=[rT−Tλ+1]

xsx⊤

s

)−1
1
Tλ

[rT ]∑
s=[rT−Tλ+1]

xsys.

If a constant coefficient regression model is correctly specified, then the rolling regression estimator would estimate the
same parameter, β , in each of the sub-samples using λ × 100% of the data. Such an exercise is not interesting as β is
constant over time and rolling estimators should be inefficient relative to the full sample regression estimator. Now,
consider the model

yt = x⊤

t β (t/T ) + ϵt ,

where β(·) is a p × 1 vector of integrable functions defined in [0, 1], so that the regression parameter changes over
time. The data are assumed to become more dense around a point t as T increases, a device employed in many studies,
beginning notably in Robinson (1989). Given that the regression parameter is potentially changing at each point in time,
as T increases, we hope to estimate the ‘‘average’’ value of β(t/T ) in the rolling window. To be specific, define

β̄λ(r) =
1
λ

∫ r

r−λ

β(u)du,

hich is the population parameter of interest indexed by λ and r . This quantity represents the average of the coefficients
at point r given a rolling window fraction λ.

Our first task is to ascertain whether rolling regression indeed provides a consistent estimate of the parameter β̄λ(r).
We make several assumptions about the data generating process for the results in this section. Our theory makes use
of the characterizations of processes from Zhou and Wu (2010). First, we allow for time varying processes, a form of
nonstationarity. In particular, given that we are attempting to estimate time-varying parameters, it is natural to allow
for nonstationary processes. Changing values of β(t/T ) necessarily induces nonstationarity in yt . Moreover, if the model
is dynamic, then xt is also nonstationary if β(t/T ) changes. To this end, consider processes depending on deterministic
functions coupled with the identically independent distributed (iid) process vt . Let Ft = σ {. . . , vt−1, vt}. The processes
for the covariates and errors are given by

xt = G (t/T ,Ft) and ϵt = H (t/T ,Ft) ,

where the functions G and H allow for nonstationary processes in that the moments may change over time. The index t
is scaled by the sample size T so that the data is assumed to be observed more densely as we collect more observations.
In particular, define the second moment matrix of the xt process as[

⊤
]

M(t) = E G (t/T ,Ft)G (t/T ,Ft) .

2
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he process associated with xtϵt is denoted GH and the covariance matrix of this product process as

Ω(t) = E
[
GH (t/T ,Ft)GH (t/T ,Ft)

⊤
]
.

onventionally, econometricians characterize dependence in data in several ways; linear processes, α-mixing, β-mixing,
tc. Recent papers by Cai (2007) and Chen and Hong (2012) both make use of β-mixing assumptions, but the data are
ssumed to be stationary in both papers. We follow Zhou and Wu (2010) and allow for nonstationary processes that might
rise from dynamic models with time-varying parameters. To this end, let v′

0 be an iid copy of the variable v0 that is part
f Fj. Define F∗

j = σ {. . . , v−1, v
′

0, v1, . . . , vj−1, vj}. We wish to characterize the dependence of a process by measuring
he effects of a shock to the system. For the variable xt , define

δq(x, j) = sup
t

{G (t/T ,Fj
)
− G

(
t/T ,F∗

j

)
q

}
,

which is a measure of the effect of a shock after j periods. Limiting the allowable dependence in a process amounts to
specifying suitable rates of decay for δq(x, j) as j increases.

Characterizing the dependence in these processes over time is a separate issue from checking whether the process is
stationary. One class of nonstationary processes is the unit root process, where the autoregressive parameter is related
to both dependence of the process over time as well as whether the variance of the process is constant over time. In the
framework of this paper, we allow the processes to be nonstationary in a way that is separate from the dependence over
time. To this end, we denote a process G to be stochastically Lipschitz continuous if

sup
0≤s≤t≤T

{
∥G (s/T ,F0) − G (t/T ,F0)∥2

}
≤ c1 ∥ t − s|/T

for some constant c1 > 0. Additionally, the following assumptions are needed.

Assumption 1. The true data generating process is given by

yt = x⊤

t β (t/T ) + ϵt ,

and β(u) is Riemann integrable on [0, 1].

Assumption 2. The error process ϵt is a martingale difference with respect to Ft , so that E(ϵt |Ft−1) = 0.

Assumption 3. For xtϵt , we have

N1/4+γ

∞∑
j=N

δ4(xϵ, j) < ∞

for some γ > 0 and for x2t , we have
∑

∞

j=N δ4(x, j) < ∞.

Assumption 4. The functions G and GH are stochastically Lipschitz continuous processes.

Assumption 5. The smallest eigenvalue of M(t) is bounded away from zero.

Assumption 1 allows for the regression parameters to vary over time, perhaps with discontinuities. The martingale
difference assumption could be relaxed and would require a long-run variance estimator for inference procedures. In the
present case, we can assume a dynamic model may be specified to remove any correlation in ϵt . Moreover, because of the
Assumptions 3 and 4, we allow for dynamic models with changing parameters, so that we can assume the error process to
be a martingale difference. In particular, autoregressive models with time varying coefficients are considered in the paper
by Zhang and Wu (2012), which shows that, given (standard) conditions on the time varying roots of the characteristic
function, the process is locally stationary and it characterizes the decay in dependence. These models are shown to satisfy
similar conditions to the conditions in this paper. Assumption 5 is sufficient for the rolling regression estimator to exist
in the limit for any of the rolling windows one might consider.

We now provide the limiting distribution of the rolling regression estimator with its proof given in Appendix.

Theorem 1. Suppose that Assumptions 1–5 hold and that r ∈ [λ, 1]. Then,

√
T
[
β̂λ(r) − β̄λ(r) − BT (r)

]
⇒

(∫ r

r−λ

M(s)
)−1

[Q (r) − Q (r − λ)] ,

here ⇒ indicates weak convergence, Q (r) is a p dimensional Gaussian process with covariance E[Q (r1)Q (r2)⊤] =
min(r1,r2)
0 Ω(s)ds, and

BT (r) =

(
[rT ]∑

xsx⊤

s

)−1
[rT ]∑

xsx⊤

s

[
β(s/T ) −

1
Tλ

[rT ]∑
β(s/T )

]
.

s=[rT−Tλ+1] s=[rT−Tλ+1] s=[rT−Tλ]
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The result in Theorem 1 provides several insights toward the use of rolling regression. First, the limiting distribution
involves Q (r), a functional of Brownian motion. In the search for confidence bands of the ‘‘average’’ of the regression
parameters, using critical values from a standard normal distribution is incorrect.2 As we illustrate in Section 4, using
tandard normal critical values for confidence bands for the estimate of the average parameter vector, β̄λ(r), should be
too narrow, so that coverage probabilities are well below target levels. Intuitively, the smaller the rolling window, we
expect that wider confidence bands are required. Such an effect stems from the new distribution based on the functional
of Q (r), but also of the scaling factor given by

(∫ r
r−λ

M(s)
)−1

. As λ gets smaller, this scaling factor should increase since
M(s) is positive (definite).

In addition to the finding of the limiting distribution involving functionals of Brownian motion, the distribution is
affected by a bias process denoted BT (r). If the parameter vector β(s/T ) is constant over the entire sample, then this
process disappears. However, in such cases, rolling regression is not interesting. If xsx⊤

s is unrelated to β(s/T ), then, the
process should have zero mean and hence, we can apply a functional central limit theorem to it. In this case, we can think
of this term as generating an additional term in the variance process. If xsx⊤

s is related to β(s/T ), then, the bias process
has nonzero mean. The intuition for the bias process is that regression over the rolling interval weights the data and
hence, the parameter vector, with more weights to observations with larger values of xsx⊤

s . If these quantities are related
to the parameter vector, then we may find inconsistent estimates of the average, given that some parameter values are
over-weighted. A related phenomenon arises for fixed effects regression in panel data models. In particular, Campello
et al. (2019) show that if cross-sectional units are heterogeneous in slope, a bias may result if the heterogeneity is related
to second moments of the regressors.

Theorem 1 allows for both xt and ϵt to exhibit a form of nonstationary behavior, which complicates the limiting
distribution of the rolling estimator. Also, Theorem 1 provides a simplification if xt and ϵt are both stationary. First, the
bias process BT (r) has mean zero. In addition, M(s) and Ω(s) are constant, so that

∫ r
r−λ

M(s) = λM , where M = E(xsx⊤
s )

and
∫ min(r1,r2)
0 Ω(s) = min(r1, r2)Ω with Ω = E(xsx⊤

s ϵ2
s ).

To illustrate the bias process, we consider a simple autoregressive model given by

yt = α(t/T ) + φ(t/T )yt−1 + ϵt

with α(t/T ) = k1 × t/T and φ(t/T ) = φ, so that the autoregressive coefficient φ(t/T ) is constant but the intercept term
s changing over the sample. It is easy to show, regardless of the width of the rolling window, that the asymptotic bias
or estimating the parameter φ is given by

k21(1 − φ)(1 − φ2)
[
k21(1 − φ2) + 12σ 2]−1

,

where σ 2 is the variance of ϵt . To simplify further, if φ = 0, bias is k21/
[
k21 + 12σ 2

]
. This simple case is much like the

result of Perron (1989); an omitted (broken) trend in the data generating process causes a bias in the estimates of the
autoregressive parameters. Even if there is no serial correlation, the estimated autoregressive parameter may be close to
one. The larger the magnitude of the omitted trend, the more bias. In general, the bias process BT (r) should be larger in
agnitude as there is more correlation in the second moment of xt and the parameter vector β(t/T ).

.2. Critical values

The limiting distribution is a functional of the process given by Q (r). The usual (incorrect) procedure for constructing
onfidence bands is to calculate a standard error estimate for each of the sub-periods in the rolling regression and then,
mploy standard normal critical values. For a rolling regression indexed by r , we would use a variance estimator given
y

V̂
(
β̂λ(r)

)
=

⎛⎝ [Tr]∑
s=[T (r−λ)+1]

xsx⊤

s

⎞⎠−1
[Tr]∑

s=[T (r−λ)+1]

xsx⊤

s ϵ̂2
s

⎛⎝ [Tr]∑
s=[T (r−λ)+1]

xsx⊤

s

⎞⎠−1

.

If there is no bias process, it is easy to see that the standardized process converges to a Gaussian process, Q̃ (r) with
ovariance

E
[
Q̃ (r1)Q̃ (r2)⊤

]
=

(∫ r1

r1−λ

Ω(s)
)−1/2 ∫ r1

r2−λ

Ω(s)
(∫ r2

r2−λ

Ω(s)
)−1/2

or r1 < r2 (or 0 if r1 < r2 −λ). The process has variance Ik and the dependence arises from the nonzero covariance when
1 > r2 − λ.

2 A large literature on testing for structural change with unknown change point illustrates the need for different critical values in hypothesis

testing.
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Table 1
Critical values.
λ Confidence level

0.90 0.95 0.99

0.05 3.498 3.708 4.148
0.10 3.271 3.499 3.956
0.15 3.125 3.356 3.843
0.20 3.013 3.265 3.755
0.25 2.921 3.174 3.691
0.30 2.828 3.091 3.619
0.35 2.753 3.016 3.533
0.40 2.677 2.942 3.481
0.45 2.603 2.887 3.436
0.50 2.544 2.825 3.388
0.55 2.468 2.758 3.322
0.60 2.404 2.695 3.260
0.65 2.343 2.636 3.214
0.70 2.283 2.578 3.176
0.75 2.212 2.512 3.115
0.80 2.154 2.459 3.059
0.85 2.072 2.377 2.999
0.90 1.985 2.297 2.906
0.95 1.882 2.193 2.798

From the limiting distribution of rolling regression estimators, we see that if we are attempting to construct uniform
confidence bands for β̄λ(r), standard normal critical values are inappropriate. To this end, we want to find critical values
θλ such that

P
(

sup
r∈[λ,1]

⏐⏐⏐Q̃ (r)
⏐⏐⏐ ≤ θλ

)
= 0.95.

f the variance process is constant over r , so that Ω(s) = Ω , then the distribution of Q̃ (r) is a function of standard
rownian motion, adjusted for different values of the fraction of data used in rolling, λ.3 To illustrate the distribution
nder this case when p = 1, we simulate critical values by generating random variables ut from a standard normal
istribution. Then, the standard Brownian motion W (r) is simulated with 1

√
T

∑
[Tr]
t=1 ut where T = 10,000. For values of

λ, find supr∈[λ,1]
1

√
λ
|W (r) − W (r − λ)| and repeat 100,000 times for values of λ from 0.05 to 0.95. The resulting critical

alues are analogous to those calculated in Andrews (1993) for tests of structural change in regression models. The 0.90,
.95 and 0.95 quantiles of empirical distribution are provided in Table 1.4
The width of the confidence bands increases as the rolling window becomes smaller. For example, if we use 10% of

he sample in the rolling window, a confidence band is 3.499 times the relevant standard error for 95% confidence. The
actor for a 20% window is 3.265, while an 80% window width increases the factor to 2.377. If one increases the window
idth to 100% of the sample, we obtain the usual 1.96. These are the critical values that are appropriate for confidence
ands of rolling regressions in the absence of the bias process. At a minimum, the table provides values to replace critical
alues from the standard normal tables when applying rolling regression.
In the more realistic case of a time varying variance process governed by Ω(s), critical values should depend on Ω(s)

hich enters in the Gaussian process. We follow Hansen (1996) and simulate the limiting distribution of the process so
hat we have the proper critical values for the process associated with Ω(s). To this end, define the following estimators,

ϵ̂s = ys − x⊤

s β̂λ(s/T )

nd let vs be a generated standard normal variable. Then, we can simulate the process Q̃ (r) via

Ũ(r) =

⎛⎝ 1
T

[Tr]∑
s=[T (r−λ)+1]

xsx⊤

s ϵ̂2
s

⎞⎠−1/2

1
√
T

[Tr]∑
s=[T (r−λ)+1]

xsϵ̂svs.

The simulated (standardized) process should have the same covariance structure as the limiting distribution in Q̃ (r),
o that we can construct bands using the maximum of the absolute value of the appropriate entry of the process, in
ombination with the element from the variance matrix to obtain standard errors. The procedure can be applied under the

3 A similar distribution results in the work of Giacomini and Rossi (2010) for comparing out of sample forecasts. We thank a referee for suggesting
this connection.
4 Tables with finer gradations of λ are available from the authors upon request. Interpolation between given values of λ can be used as an

pproximation for the appropriate critical values.
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ssumption that the bias process is zero, as would be the case if second moments of xt are unrelated to the time-varying
regression parameters.

3. Estimating average slope

Given that the goal of rolling regression appears to be estimating the average slope of the regression function as we
move the window through time, we propose to estimate that quantity directly. That is, we seek to estimate the integral
of the regression coefficient over the subintervals of the sample data. Our intent in the direct estimation of β̂λ(r) is to
avoid the potential bias process given by BT (r).

The local linear (nonparametric) estimator for β(t/T ), proposed by Cai (2007) for stationary α-mixing data, is given
by β̃(t/T ),

β̃(t/T ) =
(
Ip 0p

) (ST ,0 S⊤

T ,1
ST ,1 ST ,2

)−1 (
VT ,0
VT ,1

)
,

where for ℓ = 0, 1 and 2,

ST ,ℓ(t/T ) =
1
Th

T∑
s=1

xsx⊤

s

(
t − s
Th

)ℓ

K
(
t − s
Th

)
,

K (·) is a kernel function, h is the bandwidth, satisfying that h → 0 and T h → ∞, and for ℓ = 0 and 1,

VT ,ℓ(t/T ) =
1
Th

T∑
s=1

xsys

(
t − s
Th

)ℓ

K
(
t − s
Th

)
.

Then, for stationary α-mixing {xt}, Cai (2007) shows that the nonparametric estimator is
√
Th-consistent and point-wise

normally distributed. Furthermore, Zhou andWu (2010) extend the work of Johnston (1982) to include uniform confidence
bands in a time series setting for the function over the entire range of the data. The uniform confidence bands converge at
an even slower rate than the usual nonparametric estimators. In addition, there is an additional bias term which depends
on the second derivative of β(t/T ) at each point, which adds another obstacle to the construction of confidence bands.5

Now, we propose following estimator for β̄λ(r);

β̂∗

λ (r) =
1

[Tr]

Tλ∑
s=[rT−Tλ+1]

β̃ (s/T ) ,

which is the smoothed rolling (SR) estimator. The intuition for our estimator is that we hope to combine each estimator
of β(s/T ) for the relevant range. By choosing an appropriate bandwidth parameter, we can eliminate the bias process.
Next, we list three more assumptions for the data generating process and the bandwidth as well as the kernel function.

Assumption 6. The function β(s) has three continuous derivatives.

Assumption 7. The bandwidth is chosen such that h = c2T−δ with 1/4 < δ < 1/3 for some c2 > 0.

Assumption 8. The kernel function K (z) is a second-order kernel and takes the value 0 outside of [−1, 1].

Assumption 6 imposes smoothness conditions on the behavior of the regression coefficients over time. Since we are
estimating the average of the coefficients, this assumption simplifies the results. Assumption 7 is required so that the
estimate of the average slope should converge at the usual parametric rate, which is exactly the same as Assumption B3
in Cai and Xiao (2012) for a semiparametric model,6 and Assumption 8 is useful to limit the observations that enter the
smoothed estimators. The Epanechnikov kernel, K (z) = 0.75(1 − z2)I(|z| ≤ 1), is a popular example of such a kernel
and indeed, we employ this kernel in our Monte Carlo and empirical examples. We state the theorem for the modified
procedure below with its detailed proof provided in Appendix.

Theorem 2. Suppose that Assumptions 1–8 hold with r ∈ (λ, 1). Then,
√
T
[
β̂∗

λ (r) − β̄λ(r)
]

⇒ [Q2(r) − Q2(r − λ)] ,

5 One could employ other estimators for the regression coefficients at each point. Each method introduces its own challenges and advantages.
Uniform convergence rates for splines are provided in Wang and Yang (2009) and uniform rates for series estimators are derived in Belloni et al.
(2015) and Li and Liao (2020) for series estimators. An alternative framework such as Müller and Petalas (2010) may be employed in future studies.
6 Clearly, Assumption 7 is about the under-smoothing at the first step for the nonparametric estimate and it is slightly stronger than T h4

→ 0.

s for how to choose h in practice, the reader is referred to the paper by Cai and Xiao (2012) for details.
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t
T

here Q2(r) is a p dimensional Gaussian process with covariance matrix E
[
Q2(r1)Q2(r2)⊤

]
=
∫ min(r1,r2)
0 Λ(s) and

Λ(s) =
1
λ2M(s)−1Ω(s)M(s)−1.

Theorem 2 implies that the new estimator is
√
T -consistent for estimating β̄λ(r). Moreover, like the naive rolling

stimator, the limiting distribution of our new statistic is also a function of Q (r). Hence, we can employ the generated
ritical values to construct uniform confidence bands for β̄λ(r). This rolling average smoothed estimator can be viewed
s a bias corrected version of rolling regression and the limiting distribution still involves a similar Gaussian process.
he bias is absent because we are directly estimating the average of the parameter values through the two step process.
e first estimate the time-varying parameters directly via local linear estimation and then, we average those estimates.

imilar results are often obtained in semiparametric models involving averages of nonparametric estimates; see, for
nstance, the paper by Cai and Xiao (2012) for details. The advantage of this procedure is that the averaging operation
rovides a faster rate of convergence that does not depend on the nonparametric bandwidth rate. In this way, the rolling
stimator provides a computationally tractable procedure with the same interpretation as the traditional rolling regression
rocedure. However, our method now has the correct uniform size, where the traditional rolling procedure would have
ands that are too narrow, resulting in incorrect coverage.
As in the case of Theorem 1, the above result also highlights the effect of using a smaller fraction of data in each

f the rolling windows. Notice that as λ decreases, the variance of the Gaussian process at each point increases. This is
ntuitive, as we are effectively decreasing the sample size and increasing the variance. In the limit as λ → 0, we obtain
he nonparametric estimator at each point and the convergence rate is even slower than the nonparametric rate, as the
esults of Zhou and Wu (2010) apply. That is; as λ → 0, the variance of the Gaussian process becomes infinite and the
imiting distribution no longer converges at the parametric rate of

√
T . Theorem 2 highlights the challenging transition

from estimating the average parameter over the rolling window to estimating the time varying parameter at a point.
Construction of the appropriate confidence bands is similar to the method used in Zhang and Wu (2012) along with

our tabulated critical values. We estimate the standard errors of the modified rolling estimators. To this end, let

S̃(s) =

(
ST ,0(s) S⊤

T ,1(s)
ST ,1(s) ST ,2(s)

)
and Ω̃(s) =

(
Ω̃0(s) Ω̃1(s)
Ω̃1(s) Ω̃2(s)

)
,

where with ϵ̃r = yr − x⊤
r β̃(r),

Ω̃ℓ(s) =
1
Th

T∑
r=1

xrx⊤

r ϵ̃2
r

(
s − r
Th

)ℓ

K
(
s − r
Th

)
,

o that the standard errors are estimated via the variance matrix as

1
T 2λ2

[Tr]∑
s=[T (r−λ)]

[
Ik
... 0k

]
S̃(s)−1Ω̃(s)S̃(s)−1

[
Ik
... 0k

]⊤

=
1
T 2

[Tr]∑
s=[T (r−λ)]

Λ̃(s).

he standardized estimator is governed by the process Q̃2(r), which is Gaussian with covariance process

E
[
Q̃2(r1)Q̃2(r2)⊤

]
=

(∫ r1

r1−λ

Λ(s)
)−1/2 ∫ r1

r2−λ

Λ(s)
(∫ r2

r2−λ

Λ(s)
)−1/2

or r1 < r2 (or 0 if r1 < r2 − λ). Finally, we note that the BT (r) process is removed from the limiting distribution due
o the restrictions on the smoothing parameter h. In addition, if both xt and ϵt are stationary, the distribution simplifies
urther since Ω(s) = E(xsx⊤

s ϵ2
s ) is constant.

Finally, we discuss on how to tabulate critical values. As in the case of the traditional rolling regression, the appropriate
ritical values for the rolling average slope estimator are not the usual values associated with the standard normal
istribution. In the most restrictive case where Ω(s) and the second moment matrix of the regressors M(s) are constant
ver s, we can employ the critical values appearing in Table 1. If Ω(s) and M(s) are time-varying, we can use the estimated
omponents of Λ(s) so that we can simulate using

Ũ2(r) =

⎛⎝ 1
T

[Tr]∑
s=[T (r−λ)+1]

Λ̃(s)

⎞⎠−1/2

1
√
T

[Tr]∑
s=[T (r−λ)+1]

Λ̃(s)1/2vs.

. Monte Carlo simulation studies

The theorems from Sections 2 and 3 show theoretically that rolling regression estimators have a limiting distribution
hat depends on functionals of Brownian motion and those new critical values are provided in Table 1. The purpose of
heorem 2 is to provide a bias corrected estimate of the average slope. Now, we explore the empirical performance of
7
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Fig. 1. The resulting bias versus k1 for OLS and SR1, SR2, SR3.
ote: The data generating process is yt = k1t + ϵt , but the estimated model is yt = α + φyt−1 + ϵt . The estimate of φ is labeled as OLS. The SR
rocedures estimate yt = α(t/T )+ φ(t/T )yt−1 + ϵt using bandwidth parameters c2T−0.30 with c2 = 0.75, 1.0, 1.25, respectively. The average value of
he estimated φ(t/T ) parameter for the different bandwidths corresponds to SR1, SR2 and SR3. The true value of the autoregressive parameter is
zero, so that OLS, SR1, SR2 and SR3 measure the bias as a function of k1 .

various rolling regression estimators in this section. In particular, the naive rolling regression estimator that uses standard
normal critical values is denoted by RO for rolling ordinary least squares (OLS) regression. A second estimator is considered
but uses the new critical values and it is referred to as cRO. This rolling estimator accounts for Q (r) in the limiting
distribution, but does not correct for the possible bias process B(r). Finally, we include three versions of the corrected
rolling regression estimator proposed in Section 3. The estimator depends on a bandwidth parameter for the time varying
parameter regression at the first stage. The form of the allowable bandwidth is h = c2T−δ , where 1/4 < δ < 1/3, which
satisfies Assumption 7. We use δ = 0.30 and set c2 = 0.75, 1.0 and 1.25, and the corresponding estimators are denoted
by SR1, SR2 and SR3, respectively.7

Before considering rolling regression, we illustrate the bias that one encounters if an autoregressive process has an
omitted trend, which could be considered the case where λ = 1. To this end, we simulate the process discussed in
Section 2 with a missing trend. The bias of the estimated parameter in an autoregressive (AR) model is indexed by k1,
the magnitude of the missing trend. We simulate an AR process with φ = 0 and consider values of k1 ranging from 0 to
15, with 200 and 1000 replications for each value of k1. The resulting bias for OLS and the smoothed estimates (SR1, SR2
and SR3) is represented in Fig. 1, respectively. We note that there is a small negative bias for the smoothed regression
estimators. However, it does not change as the magnitude of the missing trend grows, which illustrates that this procedure
removes the bias process from the estimator. Moreover, the bias in OLS grows as the omitted trend indexed via k1 grows
larger, consistent with the results in Perron (1989).

Given the potential for bias in rolling estimators, we illustrate several data generating processes using rolling
estimators. For each experiment, we allow for time series dimensions (sample size) T = 200, 400 and 600. The rolling
window is set for λ = 0.20 so that there are 40, 80 and 120 observations used in each of the regimes in the estimation
window. The number of replications for each experiment is set to 10,000. The parameter of interest is β̄λ(r), the average

7 From the simulation results in our Monte Carlo studies conducted in this section, one can see from Fig. 1 and Tables 2 and 3 that the
differences in the finite sample performances for SR1, SR2 and SR3 are not so significant, so that the choice of h is not so sensitive as long as it

atisfies Assumption 7. This observation is consistent with that in Cai and Xiao (2012).

8
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alue of β(r) over each relevant subset of time. Our experiments report the estimated coverage probability for a 95%
niform confidence band for β̄λ(r). In addition, we list the average width (denoted by Av. width in Tables 2 and 3) of

the uniform confidence band. For example, if two competing procedures both have 95% coverage, we would prefer the
method generating narrower bands.

Denote the current naive point-wise technology of using rolling OLS and employing critical values from the standard
normal distribution as RO. If we use the adjusted critical values tabulated in Table 1 with rolled OLS. Our smoothed
rolling procedure using the adjusted critical values is indexed by the bandwidths as SR1, SR2 and SR3.8 In addition, we
also consider conservative bands construction via a Bonferroni procedure, much like the methods suggested in Eubank
and Speckman (1993). The procedure adjusts critical values according to the number of points that the rolling regression
is estimated in a given sample, so that the critical values should change with T in our experiment. We list these results
s Bon in Tables 2 and 3.9
Our first set of 4 experiments use a simple regression model and we attempt to estimate bands around the regression

lope parameter. In these first four models, we examine static regression models and the bias process does not affect
he distribution. Hence, we expect that the adjusted rolling procedure should be adequate to obtain improved coverage
elative to rolling OLS that is currently employed in empirical research. The first data generating process is given by

yt = 2xt + ϵt , (M1)

where xt ∼ N(1, 1) and ϵt ∼ N(0, 0.25). Hence, in this model, the average parameter is constant throughout the sample.
The results are depicted in Panel (a) of Table 2. We first examine the rolling OLS estimator using the (incorrect) standard
normal distribution critical values. The coverage for the RO procedure is below the nominal 95% and ranges from around
19% to 27% depending on the sample size. The rolling OLS with adjusted critical values from Table 1 is much closer to the
intended coverage, reaching as high as 95% when the sample size is 600. The smoothed rolling procedures have much
better coverage than RO for all the considered bandwidth parameters. As expected, the Bonferroni procedures obtain their
conservative coverage from their wide intervals. The smoothed procedures has the narrowest uniform bands (average
width) of the procedures with adequate coverage.

Now, we consider a static regression model with a change in slope in the middle of the sample as

yt = 2 + β(t/T )xt + ϵt , (M2)

where xt ∼ N(1, 1), ϵt ∼ N(0, 0.25) and β(t/T ) changes halfway through the sample as β(t/T ) = 1 if t ≤ T/2 and it is
3/2 if t > T/2. The results appear in Panel (b) of Table 2. We see that the coverage is poor for rolling OLS, but improves
as the sample size increases. The adjusted rolling regression has good coverage as the sample size increases, reaching as
high as 91% for 600 (effectively T = 120 in each rolling window) and the smoothed procedures are not as accurate in
coverage. Given that the bias process is not relevant, here, we recommend using cRO. Again, the Bonferroni procedure
has good coverage, but wide intervals.

Next, by adding two more independent variables to the model in (M2), we consider the following data generating
process

yt = 2 + β(t/T )xt + β2x2t + β3x3t + ϵt , (M3)

where β2 = β3 = 1 and xjt ∼ N(1, 1) for j = 2 and 3. We include this model to examine the properties of the statistics if
the models have more parameters (4 to estimate), with a similarly structured data generating process. Our focus is on the
confidence bands for β̄ . The results are shown in Panel (c) of Table 2. We note that the current standard RO again performs
very poorly, but the adjusted critical values improve coverage while maintaining narrow intervals. The results are similar
even with more parameters to estimate. The rolling regression procedure always performs poorly since it is a point-wise
procedure. The proposed corrections are effective relative to rolling regression in this model with more parameters.

Finally, we simulate a random coefficient model where the intercept and slope are both random. In particular, we have

yt = β0t + β1txt + ϵt , (M4)

where βjt = βj,t−1 + vjt with vjt ∼ N(0, 0.01) for j = 0 and 1, xt ∼ N(1, 1) and ϵt ∼ N(0, 0.25). The simulation results
are displayed in Panel (d) of Table 2. The coefficients in this model are time varying and rolling OLS attempts to estimate
the average slope coefficient over the rolling windows. The smoothed estimators are not expected to work well here,
as the local averages involve parameters that are smooth as a function of t/T . That is, for the random coefficient model
data generating process, our assumptions for Theorem 2 do not hold. The results again show that point-wise bands from
rolling regression are not appropriate. The adjusted rolling regression procedure works as a tradeoff between coverage

8 In addition to the procedures we evaluated in our Monte Carlo experiment, we also used simulated critical values to account for the possibility
of time varying variances, which were present in the experiments. However, the case specific simulated critical values for the time varying variance
models were similar to those in Table 1. We attempted to construct pathological examples of time varying variances but the results were similar
to data generating processes with fixed variances.
9 We thank a referee for suggesting this procedure as a baseline for comparison. These critical values are wider than our new values from Table 1
for all of our experiments.
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Table 2
Regression models from model (M1) to model (M4).
Model T RO cRO SR1 SR2 SR3 Bon

(a) M1

200 0.19 0.84 0.96 0.98 0.99 0.91
Coverage 400 0.24 0.90 0.96 0.98 0.99 0.97

600 0.27 0.95 0.97 0.99 0.99 1.00

200 0.30 0.50 0.40 0.41 0.42 0.55
Av. width 400 0.22 0.36 0.28 0.29 0.29 0.42

600 0.17 0.29 0.23 0.23 0.24 0.34

(b) M2

200 0.18 0.83 0.91 0.91 0.88 0.90
Coverage 400 0.22 0.90 0.89 0.86 0.79 0.96

600 0.26 0.91 0.87 0.82 0.71 0.98

200 0.32 0.53 0.41 0.43 0.44 0.58
Av. width 400 0.23 0.38 0.29 0.30 0.31 0.44

600 0.19 0.31 0.24 0.24 0.25 0.37

200 0.14 0.79 0.90 0.90 0.87 0.88
Coverage 400 0.20 0.88 0.89 0.86 0.78 0.96

600 0.23 0.90 0.86 0.81 0.70 0.98
(c) M3

200 0.32 0.53 0.42 0.43 0.44 0.58
Av. width 400 0.23 0.38 0.29 0.30 0.31 0.44

600 0.19 0.31 0.24 0.24 0.25 0.37

200 0.14 0.81 0.85 0.81 0.75 0.89
Coverage 400 0.17 0.88 0.71 0.58 0.43 0.96

600 0.19 0.90 0.60 0.40 0.25 0.97
(d) M4

200 0.48 0.80 0.55 0.60 0.64 0.88
Av. width 400 0.44 0.73 0.45 0.49 0.53 0.85

600 0.43 0.71 0.40 0.44 0.48 0.84

Note: RO is the rolling OLS estimator, while cRO is rolling OLS but uses the critical values from Table 1. SR1, SR2 and
SR3 are the smooth rolling estimators using bandwidths c2T−0.3 with c2 = 0.75, 1.0 and 1.25, respectively, and using
the critical values in Table 1. Rolling OLS with Bonferroni critical values is labeled as Bon. For data generating process
(b), β1(t/T ) is 1 in the first half of the sample and 1.5 in the second half. For case (c), we add two additional covariates
to data generating process (b). Data generating process (d) is a random coefficient model for both parameters, where
vit ∼ N(0, 0.01). The coverage probabilities are for the rolling average β1(t/T ) in the data with a 95% target.

nd width of the interval. As expected, the smoothing procedures do not work as well and get worse as the sample size
ncreases.

The next 6 experiments consider data generating processes with autoregressive models and we consider the uniform
overage of the estimated average of the autoregressive parameter. These models have the potential to generate the bias
rocess of Theorem 1, so that the SR procedures should have the potential advantage. To begin, we start with a baseline
odel from a simple autoregressive model with no parameter changes. The data generating process is given by

yt = 0.80yt−1 + ϵt , (M5)

here ϵt is N(0, 0.25). The results are presented in Panel (a) of Table 3. Given the rolling fraction of λ = 0.20, the
rocedures are attempting to estimate the AR parameter based on 40 observations. The SR3 procedure is best for this
ata generating process, with narrow confidence bands, but the adjusted rolling OLS procedure performs respectably.
gain, the naive traditional rolling OLS (point-wise bands) procedure performs poorly, with coverage of 17% even with a
ample of 600 observations. The Bonferroni procedure has good coverage, but this is due to having the widest intervals
n every case.

Now, we consider a model with changing autoregressive coefficient

yt = ρ(t/T )yt−1 + ϵt , (M6)

here ρ(t/T ) = 0.8 [1 − (t/T )] and ϵt is N(0, 0.25), so that the process becomes less persistent throughout the sample.
ach of the procedures attempts to estimate the average slope throughout the rolling interval. So, the average persistence
s changing through the sample, with a steady decline. Our results are described in Panel (b) of Table 3. This experiment
lso highlights the advantages of the smoothed procedures. The adjusted rolling OLS estimator performs well once the
ample size reaches 600 (effectively 120 with λ = 0.2), while the smoothed rolled estimators with larger bandwidths
SR2 and SR3) perform well for all sample sizes and have narrower confidence bands. The Bonferroni procedure provides
dequate coverage at the largest sample size, but is almost 50% wider than the intervals from SR3.
For the next experiment, the autoregressive coefficients do not change, but there is an omitted trend variable. This type

f data generating process may cause bias in the autoregressive parameter if one uses standard OLS, which is illustrated in
10
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Table 3
Autoregressive models from model (M5) to model (M10).
Model T RO cRO SR1 SR2 SR3 Bon

200 0.06 0.61 0.76 0.92 0.97 0.75
Coverage 400 0.13 0.80 0.79 0.92 0.97 0.92

600 0.17 0.86 0.81 0.92 0.97 0.96
(a) M5

200 0.40 0.67 0.56 0.56 0.56 0.74
Av. width 400 0.28 0.46 0.38 0.38 0.38 0.53

600 0.22 0.37 0.30 0.30 0.30 0.44

200 0.15 0.77 0.89 0.96 0.99 0.86
Coverage 400 0.20 0.87 0.91 0.97 0.99 0.96

600 0.22 0.90 0.92 0.96 0.99 0.96
(b) M6

200 0.53 0.89 0.70 0.72 0.74 0.98
Av. width 400 0.38 0.64 0.50 0.51 0.52 0.74

600 0.31 0.52 0.41 0.41 0.42 0.62

200 0.01 0.33 0.96 0.99 0.99 0.48
Coverage 400 0.00 0.15 0.95 0.98 0.99 0.37

600 0.00 0.06 0.95 0.98 0.99 0.21
(c) M7

200 0.56 0.94 0.76 0.78 0.81 1.04
Av. width 400 0.41 0.69 0.55 0.56 0.57 0.80

600 0.34 0.57 0.45 0.46 0.47 0.68

200 0.12 0.73 0.96 0.99 0.99 0.83
Coverage 400 0.09 0.69 0.96 0.98 0.99 0.84

600 0.06 0.59 0.95 0.97 0.98 0.79
(d) M8
mean break 200 0.60 0.96 0.76 0.79 0.81 1.05

Av. width 400 0.42 0.70 0.55 0.56 0.57 0.81
600 0.35 0.58 0.45 0.46 0.47 0.69

200 0.09 0.69 0.80 0.91 0.95 0.80
Coverage 400 0.13 0.80 0.83 0.91 0.93 0.92

600 0.14 0.81 0.83 0.90 0.91 0.94
(e) M9
persistence break 200 0.47 0.79 0.64 0.65 0.66 0.87

Av. width 400 0.33 0.55 0.45 0.46 0.46 0.64
600 0.27 0.45 0.36 0.36 0.37 0.54

200 0.06 0.61 0.82 0.93 0.96 0.73
Coverage 400 0.06 0.55 0.85 0.93 0.94 0.71

600 0.04 0.42 0.85 0.91 0.92 0.60
(f) M10
mean & persistence break 200 0.46 0.77 0.64 0.64 0.65 0.85

Av. width 400 0.32 0.54 0.44 0.44 0.45 0.63
600 0.27 0.44 0.36 0.36 0.36 0.52

Note: RO is the rolling OLS estimator, while cRO is rolling OLS but uses the critical values from Table 1. SR1, SR2
and SR3 are the smooth rolling estimators using bandwidths c2T−0.3 with c2 = 0.75, 1.0 and 1.25, respectively, and
using the critical values in Table 1. Rolling OLS with Bonferroni critical values is labeled as Bon. Specification (d) has
α(t/T ) set to 1 in the first half of sample and 1.5 in the second half, while ρ(t/T ) is zero, so that it has a mean break.
Data generating process (e) sets ρ(t/T ) equal to 0.80 in the first half of the sample and 0.40 in the second half with
α(t/T ) = 0, so that it has a persistence break. Data generating process (f) modifies (e) by adding a change of α(t/T )
from 1/10 in the first half to 5/6 in the second half of the sample, so that it has both mean and persistence breaks.
The coverage probabilities are for the rolling average ρ(t/T ) in the data with a 95% target.

Fig. 1. Hence, we expect poor coverage for RO and cRO and the smoothed versions of the rolling estimators are designed
for this type of data generating process. Then, we have the following

yt = 4 × (t/T ) + ρyt−1 + ϵt , (M7)

where ϵt is N(0, 0.25) and the true value of ρ is set to zero, but the estimated model is yt = α + φyt−1 + ϵt . The rolling
estimator of ρ is the basis for comparison of the techniques. Also, Fig. 1 highlights the potential bias in such a data
generating process and this is where we expect to see that the bias process (BT (r)) has effects on the techniques. We
report the coverage for the uniform bands for the average autoregressive coefficient in Panel (c) of Table 3. The biases
in standard OLS are apparent in both the rolled OLS and adjusted rolled OLS based confidence bands with poor coverage
for all sample sizes. The bias affects the coverage in adjusted rolling OLS, rolling OLS and Bonferroni procedures. This
illustrates the same phenomenon as in Perron (1989) that an incorrectly specified deterministic component in a dynamic
model is misconstrued as a more persistent time series model. The SR procedures are excellent for this data generating
process, with excellent coverage and the narrowest bands.
11
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Another data generating process with a structural change is

yt = α(t/T ) + ρ(t/T )yt−1 + ϵt , (M8)

where ϵt is N(0, 0.25), ρ(t/T ) = 0 and α(t/T ) = 1 if t ≤ T/2 and it is 3/2 if t > T/2. We estimate the average slope
parameter to see the effects of the bias process on the autoregressive parameter. The simulation results are displaced in
Panel (d) of Table 3 with a label of ‘‘mean break’’. The rolling OLS and adjusted rolling procedure are both susceptible to
the effects of a break in the intercept term. The Bonferroni procedure also gets worse as the sample size increases as the
bias process dominates. Although the intercept change is not smooth, the SR procedures do an effective job of removing
the bias process, so that their coverage is quite good for each of the bandwidth parameters. Coverage improves and the
average width of the coverage intervals declines as the sample size increases. Both RO and cRO have poor coverage and
get worse as the sample size increases.

The next process we simulate has a sudden break in the persistence, so that

yt = ρ(t/T )yt−1 + ϵt , (M9)

where ϵt is N(0, 0.25) and ρ(t/T ) is 0.80 in the first half of the sample and 0.40 in the second half of the sample. The
experiment results are summarized in Panel (e) of Table 3 with a label of ‘‘persistence break’’. The SR methods provide
good coverage, but the RO, cRO and Bonferroni procedures have poor performance. Moreover, the width of the intervals
for SR2 and SR3 get much smaller as the sample size increases.

Finally, we take the same data generating process as in (M9), but add a change in the intercept,

yt = α(t/T ) + ρ(t/T )yt−1 + ϵt , (M10)

where α(t/T ) is 1/10 in the first part of the sample and 5/6 in the second half of the sample. Given the AR parameters,
this process has a mean shift and a shift in persistence with mean of 0.5 that changes to 1.39. The results are reported
in Panel (f) of Table 3 with a label of ‘‘mean & persistence break’’. This experiment again shows the effects of the bias
process, so that rolling regression, critical value adjusted rolling regression and the Bonferroni procedure are all negatively
affected. The SR2 and SR3 procedures exhibit robustness to the changes, with effective coverage and narrow bands.

In summary, the Monte Carlo experiments conducted above suggest that for static models, using the new critical values
from Table 1 provide a simple and effective way to adjust the rolling estimators to obtain accurate confidence bands (the
cRO procedure). However, from the theorems in Sections 2 and 3, we know that bias results when second moments of
the regressors are related to the parameters in the model. A well-known case of this phenomenon is the time varying
autoregressive model, which we also explore in the Monte Carlo experiments. We see that employing rolling regression
with the use of the time-varying coefficient regression of Cai (2007) in the first stage removes the bias from rolling
regression. Given that dynamic models with time varying parameters are particularly susceptible to the bias process, we
suggest smoothed procedures for finding the average coefficients in dynamic models.10

5. An empirical illustration

We illustrate our proposed procedures along with rolling regression using intervals (point-wise) such as those that
appear in applied work using rolling regression. Rolling regression was employed by O’Reilly and Whelan (2005) to
examine the persistence of inflation over time in the Euro area. They find that despite many different policy regimes,
the reduced form coefficient estimates appear to be stable in the Euro area, based on evidence from the rolling regression
results and other tests. We consider a similar exercise for the U.S. using rolling regression and the smoothed regression
procedure proposed in this paper. Suppose that one estimates an AR(4) model for the U.S. inflation given by

yt = α + φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + ϵt .

A common transformation that is used to evaluate persistence is

∆yt = α + ωyt−1 + γ1∆yt−1 + γ2∆yt−2 + γ3∆yt−3 + ϵt ,

where ∆yt −yt −yt−1. If ω = φ1 +φ2 +φ3 +φ4 −1 is zero, the autoregressive process has a unit root which is an extreme
form of persistence. If the process is stationary, ω is negative and the closer to −1, the less persistent is inflation. We
construct the inflation series from data for CPI-U,11 with monthly observations from February of 1947 to May of 2022.
As a preliminary analysis, we estimate the AR(4) model and test for serial correlation in the residuals. We fail to reject

10 A recent paper by Inoue et al. (2021) estimates time-varying-parameter models along with GARCH effects. They note that it may be possible
to establish uniform inference (over time) which would establish confidence bands. There are Bayesian models of time-varying-parameters that can
estimate the function over the entire range as well. Both types of models might be used as the first stage estimates to include in rolling averages,
but the distributional results need to be proven.
11 The index consists of all U.S. urban consumers with seasonal adjustment and the inflation series is calculated as the percent change from month

to month. For details, please see the website https://www.bls.gov/help/one_screen/cu.htm.

12
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he null of no serial correlation at the 5% level and we also reject the unit root hypothesis at the 1% level.12 We proceed
o analyze rolling estimates of the persistence parameter ω. Given our preliminary findings of no unit root, our rolling
analysis is not intended to check for unit roots but to look for changing persistence.

Our analysis in this paper treats rolling regression and the variants we propose as a way to estimate ‘‘average’’
parameters over each of the windows in the rolling procedure. Hence, the model allows for time varying parameters
in the underlying model. In particular, we have

∆yt = α(t/T ) + ω(t/T )yt−1 + γ1(t/T )∆yt−1 + γ2(t/T )∆yt−2 + γ3(t/T )∆yt−3 + ϵt .

his autoregressive based model has two main parameters in α(t/T ) and ω(t/T ). If ω (and the other parameters) are
onstant and α(t/T ) increases, this increases the mean of the process. As the results in Perron (1989) show, changes in
he constant term have the effect of increased estimated persistence in the process. This well-known result is also related
o the motivation for our smoothed regression procedure that accounts for the bias in the autoregressive parameters.
ence, we anticipate that a change in mean through α(t/T ) may affect the estimated persistence for RO, but not for SR.
ased on this underlying model, we consider estimating the average parameters over rolling window over the sample of
ata. Adjusting for endpoints, we are left with 900 observations, so that using 120 observations in the rolling window is
pproximately λ = 0.133. Hence, we are using 10 years of data in each of the possible windows, a common choice in
mpirical studies.
The naive approach (point-wise confidence intervals at each point) just estimates the parameter ω with OLS using

20 observations for each window and includes heteroskedasticity robust standard errors. However, the confidence bands
ncorporate the incorrect critical value of 1.96. Given that λ = 0.133, using Table 1 and interpolation gives the appropriate
ritical value that accounts for the uniform nature of the confidence bands, with a value of 3.415. We plot the resulting
olling estimator of ω and the competing confidence bands in Fig. 2, where the estimated average coefficients are labeled
s ω̂(r) and ω̂∗(r) for rolling and smoothed rolling regression respectively. In particular, we plot the rolling OLS regression
stimator with the incorrect confidence bands and the smoothed rolling regression with the corrected bands that account
or the rolling multiple periods.13

There are several conclusions that we see from the empirical exercise of comparing the existing naive procedure from
he new technique. The confidence bands for the existing RO procedure to not contain our adjusted SR estimates from July
f 1968 to July of 1973, October of 1973 to June of 1976, and January of 1986 to December of 1989. In addition, the naive
O procedure was shown to have narrow bands so that confidence levels are far below the prescribed target. A by-product
f the incorrect narrow bands of the rolling OLS procedure is the illusion of a more volatile inflation persistence. That
s, the smoothed rolling regression estimates with more accurate confidence bands and lack of bias indicates a gradual
ncrease in persistence in the early 1970’s, a peak in the early 1980’s, and a gradual decline until the early 2000’s. Both
rocedures show a resurgence of inflation persistence in the 2022 estimates of the average coefficients.
The use of our new procedure corrects for the poor numerical performance of confidence bands by increasing the width.

oreover, autoregressive processes estimated via rolling OLS are susceptible to upward bias in the persistence estimate
rising from changes in the mean of the process through the change in intercept parameters. We mitigate this bias to
solate the persistence from the change in mean of the process. In the present case, increases in the level of inflation are
isinterpreted by some researchers, as increases in persistence relying on rolling OLS.
For the U.S. inflation, the evidence of the stability of coefficients governing inflation depends on the procedure

onsidered. If one employs the traditional rolling regression methods with no modifications, the persistence of inflation
ppears to change dramatically over the sample. However, after accounting for the potential bias process and using the
orrected critical values proposed in this paper, our results are in line with those in O’Reilly and Whelan (2005) for the
uro area, where more stability is observed.14

. Conclusion

The results in this paper provide an asymptotic analysis of the ubiquitous rolling regression estimator for a class of
otentially nonstationary processes. Our analysis covers processes that allow forms of nonstationary properties which may

12 Unit root tests were performed using an Augmented Dickey Fuller test with an intercept and trend, with lag length selected via AIC and the
modified AIC method of Ng and Perron (2001). In addition, we also tested for unit roots using tests that allow for breaks in the intercept and trend
as developed in Perron (1997) with the minimum t-test in an Augmented Dickey Fuller regression. Both innovative and additive outlier models are
considered and lag lengths using AIC and modified AIC were employed. We reject the null of a unit root at the 1% level in all cases allowing for
breaks and we reject at the 5% level in the standard ADF test using modified AIC but at the 1% level using AIC.
13 One could also appeal to the Bonferroni procedure to construct conservative confidence bands. Given the 900 time series observations (for 780
possible sub-samples), Bonferroni critical values would be 3.99, which are even wider than our critical values. We kindly thank a referee for the
suggested comparison.
14 Stock and Watson (2007) provide evidence that inflation is better modeled as an integrated moving average process as opposed to a rolling
AR process. In particular, when forecasting one period ahead, the rolling integrated moving average process has lower MSE forecast errors than
a rolling AR process for much of the sample. We do not have results for estimating moving average models with time varying parameters and
constructing confidence bands for the average parameters. Moving average processes can be approximated by autoregressive models, but an effective
approximation should require higher order AR models.
13
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Fig. 2. The potential bias using different methods.
Note: The CPI inflation is calculated as the percentage change from the previous month. The persistence measure is ω(t/T ) calculated from
yt = α(t/T ) + ω(t/T )yt−1 + γ1(t/T )∆yt−1 + γ2(t/T )∆yt−2 + γ3(t/T )∆yt−3 + ϵt . We denote ω̂(t/T ) for rolling OLS and ω̂∗(t/T ) represents the
moothed rolling procedure using bandwidth 0.75T−0.3 (SR1). Confidence bands for RO are calculated using standard normal critical values, while
ands for SR1 use critical values based on Table 1.

rise from the changing parameters in the model. In particular, we can cover classes of varying parameter autoregressions.
n the simplest cases, the usual procedure for using point-wise confidence bands based on plus and minus 1.96 times the
tandard error may lead to confidence bands that are much too narrow. The limiting distribution is a functional of Gaussian
rocesses, but is readily tabulated. Our results suggest that one should use our new critical values which depend on the
indow width to determine uniform confidence bands.
In addition to the new critical values, we show the potential for a bias process arising from a relationship between

he distribution of the regressors and the regression parameters. From an empirical standpoint, a dynamic model should
e most susceptible for such a process. However, we propose a procedure of averaging smooth coefficient time-varying
egression estimators over the relevant window. The resulting distribution is the same as in the case with no bias process
nd should be used when applying rolling regression in dynamic models. The empirical example covers time-varying
ersistence in inflation and we show that the new corrected bands suggest that the persistence is historically less variable
han previous studies would suggest. However, recent data confirms that inflation has not only recently increased, but
as become more persistent as well.
If regression parameters are changing over time, we would ideally prefer to obtain estimates of the parameters at each

oint in time and estimate confidence bands for the entire function. There is a large literature that suggests procedures to
ccomplish this task and that convergence rate for the estimated functions and bands is even slower than the rate from
sing nonparametric confidence intervals at a given point. Rolling regression originally developed as a way to combine
bservations close to a particular date as a type of local regression. Rolling regression is a natural procedure, which
ay be employed in many recent empirical studies. The choice of window width for the typical rolling procedure is
ften based on having ‘‘enough’’ observations in order to estimate parameters, or based on some relevant time frame for
he question at hand. Our results show that one can retain the original idea of rolling regression, as well as the usual
arametric convergence rate, but the statistical distribution is adjusted to obtain proper coverage for the rolling average
14
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f the parameters over the entire range. Moreover, the adjusted rolling regression procedures are simple to implement,
ith narrower confidence bands relative to fully nonparametric time-varying coefficient models with uniform confidence
ands.

ppendix. Proofs

roof of Theorem 1. A simple algebra leads to

√
T
(
β̂λ(r) − β̄λ(r)

)
=

√
T

⎡⎣( [rT ]∑
s=[rT−Tλ+1]

xsx⊤

s

)−1
[rT ]∑

s=[rT−Tλ+1]

xsys − β̄λ(r)

⎤⎦
=

√
T

⎡⎣( [rT ]∑
s=[rT−Tλ+1]

xsx⊤

s

)−1
[rT ]∑

s=[rT−Tλ+1]

xs
(
x⊤

s β

( s
T

)
+ ϵs

)
− β̄λ(r)

⎤⎦
=

√
T

⎡⎣( [rT ]∑
s=[rT−Tλ+1]

xsx⊤

s

)−1
[rT ]∑

s=[rT−Tλ+1]

xsϵs

⎤⎦+
√
TBT (r)

+
√
T

[
1
Tλ

[rT ]∑
s=[rT−Tλ+1]

β (s/T ) − β̄λ(r)

]
,

where BT (r) is the bias process defined in the statement of the theorem. The final term is o(1) by Riemann integrability
of β(s/T ). Then, applying Corollary 2 of Wu and Zhou (2011) for locally stationary processes, we have

1
√
T

[rT ]∑
s=[rT−Tλ+1]

xsϵs ⇒ Q (r) − Q (r − λ).

Now, consider xsx⊤
s . The process xsx⊤

s −M(s/T ) is mean zero and following the proof of Lemma 6 of Zhou and Wu (2010),
we apply Doob’s inequality to

1
√
T

t∑
s=1

(
xsx⊤

s − M(s/T )
)
,

so that

1
T

[rT ]∑
s=[rT−Tλ+1]

xsx⊤

s
p

→

∫ r

r−λ

M(s)ds

niformly in r . Therefore, this completes the proof of Theorem 1.

roof of Theorem 2. For the local linear estimator, define the term

RT ,0(s/T ) =
1
T

[T (1−h)]∑
t=[Th]

1
h
K
(
t − s
Th

)
xtϵt .

Given our bandwidth choice, we have

sup
h≤s/T≤1−h

M(G, s/T ){β̃(s/T ) − β(s/T )} − RT ,0(s/T )
 = Op(κT ξT )

where

κT = (Th)−1 [T 1/4
+ (Th log T )1/2

]
+ h2 and ξT = T−1/2h−1

+ h

from equations (26) and (27) of Zhou and Wu (2010) and (A.3) of Zhang and Wu (2012). Then, we have

√
T
[
β̂∗

λ (r) − β̄λ(r)
]

=
1

√
Tλ

[rT ]∑
s=[rT−Tλ+1]

[
β̃(s/T ) − β(s/T )

]
=

1
√
Tλ

[rT ]∑
s=[rT−Tλ+1]

M(G, s/T )−1RT ,0(s/T ) + Op(T 1/2κT ξT ),
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here the last term is op(1) given our bandwidth choice. Thus,

√
T
[
β̂∗

λ (r) − β̄λ(r)
]

=
1

√
Tλ

[rT ]∑
s=[rT−Tλ+1]

M(G, s/T )−1 1
Th

[T (1−h)]∑
t=[Th]

K
(
t − s
Th

)
xtϵt + op(1)

=
1

√
Tλ

[T (1−h)]∑
t=[Th]

1
Th

[rT ]∑
s=[rT−Tλ+1]

M(G, s/T )−1K
(
t − s
Th

)
xtϵt + op(1)

=
1

√
Tλ

[rT ]∑
s=[rT−Tλ+1]

M(G, s/T )−1K
(
t − s
Th

)
1
Th

[T (1−h)]∑
t=[Th]

xtϵt + op(1).

onsider

D(r) =
1
T

[rT ]∑
s=[Th]

M(G, s/T )−1 1
h
K
(
t − s
Th

)
1

√
Tλ

[T (1−h)]∑
t=[Th]

xtϵt .

By writing D(r) = D∗(r) − D1(r) + D2(r), we have

D∗(r) =
1
Tλ

[T (1−h)]∑
s=[Th]

M(G, s/T )−1 1
h
K
(
t − s
Th

)
1

√
T

[Tr]∑
t=[Th]

xtϵt ,

D1(r) =
1
Tλ

[T (1−h)]∑
s=[Tr]+1

M(G, s/T )−1 1
h
K
(
t − s
Th

)
1

√
T

[Tr]∑
t=[Th]

xtϵt ,

and

D2(r) =
1
Tλ

[Tr]∑
s=[Th]

M(G, s/T )−1 1
h
K
(
t − s
Th

)
1

√
T

[T (1−h)]∑
t=[Tr]+1

xtϵt .

e show that D1(r) and D2(r) converge to zero uniformly in r . To this end, it is easy to see that

∥D1(r)∥ ≤

 1
√
Tλ

[Tr]∑
t=[Th]

xtϵt


 1T

[T (1−h)]∑
s=[Tr]+1

M(G, s/T )−1 1
h
K
(
t − s
Th

) .

onsider the second term on the right hand side. Denote the eigenvalue decomposition as M(G, s/T ) = Γ (s/T )Θ(s/T )
(s/T )−1 so that 1T

[T (1−h)]∑
s=[Tr]+1

M(G, s/T )−1 1
h
K
(
t − s
Th

) ≤
1
Th

[T (1−h)]∑
s=[Tr]+1

M(G, s/T )−1K
(
t − s
Th

)
=

1
Th

[T (1−h)]∑
s=[Tr]+1

K
(
t − s
Th

)√
tr
[
Γ (s/T )Θ(s/T )−2Γ (s/T )−1

]
≤

1
Th

[T (1−h)]∑
s=[Tr]+1

K
(
t − s
Th

)
c−2k
M ,

where tr denotes the trace of a matrix and cM is the lower bound of eigenvalues of M(s/T ). Note that t ≤ [Tr], so that
t < s. Then

1
Th

[T (1−h)]∑
s=[Tr]+1

K
(
t − s
Th

)
≈

∫ 1−h

r

1
h
K
(
u − v

h

)
dv =

∫ 1−h−u
h

r−u
h

K (z)dz,

here z = (v − u)/h, u < 1 − h and r < u. Then, as h → 0, this integral is O(h), since K (z) = 0 for |z| ≥ 1. Hence, D1(r)
onverges in probability to 0 uniformly in r . The argument is similar to that for D2(r). For D∗(r), we note that

1
Th

[T (1−h)]∑
s=[Th]

M(G, s/T )−1K
(
t − s
Th

)
≈

∫ (1−h)

h

1
h
M(G, v)−1K

(
u − v

h

)
dv

=

∫ u−r+λ
h

u−r
h

M(G, u − zh)−1K (z)dz = M(G, u)−1
+ O(h).
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D∗(r) =
1

√
Tλ

[rT ]∑
t=[Th]

M(G, t/T )−1xtϵt + op(1)

niformly in r . Combining these results, we have
√
T
[
β̂∗

λ (r) − β̄λ(r)
]

= D∗(r) − D∗(r − λ) + op(1).

Given this representation, we apply Corollary 2 of Wu and Zhou (2011) to obtain

1
√
Tλ

[rT ]∑
t=[rT−Tλ+1]

M(G, t/T )−1xtϵt ⇒ Q2(r) − Q2(r − λ),

here Q2(r) is a p dimensional Gaussian process with covariance E
[
Q2(r1)Q2(r2)⊤

]
=
∫ min(r1,r2)
0 Λ(s) and

Λ(s) =
1
λ2M(s)−1Ω(s)M(s)−1.

Therefore, the proof of Theorem 2 is complete.
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