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Abstract: In this article, we propose a vector autoregressive model for conditional quantiles with
functional coefficients to construct a novel class of nonparametric dynamic network systems, of
which the interdependences among tail risks such as Value-at-Risk are allowed to vary smoothly
with a variable of general economy. Methodologically, we develop an easy-to-implement two-stage
procedure to estimate functionals in the dynamic network system by the local linear smoothing
technique. We establish the consistency and the asymptotic normality of the proposed estimator
under strongly mixing time series settings. The simulation studies are conducted to show that
our new methods work fairly well. The potential of the proposed estimation procedures is
demonstrated by an empirical study of constructing and estimating a new type of nonparametric
dynamic financial network.
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1 Introduction

Since the seminal work by Koenker and Bassett (1978), quantile regression, also called con-

ditional quantile or regression quantile or dynamic quantile, has become an increasingly popular

tool for risk analysis in many fields in economics such as labor economics, macroeconomics and

financial risk management; see, for instance, White, Kim and Manganelli (2015), Abrian and

Brunnermeier (2016), Härdle, Wang and Yu (2016), Zhu, Wang, Wang and Härdle (2019) and

the references therein. It is well known that when the distribution of the dependent variable

has heavy-tails, heteroscedasticity, and/or outliers, the quantile regression is more reliable than

mean regression models. The reader is referred to the review papers by Koenker (2005) and

Koenker, Chernozhukov, He and Peng (2017) for more applications of quantile regression.

Among developments of quantile methods in the statistics literature, dynamic quantile models

have attracted intensively attentions in the recent two decades. Previous researches in this area

were mainly motivated by estimating Value-at-Risk (VaR), which is essentially a procedure of

estimating lower-tail conditional quantile of financial return distribution. Some early works

include, but not limited to, the autoregressive model for conditional quantiles (CaViaR) as in

Engle and Manganelli (2004), the dynamic additive quantile model proposed in Gourieroux and

Jasiak (2008), and the conditional quantile estimation for generalized autoregressive conditional

heteroscedasticity (GARCH)-type model studied by Xiao and Koenker (2009), and among others.

In addition, dynamic quantile models are naturally suitable for capturing the dependence between

the lower-tail conditional quantile of the distribution of financial returns and its lag or other

covariates (also called tail dependence). For example, White et al. (2015) proposed an innovative

method to estimate directly the sensitivity of VaR of a given financial institution to shocks to

the whole financial system by constructing a vector autoregressive (VAR) model for dynamic

quantiles, while Härdle et al. (2016) developed a model to describe the network relationship

among VaRs of financial institutions by a flexible nonparametric quantile model with L1-penalty.

Recently, Zhu et al. (2019) constructed a quantile autoregressive model that embeds the observed
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dependency structure in a dynamic network. The tail dependence is in particular important in

reflecting the risk interdependence and contains network information in a financial system. To

the best of our knowledge, much of the existing literature assumed constant tail dependence

in their models or focused on the response of conditional quantile to endogenous variables or

shocks. However, numerous studies have documented temporal changes of risk interdependence

in financial time series and discussed their possible origins and relation to spillover effects; see,

for example, Billio, Getmansky, Lo and Pelizzon (2012), Diebold and Yı́lmaz (2014), Härdle

et al. (2016), Yang and Zhou (2017), Liu, Ji and Fan (2017), Ando and Bai (2020) and the

references therein. The driving force for the variations of risk interdependence may be the

institutional changes or the policy interventions, such as the changes of exchange rate systems and

the U.S. quantitative easing policy. With these backgrounds, it is desirable to consider modeling

the interaction between varying patterns of tail dependence and macroeconomic circumstances.

These theoretical and empirical studies inspire us to build a more general framework to capture

the time-varying interdependences among dynamic quantiles.

In this article, we propose a nonparametric approach involving multivariate dynamic quantile

models with nonlinear structures. Different from previous studies, we capture nonlinearities in

data by using a functional coefficient setting, which allows coefficients of the multivariate dynamic

quantile models to vary with a smoothing variable. Since coefficients of dynamic quantile models

play an important role in reflecting interdependences among dynamic quantiles, under our model

setup, one can easily illustrate the variation of tail dependence and its relation with the variable

which is of interest. To interpret features of varying interdependences within various conditional

quantiles, we form a VAR model with functional coefficients where the quantiles of several

random variables depend on lagged quantiles and other lagged covariates. For this reason, this

model is termed as a functional-coefficient VAR model for dynamic quantiles (FCVAR-DQ) and

is presented in (1) later. In an effort to study nonlinear relationship between the quantile of

response variable and its covariates, various smoothing techniques (e.g., kernel methods, splines,
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and their variants) have been used to estimate the nonparametric quantile regression for both

independent and time series data, to name just a few, He and Ng (1999), Honda (2000, 2004), Wei

and He (2006), Kim (2007), Cai and Xu (2008), Qu and Yoon (2015), and Li, Li and Li (2021).

Among many kinds of methods, we adapt one of modeling methods to analyze dynamic quantiles,

called the functional coefficient modeling approach. Compared with the existing literature, our

approach is different mainly in three parts. First, we provide a kernel-based estimation framework

for a new type of dynamic quantile model, which imposes relatively less restriction on model’s

structure. Second, our model admits nonlinearities of tail dependence, which can be ignored

commonly by dynamic quantile models with fixed coefficients. Third, the proposed model allows

for studying interaction between tail dependence and the variable of interest.

One of our motivations for this study comes from analyzing the dynamic mechanism of

financial network in international equity markets. It is well documented in the literature that

financial systems contain enormous numbers of institutions that interplay with each other. These

interactions form a financial network in which a node represents each institution and a linkage

between two nodes acts as an observable or unobservable interaction of some forms between two

institutions. Also, it is well-established that the possibility of major financial distress is closely

related to the degree of correlation among the assets of institutions and how sensitive they are

to the changes in economic conditions. Based on these intuitions, provided that the node of a

network is represented by the VaR of returns of institutions’ assets or of market indexes, one

may construct a financial network that can capture interdependences among VaRs within the

financial system. Since VaRs and interdependences among them appear to be unobservable in

practice, as addressed in Sewell and Chen (2015), Zhu et al. (2019), Bräuning and Koopman

(2020) and Lee, Li and Wilson (2020), it is unnecessarily feasible to apply commonly known

technologies that have access to the binary data with observed network structures for estimating

the risk network formed by VaRs. An influential precedent of analyzing the network topology

of unobservable connectedness of risk attributes to the paper by Diebold and Yı́lmaz (2014) by
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constructing a risk network based on forecast error variance decompositions of classical VAR

models and studying the volatility connectedness by methods of network analysis. Compared to

the literature thus far, we consider capturing unobserved interconnectedness of tail risk among

institutions in the dynamic network, which can not be achieved by models with observed network

data and by measuring conditional correlation as in Diebold and Yı́lmaz (2014). Moreover, in

order to illustrate overall patterns of time-varying network of risk across institutions, the main

interest in this paper lies in modeling the relationship between the general states of economy and a

financial network formed by VaRs of global major market index’s return series. More specifically,

we allow interdependences among VaRs of market index’s return series to vary with a smoothing

variable of economic status to capture the dynamic changes. Some recent studies found increasing

evidences to show that the variation of risk interdependence not only reveals the behavior of

spillover effects of risk but also contains the information about the stability of financial systems;

see, e.g., Acemoglu, Ozdaglar and Tahbaz-Salehi (2015). Both practitioners and policymakers

may be interested in knowing how a financial network changes with the macroeconomic climate

or financial market circumstances, and the way to evaluate the influences of economic policies

to the whole network within the financial market. Extensive reviews about financial network

can be found in Diebold and Yı́lmaz (2014) and Härdle et al. (2016). The empirical study in

this paper shows that the proposed FCVAR-DQ model should be suitable for estimating a novel

class of dynamic financial network and providing some new insights. A detailed analysis of this

class of nonparametric financial network is reported in Section 4.

Lastly, our contributions to the literature can be summarized as follows. First, the model

setting in this paper (see (1) later) is general enough to nest many well-known dynamic quantile

models in the literature; see, for example, the CaViaR model proposed by Engle and Manganelli

(2004) and further studied Xiao and Koenker (2009), the threshold CaViaR model in Gerlach,

Chen and Chan (2011), and the static VAR for VaR model constructed by White et al. (2015).

Second, by allowing coefficients to vary with a smoothing variable, a FCVAR-DQ model provides
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a new tool to estimate the relationship between the interdependence of risk and the state variable

of economy or time. Third, a new and simple-to-implement estimation procedure is developed

for estimating the proposed quantile model with highly nonlinear structure and latent covariates.

Finally, a large sample theory for the proposed estimator is established to construct confidence

intervals for functional coefficients in the empirical study.

The rest of this paper is organized as follows. In Section 2, the model setup and the two-

stage estimation procedure are presented for the FCVAR-DQ model. In addition, a large sample

theory for the proposed estimator is investigated in this section too, together with constructing

a consistent estimator of the asymptotic covariance matrix. A Monte Carlo simulation study is

conducted in Section 3 to illustrate the finite sample performance of the proposed estimation

procedure. In Section 4, our proposed model and its modeling procedure are applied to con-

structing a novel class of nonparametric financial networks based on the real example. Finally, a

conclusion remark is given in Section 5 and all the technical proofs are gathered in the Appendix.

Throughout this article, 0a×b stands for the (a× b) matrix of zeros and Ia is the (a× a) identity

matrix.

2 FCVAR Model for Dynamic Quantiles

2.1 Model Setup

Let Yit (1 ≤ i ≤ κ, 1 ≤ t ≤ n), a scalar dependent variable, be the ith observation at time t,

Fi,t−1 represent information set up to time t− 1 for 1 ≤ i ≤ κ, and qτ,t,i be the τth conditional

quantile of Yit given Fi,t−1. Then, we study the following functional-coefficient VAR model for

dynamic quantiles, termed as FCVAR-DQ model, given by, for 1 ≤ i ≤ κ and 1 ≤ t ≤ n,

qτ,t,i = γi0,τ (Zit) +

q󰁛

s=1

γT
i,s,τ (Zit)qτ,t−s +

p󰁛

l=1

βT
i,l,τ (Zit)Yt−l (1)

for some p and q, where qτ,t = (qτ,t,1, . . . , qτ,t,κ)
T and Yt is a κ1×1 vector of covariates, including

possibly some or all of {Yit}κi=1 and/or some exogenous information {xit}. In addition, γi0,τ (·)
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is a scalar function and is allowed to depend on τ , both γi,s,τ (·) = (γsi1,τ (·), . . . , γsiκ,τ (·))T and

βi,l,τ (·) = (βli1,τ (·), . . . , βliκ1,τ (·))T are κ× 1 and κ1 × 1 vectors of functional coefficients, respec-

tively, and they are allowed to depend on τ too. Here, Zit is an observable scalar smoothing

variable, which might be one part of Yt−l and/or time or other exogenous variables {xit} or

their lagged variables. Of course, Zit can be an economic index to characterize economic activ-

ities. Also, note that Zit can be set as a multivariate variable. In such a case, the estimation

procedures and the related theory for the univariate case still hold for multivariate case, but

more complicated notations are involved and models with Zit in very high dimension are often

not practically useful due to the “curse of dimensionality”. In addition, note that similar to

the setting of the multi-quantile CaViaR model as in White, Kim and Manganelli (2008), one

may further generalize model (1) by allowing τ in qτ,t,i to vary across different equations, only

with mild changes on asymptotic theory in this paper. Thus, in order to meet our empirical

motivation, all of τ ′s in model (1) are the same throughout this article.

Importantly, in the case of estimating dynamic financial network in empirical studies, by

following White et al. (2015), we consider only the tail dependence between current state and

the state of one-period lagged, and take Yt to be Yt = (|Y1t|, . . . , |Yκt|)T with | · | representing

absolute value. Furthermore, the smoothing variable Zit varies only across different time periods

but keeps constant over individual units. Therefore, in this paper, for easy exposition, our focus

is on the simple case that q = p = 1, κ = κ1, Yt = (|Y1t|, . . . , |Yκt|)T , and Zit = Zt for all

1 ≤ i ≤ κ. Then, model (1) can be rewritten as

qτ,t,i = gT
i,τ (Zt)X t, (2)

where gi,τ (·) = (γi0,τ (·), γi1,τ (·), . . . , γiκ,τ (·), βi1,τ (·), . . . , βiκ,τ (·))T is a (2κ+1)× 1 vector of func-

tional coefficients and X t = (1, qτ,t−1,1, . . . , qτ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)T .

It is worthwhile to note that if qτ,t,i in model (2) is defined as VaR of return Yit, then,

{γij,τ (Zt)}κi=1,j=1 in model (2) becomes to the sensitivity of VaR of returns for one portfolio at

time t to that of another at time t−1. With these functional coefficients {γij,τ (Zt)}κi=1,j=1, define
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the following κ× κ matrix

Γ1,τ (Zt) = (γij,τ (Zt))κ×κ . (3)

Then, (2) can be expressed as a matrix form, which, indeed, is a FCVAR model for qτ,t with

exogenous variables,

qτ,t = γ0,τ (Zt) + Γ1,τ (Zt) qτ,t−1 + Γβ,1,τ (Zt)Yt−1,

where γ0,τ (Zt) and Γβ,1,τ (Zt) are defined obviously. Therefore, Γ1,τ (Zt) in (3) can serve as a

dynamic network system changing with both τ and some information variable Zt, and it is

in a nonparametric nature, so that it is a nonparametric dynamic network. Notice that the

general setting in the dynamic network system (3) covers some famous network models for

characterizing financial risk system, including the one formed by VAR for VaR model in White

et al. (2015), which assumes the tail dependence {γij,τ (Zt)}κi=1,j=1 to be constant and the static

financial network in Abrian and Brunnermeier (2016) and Härdle et al. (2016) as special cases.

To investigate the large sample behavior of the proposed estimator (see Theorem 1 later), it is

assumed throughout this article that the process {(Yit, xit, Zt)} in model (1) is strictly stationary

and α-mixing (strongly mixing). Indeed, in the Appendix (see Appendix B), we provide some

regularity conditions to show that under these conditions, the joint process {(Yit, xit, Zt, qτ,t,i)}

generated by model (1) is strictly stationary and α-mixing. Actually, sufficient conditions for the

mixing property of nonlinear time series have been studied extensively in literature. By Pham

(1986), a geometrically ergodic time series is an α-mixing sequence. Meanwhile, it is well-known

that an ergodic Markov process initiated from its invariant distribution is (strictly) stationary.

Thus, geometrical ergodicity plays an important role in establishing strictly stationarity and

α-mixing properties. Some results in this direction include the papers by Chen and Tsay (1993)

and Cai, Fan and Yao (2000), providing some sufficient conditions to ensure geometrical ergod-

icity for functional-coefficient autoregressive time series models without rigorously theoretical

justifications. In addition, An and Chen (1997) and An and Huang (1996) surveyed various

sufficient conditions for the ergodicity of nonlinear autoregressive models. Also, Cai and Masry
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(2000) presented some sufficient conditions for additive nonlinear autoregressive models with ex-

ogenous regressors to be stationary and strongly mixing. The derivation of these two properties

in this paper is of independent interest, since our main interests in this article are to derive the

asymptotic theory for model (2) and estimate a new class of dynamic financial network. There-

fore, we provide some sufficient conditions that imply these important probabilistic properties

and corresponding rigorously theoretical justifications in the Appendix (see Appendix B).

Remark 1. (Special Cases) The proposed FCVAR-DQ model (1) is related to the papers by

Engle and Manganelli (2004) and Xiao and Koenker (2009), which discussed the relation between

modeling dynamic structures of conditional quantiles and conditional volatility of returns. Indeed,

if κ = κ1 in (1), Yit in (1) takes a simple form as Yit = σit eit, where σ
2
it is the conditional variance

of Yit and eit is an independent and identically distributed (i.i.d.) sequence of random variables

with mean zero and unit variance, then, qτ,t,i = σitF
−1
e (τ), where Fe(·) is the distribution function

of eit. Furthermore, if Yit = σit eit is generated from a functional coefficient multivariate GARCH

(p, q)-type process for κ (κ ≥ 1) returns extended from the setting in Taylor (1986) as follows

σit = γi0(Zt) +

q󰁛

s=1

γT
i,s(Zt)Σt−s +

p󰁛

l=1

βT
i,l(Zt)Yt−l, (4)

where Σt = (σit, . . . , σκt)
T and Yt = (|Y1t|, . . . , |Yκt|)T , then, model (1) reduces to following

dynamic quantile model:

qτ,t,i = γi0,τ (Zt) +

q󰁛

s=1

γT
i,s(Zt)qτ,t−s +

p󰁛

l=1

βT
i,l,τ (Zt)Yt−l, (5)

where γi0,τ (·) = γi0(·)F−1
e (τ), γi,s(·) = (γsi1(·), . . . , γsiκ(·))T and βi,l,τ (·) = (βli1,τ (·), . . . ,

βliκ,τ (·))T with βlij,τ (·) = βlij(·)F−1
e (τ). Notice that if γ′s and β′s in (5) are constant, model

(5) reduces to those in Engle and Manganelli (2004) and Xiao and Koenker (2009), respectively.

For details, the reader is referred to the aforementioned papers. Finally, note that if qτ,t would

be observable and all coefficients are threshold functions, model (1) covers the model in Tsay

(1998).

Remark 2. (Monotonicity). The issue of monotonicity is frequently discussed for the quantile
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autoregression model. A specific case for the monotonicity of (1) to hold is that {γi,s,τ (Zt)}κ,qi=1,s=1

and {βi,l,τ (Zt)}κ,pi=1,l=1 are all monotone increasing functions with respect to τ , and Yt is a positive

random vector. In other cases, the assumption of monotonicity can be satisfied by conducting

certain data transformation techniques; see Koenker and Xiao (2006) and Fan and Fan (2006)

for detailed discussions.

Remark 3. (Selection of Zt). Of importance is to choose an appropriate smoothing variable

Zt in applying functional-coefficient VAR model for dynamic quantiles in (2). Knowledge on

physical background or economic theory of the data may be very helpful, as we have witnessed in

modeling the real data in Section 4 by choosing Zt to be the first difference of daily log series of

the U.S. dollar index. Without any prior information, it is pertinent to choose Zt in terms of

some data-driven methods such as the Akaike information criterion, cross-validation, and other

criteria. Ideally, Zt can be selected as a linear function of given explanatory variables according

to some optimal statistical selection criterion such as LASSO type methods, or an economic index

based on some economic theory; see, for instance, Cai, Juhl and Yang (2015). Nevertheless, here

we would recommend using a simple and practical approach proposed by Cai et al. (2000) or Cai

et al. (2015) in practice.

2.2 Two-stage Estimation Procedure

Since the estimation procedures for (1) and (2) are the same, we aim at estimating functional

coefficients gi,τ (·) in the model defined in (2) for simplicity. Because qτ,t−1,i in X t depends on

unknown functional coefficients gi,τ (·), model (2) is more complicated than functional coefficient

models with observed data. Our procedures consist of two steps. The first is to estimate latent

qτ,t−1,i, and then we perform locally weighted estimation for functional coefficients using the

estimated qτ,t−1,i from the first step. In this paper, we only focus on estimating functional

coefficients in (2), rather than jointly forecasting qτ,t,i or doing impulse response analysis. So, it

is sufficient to estimate gi,τ (·) in an equation-by-equation way for different i. Thus, by abuse of
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notation, i will be dropped in what follows.

Given (1) and (2), let γ0,τ (Zt) define as earlier as (γ10,τ (Zt), . . . , γκ0,τ (Zt))
T and denote

Γs,τ (Zt) as a matrix with entries γsij,τ (Zt) and Γβ,l,τ (Zt) as a matrix with entries βlij,τ (Zt),

for s = 1, . . . , q and l = 1, . . . , p. Furthermore, define Aτ (L) =
󰁓p

l=1 Γβ,l,τ (Zt)Ll and Bτ (L) =

Iκ −
󰁓q

s=1 Γs,τ (Zt)Ls, where each entry is a lag polynomial and L denotes the lag operator.

Then, under Assumption A1 presented in Section 2.3, ensuring the invertibility of Bτ (L), model

(1) becomes to the following formulation

qτ,t = Bτ (L)−1γ0,τ (Zt) + Bτ (L)−1Aτ (L)Yt.

Here, Bτ (L)−1γ0,τ (Zt) and Bτ (L)−1Aτ (L) can be represented by C0,t,τγ0,τ (Zt) and a matrix series

󰁓∞
l=1 Cl,t,τLl for all Zt, respectively. Now, let α0,τ (·) be the ith row of matrix C0,t,τγ0,τ (Zt) and

αl,τ (·) = (αl1,τ (·), . . . ,αlκ,τ (·))T be the ith row of matrix Cl,t,τ . Therefore, with the definitions

of α0,τ (·) and αl,τ (·), we can first approximate the latent qτ,t by using a functional-coefficient

quantile function:

qτ,t = α0,τ (Zt) +
∞󰁛

l=1

αT
l,τ (Zt)Yt−l, (6)

where the coefficients αl,τ (·) satisfies summability conditions implied by Assumption A1. Then,

each entry of αl,τ (·) decreases at a geometric rate; that is, there exist positive constants ρ < 1

and c, such that max1≤t≤n |αlj,τ (Zt)| ≤ cρl for j = 1, . . . ,κ. Since αlj,τ (·) decreases geometrically,

by choosing an appropriate mn = m(n) = m, we study following truncated equation (7) with

increasing dimension of covariates:

qτ,t = α0,τ (Zt) +
mn󰁛

l=1

αT
l,τ (Zt)Yt−l ≡ W T

t ατ (Zt) = qτ (Zt,W t), (7)

whereW t = (1,YT
t−1, . . . ,YT

t−m)
T is a (κm+1)×1 vector of covariates andατ (·) = (α0,τ (·),αT

1,τ (·),

. . . ,αT
m,τ (·))T is a (κm + 1)× 1 vector of functional coefficients. Note that (7) can be regarded

as an approximation of (6) and is similar to the model in Cai and Xu (2008). Under smooth-

ness condition of coefficient functions ατ (·) presented later in Assumption A2 in Section 2.3,

for any given grid point z0 ∈ R, when Zt is in a neighborhood of z0, ατ (Zt) can be approxi-
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mated by a polynomial function as ατ (Zt) ≈
󰁓w

r=0 α
(r)
τ (z0)(Zt − z0)

r/r!, where ≈ denotes the

approximation by ignoring the higher orders and α
(r)
τ (·) is the rth derivative of ατ (·). Thus,

qτ,t ≈
󰁓w

r=0 W
T
t δr,τ (Zt − z0)

r, where δr,τ = α
(r)
τ (z0)/r!. Hence, δ̂ = argminδQ(δ), where Q(δ)

is the locally weighted loss function for fixed κ, given by

Q(δ) =
n󰁛

t=m+1

ρτ

󰀫
Yt −

w󰁛

r=0

W T
t δr(Zt − z0)

r

󰀬
Kh1(Zt − z0), (8)

ρτ (y) = y[τ− I (y < 0)] is called the “check” (loss) function, I (A) is the indicator function of any

set A, K(·) is a kernel function, Kh1(u) = K(u/h1)/h1, and h1 = h1(n) is a sequence of positive

numbers tending to zero and controls the amount of smoothing used in estimation. In practice,

if we smooth locally around Zt and consider a local linear estimation, the locally weighted loss

function (8) becomes to the following

Q1(δ) =
n󰁛

s=m+1 ∕=t

ρτ

󰀫
Ys −

1󰁛

r=0

W T
s δr(Zs − Zt)

r

󰀬
Kh1(Zs − Zt). (9)

After yielding δ̂0,τ at τ by minimizing (9), qτ,t can be estimated by q̂τ,t = W T
t δ̂0,τ .

Remark 4. (Truncation parameter m(n)). Welsh (1989) and He and Shao (2000) studied non-

linear M-estimation with increasing parametric dimension and discussed the possible expansion

rate for the number of parameters m(n). As for the quantile estimation for functional coefficient

models with increasing dimension of covariates, Tang, Song, Wang and Zhu (2013) considered

estimation and variable selection for high-dimensional quantile varying coefficient models based

on B-spline approach. They showed that the oracle property for varying coefficients can be pre-

served when m2
n log(pnmn)/n → 0, where pn is the dimension of covariates and mn is a parameter

associated with degree of polynomial and internal knots. In this step, we are interested in study-

ing varying interdependences among conditional quantiles, rather than determining the optimal

number for m. In addition, we focus on estimating (7) using kernel-based approaches, which is

necessary in order to obtain asymptotic properties for functional coefficients. Under Assumption

A10 in Section 2.3, it will suffice to consider a truncation m as a sufficiently large constant

multiple of n1/7, which is used in our simulation study in Section 3 and the empirical analysis
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in Section 4.

Remark 5. It is necessary to emphasize that α0,τ (·) and each component of αl,τ (·) in (6) depend

on {Zt−l}l≥0. Indeed, under the assumption of stationarity and Assumption A1, α0,τ (·) and

αl,τ (·) are well-defined and can be estimated on each Zt by local smoothing approaches, regardless

of the existence of other lagged Zt−l in α0,τ (·) and αl,τ (·). Therefore, we use notations α0,τ (Zt)

and
󰁓∞

l=1 α
T
l,τ (Zt)Yt−l instead of α0,τ (Zt, Zt−1, . . . , Zt−l) and

󰁓∞
l=1 α

T
l,τ (Zt, Zt−1, . . . , Zt−l)Yt−l in

(6) for notational simplicity.

To summarize, the following two-step procedures is proposed for estimating gτ (·):

Step One: Choose the truncation parameter m = cn1/7 for some c > 0 and estimate δ̂0,τ at

each Zt by minimizing (9). Then, latent qτ,t is approximated by q̂τ,t = W T
t δ̂0,τ .

Step Two: Having obtained q̂τ,t and given

X̂ t = (1, q̂τ,t−1,1, . . . , q̂τ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)T ,

gτ (·) is estimated by a local linear estimation method; see Cai and Xu (2008) for details. In

particular, minimize the following locally (linear) weighted loss function Q2(Θ) at any given grid

point z0 ∈ R to obtain the local linear estimate Θ̂, where

Q2(Θ) =
n󰁛

t=1

ρτ

󰀫
Yt −

1󰁛

r=0

X̂
T

t Θr,τ (Zt − z0)
r

󰀬
Kh2(Zt − z0) (10)

with Θr,τ = g
(r)
τ (·)/r!. Similar to (9), Kh2(u) = K(u/h2)/h2 and h2 is the bandwidth used for

this step, which is different from the bandwidth h1 used in (9); see Remark 6 later in Section

2.3 for more discussions. A further improvement can be achieved by applying iteration to the

foregoing two-stage procedures.

2.3 Large Sample Theory

To study the asymptotic distribution of the nonparametric quantile estimator, we impose

some technical conditions in this section. It is worthwhile to emphasize that the main focus in

this paper is on estimating a new type of dynamic quantile model and constructing varying inter-
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dependences among conditional quantiles, rather than exploring the weakest possible conditions

for asymptotic theory.

Assumption A.

A1: Suppose that Aτ (L) and Bτ (L) defined in Section 2.2 have no common factors so that

Aτ (x) ∕= 0, for |x| ≤ 1 and Bτ (x) ∕= 0, for |x| ≤ 1.

A2: Each entry in the vector ατ (·) is (w + 1)th order continuously differentiable in a neighbor-

hood of z0 for any z0; Similarly, each entry in the vector gτ (·) is (ς + 1)th order continuously

differentiable in a neighborhood of z0 for any z0.

A3: fz(z) is a continuously marginal density of Z and fz(z0) > 0.

A4: The distribution of Y given Z and W has an everywhere positive conditional density

fY |Z,W (·), which is bounded and satisfies the Lipschitz continuity condition. Here, W t is de-

fined in (7). The kernel function K(·) is a bounded, symmetric density with a bounded support

region. Let µ2 =
󰁕
ν2K(ν)dν and ν0 =

󰁕
K2(ν)dν.

A5: {(Yit, xit, Zt)} is a strictly stationary sequence with α-mixing coefficient α(t) which satisfies

󰁓∞
t=1 t

ια(δ−2)/δ(t) < ∞ for some positive real number δ > 2 and ι > (δ − 2)/δ.

A6: There exist (small) positive constants ϖ1 > 0 and ϖ2 > 0 such that P{max1≤t≤n Y
2
t >

nϖ1} ≤ exp(−nϖ2).

A7: Let Bn = 1
n

󰁓n
t=m+1 W tW

T
t and denote the maximum and minimum eigenvalues of Bn as

λmax(Bn) and λmin(Bn). Then, lim infn→∞ λmin(Bn) > 0, lim supn→∞ λmax(Bn) < ∞.

It is assumed that E󰀂W t󰀂δ
∗ ≤ Cmδ∗/2 with δ∗ > δ.

A8: D(z0) ≡ E[W tW
T
t |Zt = z0] is positive-definite and continuous in a neighborhood of z0 and

D∗(z0) ≡ E[W tW
T
t fY |Z,W (qτ (z0,W t))|Zt = z0] is positive-definite and continuous in a neigh-

borhood of z0.

A9: E󰀂Yt󰀂2δ
∗
< ∞ with δ∗ > δ.

A10: The bandwidth h1 satisfies h1 → 0, nh1 → ∞; The bandwidth h2 satisfies h2 = O(n−1/5),

h2 → 0, nh2 → ∞. In addition, h1 = o(h2), mh1 → 0.
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A11: f(w,ω|Y 0,Y ℓ; ℓ) ≤ H < ∞ for ℓ ≥ 1, where f(w,ω|Y 0,Y ℓ; ℓ) is the conditional density

of (Z0, Zℓ) given (Y0 = Y 0,Yℓ = Y ℓ).

A12: n1/2−δ/4h
δ/δ∗−1/2−δ/4
2 = O(1).

Remark 6. Assumptions A1 is an invertibility condition for the functional coefficients to be well-

defined, which is similar to that in Chen and Hong (2016). Assumptions A2-A4 are common in

nonparametric literature. Assumption A5 is a standard assumption for α-mixing. Assumption A6

can be implied when the maximum of Y 2
t follows a generalized extreme value distribution, which

is generally satisfied for weakly dependent data; see also Xiao and Koenker (2009). Assumption

A7 guarantees the asymptotic behavior of regression estimators with increasing dimension of

covariates, which is similar to but slightly weaker than that in Welsh (1989). Assumptions A8

and A9 are commonly required for the model identification and ensure the convergence of Bn to

E[W tW
T
t ], when W t is α-mixing. The assumption h1 = o(h2) in Assumption A10 is about the

under-smoothing at the step one, which is common for the two-stage nonparametric estimation

approaches; see also Cai (2002) and Cai and Xiao (2012) for more discussions. The assumption

mh1 → 0 in A10 is necessary for the proof of stochastic equi-continuity. Assumption A11 is very

standard and used for the proof under mixing conditions. Assumption A12 allows one to verify

standard Lindeberg-Feller conditions for asymptotic normality of the proposed estimators in the

proof of Theorem 1; see Cai and Xu (2008) for details on nonparametric quantile regressions

models for α-mixing time series.

Before stating the asymptotic behavior of ĝτ (z0) in the following theorem, for notational sim-

plicity, it needs to define some notations. Define Ω∗(z0) ≡ E
󰀅
X tX

T
t fY |Z,X(qτ (z0,X t))|Zt = z0

󰀆

with qτ (z0,X t) = gT
τ (z0)X t and fY |Z,X(·). In addition, let Ξ(z0) ≡ τ(1− τ)ν0[Ω(z0)−H1(z0) +

H2(z0)], where Ω(z0) ≡ E[X tX
T
t |Zt = z0], H1(z0) = E[X tW

T
t |Zt = z0](D

∗(z0))
−1ΓT (z0) +

Γ(z0)(D
∗(z0))

−1E[W tX
T
t |Zt = z0], H2(z0) = Γ(z0)(D

∗(z0))
−1D(z0)(D

∗(z0))
−1ΓT (z0), and

Γ(z0) ≡ E

󰀝
fY |Z,X(qτ (z0,X t))X tg

T
τ (z0)Πt

󰀏󰀏󰀏󰀏Zt = z0

󰀞
is a (2κ + 1) × (κm + 1) matrix, with

ΠT
t = (0T1×(κm+1),W t, . . . ,W t, 0

T
κ×(κm+1)). Now, the asymptotic normality of ĝτ (z0) is presented
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in the following theorem with its detailed proof relegated to the Appendix (see Appendix A).

Theorem 1. (Asymptotic Normality) Under Assumptions A1–A12, we have

󰁳
nh2

󰀗
ĝτ (z0)− gτ (z0)−

h2
2µ2

2
g(2)
τ (z0) + op(h

2
2)

󰀘
d→ N (0,Στ (z0)),

where Στ (z0) = (Ω∗(z0))
−1Ξ(z0)(Ω

∗(z0))
−1/fz(z0).

Remark 7. It is not surprising to see from Theorem 1 that the asymptotic bias h2
2µ2g

(2)
τ (z0)/2

does not depend on h1. Indeed, since the estimation in the step one is under-smoothed by As-

sumption A10, so that the part that relies on h1 in the asymptotic bias term disappears, see

Lemma A.10 in the Appendix for more details. However, different from the conventional non-

parametric estimation, Ξ(z0) in the asymptotic variance term contains additional two terms

H1(z0) and H2(z0), which involve W t in the first step. This formation of asymptotic variance

appears because of the fact that X̂ t contains q̂τ,t−1, which is estimated in the step one of our

two-stage approaches and therefore includes information of W t. Similar results of asymptotic

variance were also obtained by Xiao and Koenker (2009), which can be seen as a nature of any

two-stage approach; see, for example, Cai, Das, Xiong and Wu (2006) for more discussions.

Remark 8. (Bandwidth Selection) Finally, we would like to address how to select the bandwidth

h2 at the second step. It is well known that the bandwidth plays an essential role in the trade-

off between reducing bias and variance. In view of (10), it is about selecting the bandwidth

in the context of estimating the coefficient functions in the quantile regression. Therefore, we

recommend the method proposed in Cai and Xu (2008) for selecting h2 in (10), which is used in

our simulation study in Section 3.

2.4 Covariance Estimate

For constructing confidence intervals for the estimated functional coefficients in the empirical

study, it turns to discussing how to obtain consistent estimator of the asymptotic covariance ma-

trix Στ (z0). To this end, one needs to estimate D(z0), D
∗(z0), Γ(z0), H1(z0), H2(z0), Ω(z0) and
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Ω∗(z0) consistently. For this purpose, define D̂(z0) =
󰁓n

t=1 W tW
T
t Kh1(Zt−z0)/n and D̂

∗
(z0) =

󰁓n
t=1 w1tW tW

T
t Kh1(Zt−z0)/n, where w1t = I(W T

t α̂τ (z0)−δ1n < Yt ≤ W T
t α̂τ (z0)+δ1n)/(2δ1n)

for any δ1n → 0 as n → ∞. Similar to the proof in Cai and Xu (2008), one can show that

D̂(z0) = fz(z0)D(z0)+op(1) and D̂
∗
(z0) = fz(z0)D

∗(z0)+op(1), respectively. Also, letExw(z0) =

󰁓n
t=1 X̂ tW

T
t Kh2(Zt − z0)/n. Clearly, the consistent estimators of Γ(z0), H1(z0), H2(z0), Ω(z0)

and Ω∗(z0) can be constructed as follows: Γ̂(z0) =
󰁓n

t=1 w2tX̂ tĝ
T
τ (z0)ΠtKh2(Zt−z0)/n, Ĥ1(z0) =

Exw(z0)(D̂
∗
(z0))

−1Γ̂T (z0) + Γ̂(z0)(D̂
∗
(z0))

−1(Exw(z0))
T , Ω̂(z0) =

󰁓n
t=1 X̂ tX̂

T

t Kh2(Zt − z0)/n,

Ĥ2(z0) = Γ̂(z0)(D̂
∗
(z0))

−1D̂(z0)(D̂
∗
(z0))

−1Γ̂T (z0), and Ω̂∗(z0) =
󰁓n

t=1 w2tX̂ tX̂
T

t Kh2(Zt− z0)/n,

where w2t = I(ĝT
τ (z0)X̂ t − δ2n < Yt ≤ ĝT

τ (z0)X̂ t + δ2n)/(2δ2n) for any δ2n → 0. In the Appendix

(see Section A.3 in Appendix A), it shows that indeed, the above estimators are consistent; that is,

Γ̂(z0) = fz(z0)Γ(z0)+op(1), Ĥ1(z0) = fz(z0)H1(z0)+op(1), Ĥ2(z0) = fz(z0)H2(z0)+op(1), Ω̂(z0) =

fz(z0)Ω(z0)+op(1), and Ω̂∗(z0) = fz(z0)Ω
∗(z0)+op(1). The proof of these results relies on the uni-

form consistency (in probability) of the estimator α̂τ (·) obtained from the first step of our estima-

tion procedures, which is guaranteed by Lemma A.2 in the Appendix. Therefore, it will show in

the Appendix (see Section A.3 in Appendix A) that indeed, Σ̂τ (z0) = (Ω̂∗(z0))
−1Ξ̂(z0)(Ω̂

∗(z0))
−1

is a consistent estimate of Στ (z0), where Ξ̂(z0) = τ(1 − τ)ν0[Ω̂(z0) − Ĥ1(z0) + Ĥ2(z0)] is the

consistent estimate of Ξ(z0) with Ω̂(z0), Ĥ1(z0) and Ĥ2(z0) given above.

3 A Monte Carlo Simulation Study

In this section, we provide a simulation example to exam the performance of our two-stage

estimations for functional coefficients. In this example, the bandwidth is selected based on a

rule-of-thumb idea similar to the procedure in Cai and Xiao (2012) as follows. First, we use a

data-driven bandwidth selector as suggested in Cai and Xu (2008) to obtain an initial bandwidth

denoted by ĥ0 which should be O(n−1/5). At step one, the bandwidth should be under-smoothed.

Therefore, by following the idea in Cai (2002) and Cai and Xiao (2012) for two-step approaches,
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we take the bandwidth as ĥ1 = A0 × ĥ0 with A0 = n−1/10 so that ĥ1 satisfies Assumption A10.

At step two, we choose optimal bandwidth ĥ2 by the nonparametric AIC criterion as in Cai

and Xu (2008). Finally, the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ≤ 1) is used and

m = O(n1/7).

In this example, for 1 ≤ i ≤ 4, the data are generated from the following process:

Yit = σitεit

with σit = γi0(Zt) + γi1,󰂃it(Zt)σ1(t−1) + γi2,χit
(Zt)σ2(t−1) + γi3,󰂃it(Zt)σ3(t−1) + γi4,χit

(Zt)σ4(t−1) +

βi1(Zt)|Y1(t−1)| + βi2(Zt)|Y2(t−1)| + βi3(Zt)|Y3(t−1)| + βi4(Zt)|Y4(t−1)|, where γ10(z) = γ30(z) =

1.5 exp(−3(z +1)2) + exp(−8(z− 1)2), γ20(z) = γ40(z) = 1.5 exp(−3(z− 1)2) + exp(−8(z +1)2),

󰂃it = 0.2U2
it + 0.8 and χit = 0.2 exp(Uit) + 0.8 with Uit ∼ i.i.d. Uniform [0, 1] for 1 ≤ i ≤ 4.

In addition, γij,󰂃it(z) and βj(z) for 1 ≤ j ≤ 4 and 1 ≤ i ≤ 4 are defined as follows. For

i = 1, γi1,󰂃it(z) = 0.1 {1 + exp(−4z)}−1 󰂃it, γi2,χit
(z) = (0.1 sin(−0.5πz) + 0.1)χit, γi3,󰂃it(z) =

(0.04z2)󰂃it, γi4,χit
(z) = (−0.04z2 + 0.15)χit, βi1(z) = 0.1 sin(0.5πz) + 0.1, βi2(z) = 0.1 sin2(z),

βi3(z) = 0.02 exp(−z), and βi4(z) = 0.1 cos2(z). For i = 2, γi1,󰂃it(z) = (0.1 sin(−0.5πz) + 0.1)󰂃it,

γi2,χit
(z) = 0.1 {1 + exp(−4z)}−1 χit, γi3,󰂃it(z) = (−0.04z2 + 0.15)󰂃it, γi4,χit

(z) = (0.04z2)χit,

βi1(z) = 0.1 sin2(z), βi2(z) = 0.1 sin(0.5πz)+0.1, βi3(z) = 0.1 cos2(z), and βi4(z) = 0.02 exp(−z).

For i = 3, γi1,󰂃it(z) = 0.1 {1 + 2 exp(−2z)}−1 󰂃it, γi2,χit
(z) = (0.1 sin(−0.6πz)+0.1)χit, γi3,󰂃it(z) =

(0.04z2)󰂃it, γi4,χit
(z) = (−0.04z2 + 0.15)χit, βi1(z) = 0.1 sin(0.6πz) + 0.1, βi2(z) = 0.1 sin2(z),

βi3(z) = 0.02 exp(−z), and βi4(z) = 0.1 cos2(z). For i = 4, γi1,󰂃it(z) = (0.1 sin(−0.6πz) + 0.1)󰂃it,

γi2,χit
(z) = 0.1 {1 + 2 exp(−2z)}−1 χit, γi3,󰂃it(z) = (−0.04z2 + 0.15)󰂃it, γi4,χit

(z) = (0.04z2)χit,

βi1(z) = 0.1 sin2(z), βi2(z) = 0.1 sin(0.6πz)+0.1, βi3(z) = 0.1 cos2(z), and βi4(z) = 0.02 exp(−z).

Finally, εit are mutually i.i.d. from N (0, 1). Thus, for 1 ≤ i ≤ 4, our data generating process is

given by

qτ,t,i = γi0,τ (Zt) +
4󰁛

j=1

γij,τ (Zt)qτ,t−1,i +
4󰁛

j=1

βij,τ (Zt)|Yi(t−1)|,

where Zt is generated from Uniform [−2, 2] independently. Notice that our data generating

process corresponds to the model in (1) or (2) with κ = 4, Yt = (|Y1t|, |Y2t|, |Y3t|, |Y4t|)T , q = p = 1
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and Zit = Zt. Also, note that γi0,τ (·) = γi0(·)Φ−1(τ), γi1,τ (·) = γi1(·)(0.2τ 2 + 0.8), γi3,τ (·) =

γi3(·)(0.2τ 2 + 0.8), while γi2,τ (·) = γi2(·)(0.2 exp(τ) + 0.8), γi4,τ (·) = γi4(·)(0.2 exp(τ) + 0.8) and

βij,τ (·) = βij(·)Φ−1(τ) for 1 ≤ i, j ≤ 4, with Φ(·) being the distribution function of the standard

normal. Therefore, γi0,τ (·), γij,τ (·) and βij,τ (·) are functions of τ , suggesting different covariate

effects at different levels of τ .

To assess the finite sample performance of the proposed nonparametric estimators, we utilize

the mean absolute deviation error (MADE) for γ̂i0,τ (·), γ̂ij,τ (·) and β̂ij,τ (·), defined as

MADE(γ) =
1

n0

n0󰁛

k

|γ̂τ (zk)− γτ (zk)|, and MADE(βij,τ ) =
1

n0

n0󰁛

k

|β̂ij,τ (zk)− βij,τ (zk)|,

where γτ (·) can be either γij,τ (·) or γi0,τ (·), both γ̂τ (·) and β̂ij,τ (·) are local linear quantile es-

timates of γτ (·) and βij,τ (·), respectively, and {zk = 0.1(k − 1) − 1.75 : 1 ≤ k ≤ n0 = 36} are

the grid points. Also note that in this example, qτ,t,i = σitF
−1
ε (τ) = 0 when τ = 0.5, which

leads the quantile regression problem to be ill-posed so that the results for τ = 0.5 are omitted.

Therefore, we only consider τ ’s level to be 0.05, 0.15, 0.85 and 0.95 and the sample sizes are

n = 500, 1500 and 4000. For each setting, we replicate simulation 500 times and compute the

median and standard deviation (in parentheses) of 500 MADE values. Finally, the results are

reported in Tables 1-4 only for τ = 0.05, 0.15 and 0.95 but the results for τ = 0.85 are omitted

due to the space limitation, available upon request.

One can see clearly from Tables 1-4 that both median and standard deviation of 500 MADE

values steadily decrease as the sample size increases for all four values of τ . Moreover, the

performances for γi0,τ (·) and βij,τ (·) at τ = 0.15 are slightly better than those for τ = 0.05 and

0.95. This observation is because of the sparsity of data in the tailed regions, which is similar

to that in Cai and Xu (2008). Nevertheless, since the data that are used to estimate γij,τ (·) at

τ = 0.05 and 0.95 are conditional quantiles, the distributional information at tailed regions is

preserved, which may reduce the problem of data sparsity. For this reason, the performances for

γij,τ (·) at τ = 0.15 are not necessarily superior to that for τ = 0.05 and 0.95.

19



Finally, we illustrate the finite sample performance for the consistent covariance estimation

given in Section 2.4 via evaluating the pointwise confidence intervals (CI) with the asymptotic

bias ignored. To do this, define 󰁧V ar(·) as the asymptotic variance calculated by the estimators

presented in Section 2.4. Then, we compute the average of empirical coverage rates (AECR) of

95% pointwise CI of γij,τ (·) and βij,τ (·) without the asymptotic bias correction for 1 ≤ i, j ≤ 4,

defined as,

AECR(γij,τ ) =
1

n0B

n0󰁛

k

B󰁛

b=1

Ib{γij,τ (zk) ∈ γ̂ij,τ (zk)± 1.96× se(γ̂ij,τ (zk))},

where se(γ̂ij,τ (·)) =
󰁫
󰁧V ar(γ̂ij,τ (·))/nh2

󰁬1/2
, Ib{γij,τ (·) ∈ γ̂ij,τ (·)±1.96×se(γ̂ij,τ (·))} is an indicator

function which equals to 1 if γij,τ (·) is covered by the interval γ̂ij,τ (·)± 1.96× se(γ̂ij,τ (·)) in the

bth time of replication (equals to 0, otherwise), and the number of replication times B is 500.

Similarly, AECR(βij,τ ), se(β̂ij,τ (·)), and Ib{βij,τ (·) ∈ β̂ij,τ (·)± 1.96× se(β̂ij,τ (·))} can be defined

in the same fashion. The simulation results are presented in Table 5, for n = 4000 and τ = 0.05,

0.15 and 0.95. From Table 5, one can see basically that AECRs of 95% pointwise CIs are close

to the nominal level 0.95 for all settings. In general, the results of this simulated experiment

demonstrate that the proposed procedure is reliable and works fairly well.

4 A Real Example

4.1 Empirical Models

In this section, the proposed model and estimation methods are applied to constructing and

estimating a new class of dynamic financial network in international equity markets. Different

from the existing literatures, the interdependences of this class of network vary with a smoothing

variable of general economy. To capture the inter-temporal transition of risk and avoid endo-

geneity, we consider the interaction between current and one-day lagged VaR. In particular, we

define each linkage between a pair of VaRs in our network as the sensitivity of VaR of returns

of one market index at time t to that of another at time t − 1. Therefore, our network can be
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written as following equation system:

VaRit = γT
i,τ (Zt−1)VaRt−1, i = 1, 2, . . . ,κ, (11)

where VaRt−1 = (VaR1(t−1), . . . ,VaRκ(t−1))
T is a vector of VaRs for all market index returns at

time t− 1 and VaRit is the VaR of the ith market index return at time t, which is described as

follows

VaRit = − inf{Y ∈ R : P (Yit > Y |Fi,t−1) ≤ 1− τ} = − inf{Y ∈ R : F (Y |Fi,t−1) > τ}

for i = 1, 2, · · · ,κ at a given τ ∈ (0, 1). Here, Fi,t−1 is the information set to present all

information of the ith return available at time t − 1 and F (·|Fi,t−1) represents the conditional

distribution function of Yit given Fi,t−1. In addition, Zt−1 is a smoothing variable of general

economy and γi,τ (·) = (γi1,τ (·), . . . , γiκ,τ (·))T is a κ×1 vector of functional coefficients. Then, we

extract the quantile estimation of functional coefficients from equation system (11) and construct

the matrix |Γ̂1,τ (Zt−1)| as our financial network as follows:

|Γ̂1,τ (Zt−1)| = (|γ̂ij,τ (Zt−1)|)κ×κ

in which, |γ̂ij,τ (Zt−1)| represents the absolute value of the sensitivity of VaR of return for the

market index j at time t to that of return for the index i at time t− 1, under τ -th quantile level,

and is driven by the smoothing variable Zt−1. Here, taking absolute value on each γ̂ij,τ (Zt−1)

enables us to calculate and analyze indicators of connectedness, and details will be reported in

Section 4.3 later. Thus, matrix |Γ̂1,τ (Zt−1)| is useful to capture risk interdependence and how

it changes with a smoothing variable Zt−1. Notice that entries |Γ̂1,τ (Zt−1)| correspond to the

absolute value of the estimated values of {γij,τ (·)} in the network model in (3). Therefore, our

two-stage procedures can be applied here for direct estimation of the interdependence among

VaRs of returns for the market indexes. In general, the proposed framework is particularly

suitable to investigate the dynamic characteristics of risk spillover across global market indexes

under the changes of economic circumstance.
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4.2 Data

Our dataset includes the daily series between January 5, 2006 and February 10, 2021 for four

major world equity market indexes: the U.K. FTSE 100 Index, the Japanese Nikkei 225 Index,

the U.S. S&P 500 Composite Index and the Chinese Shanghai Composite Index. We model

the ith index’s return series Yit = 10 log(πit/πi(t−1)), where i = 1, 2, 3, 4 correspond to the four

aforementioned market indexes in turn and πit is ith index level on the tth day. The studies of

global market indexes help to explore the dynamic of risk dependences in the global financial

market, and the time range of data includes the financial crisis in the U.S. in 2008, the European

sovereign debt crisis of 2011-2012 and the COVID-19 pandemic starting from 2019. The daily

series of four market indexes are downloaded in Yahoo Finance and the estimation sample sizes

n = 3254. Thus, we take m = n1/7 ≈ 3 in this empirical study. Although it is feasible to

introduce more kinds of market index into the equation system (11), due to the computational

burdens, we only consider risk co-dependences among four major markets’ indexes.

As for the smoothing variable Zt, we choose Zt = 10 log(Dt/Dt−1), where Dt is the U.S. dollar

index on the tth day and can be downloaded from the Federal Reserve Bank of St. Louis. The

U.S. dollar index measures value of U.S. dollar against the currencies of a broad group of major

U.S. trading partners, higher values of the index indicate a stronger U.S. dollar. This choice of

smoothing variable is reasonable, because the exchange rate has been regarded as an important

factor associated with international transmission of risk in many empirical studies. For instance,

Menkhoff, Sarno, Schmelling and Schrimpf (2012) discussed the relation between innovations

in global foreign exchange volatility and excess returns arising from strategies of carry trade,

through which the risk spillover transmits from one country to others. In addition, Yang and

Zhou (2017) showed that volatility spillover intensity increases with U.S. dollar depreciation.

We do not claim that the U.S. dollar index is the only choice for smoothing variable, but we

choose the U.S. dollar index because it contains more information about risk transmission among

international equity markets. It is desirable to consider other variables of economic status as the
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smoothing variable and this may be left in a future study.

4.3 Empirical Results

The empirical analysis in this section includes two steps: First, we estimate γij,τ (Zt−1) for

each market index in the equation system (11) under τ = 0.05. Second, we use the estimated

value of γij,τ (Zt−1) to construct the matrix |Γ̂1,τ (Zt−1)|, and do network analysis on this matrix.

Before exploring the matrix |Γ̂1,τ (Zt−1)|, it is important to exam whether each γij,τ (Zt−1) in (11)

varies significantly with Zt−1 or not. To this end, we estimate each γij,τ (Zt−1) and corresponding

95% pointwise confidence intervals with the asymptotic bias ignored. Figure 1 depicts the cor-

responding estimation results, in which ij-th panel represents the result for γij,τ (·), respectively.

The black solid line in each panel of Figure 1 represents the estimates of the γij,τ (·) for 1 ≤ i ≤ 4

and 1 ≤ j ≤ 4 in (11) along various values of Zt−1 under τ = 0.05, and the red dashed lines

are 95% pointwise confidence intervals for each estimate without the asymptotic bias correction.

From Figure 1, we clearly see that these coefficient functions vary significantly over the interval

[−0.075, 0.075], which means that we can not use fixed-coefficient dynamic quantiles models to

fit the data.

Next, we consider analyzing the matrix |Γ̂1,τ (Zt−1)|, in which each entry is |γij,τ (Zt−1)|.

To simplify notation, Zt−1 and τ are dropped from |γ̂ij,τ (Zt−1)| and |γ̂ji,τ (Zt−1)| in the matrix

|Γ̂1,τ (Zt−1)|, in what follows. Then, |γ̂ji| in the matrix |Γ̂1,τ (Zt−1)| represents the intensity of

influence from the risk of market index i at time t − 1 to that of market index j at time t.

For the purpose of visualization, by following Härdle et al. (2016), we first define the levels of

connectedness. The connectedness with respect to incoming links (CIL) is defined as
󰁓4

i=1 |γ̂ji|,

which is the strength of the influence of all indexes’ VaR at time t−1 to the VaR of market index

j at time t. Analogously, the connectedness with respect to outgoing links (COL) is defined as

󰁓4
i=1 |γ̂ij|, which is the strength of the influence of index j’s VaR at time t − 1 to the VaRs

of all indexes at time t. Here, i, j = 1, 2, 3, 4 correspond to the four aforementioned market
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indexes in turn. The CIL measures the risk spillover that was emitted from all four market

indexes one day ago and is received currently by a certain market index; the COL measures the

risk spillover emitted from a certain market index one day ago and is received currently by all

market indexes. Intuitively, the CIL measures exposures of individual indexes to systemic shocks

from the financial network, while the COL measures contributions of individual indexes for risk

events in the network. Other than the CIL and COL, we also analyze the total connectedness in

the global market, which is equal to
󰁓4

j=1

󰁓4
i=1 |γ̂ij| and indicates the total risk spillover in the

global market, see Härdle et al. (2016) for more applications about these types of connectedness.

Figures 2 and 3 display the corresponding results along the same values of Zt−1, under τ = 0.05,

respectively. In Figure 2, each panel displays the CIL and COL subject to the U.S. dollar change.

The solid line in each panel represents values of COL and the dashed line indicates values of the

CIL. For Figure 3, the vertical axis measures the total connectedness appeared in international

equity markets and the horizontal axises in both figures are the same as those in each panel of

Figure 1.

Figure 2 shows that the curves of all four major market indexes vary greatly over the interval

(−0.075, 0.075) and exhibit almost asymmetrically U-shaped. In particular, when the U.S. dollar

experiences appreciation and during the “bad times” of the market (when Zt−1 is large and

τ = 0.05), domestic prices of commodity in Europe, Japan and China may increase, which pose

risks on domestic companies. Then, all investors who invested corporations in the European,

Japanese and Chinese markets suffer from loss of returns, causing both CIL and COL to go

up in all three markets. For the U.S. market, U.S. assets may become favorable among global

investors during the U.S. dollar appreciation, while investors in the U.S. market who invested

corporations in the rest of the world face loss of returns. These two forces lead the U.S. market to

be both more influential to the global market and to be influenced by global market more easily,

respectively. Thus, both curves in the panel of S&P 500 index increase. As for the case when

U.S. dollar depreciated, profits of investment on domestic corporations in European, Japanese
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and Chinese markets may increase, which lead the total amount of investment in these three

markets to grow. As a result, both types of curves in all three markets, as well as the CIL in

the U.S. market increase. Nevertheless, global investors who invested assets in the U.S. market

subject to adverse situation, which results in an upward movement of COL of S&P 500 index.

It is interesting that in the European and Japanese markets, during the U.S. dollar appre-

ciation (Zt−1 is large), the COL dominates CIL. These dynamic patterns in the European and

Japanese markets may be explained by the so called “carry trade”. The carry trade refers to

borrowing a low-yielding asset and buying a higher-yielding foreign asset to earn the interest

rate differential plus the expected foreign currency appreciation. Due to the relatively lower

interest rate in the European and Japanese markets within our time span of study, as Zt−1 is

large, carry traders who borrowed low-yielding assets from the Japanese or European markets

and bought assets from the U.S. market enjoy the increase of excess returns to carry trade. This

increase of excess returns may attract more carry traders to borrow the Japanese or European

assets and thus, make these two markets more influential to the global market. For this reason,

the COL becomes larger than CIL in these two markets. While in the U.S. market, since the

price of risky assets relies heavily on the demand of carry trade during U.S. dollar appreciation,

it becomes much easier for the U.S. market to be affected by the global market. Therefore, the

CIL dominates the COL in the U.S. market.

On the other hand, during the U.S. dollar depreciation, carry traders who borrowed the

Japanese or European asset may be unable to repay due to the significant loss of returns, which

cause the Japanese or European market to become more vulnerable. Consequently, the CIL

in both Japan and Europe markets increases drastically relative to the COL. Yet, in the U.S.

market, the price of risky assets affect the solvency of carry traders in the world, which let the

U.S. market become more influential to the world. Thus, the COL rises compared to the CIL for

S&P 500 index. As for the Chinese market, when U.S. dollar depreciated, corporations associated

with export subject to harmful impact. Under this unfavorable environment, investors in China
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may be more willing to invest assets from outside of the Chinese market. This trend magnifies

the influence of global risk events on the Chinese market, causing the CIL to dominate the COL.

Figure 3 sheds light on the variation of risk spillover in the global financial market. Observed

that in Figure 3, the total connectedness of all four market indexes demonstrates an U-shaped

and asymmetric pattern. It means that total risk spillover in the four major markets decrease

when Zt−1 becomes larger within the interval [−0.075,−0.025]. As Zt−1 exceeds −0.025, the

risk spillover intensity is magnified. In general, Figure 3 shows that the response of total risk

spillover to the U.S. dollar change switches its pattern at a certain threshold of the U.S. dollar

change, which is a relatively new result in literature.

5 Conclusion

In this paper, we investigate a functional coefficient VAR model for conditional quantiles,

which is new to the literature. A two-stage kernel method is proposed to estimate coefficients

functionals and the properties of asymptotic normality for the proposed estimators are estab-

lished. The simulation results show that our new methods of estimation work fairly well. In

addition, there is little literatures regarding the relationship between the variation of financial

network and the general state of economy. Based on our two-stage estimation approaches, the

proposed framework allows to study how specific state of economy has an influence on the net-

work characteristics of risk spillover in a financial system.

There are several issues still worth of further studies. First, it is interesting to visualize the

topological change of our financial network and to measure the transition of risk spillover among

different market indexes when the general economy is shifting. Technically, these studies can be

realized by our econometric model. Second, the asymptotic properties of functional coefficients

in our model provide solid theory to test the abnormal variation of financial network. Third, it is

meaningful to allow for cross-sectional dependence in the current model. Although some methods
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have been developed to deal with cross-sectional dependence in the literature of conditional mean

models, due to the nature of conditional quantile model, it is not obvious to extend these under

the quantile setting. Finally, if Zt in (2) is time, then the model in (2) provides a good start for

studying conditional quantile estimation of ARCH- and GARCH-type models with time-varying

parameters; see, for example, the papers by Dahlhaus and Subba Rao (2006) and Chen and Hong

(2016) for the time-varying GARCH type models. We leave these important issues, together with

some possible extensions as mentioned earlier in the paper, as future research topics.
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Table 1: Simulation results for γ10,τ (·), γ20,τ (·), γ30,τ (·), γ40,τ (·), and γij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20)

0.05 0.649 (0.110) 0.679 (0.108) 0.548 (0.050) 0.548 (0.050) 0.424 (0.036) 0.384 (0.035)

0.15 0.376 (0.055) 0.376 (0.055) 0.338 (0.031) 0.290 (0.035) 0.291 (0.022) 0.225 (0.024)

0.95 0.732 (0.188) 0.638 (0.126) 0.518 (0.061) 0.580 (0.068) 0.432 (0.038) 0.412 (0.036)

MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40)

0.05 0.627 (0.102) 0.700 (0.126) 0.563 (0.050) 0.569 (0.048) 0.488 (0.033) 0.458 (0.031)

0.15 0.403 (0.053) 0.409 (0.049) 0.307 (0.033) 0.305 (0.032) 0.245 (0.024) 0.243 (0.023)

0.95 0.754 (0.186) 0.691 (0.157) 0.522 (0.064) 0.579 (0.071) 0.464 (0.037) 0.369 (0.037)

MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12)

0.05 0.148 (0.063) 0.139 (0.063) 0.111 (0.045) 0.126 (0.056) 0.093 (0.036) 0.100 (0.042)

0.15 0.116 (0.051) 0.141 (0.063) 0.081 (0.036) 0.104 (0.048) 0.069 (0.032) 0.085 (0.034)

0.95 0.182 (0.085) 0.201 (0.103) 0.141 (0.055) 0.153 (0.061) 0.108 (0.040) 0.122 (0.047)

MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14)

0.05 0.147 (0.063) 0.147 (0.068) 0.115 (0.050) 0.124 (0.054) 0.095 (0.035) 0.094 (0.040)

0.15 0.105 (0.051) 0.153 (0.065) 0.082 (0.036) 0.113 (0.047) 0.069 (0.026) 0.078 (0.039)

0.95 0.176 (0.081) 0.212 (0.092) 0.132 (0.054) 0.153 (0.060) 0.108 (0.036) 0.120 (0.045)

MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22)

0.05 0.164 (0.077) 0.120 (0.060) 0.119 (0.047) 0.111 (0.049) 0.097 (0.039) 0.087 (0.038)

0.15 0.134 (0.054) 0.125 (0.057) 0.098 (0.037) 0.101 (0.043) 0.086 (0.034) 0.092 (0.034)

0.95 0.194 (0.073) 0.183 (0.076) 0.154 (0.058) 0.140 (0.056) 0.115 (0.040) 0.108 (0.038)

MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24)

0.05 0.156 (0.071) 0.133 (0.066) 0.124 (0.052) 0.111 (0.047) 0.099 (0.038) 0.087 (0.035)

0.15 0.120 (0.054) 0.127 (0.053) 0.094 (0.040) 0.098 (0.041) 0.079 (0.031) 0.095 (0.035)

0.95 0.186 (0.073) 0.184 (0.075) 0.143 (0.065) 0.135 (0.054) 0.113 (0.036) 0.104 (0.038)
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Table 2: Simulation results for γij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32)

0.05 0.146 (0.064) 0.143 (0.063) 0.107 (0.043) 0.124 (0.052) 0.099 (0.041) 0.087 (0.036)

0.15 0.115 (0.059) 0.140 (0.065) 0.082 (0.035) 0.105 (0.048) 0.069 (0.028) 0.093 (0.034)

0.95 0.178 (0.085) 0.200 (0.093) 0.135 (0.053) 0.149 (0.061) 0.108 (0.040) 0.113 (0.049)

MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34)

0.05 0.153 (0.062) 0.147 (0.062) 0.116 (0.051) 0.121 (0.054) 0.099 (0.037) 0.093 (0.037)

0.15 0.100 (0.047) 0.136 (0.062) 0.085 (0.036) 0.113 (0.045) 0.073 (0.028) 0.087 (0.036)

0.95 0.180 (0.084) 0.212 (0.097) 0.136 (0.049) 0.153 (0.057) 0.104 (0.041) 0.131 (0.043)

MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42)

0.05 0.156 (0.079) 0.123 (0.065) 0.118 (0.050) 0.116 (0.050) 0.099 (0.039) 0.091 (0.036)

0.15 0.129 (0.063) 0.115 (0.061) 0.099 (0.040) 0.098 (0.041) 0.079 (0.030) 0.081 (0.031)

0.95 0.195 (0.085) 0.180 (0.086) 0.148 (0.059) 0.141 (0.056) 0.113 (0.043) 0.105 (0.036)

MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44)

0.05 0.147 (0.080) 0.139 (0.066) 0.118 (0.056) 0.111 (0.047) 0.093 (0.039) 0.085 (0.034)

0.15 0.109 (0.055) 0.118 (0.054) 0.092 (0.037) 0.099 (0.039) 0.072 (0.027) 0.086 (0.030)

0.95 0.188 (0.088) 0.184 (0.076) 0.146 (0.060) 0.137 (0.052) 0.105 (0.041) 0.108 (0.037)

Table 3: Simulation results for βij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β11) MADE(β12) MADE(β11) MADE(β12) MADE(β11) MADE(β12)

0.05 0.215 (0.098) 0.214 (0.098) 0.131 (0.052) 0.137 (0.054) 0.087 (0.033) 0.088 (0.035)

0.15 0.137 (0.058) 0.145 (0.060) 0.084 (0.036) 0.089 (0.043) 0.056 (0.024) 0.060 (0.025)

0.95 0.253 (0.115) 0.286 (0.125) 0.151 (0.053) 0.159 (0.060) 0.095 (0.036) 0.103 (0.036)

MADE(β13) MADE(β14) MADE(β13) MADE(β14) MADE(β13) MADE(β14)

0.05 0.210 (0.092) 0.210 (0.097) 0.124 (0.052) 0.130 (0.054) 0.082 (0.031) 0.083 (0.033)

0.15 0.136 (0.062) 0.143 (0.062) 0.079 (0.034) 0.083 (0.039) 0.051 (0.020) 0.058 (0.023)

0.95 0.246 (0.114) 0.255 (0.119) 0.149 (0.055) 0.151 (0.057) 0.084 (0.034) 0.094 (0.029)

MADE(β21) MADE(β22) MADE(β21) MADE(β22) MADE(β21) MADE(β22)

0.05 0.213 (0.104) 0.218 (0.104) 0.135 (0.058) 0.133 (0.052) 0.084 (0.030) 0.084 (0.034)

0.15 0.132 (0.059) 0.150 (0.062) 0.088 (0.036) 0.090 (0.036) 0.061 (0.026) 0.064 (0.023)

0.95 0.249 (0.099) 0.260 (0.105) 0.150 (0.060) 0.160 (0.063) 0.091 (0.031) 0.100 (0.036)

MADE(β23) MADE(β24) MADE(β23) MADE(β24) MADE(β23) MADE(β24)

0.05 0.219 (0.102) 0.204 (0.104) 0.122 (0.050) 0.123 (0.052) 0.086 (0.031) 0.080 (0.031)

0.15 0.132 (0.058) 0.140 (0.061) 0.084 (0.034) 0.087 (0.034) 0.058 (0.021) 0.059 (0.022)

0.95 0.237 (0.096) 0.251 (0.107) 0.150 (0.061) 0.153 (0.065) 0.095 (0.032) 0.090 (0.029)
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Table 4: Simulation results for βij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β31) MADE(β32) MADE(β31) MADE(β32) MADE(β31) MADE(β32)

0.05 0.218 (0.086) 0.219 (0.099) 0.131 (0.054) 0.132 (0.054) 0.089 (0.035) 0.091 (0.035)

0.15 0.138 (0.065) 0.144 (0.067) 0.087 (0.037) 0.091 (0.037) 0.058 (0.022) 0.061 (0.024)

0.95 0.262 (0.119) 0.260 (0.137) 0.151 (0.058) 0.161 (0.058) 0.095 (0.037) 0.106 (0.041)

MADE(β33) MADE(β34) MADE(β33) MADE(β34) MADE(β33) MADE(β34)

0.05 0.207 (0.092) 0.218 (0.094) 0.121 (0.052) 0.130 (0.052) 0.076 (0.032) 0.087 (0.033)

0.15 0.130 (0.068) 0.129 (0.068) 0.082 (0.034) 0.083 (0.039) 0.057 (0.021) 0.056 (0.028)

0.95 0.247 (0.119) 0.255 (0.137) 0.147 (0.059) 0.151 (0.060) 0.089 (0.033) 0.110 (0.037)

MADE(β41) MADE(β42) MADE(β41) MADE(β42) MADE(β41) MADE(β42)

0.05 0.219 (0.101) 0.234 (0.108) 0.132 (0.057) 0.139 (0.052) 0.091 (0.032) 0.088 (0.034)

0.15 0.132 (0.066) 0.141 (0.069) 0.087 (0.034) 0.084 (0.034) 0.057 (0.021) 0.057 (0.023)

0.95 0.253 (0.110) 0.265 (0.119) 0.157 (0.061) 0.167 (0.066) 0.089 (0.032) 0.097 (0.035)

MADE(β43) MADE(β44) MADE(β43) MADE(β44) MADE(β43) MADE(β44)

0.05 0.211 (0.109) 0.207 (0.100) 0.124 (0.048) 0.123 (0.056) 0.082 (0.031) 0.082 (0.032)

0.15 0.131 (0.061) 0.125 (0.066) 0.080 (0.034) 0.083 (0.032) 0.058 (0.021) 0.056 (0.022)

0.95 0.234 (0.109) 0.238 (0.115) 0.144 (0.057) 0.152 (0.071) 0.090 (0.028) 0.088 (0.029)

Table 5: Average of empirical coverage rates (AECR) of 95% pointwise confidence intervals of γij,τ (·) and
βij,τ (·) without the asymptotic bias correction, for 1 ≤ i, j ≤ 4 and n = 4000.

τ Coverage Rates of γ̂ij,τ (·) Coverage Rates of β̂ij,τ (·)

γ̂11,τ γ̂12,τ γ̂13,τ γ̂14,τ β̂11,τ β̂12,τ β̂13,τ β̂14,τ

0.05 0.959 0.934 0.948 0.941 0.925 0.936 0.933 0.938

0.15 0.945 0.943 0.953 0.921 0.955 0.954 0.957 0.954

0.95 0.925 0.913 0.929 0.912 0.909 0.938 0.935 0.943

γ̂21,τ γ̂22,τ γ̂23,τ γ̂24,τ β̂21,τ β̂22,τ β̂23,τ β̂24,τ

0.05 0.916 0.935 0.930 0.937 0.931 0.932 0.929 0.934

0.15 0.923 0.953 0.934 0.952 0.958 0.952 0.956 0.953

0.95 0.930 0.938 0.934 0.936 0.947 0.938 0.942 0.935

γ̂31,τ γ̂32,τ γ̂33,τ γ̂34,τ β̂31,τ β̂32,τ β̂33,τ β̂34,τ

0.05 0.949 0.939 0.942 0.939 0.944 0.958 0.949 0.940

0.15 0.952 0.936 0.955 0.921 0.957 0.961 0.956 0.956

0.95 0.927 0.905 0.927 0.913 0.913 0.934 0.940 0.932

γ̂41,τ γ̂42,τ γ̂43,τ γ̂44,τ β̂41,τ β̂42,τ β̂43,τ β̂44,τ

0.05 0.930 0.934 0.936 0.926 0.923 0.921 0.939 0.929

0.15 0.923 0.954 0.932 0.943 0.951 0.955 0.956 0.957

0.95 0.936 0.947 0.929 0.945 0.944 0.941 0.949 0.942
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Figure 1: Plots of the estimated coefficient functions γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 in (11) in the main
article under τ = 0.05 (black solid lines), in which ij-th panel represents the result for γij,τ (·), respectively. The
red dashed lines in each panel indicate the 95% pointwise confidence interval for the estimate with the asymptotic
bias ignored.
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Figure 2: Connectedness with respect to outgoing links and connectedness with respect to incoming links for
four market indexes with τ = 0.05. The solid line in each panel represents values of connectedness with respect
to outgoing links and the dashed line in each panel indicates values of connectedness is for incoming link.

Figure 3: Total connectedness in international equity markets with τ = 0.05.
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Appendix: Mathematical Proofs

Appendix A: Mathematical Proofs of Theorem 1 and Con-

sistency of Σ̂τ (zo)

In this section, we give certain lemmas with their detailed proofs that are useful for proving

the theorem in the main article. Of course, notations and assumptions that are used here are

the same as those in the main article. Also note that C and M are denoted as generic constants

that may vary across occurrences.

A.1 Some Lemmas

Lemma A.1. Let β̂ be the minimizer of the function
!n

t=1 ωtρτ (Yt−XT
t β), where ωt > 0. Then,

"
!n

t=1 ωtXtψτ (Yt −XT
t β̂)" ≤ dim(X)maxt≤n "ωtXt".

Proof. The proof follows from Ruppert and Carroll (1980).

Now, some notations are introduced here to make a convenient presentation of our Bahadur

results given in Lemma A.6 (below). In Lemmas A.2 - A.6, τ is dropped from ατ (·) and write

h1 as h for simplicity. Let an = (nh1)
−1/2, for 1 ≤ s ∕= t ≤ n and for any fixed Zt ∕= Zs, define

ϑ0 = a−1
n (δ0 −α(Zt)) and ϑ̂0 = a−1

n (δ̂0 −α(Zt)). Of course, ϑ = a−1
n H1

"

#$
δ0 −α(Zt)

δ1 −α(1)(Zt)

%

&', ϑ̂ =

a−1
n H1

"

#$
δ̂0 −α(Zt)

δ̂1 −α(1)(Zt)

%

&', where H1 = diag{Iκm+1, h1Iκm+1}. In addition, let W ∗
s =

"

#$
W s

zshW s

%

&',

where zsh = (Zs − Zt)/h. Also, define Y ∗
s = Ys −W

T
s [α(Zt) +α(1)(Zt)(Zs − Zt)]. Therefore,

ϑ̂ = argmin
ϑ

n(

s=m+1 ∕=t

ρτ (Y
∗
s − anϑ

T
W

∗
s)K(zsh) ≡ argmin

ϑ
G(ϑ).

The derivative of G(ϑ) with respect to ϑ (except at point Y ∗
s = anϑ

T
W

∗
s) is given by

Tn(ϑ) = an

n(

s=m+1 ∕=t

ψτ (Y
∗
s − anϑ

T
W

∗
s)W

∗
sK(zsh), (A.1)

1



where ψτ (x) = τ − I(x < 0). Write ζ ≡ anϑ and ζ̂ ≡ anϑ̂. Then, (A.1) becomes to

Tn(ζ) = an

n(

s=m+1 ∕=t

ψτ (Y
∗
s − ζT

W
∗
s)W

∗
sK(zsh). (A.2)

In particular, suppose that D is any compact subset of R. To show the uniform consistency

of α̂(·) in Lemma A.2 later, for any z ∈ D , define ϑ̂(z) = a−1
n H1

"

#$
α̂(z)−α(z)

α̂(1)(z)−α(1)(z)

%

&' and

ζ̂(z) = anϑ̂(z). Let W s(z) =

"

#$
W s

((Zs − z)/h)W s

%

&' and Ys(z) ≡ Ys−W
T
s [α(z)+α(1)(z)(Zs− z)].

Lemma A.2. Under Assumptions A1 – A12 in the theorem, one has "ζ̂(z)" = Op(
)
m/nh)

uniformly over z ∈ D .

Proof. Let v ∈ R2(κm+1) be an arbitrary 2(κm+1)-dimension vector that satisfy "v" = 1, where

" · " is a Euclidean norm. By convexity of the objective function, for any small ε > 0, if we can

show that there is a large constant C such that

P

*
inf

%v%=1

n(

s=m+1

v
Tψτ (Ys(z)− (C(m/nh)1/2v)TW s(z))W s(z)K((Zs − z)/h) > 0

+
> 1− ε

(A.3)
uniformly over z ∈ D , then, the proof is finished. We first show that (A.3) holds for any fixed z0 ∈

D . To this end, define zs0h = (Zs−z0)/h and let ξs(v) = ψτ (Ys(z0)−vTW s(z0))W s(z0)K(zs0h)−

ψτ (Ys(z0))W s(z0)K(zs0h), then,

n(

s=m+1

v
Tψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h)

=
n(

s=m+1

v
Tψτ (Ys(z0))W s(z0)K(zs0h) +

n(

s=m+1

v
TE{ξs(C(m/nh)1/2v)}

+
n(

s=m+1

v
T [ξs(C(m/nh)1/2v)− E{ξs(C(m/nh)1/2v)}] = M1 +M2 +M3.

Following the proof in Xiao and Koenker (2009), we first analyze M3. Covering the ball

{"v" ≤ C(m/nh)1/2} with cubes C = {Ck}, where Ck is a cube with center vk and side length

C(m/(nh)5)1/2, so that N(n) = #(C) = (2(nh)2)m, and for v ∈ Ck, "v − vk" ≤ C(m/(nh)5/2).

2



Since I(Ys(z0) < x) is nondecreasing in x, then,

sup
%v%≤C(m/nh)1/2

,,,,,

n(

s=m+1

v
T [ξs(v)− E{ξs(v)}]

,,,,,

≤ max
1≤k≤N(n)

,,,,,

n(

s=m+1

v
T [ξs(vk)− E{ξs(vk)}]

,,,,,

+ max
1≤k≤N(n)

,,,,,

n(

s=m+1

|(vT
W s(z0))K(zs0h)|{bns(vk)− E(bns(vk))}

,,,,,

+ max
1≤k≤N(n)

,,,,,

n(

s=m+1

|(vT
W s(z0))K(zs0h)|{E(dns(vk))}

,,,,, ≡ M31 +M32 +M33,

where bns(vk) = I(Ys(z0) < vTk W s(z0)) − I(Ys(z0) < vTk W s(z0) + C(m/(nh)5/2)"W s(z0)")

and dns(vk) = I(Ys(z0) < vTk W s(z0) + C(m/(nh)5/2)"W s(z0)") − I(Ys(z0) < vTk W s(z0) −

C(m/(nh)5/2)"W s(z0)"). The analyses of M32 and M33 are similar to those in Welsh (1989)

and Xiao and Koenker (2009), so that our focus here is only on M31. Notice, for any ) > 0,

|ψτ (Ys(z0)) − ψτ (Ys(z0) − vTk W s(z0))|# = I(d3s < Ys ≤ d4s), where d3s = min(c2s, c2s + c3s)

and d4s = max(c2s, c2s + c3s) with c2s = [α(z0) + α(1)(z0)(Zs − z0)]
T
W s and c3s = vTk W s(z0).

Therefore, by Assumption A4, there exists a C > 0 such that E{|ψτ (Ys(z0)) − ψτ (Ys(z0) −

vTk W s(z0))|#|Zs,W s} = FY |Z,W (d4s) − FY |Z,W (d3s) ≤ C|vTk W s(z0)| ≤ C(m/nh)1/2"W s(z0)",

which implies that

E|vT ξs(vk)|δ = E[|ψτ (Ys(z0))− ψτ (Ys(z0)− vTk W s(z0))|δ|vT
W s(z0)|δKδ(zs0h)]

≤ C(m/nh)1/2E["W s(z0)""W s(z0)"δKδ(zs0h)] ≤ C((m/nh)1/2m(1+δ)/2h) (A.4)

by Assumption A7. Thus, we have

W 2
n =

n(

s=m+1

E[vT{ξs(vk)− E(ξs(vk))}]2 ≤
n(

s=m+1

E[vT ξs(vk)]
2 = O((mnh)1/2m3/2)

and

S2
n =

n(

s=m+1

[vT{ξs(vk)− E(ξs(vk))}]2 = Op((mnh)1/2m3/2).

Also, notice that ηs(vk) = {ξs(vk) − E(ξs(vk))} is a martingale difference sequence. Therefore,

let L = (mnh)1/2. Thus, we have

3



P

-
max

1≤k≤N(n)

,,,,,
1√
nh

n(

s=m+1

{vT [ξs(vk)− E(ξs(vk))]}

,,,,, > +

.

≤ N(n)max
k

P

-,,,,,
1√
nh

n(

s=m+1

{vT [ξs(vk)− E(ξs(vk))]}

,,,,, > +

.

≤ N(n)max
k

P

-,,,,,

n(

s=m+1

v
Tηs(vk)

,,,,, >
√
nh+,W 2

n + S2
n ≤ L

.

+N(n)max
k

P

-,,,,,

n(

s=m+1

v
Tηs(vk)

,,,,, >
√
nh+,W 2

n + S2
n > L

.
≡ J1 + J2. (A.5)

For J1, by exponential inequality for martingale difference sequences (see, e.g., Bercu and Touati,

2008), we have

N(n)max
k

P

-,,,,,

n(

s=m+1

v
Tηs(vk)

,,,,, >
√
nh+,W 2

n + S2
n ≤ L

.
≤ 2N(n) exp

/
− (nh)+2

2L

0
.

For J2, because P [W 2
n + S2

n > L] ≤ P [W 2
n > L] + P [S2

n > L] and each term can be bounded

exponentially under Assumptions A1, A5 and A6. Thus, M3 = op((mnh)1/2). As for M2, notice

that

M2 ≡
n(

s=m+1

v
TE{ξs(C(m/nh)1/2v)}

=
n(

s=m+1

v
TE{ψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h)− ψτ (Ys(z0))W s(z0)K(zs0h)}

=
n(

s=m+1

v
TE{[FY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)
T
W s|Zs,W s)

− FY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)

T
W s

+ C(m/nh)1/2vT
W s(z0)|Zs,W s)]W s(z0)K(zs0h)}

=− C(m/nh)1/2
n(

s=m+1

v
TE{fY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)
T
W s

+ ηC(m/nh)1/2vT
W s(z0)|Zs,W s)W s(z0)W

T
s (z0)K(zs0h)}v,

4



where W s(z0)W
T
s (z0) =

"

#$
1 zs0h

zs0h z2s0h

%

&'⊗W sW
T
s . Similar to the idea in Xu (2005),

fY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)

T
W s + ηC(m/nh)1/2vT

W s(z0)|Zs,W s)

=fY |Z,W (qτ (z0,W s)|Zs,W s) + Chzs0hα
(1)(z0)

T
W s + op(h),

which implies that

n(

s=m+1

v
TE{ξs(C(m/nh)1/2v)}

≈− C(m/nh)1/2
n(

s=m+1

v
TE[fY |Z,W (qτ (z0,W s)|Zs,W s)W s(z0)W

T
s (z0)K(zs0h)]v

− C(m/nh)1/2h2

n(

s=m+1

v
T{E[|α(1)(z0)

T
W s|W s(z0)W

T
s (z0)Kh(zs0h)]}v = M21 +M22.

Again, by Assumption A7,

1

n

n(

s=m+1

[α(1)(z0)
T
W s]

2 = "α(1)(z0)"2
α(1)(z0)

T ( 1
n

!n
s=m+1 W sW

T
s )α

(1)(z0)

"α(1)(z0)"2
≤ Cm.

Hence,

E

*
1

n

n(

s=m+1

|α(1)(z0)
T
W s|

+
≤ n−1/2E

*/
1

n

n(

s=m+1

[α(1)(z0)
T
W s]

2

01/2 +
≤ C(m/n)1/2,

which implies that E[|α(1)(z0)
T
W s|] ≤ C(m/n)1/2 and then, M22 = o((mnh)1/2). Thus,

M2 ≈− C(m/nh)1/2
n(

s=m+1

v
TE[fY |Z,W (qτ (z0,W s)|Zs,W s)W s(z0)W

T
s (z0)K(zs0h)]v

=− v
T

"

#$
L0 L1

L1 L2

%

&'v,

where, for d = 0, 1 and 2,

Ld = −C(mn)1/2h−1/2E[fY |Z,W (qτ (z0,W s)|Zs,W s)z
d
s0hW sW

T
s K(zs0h)]

=− C(mn)1/2h−1/2E[D∗(z0)z
d
s0hK(

Zs − z0
h

)]

=− C(mnh)1/2
1

D
∗(z0 + hz)zdK(z)fz(z0 + hz)dz ≈ −C(mnh)1/2µdfz(z0)D

∗(z0).

In addition, for M1, since

5



E[ψτ (Ys(z0))W s(z0)K(zs0h)] = E[τ − I(Ys(z0) < 0)]W s(z0)K(zs0h)

=E[τ − FY |Z,W (α(z0)
T
W s + hzs0hα

(1)(z0)
T
W s|Zs,W s)]W s(z0)K(zs0h)

=E[FY |Z,W (qτ (Zs,W s)|Zs,W s)− FY |Z,W (qτ (z0,W s)

+ hzs0hα
(1)(z0)

T
W s|Zs,W s)]W s(z0)K(zs0h)

=E[fY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)

T
W s

+ ηΛ(h, z0, Zs,W s)|Zs,W s)Λ(h, z0, Zs,W s)W s(z0)K(zs0h)],

where Λ(h, z0, Zs,W s) = qτ (Zs,W s)− qτ (z0,W s)− hzs0hα
(1)(z0)

T
W s, an application of Taylor

expansion of qτ (Zs,W s) at (z0,W s) leads to

Λ(h, z0, Zs,W s) =
α(2)(z0 + ℘hzs0h)

T

2
h2z2s0hW s.

Therefore, by Assumptions A7 and A10, one has

E[ψτ (Ys(z0))W s(z0)K(zs0h)]

=
h2

2
E[fY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)
T
W s + ηΛ(h, z0, Zs,W s)|Zs,W s)]

×W s(z0)W
T
s α

(2)(z0 + ℘hzs0h)z
2
s0hK(zs0h)

=
h2

2
E[fY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)
T
W s + ηΛ(h, z0, Zs,W s)|Zs,W s)]

×

"

#$
1

zs0h

%

&'D(Zs)α
(2)(z0 + ℘hzs0h)z

2
s0hK(zs0h)

=
h3

2
fz(z0){

"

#$
µ2

0

%

&'⊗D
∗(z0)}α(2)(z0) + o(h3).

Thus, E[vTψτ (Ys(z0))W s(z0)K(zs0h)] = O(m1/2h3). Then, by Markov’s inequality, stationarity

and Assumption A10, M1 =
!n

s=m+1 v
Tψτ (Ys(z0))W s(z0)K(zs0h) = op(

√
mnh). Thus,

6



*
inf

%v%=1

n(

s=m+1

v
Tψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h) > 0

+

⊇
*
C

2
fz(z0)D

∗(z0)λmin

2
v
T

"

#$
1 0

0 µ2

%

&'v

3
> 0

+

with probability going to 1 for a sufficient large C and as n → ∞. Thus, we complete the first

part of the proof.

Next, we show that (A.3) holds uniformly over z ∈ D . To proceed, define B ≡ {v : "v" ≤

C(m/nh)1/2} and Kz,h ≡ K((Zs − z)/h). Then, we want to show that

P

*
inf
z∈D

inf
v∈B

n(

s=m+1

v
Tψτ (Ys(z)− vTW s(z))W s(z)Kz,h > 0

+
> 1− ε.

Since D is compact, it can be covered by a finite number T (n) of cubes Dj = Dn,j with side

length ln = O(T−1(n)) = O(m1/2(nh)−1/4) and center zj. Clearly, ln = o(1) due to Assumption

A10. Now, write

sup
z∈D

sup
v∈B

n(

s=m+1

v
T [ψτ (Ys(z)− vTW s(z))]W s(z)Kz,h

≤ sup
z∈D

sup
v∈B

n(

s=m+1

E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}

+ sup
z∈D

sup
v∈B

n(

s=m+1

2
v
Tψτ (Ys(z)− vTW s(z))W s(z)Kz,h

− E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}
3
≡ K(1) +K(2).

We first consider K(2). Let ψτ,s(z, v) = ψτ (Ys(z)− vTW s(z)) for simplicity. Indeed,

K(2) ≡ sup
z∈D

sup
v∈B

n(

s=m+1

2
v
Tψτ,s(z, v)W s(z)Kz,h − E{vTψτ,s(z, v)W s(z)Kz,h}

3

≤ max
1≤j≤T (n)

sup
v∈B

,,,,
n(

s=m+1

v
T

2
ψτ,s(zj, v)W s(zj)Kzj ,h − E{ψτ,s(zj, v)W s(zj)Kzj ,h}

3,,,,

+ max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

,,,,
n(

s=m+1

2
v
T [ψτ,s(z, v)W s(z)Kz,h − ψτ,s(zj, v)W s(zj)Kzj ,h]

− E{vT [ψτ,s(z, v)W s(z)Kz,h − ψτ,s(zj, v)W s(zj)Kzj ,h]}
3,,,, ≡ H(1) +H(2).

7



We only focus on H(2), since the rate of H(1) can be controlled in the same way as in (A.5), when

z is fixed. Then,

H(2) = max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n(

s=m+1

*,,,,v
T [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h

− E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h}
,,,,

+

+ max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n(

s=m+1

*,,,,v
T [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]

× [Kz,h −Kzj ,h]− E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]

× [Kz,h −Kzj ,h]}
,,,,

+

+ max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n(

s=m+1

*,,,,v
Tψτ,s(zj, v)W s(zj)[Kz,h −Kzj ,h]

− E{vTψτ,s(zj, v)W s(zj)[Kz,h −Kzj ,h]}
,,,,

+
≡ H(21) +H(22) +H(23).

For H(21), similar to the derivation of (A.4), one can show by Lipschitz continuity that for any

) > 0, there exists a C > 0 such that

E{|[ψτ,s(z, v)− ψτ,s(zj, v)]|#|Zs,W s} ≤ Cm1/2ln

uniformly over v ∈ B, which implies that

E{|vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h|δ}

=E{|vT [ψτ,s(z, v)− ψτ,s(zj, v)]W s(z)Kzj ,h|δ}

+ E{|vT [ψτ,s(zj, v)](W s(z)−W s(zj))Kzj ,h|δ}

≤E{|ψτ,s(z, v)− ψτ,s(zj, v)|δ|vT
W s(z)|δKδ

zj ,h
}

+ E{|ψτ,s(zj, v)|δ|vT (W s(z)−W s(zj))|δKδ
zj ,h

} ≤ Clδnm
δ/2h

by the boundedness of ψτ,s(zj, v) uniformly over v ∈ B. Define ∆ψτ,s(z, zj) = ψτ,s(z, v)W s(z)−

ψτ,s(zj, v)W s(zj). Thus, we have

G2
n =

n(

s=m+1

E

*,,,,v
T∆ψτ,s(z, zj)Kzj ,h − E{vT∆ψτ,s(z, zj)Kzj ,h}

,,,,

+2

8



≤
n(

s=m+1

E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h}2 ≤ Cl2nmnh = O((mnh)1/2m3/2)

and

H2
n =

n(

s=m+1

*,,,,v
T∆ψτ,s(z, zj)Kzj ,h − E{vT∆ψτ,s(z, zj)Kzj ,h}

,,,,

+2

= Op((mnh)1/2m3/2).

Now, let χs(zj) = ∆ψτ,s(z, zj)Kzj ,h−E{∆ψτ,s(z, zj)Kzj ,h}. Thus, the fact that∆ψτ,s(z, zj)Kzj ,h−

E{∆ψτ,s(z, zj)Kzj ,h} is a martingale difference sequence implies that

P

-
max

1≤j≤T (n)

,,,,,
1√
nh

n(

s=m+1

{vT [∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}]}

,,,,, > +

.

≤T (n)max
j

P

-,,,,,
1√
nh

n(

s=m+1

{vT [∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}]}

,,,,, > +

.

≤T (n)max
j

P

-,,,,,

n(

s=m+1

v
Tχs(zj)

,,,,, >
√
nh+, G2

n +H2
n ≤ (mnh)1/2

.

+ T (n)max
j

P

-,,,,,

n(

s=m+1

v
Tχs(zj)

,,,,, >
√
nh+, G2

n +H2
n > (mnh)1/2

.
≡ I(1) + I(2).

Similar to the derivation in (A.5), under Assumptions A1, A5 and A6, one can show that I(1)

and I(2) can be bounded exponentially. Hence, H(21) = op((mnh)1/2). We can also show that

H(22) = op((mnh)1/2) and H(23) = op((mnh)1/2) in similar ways. Thus, K(2) = op((mnh)1/2). As

for K(1), notice that

K(1) ≡ sup
z∈D

sup
v∈B

n(

s=m+1

E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}

≤ sup
z∈D

sup
v∈B

n(

s=m+1

E{vT [ψτ (Ys(z)− vTW s(z))− ψτ (Ys(z))]W s(z)Kz,h}

+ sup
z∈D

sup
v∈B

n(

s=m+1

E{vTψτ (Ys(z))W s(z)Kz,h} ≡ K(11) +K(12).

In a similar way of calculatingM2, it can be shown by Assumption A10 thatK(11) = O((mnh)1/2)

and K(12) = O(m1/2nh3) = o((mnh)1/2) uniformly z ∈ D and v ∈ B. Therefore, the proof of

Lemma A.2 is finished.
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In the next two lemmas, we focus on Tn(ζ) in (A.2) to show stochastic equi-continuity for

Tn(ζ) − Tn(0) − E[Tn(ζ) − Tn(0)], so that we can derive the local Bahadur representation for

√
nhζ̂. In particular, define Dm = {ζ : "ζ" ≤ C(m/nh)1/2} for each fixed 0 < C < ∞.

Lemma A.3. Under Assumptions A1 – A12, for any a ∈ R2(κm+1)
satisfying "a" = O(1), one

has

sup
ζ∈Dm

|aT{Tn(ζ)− Tn(0)− E[Tn(ζ)− Tn(0)]}| = op(1).

Proof. For any ζ ∈ Dm, let Y ∗
ns = Y ∗

s − ζT
W

∗
s and Mns(ζ) = [ψτ (Y

∗
ns) − ψτ (Y

∗
s )]W

∗
sK(zsh).

Then,

Tn(ζ)− Tn(0) = an

n(

s=m+1 ∕=t

[ψτ (Y
∗
s − ζT

W
∗
s)− ψτ (Y

∗
s )]W

∗
sK(zsh) = an

n(

s=m+1 ∕=t

Mns(ζ)

and Mns(ζ) = [ψτ (Y
∗
ns) − ψτ (Y

∗
s )]W

∗
sK(zsh) =

4
M

(1)
ns (ζ),M

(2)
ns (ζ)

5T

with M
(1)
ns (ζ) = [ψτ (Y

∗
ns) −

ψτ (Y
∗
s )]W sK(zsh) and M

(2)
ns (ζ) = [ψτ (Y

∗
ns)− ψτ (Y

∗
s )]W szshK(zsh). Thus,

sup
ζ∈Dm

|aT{Tn(ζ)− Tn(0)− E[Tn(ζ)− Tn(0)]}|

≤an sup
ζ∈Dm

,,,,
n(

s=m+1 ∕=t

aT1 (M
(1)
ns (ζ)− EM (1)

ns (ζ))

,,,,+ an sup
ζ∈Dm

,,,,
n(

s=m+1 ∕=t

aT2 (M
(2)
ns (ζ)− EM (2)

ns (ζ))

,,,,

≡an sup
ζ∈Dm

,,,,
n(

s=m+1 ∕=t

{M (1a1)
ns (ζ)− E(M (1a1)

ns (ζ))}
,,,,+ an sup

ζ∈Dm

,,,,,

n(

s=m+1 ∕=t

{M (2a2)
ns (ζ)− E(M (2a2)

ns (ζ))}

,,,,,

≡M (1)
n (ζ) +M (2)

n (ζ),

where a1 ∈ Rκm+1 and a2 ∈ Rκm+1 are partitions of a. For M
(1)
n (ζ), it is easy to see that

M
(1)
n (ζ) ≡ an supζ∈Dm

,,,
!n

s=m+1 ∕=t{M
(1a1)
ns (ζ)− E(M

(1a1)
ns (ζ))}

,,,, where M
(1a1)
ns (ζ) = aT1M

(1)
ns (ζ).

Similar to the proof of Lemma A.2, for any ) > 0, |ψτ (Y
∗
ns)−ψτ (Y

∗
s )|# = I(a3s < Yt ≤ a4s), where

a3s = min(b2s, b2s + b3s) and a4s = max(b2s, b2s + b3s) with b2s = [α(Zt) +α(1)(Zt)(Zs − Zt)]
T
W s

and b3s = ζT
W

∗
s . Therefore, by Assumption A4, there exists a C > 0 such that

E{|ψτ (Y
∗
ns)− ψτ (Y

∗
s )|#|Zs,W s} = FY |Z,W (a4s)− FY |Z,W (a3s) ≤ C|ζT

W
∗
s |,

which implies by Assumption A7 that

10



E|M (1a1)
n1 (ζ)|δ = E[|ψτ (Y

∗
n1)− ψτ (Y

∗
1 )|δ|aT1W 1|δKδ(z1h)]

≤ CE[|ζT
W

∗
1|"W 1"δKδ(z1h)] ≤ C(anm

1/2m(1+δ)/2h). (A.6)

Similar to the proof of Lemma A.2, covering the ball Dm with cubes C = {Ck}, where Ck is a

cube with center ζk and side length C(m/nh)1/2, so that N(n) = #(C) = (2(nh)2)m, and for

ζ ∈ Ck, "ζ − ζk" ≤ C(m/(nh)5/2). Since I(Y ∗
s < x) is nondecreasing in x, then,

M (1)
n (ζ) ≡an sup

ζ∈Dm

,,,,,

n(

s=m+1 ∕=t

{M (1a1)
ns (ζ)− E(M (1a1)

ns (ζ))}

,,,,,

≤ max
1≤k≤N(n)

an

,,,,,

n(

s=m+1 ∕=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

,,,,,

+ max
1≤k≤N(n)

,,,,,

n(

s=m+1 ∕=t

|(aT1W s)K(zsh)|{b(1a1)ns (ζk)− E(b(1a1)ns (ζk))}

,,,,,

+ max
1≤k≤N(n)

,,,,,

n(

s=m+1 ∕=t

|(aT1W s)K(zsh)|{E(d(1a1)ns (ζk))}

,,,,, ≡ K1 +K2 +K3,

where b
(1a1)
ns (ζk) = I(Y ∗

s < ζT
kW s)− I(Y ∗

s < ζT
kW s + C(m/(nh)5/2)"W s") and

d
(1a1)
nt (ζk) = I(Y ∗

s < ζT
kW s + C(m/(nh)5/2)"W s")− I(Y ∗

s < ζT
kW s − C(m/(nh)5/2)"W s").

Now, our focus is only on K1. By noting that N(n) = (2(nh)2)m and "ζk" ≤ C(m/nh)1/2 and

κ is fixed, it follows by (A.6) that

Q2
n =

n(

s=m+1 ∕=t

E{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}2 ≤
n(

s=m+1 ∕=t

E[M (1a1)
ns (ζk)]

2 = O((mnh)1/2m3/2)

and

R2
n =

n(

s=m+1 ∕=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}2 = Op((mnh)1/2m3/2).

Also, notice that ϕs(ζk) = {M (1)
ns (ζk)−E(M

(1)
ns (ζk))} is a martingale difference sequence. There-

fore, let L = (mnh)1/2, we have

11



P

-
max

1≤k≤N(n)

,,,,,an
n(

s=m+1 ∕=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

,,,,, > +

.

≤N(n)max
k

P

-,,,,,
1√
nh

n(

s=m+1 ∕=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

,,,,, > +

.

≤N(n)max
k

P

-,,,,,

n(

s=m+1 ∕=t

aT1 ϕs(ζk)

,,,,, >
√
nh+, Q2

n +R2
n ≤ L

.

+N(n)max
k

P

-,,,,,

n(

s=m+1 ∕=t

aT1 ϕs(ζk)

,,,,, >
√
nh+, Q2

n +R2
n > L

.
≡ K11 +K12.

For K11, by exponential inequality for martingale difference sequences (see, e.g., Bercu and

Touati, 2008), we have

N(n)max
k

P

-,,,,,

n(

s=m+1 ∕=t

aT1 ϕs(ζk)

,,,,, >
√
nh+, Q2

n +R2
n ≤ L

.
≤2N(n) exp

/
− (nh)+2

2L

0
.

For K12, because

P
6
Q2

n +R2
n > L

7
≤ P

6
Q2

n > L
7
+ P

6
R2

n > L
7

and each term can be bounded exponentially under Assumptions A1, A5 and A6. Thus,

M
(1)
n (ζ) = op(1). Similarly, it can be shown that M

(2)
n (ζ) = op(1). These complete the proof of

the lemma.

Lemma A.4. Under Assumptions A1 – A12, for any a ∈ R2(κm+1)
satisfying "a" = O(1), one

has

sup
ζ∈Dm

"aT{E[Tn(ζ)− Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ}" = o(1),

where D
∗
1(Zt) = diag{D∗(Zt), µ2D

∗(Zt)}.

Proof. First, notice that

an

n(

s=m+1 ∕=t

E[(ψτ (Y
∗
s − ζT

W
∗
s)− ψτ (Y

∗
s ))W

∗
sK(zsh)]

=an

n(

s=m+1 ∕=t

E[I(Y ∗
s < 0)− I(Y ∗

s < ζT
W

∗
s)]W

∗
sK(zsh)

12



=an

n(

s=m+1 ∕=t

E[FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s|Zs,W s)

− FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s + b3s|Zs,W s)W

∗
sK(zsh)]

=− 1

nh

n(

s=m+1 ∕=t

E[fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s

+ϖb3s|Zs,W s)W
∗
sW

∗T
s

√
nhζK(zsh)],

where W
∗
sW

∗T
s =

"

#$
1 zsh

zsh z2sh

%

&'⊗W sW
T
s . Therefore, similar to the proof of Lemma A.2,

fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s +ϖb3s|Zs,W s)

=fY |Z,W (qτ (Zt,W s)|Zs,W s) + Chzshα
(1)(Zt)

T
W s + op(h).

Hence, it follows that

an

n(

s=m+1 ∕=t

E[(ψτ (Y
∗
s − ζT

W
∗
s)− ψτ (Y

∗
s ))W

∗
sK(zsh)] =

"

#$
A0 A1

A1 A2

%

&'+ o(1),

where for d = 0, 1 and 2,

Ad =− 1

nh

n(

s=m+1 ∕=t

E[fY |Z,W (qτ (Zt,W s) + g(Zt, h, Z,W ,ϖ)|Zs,W s)

× zdshW sW
T
s

√
nhζK(zsh)]

=− 1

h
E[fY |Z,W (qτ (Zt,W s)|Zs,W s)z

d
shW sW

T
s

√
nhζK(zsh)]

− 1

h
E{g(Zt, h, Z,W ,ϖ)zdshW sW

T
s

√
nhζK(zsh)}

=− 1

h
E[fY |Z,W (qτ (Zt,W s)|Zs,W s)z

d
shW sW

T
s

√
nhζK(zsh)]

− CE{|α(1)(Zt)
T
W s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)

=− 1

h
E[D∗(Zs)

√
nhζzdshK(

Zs − Zt

h
)]

− CE{|α(1)(Zt)
T
W s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)
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=− 1

h

1
D

∗(z)
√
nhζ(

z − Zt

h
)dK(

z − Zt

h
)fz(z)dz

− CE{|α(1)(Zt)
T
W s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)

=−
1

D
∗(Zt + hz)

√
nhζzdK(z)fz(Zt + hz)dz

−−CE{|α(1)(Zt)
T
W s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1),

with g(Zt, h, Z,W ,ϖ) = hzshα
(1)(Zt)

T
W s +ϖb3s. Note that

−
1

D
∗(Zt + hz)

√
nhζzdK(z)fz(Zt + hz)dz + o(1) = −µdfz(Zt)D

∗(Zt)
√
nhζ + o(1).

Also, by Assumption A7, one has E[|α(1)(Zt)
T
W s|] ≤ C(m/n)1/2. Then, by choosing suf-

ficiently large C > 0 and by Assumption A10, "E[Tn(ζ) − Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ" ≤

Cmn−1/2mh = o(1). Thus, |aT{E[Tn(ζ)−Tn(0)]+fz(Zt)D
∗
1(Zt)

√
nhζ}| ≤ C"E[Tn(ζ)−Tn(0)]+

fz(Zt)D
∗
1(Zt)

√
nhζ" = o(1). Combining the above analysis with the methods of constructing

cubes in the proof of Lemma A.3, the lemma is proved.

Lemma A.5. Let Ss = ψτ (Y
∗
s )W

∗
sK(zsh). Under Assumptions A1 – A12, for 1 ≤ s ∕= t ≤ n

and for any fixed Zt ∕= Zs, one has

E[Ss] =
h3fz(Zt)

2

"

#$
µ2D

∗(Zt)α
(2)(Zt)

0

%

&'+ o(h3),

and

V ar[Ss] = hτ(1− τ)fz(Zt)D1(Zt) + o(h),

where D1(Zt) = diag{ν0D(Zt), ν2D(Zt)}. Further,

V ar[Tn(0)] → τ(1− τ)fz(Zt)D1(Zt).

Therefore, "Tn(0)" = Op(1).

Proof. This proof follows from the proof of Lemma 3.5 in Xu (2005). Firstly, we calculate E[Ss].

Indeed,
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E[Ss] =E[ψτ (Y
∗
s )W

∗
sK(zsh)] = E[τ − I(Y ∗

s < 0)]W ∗
sK(zsh)

=E[τ − FY |Z,W (α(Zt)
T
W s + hzshα

(1)(Zt)
T
W s|Zs,W s)]W

∗
sK(zsh)

=E[FY |Z,W (qτ (Zs,W s)|Zs,W s)− FY |Z,W (qτ (Zt,W s)

+ hzshα
(1)(Zt)

T
W s|Zs,W s)]W

∗
sK(zsh)}

=E{fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s

+ ξΛ(h, Zt, Zs,W s)|Zs,W s)Λ(h, Zt, Zs,W s)W
∗
sK(zsh)},

where Λ(h, Zt, Zs,W s) = qτ (Zs,W s) − qτ (Zt,W s) − hzshα
(1)(Zt)

T
W s. An application of the

Taylor expansion of qτ (Zs,W s) at (Zt,W s) leads to

Λ(h, Zt, Zs,W s) =
α(2)(Zt + ςhzsh)

T

2
h2z2shW s.

Therefore, similar to the proof in Lemma A.2,

E[Ss] =
h2

2
E[fY |Z,W (qτ (Zt,W s) + hzshα

(1)(Zt)
T
W s + ξΛ(h, Zt, Zs,W s)|Zs,W s)

×W
∗
sW

T
s α

(2)(Zt + ςhzsh)z
2
shK(zsh)]

=
h2

2
E

*
fY |Z,W (qτ (Zt,W s) + hzshα

(1)(Zt)
T
W s + ξΛ(h, Zt, Zs,W s)|Zs,W s)

×

"

#$
1

zsh

%

&'D(Zs)α
(2)(Zt + ςhzsh)z

2
shK(zsh)

+

=
h3

2
fz(Zt){

"

#$
µ2

0

%

&'⊗D
∗(Zt)}α(2)(Zt) + o(h3). (A.7)

As for E[SsS
T
s ], one has

E[SsS
T
s ] = E[ψ2

τ (Y
∗
s )W

∗
sW

∗T
s K2(zsh)]

=E{[τ 2 − (2τ − 1)I(Y ∗
s < 0)]W ∗

sW
∗T
s K2(zsh)}

=(2τ − 1)E{[τ − I(Y ∗
s < 0)]W ∗

sW
∗T
s K2(zsh)}+ τ(1− τ)E[W ∗

sW
∗T
s K2(zsh)] ≡ R(1) +R(2).
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Similar to the above derivation, it is not difficult to show that

R(1) ≡(2τ − 1)E{[τ − I(Y ∗
s < 0)]W ∗

sW
∗T
s K2(zsh)}

=(2τ − 1)E{[FY |Z,W (qτ (Zs,W s)|Zs,W s)

− FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s|Zs,W s)]W

∗
sW

∗T
s K2(zsh)}

=(2τ − 1)E[fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

T
W s

+ ξΛ(h, Zt, Zs,W s)|Zs,W s)
α(2)(Zt + ζhzsh)

T
W s

2
h2z2sh

×W
∗
sW

∗T
s K2(zsh)] = o(h2)

and

R(2) ≡ τ(1− τ)E[W ∗
sW

∗T
s K2(zsh)] = hτ(1− τ)fz(Zt)

"

#$
ν0 0

0 ν2

%

&'⊗D(Zt)(1 + o(1)). (A.8)

Next, it is shown that the last part of lemma holds true. To this end, it is easy to check that

V ar[Tn(0)] ≤
1

h
[V ar(S1) + 2

n−1(

ℓ=1

(1− ℓ

n
)Cov(S1, Sℓ+1)]

≤1

h
V ar(S1) +

2

h

dn−1(

ℓ=1

|Cov(S1, Sℓ+1)|+
2

h

∞(

ℓ=dn

|Cov(S1, Sℓ+1)| ≡ J4 + J5 + J6

By (A.7) and (A.8),

J4 → τ(1− τ)fz(Zt)

"

#$
ν0 0

0 ν2

%

&'⊗D(Zt).

Now, it remains to show that |J5| = o(1) and |J6| = o(1). First, we consider J6. To this end, using

Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)) and the boundedness

of ψτ (·), one has

|Cov(S1, Sℓ+1)| ≤ Cα1−2/δ(ℓ)[E|S1|δ]2/δ ≤ Cmh2/δα1−2/δ(ℓ),

which gives

J6 ≤Cmh2/δ−1

∞(

ℓ=dn

α1−2/δ(ℓ) ≤ Cmh2/δ−1d−d
n

∞(

ℓ=dn

ℓdα1−2/δ(ℓ) = o(mh2/δ−1d−d
n ) = o(1),

by choosing dn to satisfy ddnm
−1h1−2/δ = c. As for J5, following the proof of Lemma 3.5 in Xu

(2005), one has |J5| = o(1). These prove Lemma A.5.
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Lemma A.6. (Bahadur representation) Under Assumptions A1 – A12, for any fixed Zt ∕= Zs,

one has,

ϑ̂ ≡
)
nh1ζ̂ =

1√
nh1fz(Zt)

(D∗
1(Zt)

−1)
n(

s=m+1 ∕=t

ψτ (Y
∗
s )W

∗
sK(zsh1) + op(1),

where D
∗
1(Zt) =

"

#$
1 0

0 µ2

%

&'⊗D
∗(Zt).

Proof. We first derive the local Bahadur representation for ϑ̂. Indeed, by Lemma A.2, "ζ̂" =

Op((m/nh)1/2). On the other hand, by Lemmas A.3, A.4 and A.5, Tn(ζ) satisfies "Tn(0)" = Op(1)

and sup%ζ%≤C(m/nh)1/2 |aT{Tn(ζ)+D
√
nhζ−Tn(0)}| = op(1) with D = fz(Zt)D

∗
1(Zt). In addition,

it follows from Assumption A10 and Lemma A.1 that "Tn(ζ̂)" = op(1). Then, replacing a by

D−1a, the lemma is proved.

Lemma A.7. Define KnL = {(∆,ϑ) : "ϑ" ≤ L, "∆" ≤ M} for some 0 < M < ∞ and

0 < L < ∞, let Vn(ϑ) and Vn(∆,ϑ) be vectors that satisfy (i) −∆TVn(λ∆,ϑ) ≥ −∆TVn(∆,ϑ)

for λ ≥ 1 and "ϑ" ≤ L, and (ii)

sup
(∆,ϑ)∈KnL

"Vn(∆,ϑ) + Vn(ϑ) +D∆− An" = op(1),

where "An" = Op(1) and D is a positive-definite matrix. Suppose that ∆n and ϑn are vectors

such that "Vn(∆n,ϑn)" = op(1) and "Vn(ϑn)" = Op(1). Then, one has "∆n" = Op(1) and

∆n = D−1(An − Vn(ϑn)) + op(1).

Proof. The proof follows from Koenker and Zhao (1996) and Conditions (i) and (ii) that

Vn(∆n,ϑn) + Vn(ϑn) +D∆n − An = op(1). This completes the proof.

To show Lemmas A.8 and A.9 later, τ is dropped from gτ (z0) and h2 is written as h for sim-

plicity. For the notational convenience again, define bn = (nh2)
−1/2, let θ0 = b−1

n (Θ0−g(z0)) and

θ1 = hb−1
n (Θ1−g

(1)(z0)). Then, θ = b−1
n H2

"

#$
Θ0 − g(z0)

Θ1 − g
(1)(z0)

%

&', where H2 = diag{I2κ+1, h2I2κ+1}.

For convenience of analysis, we rewrite X̂ t ≡ X t(ϑ̂0) ≡ X t(α(Zt) + (nh1)
−1/2ϑ̂0) because it

contains q̂τ,t = W
T
t δ̂0. Similarly, X t(ϑ0) ≡ X t(α(Zt) + (nh1)

−1/2ϑ0), X
∗
t (ϑ0) ≡ X

∗
t (α(Zt) +

17



(nh1)
−1/2ϑ0) and X̂

∗
t ≡ X

∗
t (ϑ̂0) ≡ X

∗
t (α(Zt) + (nh1)

−1/2ϑ̂0), where X
∗
t (ϑ0) =

"

#$
X t(ϑ0)

zthX t(ϑ0)

%

&'

and X
∗
t (ϑ̂0) =

"

#$
X t(ϑ̂0)

zthX t(ϑ̂0)

%

&' and zth = (Zt − z0)/h. Of course, X∗
t (0) ≡ X

∗
t =

"

#$
X t

zthX t

%

&'.

Hence, ∂X t(ϑ0)/∂ϑ0 = anΠt, whereΠ
T
t = (0T1×(κm+1),W t, . . . ,W t, 0

T
κ×(κm+1)) has the same def-

inition as that in the main article. Next, denote v∗t (ϑ0) = Yt−X
T
t (ϑ0)[g(z0)+g

(1)(z0)(Zt− z0)],

v∗t (0) = Yt−X
T
t [g(z0)+g

(1)(z0)(Zt− z0)] and v∗nt = v∗nt(θ,ϑ0) = v∗t (ϑ0)− bnθ
T
X

∗
t (ϑ0). In addi-

tion, define Γ∗(Zt) = E[fY |Z,X(qτ (z0,X t))X
∗
tgτ (z0)

TΠt|Zt] and Γ(Zt) = E[fY |Z,X(qτ (z0,X t))X t

gτ (z0)
TΠt|Zt]. Again, let Am = {θ : "θ" ≤ M} and Bm = {ϑ0 : "ϑ0" ≤ L} for some

0 < M < ∞ and for some 0 < L < ∞, Therefore,

θ̂ = argmin
θ

n(

t=1

ρτ (v
∗
t (ϑ̂0)− bnθ

T
X

∗
t (ϑ̂0))K(zth) ≡ argmin

θ
J(θ).

Now, define vector functions of θ and ϑ0

Vn(θ,ϑ0) = bn

n(

t=1

ψτ (v
∗
t (ϑ0)− bnθ

T
X

∗
t (ϑ0))X

∗
t (ϑ0)K(zth),

and

Vn(ϑ0) = bn

n(

t=1

Γ∗(Zt)[anϑ0]K(zth),

where ψτ (x) = τ − I(x < 0). In the next three lemmas, we show that Vn(θ,ϑ0) and Vn(ϑ0)

satisfy Lemma A.7, so that we can derive the local Bahadur representation for θ̂.

Lemma A.8. Under the assumptions in Theorem 1, one has

sup
ϑ0∈Bm,θ∈Am

"Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]" = op(1).

Proof. For any θ ∈ Am and for any ϑ0 ∈ Bm, we have

Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)

=bn

n(

t=1

[ψτ (v
∗
t (ϑ0)− bnθ

T
X

∗
t (ϑ0))− ψτ (v

∗
t (ϑ0))]X

∗
t (ϑ0)K(zth)

+ bn

n(

t=1

[ψτ (v
∗
t (ϑ0))](X

∗
t (ϑ0)−X

∗
t )K(zth)

18



+ bn

n(

t=1

[ψτ (v
∗
t (ϑ0))− ψτ (v

∗
t (0))]X

∗
tK(zth) + bn

n(

t=1

Γ∗(Zt)[anϑ0]K(zth)

=bn

n(

t=1

Vnt(θ,ϑ0) + bn

n(

t=1

Unt(θ,ϑ0) + bn

n(

t=1

Wnt(θ,ϑ0) + bn

n(

t=1

Rnt(ϑ0),

where Vnt(θ,ϑ0) = [ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ0))]X

∗
t (ϑ0)K(zth) =

4
V

(1)T
nt , V

(2)T
nt

5T

, Unt(θ,ϑ0) =

[ψτ (v
∗
t (ϑ0))](X

∗
t (ϑ0)−X

∗
t )K(zth) =

4
U

(1)T
nt , U

(2)T
nt

5T

, Wnt(θ,ϑ0) = [ψτ (v
∗
t (ϑ0))− ψτ (v

∗
t (0))]X

∗
t

×K(zth) =
4
W

(1)T
nt ,W

(2)T
nt

5T

, and Rnt(ϑ0) = anΓ
∗(Zt)ϑ0K(zth) =

4
R

(1)T
nt , R

(2)T
nt

5T

with V
(1)
nt =

[ψτ (v
∗
nt) − ψτ (v

∗
t (ϑ0))]X t(ϑ0)K(zth), V

(2)
nt = [ψτ (v

∗
nt) − ψτ (v

∗
t (ϑ0))]X t(ϑ0)zthK(zth), U

(1)
nt =

[ψτ (v
∗
t (ϑ0))](X t(ϑ0) − X t)K(zth), and U

(2)
nt = [ψτ (v

∗
t (ϑ0))](X t(ϑ0) − X t)zthK(zth). In addi-

tion, W
(1)
nt = [ψτ (v

∗
t (ϑ0)) − ψτ (v

∗
t (0))]X tK(zth), W

(2)
nt = [ψτ (v

∗
t (ϑ0)) − ψτ (v

∗
t (0))]X tzthK(zth),

R
(1)
nt = anΓ(Zt)ϑ0K(zth) and R

(2)
nt = anΓ(Zt)ϑ0zthK(zth). Thus,

"Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]"

=

8888bn

"

#$

!n
t=1(V

(1)
nt − EV

(1)
nt )

!n
t=1(V

(2)
nt − EV

(2)
nt )

%

&'
8888+

8888bn

"

#$

!n
t=1(U

(1)
nt − EU

(1)
nt )

!n
t=1(U

(2)
nt − EU

(2)
nt )

%

&'
8888

+

8888bn

"

#$

!n
t=1(W

(1)
nt − EW

(1)
nt )

!n
t=1(W

(2)
nt − EW

(2)
nt )

%

&'
8888+

8888bn

"

#$

!n
t=1(R

(1)
nt − ER

(1)
nt )

!n
t=1(R

(2)
nt − ER

(2)
nt )

%

&'
8888

≤bn"
n(

t=1

(V
(1)
nt − EV

(1)
nt )"+ bn"

n(

t=1

(V
(2)
nt − EV

(2)
nt )"

+ bn"
n(

t=1

(U
(1)
nt − EU

(1)
nt )"+ bn"

n(

t=1

(U
(2)
nt − EU

(2)
nt )"

+ bn"
n(

t=1

(W
(1)
nt − EW

(1)
nt )"+ bn"

n(

t=1

(W
(2)
nt − EW

(2)
nt )"

+ bn"
n(

t=1

(R
(1)
nt − ER

(1)
nt )"+ bn"

n(

t=1

(R
(2)
nt − ER

(2)
nt )"

≡V (1)
n + V (2)

n + U (1)
n + U (2)

n +W (1)
n +W (2)

n +R(1)
n +R(2)

n .

As for V
(1)
n , it is easy to see that

V (1)
n ≡bn"

n(

t=1

(V
(1)
nt − EV

(1)
nt )" ≤

2κ+1(

i=1

"bn
n(

t=1

(V
(1i)
nt − EV

(1i)
nt )" =

2κ+1(

i=1

"V (1i)
n ",
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where V
(1i)
nt = [ψτ (v

∗
nt) − ψτ (v

∗
t (ϑ0))]Xit(ϑ0)K(zth), and V

(1i)
n = bn

!n
t=1(V

(1i)
nt − EV

(1i)
nt ). Now,

we consider the variance of V
(1i)
n ; that is,

E(V (1i)
n )2 =

1

nh
E

* n(

t=1

(V
(1i)
nt − EV

(1i)
nt )

+2

=
1

nh

2 n(

t=1

V ar(V
(1i)
nt ) + 2

n−1(

ℓ=1

(1− ℓ

n
)Cov(V

(1i)
n1 , V

(1i)
n(ℓ+1))

3

≤ 1

h
V ar(V

(1i)
n1 ) +

2

h

dn−1(

ℓ=1

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))|+

2

h

∞(

ℓ=dn

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))|

≡ J7 + J8 + J9

with dn → ∞ specified later. First, we consider the last term, J9, in the above equation. To this

end, using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)), one has

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))| ≤ Cα1−2/δ(ℓ)[E|V (1i)

n1 |δ]2/δ. (A.9)

Notice that for any k > 0, |ψτ (v
∗
nt)−ψτ (v

∗
t (ϑ0))|k = I(r3t < Yt ≤ r4t), where r3t = min(p2t, p2t +

p3t) and r4t = max(p2t, p2t + p3t) with p2t = [gτ (z0) + g
(1)
τ (z0)(Zt − z0)]

T
X t(ϑ0) and p3t =

1√
nh
θT

X
∗
t (ϑ0). Therefore, by Assumption A4, there exists a C > 0 such that

E{|ψτ (v
∗
nt)− ψτ (v

∗
t (ϑ0))|k|Zt,X t} = FY |Z,X(r4t)− FY |Z,X(r3t) ≤ Cbn|θT

X
∗
t (ϑ0)|,

which implies by Assumption A9 that

E[V
(1i)
n1 |δ = E[|ψτ (v

∗
n1)− ψτ (v

∗
1(ϑ0))|δ|Xi1(ϑ0)|δKδ(z1h)]

≤ CbnE[|θT
X

∗
t (ϑ0)||Xi1(ϑ0)|δKδ(z1h)].

Notice that since "ϑ0" ≤ L, by mean value theorem and triangle inequality, one can choose a

sufficiently large C > 0, such that "X∗
t (ϑ0)" ≤ C"X∗

t". Then,

E|V (1i)
n1 |δ = E[|ψτ (v

∗
n1)− ψτ (v

∗
1(ϑ0))|δ|Xi1(ϑ0)|δKδ(z1h)]

≤ CbnE[|θT
X

∗
t (ϑ0)||Xi1(ϑ0)|δKδ(z1h)] ≤ CbnE[|θT

X
∗
t ||X1i|δKδ(z1h)] ≤ Cbnh.

This, in conjunction with (A.9), gives that
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J9 ≤ Cb2/δn h2/δ−1

∞(

ℓ=dn

α1−2/δ(ℓ) ≤ Cb2/δn h2/δ−1d−w
n

∞(

ℓ=dn

ℓwα1−2/δ(ℓ) = o(b2/δn h2/δ−1d−w
n ) = o(1).

As for J8, again by choosing sufficiently large C > 0, we use Assumptions A4 and A11 to obtain

|Cov(V
(1i)
n1 , V

(1i)
n(ℓ+1))| ≤ E|V (1i)

n1 V
(1i)
n(ℓ+1)|+ E|V (1i)

n1 |E|V (1i)
n(ℓ+1)|

≤ CE|X1iX(ℓ+1)i|K(z1h)K(z(ℓ+1)h) + Ch2 ≤ Ch2.

It follows that J8 = o(1) by dnh → 0. Analogously,

J7 = h−1V ar(V
(1i)
n1 ) ≤ h−1E(V

(1i)
n1 )2 = O(bn).

Thus, V
(1i)
n1 = op(1). So that V

(1)
n = op(1). Similarly, it can be shown that V

(2)
n = op(1). For

U
(1)
n , also notice that

U (1)
n ≡ bn"

n(

t=1

(U
(1)
nt − EU

(1)
nt )" ≤

2κ+1(

i=1

"bn
n(

t=1

(U
(1i)
nt − EU

(1i)
nt )" =

2κ+1(

i=1

"U (1i)
n ",

where U
(1i)
nt = [ψτ (v

∗
t (ϑ0))](Xti(ϑ0) −Xti)K(zth) and U

(1i)
n = bn

!n
t=1(U

(1i)
nt − EU

(1i)
nt ). By mean

value theorem, there exists ϑ′
0 ∈ (0,ϑ0), such that

E|U (1i)
n1 |δ = E[|ψτ (v

∗
1(ϑ0))|δ|X1i(ϑ0)−X1i|δKδ(z1h)]

≤ CE[|X1i(ϑ0)−X1i|δKδ(z1h)] ≤ CE

2,,,,

9
∂X1i(ϑ0)

∂ϑ0

,,,,
ϑ0=ϑ′

0

ϑ0

:,,,,
δ

Kδ(z1h)

3
≤ Caδnh

by the boundedness of ψτ (·). Then, it can be shown that U
(1i)
n1 = op(1) so that U

(1)
n = op(1).

Similarly, one can also prove that U
(2)
n = op(1). As for W

(1)
nt , notice that for any k > 0,

|ψτ (v
∗
t (ϑ0)) − ψτ (v

∗
t (0))|k = I(c3t < Yt ≤ c4t), where c3t = min(d2t, d3t) and c4t = max(d2t, d3t)

with d2t = [gτ (z0)+g
(1)
τ (z0)(Zt−z0)]

T
X t(ϑ0) and d3t = [gτ (z0)+g

(1)
τ (z0)(Zt−z0)]

T
X t. Therefore,

by Assumption A4, there exists a C > 0 such that

E{|ψτ (v
∗
t (ϑ0))− ψτ (v

∗
t (0))|k|Zt,X t} = FY |Z,X(c4t)− FY |Z,X(c3t) ≤ C

,,,,

9
∂X1i(ϑ0)

∂ϑ0

,,,,
ϑ0=ϑ′

0

:
ϑ0

,,,,,

which implies by Assumption A9 that
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E|W (1i)
n1 |δ = E[|ψτ (v

∗
t (ϑ0))− ψτ (v

∗
t (0))|δ|Xi1|δKδ(z1h)] ≤ Caδnh.

Then, it is not hard to show that W
(1)
nt = op(1) and W

(2)
nt = op(1). Similarly, one can also obtain

that R
(1)
nt = op(1) and R

(2)
nt = op(1). Thus, it follows that for any fixed θ ∈ Am and for any fixed

ϑ0 ∈ Bm,

"Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]" = op(1). (A.10)

Next, to show that the above result holds uniformly in Am and Bm, we use the Bickel’s (1975)

chaining approach to show that

sup
ϑ0∈Bm,θ∈Am

"Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]" = op(1).

Now, we decompose Am and Bm into cubes, respectively, based on the grid (j1!M, . . . ,

j2(2κ+1)!M) and (i1kL, . . . , i2(2κ+1)kL), where jk = 0,±1, . . . ,±[1/!]+1, ik = 0,±1, . . . ,±[1/k]+

1, [·] denotes taking integer part of ·, and ! and k are fixed positive small numbers. Denote D(θ)

and D(ϑ0) the lower vertex of cubes that contain θ and ϑ0, respectively. Then,

sup
ϑ0∈Bm,θ∈Am

"Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]"

≤ sup
ϑ0∈Bm,θ∈Am

"Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]"

+ sup
ϑ0∈Bm,θ∈Am

"Vn(D(θ),ϑ0)− Vn(D(θ), 0)− E[Vn(D(θ),ϑ0)− Vn(D(θ), 0)]"

+ sup
ϑ0∈Bm,θ∈Am

"Vn(θ,ϑ0)− Vn(D(θ),ϑ0)− E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]"

+ sup
ϑ0∈Bm

"Vn(ϑ0)− E[Vn(ϑ0)]"

≡H1 +H2 +H3 +H4.

Notice that following the way in Xu (2005), it is not hard to show that H4 = op(1). We only

need to focus on H1, H2 and H3. To this end, for H1, since X t ≡ X t(0), it follows easily from
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(A.10) that

H1 ≡ sup
ϑ0∈Bm,θ∈Am

"Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]" = op(1).

As for the first term of H3, notice that

sup
ϑ0∈Bm,θ∈Am

"Vn(θ,ϑ0)− Vn(D(θ),ϑ0)"

=bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(θ,ϑ0))− ψτ (v

∗
nt(D(θ),ϑ0))]X

∗
t (ϑ0)K(zth)"

≤bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I(v∗nt(D(θ),ϑ0) < 0)− I(v∗nt(D(θ), D(ϑ0)) < 0)]X∗
t (ϑ0)K(zth)"

+ bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I(v∗nt(D(θ), D(ϑ0)) < 0)− I(v∗nt(θ,ϑ0) < 0)]X∗
t (ϑ0)K(zth)"

≤2bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]X
∗
t (ϑ0)K(zth)"

≤2bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}](X
∗
t (ϑ0)−X

∗
t (D(ϑ0)))K(zth)"

+ 2bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]X
∗
t (D(ϑ0))K(zth)"

≤2bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}](X
∗
t (D(ϑ0)) + L)K(zth)"

≤2Cbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]

×X
∗
t (D(ϑ0))K(zth)"

+ 2Cbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[EI{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]X
∗
t (D(ϑ0))K(zth)"

≤2Cbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]

×X
∗
t (D(ϑ0))K(zth)"+ (2C/h)max{!, k}"E[X∗

tK(zth)]"

≤2Cbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]

×X
∗
t (D(ϑ0))K(zth)"+ 2Cmax{!, k},

(A.11)

where the fourth inequality follows from the Lipschitz continuity. Since the number of the

elements in {D(θ) : "θ" ≤ M} and {D(ϑ0) : "ϑ0" ≤ L} are finite, one can easily show that
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2Cbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]

×X
∗
t (D(ϑ0))K(zth)" = op(1)

by following the same steps as in (A.10). Let max{!, k} → 0. Then, it follows that the first

term of H3 is op(1). As for the second term of H3, in the same way as in (A.11),

sup
ϑ0∈Bm,θ∈Am

"E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]"

= bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

E{[ψτ (v
∗
nt(θ,ϑ0))− ψτ (v

∗
nt(D(θ),ϑ0))]X

∗
t (ϑ0)K(zth)}"

≤ 2nbn sup
ϑ0∈Bm,θ∈Am

"E[I{|v∗nt(D(θ),D(ϑ0))|<C max{!,k}√
nh

}]X
∗
t (ϑ0)K(zth)" ≤ Cmax{!, k}.

When max{!, k} → 0, one has

sup
ϑ0∈Bm,θ∈Am

"E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]" = o(1).

Thus, H3 = op(1). For the first term of H2, notice that

sup
ϑ0∈Bm,θ∈Am

"Vn(D(θ),ϑ0)− Vn(D(θ), 0)]"

=bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ),ϑ0))X

∗
t (ϑ0)− ψτ (v

∗
nt(D(θ), 0))X∗

t ]K(zth)"

≤bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ),ϑ0))− ψτ (v

∗
nt(D(θ), D(ϑ0)))]X

∗
t (ϑ0)K(zth)"

+ bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ), D(ϑ0)))− ψτ (v

∗
nt(D(θ), 0))]X∗

t (ϑ0)K(zth)"

+ bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ0)−X
∗
t )K(zth)" ≡ H21 +H22 +H23.

It is easy to see that by following the same deduction as in (A.11), one can derive H21 = op(1)

and H22 = op(1). Also, notice that for H23, by mean value theorem,

H23 ≡ bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ0)−X
∗
t ))K(zth)"

≤ Canbn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

[ψτ (v
∗
nt(D(θ), 0))]K(zth)",
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and the last term can be vanished in probability in the same way as processing U
(1)
n and U

(2)
n .

Therefore, the first term of H2 is op(1). For the second term of H2,

sup
ϑ0∈Bm,θ∈Am

"E{Vn(D(θ),ϑ0)− Vn(D(θ), 0)}"

=bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

E[ψτ (v
∗
nt(D(θ),ϑ0))X

∗
t (ϑ0)− ψτ (v

∗
nt(D(θ), 0))X∗

t ]K(zth)"

≤bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

E[ψτ (v
∗
nt(D(θ),ϑ0))− ψτ (v

∗
nt(D(θ), 0))]X∗

t (ϑ0)K(zth)"

+ bn sup
ϑ0∈Bm,θ∈Am

"
n(

t=1

E[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ0)−X
∗
t )K(zth)" ≡ H ′

21 +H ′
22.

Now, we consider H ′
22. Notice that

H ′
22 ≡ sup

ϑ0∈Bm,θ∈Am

"bn
n(

t=1

E{[ψτ (v
∗
nt(D(θ), 0))](X∗

t (ϑ0)−X
∗
t )K(zth)}"

= sup
ϑ0∈Bm,θ∈Am

"bn
n(

t=1

E{[τ − FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

T
X t

+ bnD(θ)TX∗
t |Zt,X t)](X

∗
t (ϑ0)−X

∗
t )K(zth)}"

= sup
ϑ0∈Bm,θ∈Am

"bn
n(

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

T
X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ0)−X

∗
t )}

× Π(h, z0, Zt,X t)K(zth)",

where Π(h, z0, Zt,X t) = qτ (Zt,X t)−qτ (z0,X t)−hzthg
(1)
τ (z0)

T
X t−bnD(θ)TX∗

t . An application

of Taylor expansion of qτ (Zt,X t) at (z0,X t) leads to

Π(h, z0, Zt,X t) =
g
(2)
τ (z0 + ζhzth)

T

2
h2z2thX t − bnD(θ)TX∗

t = Op(h
2).

Therefore, it results in that by mean value theorem, there exists ϑ′
0 ∈ (0,ϑ0), such that

sup
ϑ0∈Bm,θ∈Am

"bn
n(

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

T
X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ0)−X

∗
t )}Π(h, z0, Zt,X t)K(zth)"
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≤ sup
ϑ0∈Bm,θ∈Am

"bn
n(

t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

T
X t

+ ℑΠ(h, z0, Zt,X t)|Zt,X t)]

/
∂X∗

t (ϑ0)

∂ϑ0

,,,,
ϑ0=ϑ′

0

0
ϑ0}

× Π(h, z0, Zt,X t)K(zth)" = o(1).

In the same way as in analyzing (A.11), it can be easily shown that H ′
21 = op(1). So, H2 = op(1).

The proof of Lemma A.8 is completed.

Lemma A.9. Under the assumptions in Theorem 1, one has

sup
ϑ0∈Bm,θ∈Am

"E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)] + fz(z0)Ω
∗
1(z0)θ" = o(1),

where Ω∗
1(z0) = diag{Ω∗(z0), µ2Ω

∗(z0)}.

Proof. Notice that

E[Vn(θ,ϑ0)−Vn(0, 0)+Vn(ϑ0)] = E[Vn(θ,ϑ0)−Vn(θ, 0)+Vn(ϑ0)]+E[Vn(θ, 0)−Vn(0, 0)] ≡ R1+R2.

For R2, since the deduction is the same as that in Cai and Xu (2008), we only need to focus on

R1. Indeed,

R1 ≡ bn

n(

t=1

E{[ψτ (v
∗
nt(θ,ϑ0))X

∗
t (ϑ0)− ψτ (v

∗
nt(θ, 0))X

∗
t ]K(zth)}+ E[Vn(ϑ0)]

= bn

n(

t=1

E{[ψτ (v
∗
nt(θ,ϑ0))− ψτ (v

∗
nt(0,ϑ0))]X

∗
t (ϑ0)K(zth)}

+bn

n(

t=1

E{[ψτ (v
∗
nt(0, 0))− ψτ (v

∗
nt(θ, 0))]X

∗
t (ϑ0)K(zth)}

+bn

n(

t=1

E{[ψτ (v
∗
nt(0,ϑ0))− ψτ (v

∗
nt(0, 0))]X

∗
t (ϑ0)K(zth)}

+bn

n(

t=1

E{[ψτ (v
∗
nt(θ, 0))](X

∗
t (ϑ0)−X

∗
t )K(zth)}+ bn

n(

t=1

E{Γ∗(Zt)anϑ0K(zth)}

≡ R11 +R12 +R13 +R14 +R15.

Here, R14 can be vanished in the same way as that in proving Lemma A.8. We first consider R11

as follows
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R11 ≡bn

n(

t=1

E{[ψτ (v
∗
nt(θ,ϑ0))− ψτ (v

∗
nt(0,ϑ0))]X

∗
t (ϑ0)K(zth)}

=bn

n(

t=1

E{[FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)

T
X t(ϑ0)|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)

T
X t(ϑ0)

+ bnθ
T
X

∗
t (ϑ0)|Zt,X t)]X

∗
t (ϑ0)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ0)) + hzthg

(1)
τ (z0)

T
X t(ϑ0)

+ ðbnθT
X

∗
t (ϑ0)|Zt,X t)]θ

T
X

∗
t (ϑ0)X

∗
t (ϑ0)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ0))|Zt,X t)]θ

T
X

∗
tX

∗
t (ϑ0)K(zth)}+ o(1).

In the same way, one can easily show by Assumption A4 that

R11 +R12 =
1

h
E{[fY |Z,X(qτ (z0,X t)|Zt,X t)− fY |Z,X(qτ (z0,X t(ϑ0))|Zt,X t)]

× θT
X

∗
tX

∗
t (ϑ0)K(zth)}+ o(1)

≤C
1

h
E{gτ (z0)

T (X t −X t(ϑ0))θ
T
X

∗
tX

∗
t (ϑ0)K(zth)}+ o(1) = o(1).

As for R13 and R15, by applying mean value theorem, there exists ϑ′
0 ∈ (0,ϑ0) such that

R13 ≡bn

n(

t=1

E{[ψτ (v
∗
nt(0,ϑ0))− ψτ (v

∗
nt(0, 0))]X

∗
t (ϑ0)K(zth)}

=bn

n(

t=1

E{[FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)

T
X t|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)

T
X t(ϑ0)|Zt,X t)]X

∗
t (ϑ0)K(zth)}

=− bn

n(

t=1

E{[fY |Z,X(X̃
T

t (gτ (z0) + hzthg
(1)
τ (z0))|Zt,X t)]

×X
∗
t (ϑ0)(X t(ϑ0)−X t)

T [gτ (z0) + hzthg
(1)
τ (z0)]K(zth)}

=− bn

n(

t=1

E{Γ∗(Zt)anϑ0K(zth)}+ o(h)

by some simple calculations, where X̃ t ≡ X t + Canϑ0. This implies that R13 + R15 = o(1).
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Thus, one has

"E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)] + fz(z0)Ω
∗
1(z0)θ" = o(1). (A.12)

Similar to the proof of Lemma A.3 in Xu (2005), one can prove that (A.12) holds uniformly in

Am and Bm with the details omitted. These complete the proof of Lemma A.9.

Lemma A.10. Let Bt = [ψτ (v
∗
t (0))X

∗
t −ψτ (Y

∗
t )Γ

∗(Zt)(D
∗(Zt))

−1
W t]K(zth2). Then, under the

assumptions in Theorem 1, one has

E[B1] =
h3
2fz(z0)

2

"

#$
µ2Ω

∗(z0)g
(2)
τ (z0)

0

%

&'+ o(h3
2),

and

V ar[B1] = h2τ(1− τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗
*
Ω(z0)−H1(z0) +H2(z0)

+
+ o(h2),

where H1(z0) = E[X1W
T
1 |Z1 = z0](D

∗(z0))
−1ΓT (z0) + Γ(z0)(D

∗(z0))
−1E[W 1X

T
1 |Z1 = z0] and

H2(z0) = Γ(z0)(D
∗(z0))

−1
D(z0)(D

∗(z0))
−1ΓT (z0). Then,

V ar

*
1√
nh2

n(

t=1

Bt

+
=τ(1− τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗
*
Ω(z0)−H1(z0) +H2(z0)

+
+ o(1).

Proof. This proof is similar to the proof of Lemma A.4 in Cai and Xu (2008). First, we calculate

E[B1] to obtain

E[B1] = E{[ψτ (v
∗
1(0))X

∗
1 − ψτ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1]K(z1h2)}

= E{ψτ (v
∗
1(0))X

∗
1K(z1h2)}− E{ψτ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1K(z1h2)} ≡ Q1 +Q2.

Similar to the proof of Lemma 3.5 in Xu (2005), one can easily obtain that

Q1 =
h3
2

2
fz(z0){

"

#$
µ2

0

%

&'⊗ Ω∗(z0)}g(2)
τ (z0) + o(h3

2) (A.13)

with the detail omitted. For Q2, similar to the derivation in (A.7) and by Assumption A10,

Q2 ≡ −E{ψτ (Y
∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1K(z1h2)} = O(h2

1h2) = o(h3
2).

As for E[B1B
T
1 ], we have
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E[B1B
T
1 ] = E

9*
ψ2
τ (v

∗
1(0))X

∗
1X

∗T
1 − [ψτ (v

∗
1(0))ψτ (Y

∗
1 )X

∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]

+ ψ2
τ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+
K2(z1h2)

:

=E{ψ2
τ (v

∗
1(0))X

∗
1X

∗T
1 K2(z1h2)}

− E{[ψτ (v
∗
1(0))ψτ (Y

∗
1 )X

∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]K2(z1h2)}

+ E{ψ2
τ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)K

2(z1h2)}

≡P (1) + P (2) + P (3).

For P (1), similar to the derivation in Lemma A.5, one has

P (1) ≡ τ(1−τ)E{X∗
1X

∗T
1 K2(z1h2)}+o(h2

2) = h2τ(1−τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗Ω(z0)(1+o(1))+o(h2
2).

(A.14)
Similarly,

P (3) ≡ E[ψ2
τ (Y

∗
1 )Γ

∗(Z1)(D
∗(Z1))

−1
W 1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)K

2(z1h2)]

=τ(1− τ)E{Γ∗(Z1)(D
∗(Z1))

−1
W 1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)K

2(z1h2)}+ o(h2
2)

=τ(1− τ)E{Γ∗(Z1)(D
∗(Z1))

−1E[W 1W
T
1 |Z1](D

∗(Z1))
−1Γ∗T (Z1)K

2(z1h2)}+ o(h2
2)

=h2τ(1− τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗
*
Γ(z0)(D

∗(z0))
−1
D(z0)(D

∗(z0))
−1ΓT (z0)

+
(1 + o(1)) + o(h2

2)

=h2τ(1− τ)fz(z0)

*
"

#$
ν0 0

0 ν2

%

&'⊗H2(z0)

+
(1 + o(1)) + o(h2

2).

(A.15)

As for P (2), by Assumption A10, one has
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P (2) ≡− E{ψτ (v
∗
1(0))ψτ (Y

∗
1 )[X

∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ Γ∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]K2(z1h2)}

=− E{[τ − I{v∗1(0)<0}][τ − I{Y ∗
1 <0}][X

∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ Γ∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]K2(z1h2)}

=− E{[τ 2 − τ(I{Y ∗
1 <0} + I{v∗1(0)<0}) + I{Y ∗

1 <0}][X
∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ Γ∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]K2(z1h2)}

=− E{[(τ − 1)(τ − I{Y ∗
1 <0}) + τ(τ − I{v∗1(0)<0})][X

∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1)

+ Γ∗(Z1)(D
∗(Z1))

−1
W 1X

∗T
1 ]K2(z1h2)}

− τ(1− τ)E{[X∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1) + Γ∗(Z1)(D

∗(Z1))
−1
W 1X

∗T
1 ]K2(z1h2)}

≡P (21) + P (22).

It can be shown that P (21) = o(h2
2), using the same idea in proving Lemma A.5. We now focus

on evaluating P (22). A simple algebra gives that

P (22) ≡− τ(1− τ)E{[X∗
1W

T
1 (D

∗(Z1))
−1Γ∗T (Z1) + Γ∗(Z1)(D

∗(Z1))
−1
W 1X

∗T
1 ]K2(z1h2)}

=− τ(1− τ)E

*
"

#$
X1W

T
1 (D

∗(Z1))
−1

z1h2X1W
T
1 (D

∗(Z1))
−1

%

&'
9
ΓT (Z1) z1h2Γ

T (Z1)

:
K2(z1h2)

+

− τ(1− τ)E

*
"

#$
Γ(Z1)

z1h2Γ(Z1)

%

&'
9
(D∗(Z1))

−1
W 1X

T
1 z1h2(D

∗(Z1))
−1
W 1X

T
1

:
K2(z1h2)

+

=− τ(1− τ)E

*
"

#$
1 z1h2

z1h2 z21h2

%

&'⊗ E[X1W
T
1 |Z1](D

∗(Z1))
−1ΓT (Z1)K

2(z1h2)

+

− τ(1− τ)E

*
"

#$
1 z1h2

z1h2 z21h2

%

&'⊗ Γ(Z1)(D
∗(Z1))

−1E[W 1X
T
1 |Z1]K

2(z1h2)

+
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=− h2τ(1− τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗
*
E[X1W

T
1 |Z1 = z0](D

∗(z0))
−1ΓT (z0)

+ Γ(z0)(D
∗(z0))

−1E[W 1X
T
1 |Z1 = z0]

+
(1 + o(1))

=− h2τ(1− τ)fz(z0)

*
"

#$
ν0 0

0 ν2

%

&'⊗H1(z0)

+
(1 + o(1)).

Therefore,

P (2) = −h2τ(1− τ)fz(z0)

*
"

#$
ν0 0

0 ν2

%

&'⊗H1(z0)

+
(1 + o(1)) + o(h2

2). (A.16)

Next, it is shown that the last part of lemma holds true.

V ar

*
1√
nh2

n(

t=1

Bt

+
=

1

h
[V ar(B1) + 2

n−1(

ℓ=1

(1− ℓ

n
)Cov(B1, Bℓ+1)]

≤1

h
V ar(B1) +

2

h

en−1(

ℓ=1

|Cov(B1, Bℓ+1)|+
2

h

∞(

ℓ=en

|Cov(B1, Bℓ+1)| ≡ G1 +G2 +G3.

By (A.13), (A.14), (A.15), (A.16) and Assumption A10,

G1 → τ(1− τ)fz(z0)

"

#$
ν0 0

0 ν2

%

&'⊗
*
Ω(z0)−H1(z0) +H2(z0)

+
.

Now it remains to show that |G2| = o(1) and |G3| = o(1). First, we consider G3. To this

end, by using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)) and the

boundedness of ψτ (·), one has

|Cov(B1, Bℓ+1)| ≤ Cα1−2/δ(ℓ)[E|B1|δ]2/δ ≤ Ch2/δα1−2/δ(ℓ),

which gives

G3 ≤ Ch2/δ−1

∞(

ℓ=en

α1−2/δ(ℓ) ≤ Ch2/δ−1e−w
n

∞(

ℓ=en

ℓwα1−2/δ(ℓ) = o(h2/δ−1e−w
n ) = o(1),

by choosing en to satisfy ewnh
1−2/δ = c. As for G2, following the proof of Lemma 3.5 in Xu (2005),

one has |G2| = o(1). These prove Lemma A.10.
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A.2 Proof of Theorem 1:

Proof. Following Cai and Xu (2008), "Vn(0, 0)" = Op(1). Thus, by Lemmas A.8, A.9 and A.10,

Vn(θ,ϑ0) satisfies Condition (ii) in Lemma A.7; that is, "An" = Op(1) and

sup%∆%≤M,%ϑ0%≤L "Vn(∆,ϑ0) + Vn(ϑ0) + D∆ − An" = op(1) with D = fz(z0)Ω
∗
1(z0) and An =

Vn(0, 0). Next, we want to show that "Vn(ϑ̂0)" = Op(1). Indeed, by Lemma A.6,

E[Vn(ϑ̂0)]

=bn

n(

t=1

E

*2
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

ψτ (Y
∗
s )W sK(zsh1)

3
K(zth2)

+

=bn

n(

t=1

E

*2
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

{ψτ (Y
∗
t )W t + ψτ (Y

∗
s )W s

− ψτ (Y
∗
t )W t}K(zsh1)

3
K(zth2)

+

=bn

n(

t=1

E

*2
ψτ (Y

∗
t )Γ

∗(Zt)(D
∗(Zt)

−1)W t
f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

K(zsh1)

3
K(zth2)

+

+ bn

n(

t=1

E

*2
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

{ψτ (Y
∗
s )W s − ψτ (Y

∗
t )W t}

×K(zsh1)

3
K(zth2)

+
≡ T (1) + T (2).

For T (1), using the technique in deriving (A.7), one has

T (1) ≡ bn

n(

t=1

E

*2
ψτ (Y

∗
t )Γ

∗(Zt)(D
∗(Zt)

−1)W t
f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

K(zsh1)

3
K(zth2)

+

= bn

n(

t=1

E{[ψτ (Y
∗
t )Γ

∗(Zt)(D
∗(Zt)

−1)W t]K(zth2)}+ o(1)

= O((nh2)
1/2h2

1) + o(1) = o(1),

by the fact that f−1
z (Zt)(nh1)

−1
!n

s=m+1 ∕=t K(zsh1) = 1 + o(1) and by Assumption A10. As for

T (2), it is not hard to show that T (2) = o(1). Thus, E[Vn(ϑ̂0)] = o(1). In addition, similar to the

proof of Lemma A.8, one can obtain that V ar[Vn(ϑ̂0)] = o(1). Therefore, "Vn(ϑ̂0)" = Op(1). To

show "Vn(θ̂, ϑ̂0)" = op(1), it follows from Lemma A.1 and mean value theorem that
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"Vn(θ̂, ϑ̂0)" = bn

88888

n(

t=1

[ψτ (v
∗
t (ϑ̂0)− bnθ̂

T
X

∗
t (ϑ̂0))]X

∗
t (ϑ̂0)K(zth2)

88888 ≤ bn max
1≤t≤n

"X∗
t (ϑ̂0)K(zth2)"

≤bn max
1≤t≤n

"X∗
tK(zth2)"+ Cbn max

1≤t≤n

88888

9
∂X∗

t (ϑ̂0)

∂ϑ̂0

,,,,
ϑ̂0=ϑ̂

′
0

:
K(zth2)

88888 = o(1),

where θ̂ is the minimizer of J(θ). Finally, because ψτ (x) is an increasing function of x; then

−θTVn(λθ,ϑ0) = an
!n

t=1 ψτ [v
∗
t (ϑ0) + λan(−θT

X
∗
t (ϑ0))](−θT

X
∗
t (ϑ0))K(zth2) is an increasing

function of λ. Thus, Condition (i) in Lemma A.7 is satisfied. Then, it follows from Lemma A.6,

Lemmas A.8 and A.9 that

θ̂ =
(Ω∗

1(z0))
−1

√
nh2fz(z0)

n(

t=1

[ψτ (v
∗
t (0))X

∗
t − anΓ

∗(Zt)ϑ̂0]K(zth2) + op(1)

=
(Ω∗

1(z0))
−1

√
nh2fz(z0)

n(

t=1

2
ψτ (v

∗
t (0))X

∗
t − Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

ψτ (Y
∗
s )W sK(zsh1)

3
K(zth2) + op(1)

=
(Ω∗

1(z0))
−1

√
nh2fz(z0)

n(

t=1

2
ψτ (v

∗
t (0))X

∗
t − Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

{ψτ (Y
∗
t )W t + ψτ (Y

∗
s )W s − ψτ (Y

∗
t )W t}K(zsh1)

3
K(zth2) + op(1)

=
(Ω∗

1(z0))
−1

√
nh2fz(z0)

n(

t=1

2
ψτ (v

∗
t (0))X

∗
t − ψτ (Y

∗
t )Γ

∗(Zt)(D
∗(Zt)

−1)W t
f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

K(zsh1)

3
K(zth2)

− (Ω∗
1(z0))

−1

√
nh2fz(z0)

n(

t=1

2
Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n(

s=m+1 ∕=t

{ψτ (Y
∗
s )W s − ψτ (Y

∗
t )W t}K(zsh1)

3
K(zth2) + op(1).

Here, by using Davydov’s inequality to control the variance, the second part of last equality can

be asymptotically vanished. Then,

θ̂ =
(Ω∗

1(z0))
−1

√
nh2fz(z0)

n(

t=1

2
ψτ (v

∗
t (0))X

∗
t − ψτ (Y

∗
t )Γ

∗(Zt)(D
∗(Zt)

−1)W t

3
K(zth2) + op(1),

by the fact that f−1
z (Zt)(nh1)

−1
!n

s=m+1 ∕=t K(zsh1) = 1 + o(1). Therefore, following the proof of

Theorem 1 in Cai and Xu (2008), the theorem is proved.
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A.3 Proof of Consistency of Σ̂τ(z0)

Proof. We first focus on Γ̂(z0) in Section 2.4. Notice that

Γ̂(z0) =
1

n

n(

t=1

w2tX̂ tĝ
T
τ (z0)ΠtKh2(Zt − z0)

=
1

n

n(

t=1

w2t(X̂ t −X t)(ĝτ (z0)− gτ (z0))
TΠtKh2(Zt − z0)

+
1

n

n(

t=1

w2tX t(ĝτ (z0)− gτ (z0))
TΠtKh2(Zt − z0)

+
1

n

n(

t=1

w2t(X̂ t −X t)g
T
τ (z0)ΠtKh2(Zt − z0) +

1

n

n(

t=1

w2tX tg
T
τ (z0)ΠtKh2(Zt − z0)

≡S(1) + S(2) + S(3) + S(4).

We first consider S(3). By Taylor’s expansion and Lemma A.2, we have

E[w2t|Zt,X t] = (FY |Z,X(ĝT
τ (z0)X̂ t + δ2n)− FY |Z,X(ĝT

τ (z0)X̂ t − δ2n))/(2δ2n)

= fY |Z,X(gT
τ (z0)X t) + op(1).

On the other hand, by applying mean value theorem, there exists ϑ̂
′
0 ∈ (0, ϑ̂0) such that

X̂ t ≡X t(ϑ̂0) = X t +

9
∂X t(ϑ̂0)

∂ϑ̂0

,,,,
ϑ̂0=ϑ̂

′
0

:
ϑ̂0 = X t + (nh1)

−1/2Πtϑ̂0.

Therefore, by Lemma A.2,

E[S(3)] = (nh1)
−1/2E[fY |Z,X(gT

τ (z0)X t)Πtϑ̂0g
T
τ (z0)ΠtKh2(Zt − z0)] + o(1) = O(m3/2/nh1) = o(1).

Similar to the proof of V ar[Tn(0)] in Lemma A.5 and by Lemma A.2, it can be shown that

V ar[S(3)] = o(1). Therefore, S(3) = op(1). Similarly, we can show that S(1) = op(1) and

S(2) = op(1). Now, we only need to focus on S(4). Indeed,

E[S(4)] = E[fY |Z,X(gT
τ (z0)X t)X tg

T
τ (z0)ΠtKh2(Zt − z0)] + o(1)

=

1
fY |Z,X(gT

τ (z0)X t)X tg
T
τ (z0)ΠtK(z)fz(z0 + h2z)dz + o(1) → fz(z0)Γ(z0).

Again, similar to the proof of V ar[Tn(0)] in Lemma A.5, it is shown that V ar[S(4)] = o(1). This
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yields that Γ̂(z0) = fz(z0)Γ(z0) + op(1) in Section 2.4. The consistency of Ω̂(z0), Ω̂
∗(z0), Ĥ1(z0)

and Ĥ2(z0) can be derived in similar ways.
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Appendix B: Mathematical Proof for Stationarity and α-

Mixing

In this section, we show that the model (1) in the main article can generate a strictly sta-

tionary and α-mixing process. Throughout this section, 0a×b stands for a (a× b) matrix of zeros

and Ia is a (a × a) identity matrix. Next, we define ψ(·) = " · ", where " · " is the Euclidean

norm. For a random vector Z and random matrix A, we denote "Z"ψ,2 = [E"Z"2]1/2 and

"A"ψ,2 = supz ∕=0 "Az"ψ,2/"z". In addition, for 1 ≤ i ≤ κ, let F b
i,a be the σ-algebra generated

by {(Yit, Zit)}bt=a. Then, a stationary process {(Yit, Zit)}∞t=−∞ is said to be α-mixing (strongly

mixing) if the mixing coefficient α(t) defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
i,−∞, B ∈ F∞

i,t }

converges to zero as t → ∞.

To study the probabilistic properties of model (1) in the main article, Yt and qτ,t in (1)

need to be jointly introduced in a vector autoregression process. To proceed, for convenience of

presentation, let κ = κ1 and Zt = Zit in (1) in the main article, denote Uit (1 ≤ i ≤ κ, 1 ≤ t ≤ n)

as an independent and identically distributed (i.i.d.) standard uniform random variables on the

set of [0, 1]. Then, we consider following equation system of functional-coefficient VAR models

for dynamic quantiles, given by

Yit = γi0(Uit, Zt) +

q(

s=1

γT
i,s(Uit, Zt)qτ,t−s +

p(

l=1

βT
i,l(Uit, Zt)Yt−l, (B.1)

and

qτ,t,i = γi0,τ (Zt) +

q(

s=1

γT
i,s,τ (Zt)qτ,t−s +

p(

l=1

βT
i,l,τ (Zt)Yt−l (B.2)

for some p and q, where Yit, qτ,t and Yt in (B.1) and (B.2) have the same definition as that in

(1) and equation (B.2) is the same as (1) with Zt = Zit. In addition, γi0(·, ·) in (B.1) is a scalar

and measurable function of Uit and Zt (from R2 to R), both γi,s(·, ·) = (γsi1(·, ·), . . . , γsiκ(·, ·))T

and βi,l(·, ·) = (βli1(·, ·), . . . , βliκ(·, ·))T in (B.1) are κ × 1 vectors of measurable functions from

R2 to R. Following the same argument in Koenker and Xiao (2006), by assuming that the right
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side of (B.1) is monotonically increasing in Uit, the conditional quantile function of Yit given

(Zt, {qτ,t−s}
q
s=1, {Yt−l}pl=1) becomes (B.2). Note that (B.1) is called a Skorohod representation

for Yit, see Durrett (1996) for the definition of Skorohod representation.

Now, we can rewrite the system formed by (B.1) and (B.2) into an autoregression process of

order 1 as follows

Xt = µ(Zt) +AUt(Zt)Xt−1 +DUt(Zt), (B.3)

where Xt = (YT
t , . . . ,YT

t−p+1, q
T
τ,t, . . . , q

T
τ,t−q+1)

T and AUt(Zt) is a κ(p + q) × κ(p + q) matrix as

follows:

AUt(Zt) =

"

#########$

Γβ,Ut(Zt) ΓUt(Zt)

[Iκ(p−1), 0κ(p−1)×κ] 0κ(p−1)×κq

Γβ,τ (Zt) Γτ (Zt)

0κ(q−1)×κp [Iκ(q−1), 0κ(q−1)×κ]

%

&&&&&&&&&'

.

Here, for s = 1, . . . , q and l = 1, . . . , p, Γβ,Ut(Zt) = (Γβ,1,Ut(Zt), . . . ,Γβ,p,Ut(Zt)), where Γβ,l,Ut(Zt)

= (βlij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ × κ matrix. In addition, ΓUt(Zt) = (Γ1,Ut(Zt), . . . ,Γq,Ut(Zt)),

where Γs,Ut(Zt) = (γsij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ×κmatrix. Similarly, Γβ,τ (Zt) = (Γβ,1,τ (Zt), . . . ,

Γβ,p,τ (Zt)), where Γβ,l,τ (Zt) = (βlij,τ (Zt))1≤i≤κ,1≤j≤κ is a κ×κmatrix. Also, Γτ (Zt) = (Γ1,τ (Zt), . . . ,

Γq,τ (Zt)), where Γs,τ (Zt) = (γsij,τ (Zt))1≤i≤κ,1≤j≤κ is a κ × κ matrix. Furthermore, µ(Zt) =

(ET
U (γ0(Uit, Zt)), 0, . . . , 0,γ

T
0,τ (Zt), 0, . . . , 0)

T , where EU(γ0(Uit, Zt)) = (EU(γ10(U1t, Zt)), . . . , EU

(γκ0(Uκt, Zt)))
T and γ0,τ (Zt) = (γ10,τ (Zt), . . . , γκ0,τ (Zt))

T . Here, EU(·) is denoted as taking ex-

pectation on Uit for any fixed Zt, and γi0(Uit, Zt) and γi0,τ (Zt) are defined in a similar way as

foregoing functional coefficients, respectively. Finally, DUt(Zt) = (γ̌10(U1t, Zt), . . . , γ̌κ0(Uκt, Zt),

01×κ(p+q−1))
T , where γ̌i0(Uit, Zt) = γi0(Uit, Zt)− EU(γi0(Uit, Zt)).

Remark B.1. Notice that when setting Zt as a smoothing variable, the equations corresponding

to (κp+1)-th, . . . , (κp+κ)-th rows of (B.3) are exactly the (B.2) and the model (1) in the main

article, while the ith row of (B.3) with i = 1, . . . ,κ is equation (B.1). Given these relations, one

can conclude that Yt and qτ,t jointly follow a VAR process of order 1 in (B.3), which is similar

37



to the nonparametric additive models in Cai and Masry (2000) and the generalized polynomial

random coefficient autoregressive (RCA) models in Carrasco and Chen (2002).

Now, denote λmax(AUt) as the largest eigenvalue in absolute value of following matrix AUt :

AUt =

"

################################$

Γβ,1,Ut Γβ,2,Ut . . . Γβ,p−1,Ut Γβ,p,Ut Γ1,Ut Γ2,Ut . . . Γq−1,Ut Γq,Ut

Iκ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ Iκ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

...
...

. . .
...

...
...

...
. . .

...
...

0κ×κ 0κ×κ . . . Iκ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

Γβ,1 Γβ,2 . . . Γβ,p−1 Γβ,p Γ1 Γ2 . . . Γq−1 Γq

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ Iκ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ Iκ . . . 0κ×κ 0κ×κ

...
...

. . .
...

...
...

...
. . .

...
...

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . Iκ 0κ×κ

%

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'

,

where

Γβ,l,Ut =

"

#########$

βl11(U1t) βl12(U1t) . . . βl1κ(U1t)

βl21(U2t) βl22(U2t) . . . βl2κ(U2t)

...
...

. . .
...

βlκ1(Uκt) βlκ2(Uκt) . . . βlκκ(Uκt)

%

&&&&&&&&&'

, Γs,Ut =

"

#########$

γs11(U1t) γs12(U1t) . . . γs1κ(U1t)

γs21(U2t) γs22(U2t) . . . γs2κ(U2t)

...
...

. . .
...

γsκ1(Uκt) γsκ2(Uκt) . . . γsκκ(Uκt)

%

&&&&&&&&&'

,

Γβ,l =

"

#########$

βl11,τ βl12,τ . . . βl1κ,τ

βl21,τ βl22,τ . . . βl2κ,τ

...
...

. . .
...

βlκ1,τ βlκ2,τ . . . βlκκ,τ

%

&&&&&&&&&'

, and Γs =

"

#########$

γs11,τ γs12,τ . . . γs1κ,τ

γs21,τ γs22,τ . . . γs2κ,τ

...
...

. . .
...

γsκ1,τ γsκ2,τ . . . γsκκ,τ

%

&&&&&&&&&'

,

with each entry being defined in the Assumption B later. Then, following assumptions are needed

to guarantee that process {Xt} in model (B.3) is strictly stationary and α-mixing.
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Assumption B.

B1: Let {Xt} be a φ-irreducible and aperiodic Markov chain. For i = 1, . . . ,κ, j = 1, . . . ,κ,

l = 1, . . . , p and s = 1, . . . , q, each entry of Γs,Ut(Zt) and Γβ,l,Ut(Zt) in (B.1) is bounded such that

|γsij(Uit, ·)| ≤ γsij(Uit) and |βlij(Uit, ·)| ≤ βlij(Uit), βlij(Uit) and γsij(Uit) are unknown measurable

functions of Uit from [0, 1] to R; Similarly, each entry of Γs,τ (Zt) and Γβ,l,τ (Zt) in (B.2) is

bounded such that |γsij,τ (·)| ≤ γsij,τ and |βlij,τ (·)| ≤ βlij,τ . Furthermore, E{[λmax(AUt)]
2} < 1.

B2: For i = 1, . . . ,κ, γ̌i0(Uit, Zt) in DUt(Zt) is bounded such that |γ̌i0(Uit, ·)| ≤ γ̌i0(Uit), where

{γ̌i0(Uit)} are i.i.d. random variables with mean 0 and finite variance. In addition, denote

DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
T
, then, E"DUt"2 < ∞ and E"µ(Zt)" < ∞.

Remark B.2. The φ-irreducibility and aperiodicity in Assumption B1 are key assumptions for

deriving geometric ergodicity and subsequently, α-mixing property. The conditions that imply

φ-irreducibility and aperiodicity of nonlinear time series have been studied extensively in liter-

ature. For example, Chan and Tong (1985) showed that under some mild conditions, a simple

nonparametric autoregressive process is a φ-irreducible and aperiodic Markov chain. In addition,

Pham (1986) obtained conditions for random coefficient autoregressive (RCA) models to be φ-

irreducible. In this article, we simply impose the assumptions of φ-irreducibility and aperiodicity

on {Xt}, which are common settings among literature, see, for example, Chen and Tsay (1993). It

is of particular interest to explore the conditions under which {Xt} is φ-irreducibility and aperiod-

icity and we leave this as a future topic. Moreover, the moment conditions E{[λmax(AUt)]
2} < 1

in Assumption B1 is used to bound the random matrices AUt(Zt), which is similar to the con-

dition in Carrasco and Chen (2002). We stress that we are not seeking to achieve the weakest

possible regularity conditions for probabilistic properties of model (B.3), but instead focus on

constructing varying interdependences among conditional quantiles.

Proposition B.1. Under Assumptions B1 and B2, if X0 is initialized from the invariant mea-

sure, then, {Xt} defined in (B.3) is a strictly stationary and α-mixing process.

To prove Proposition B.1, we first need to prove following lemma.
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Lemma B.1. Under Assumptions B1 and B2, for any W = (w1, . . . , wκ(p+q))
T
, we have

"AUt(Zt)W"ψ,2 ≤ "AUt |W|"ψ,2. Here, AUt(Zt) is defined in (B.3), AUt is defined previously and

|W| = (|w1|, . . . , |wκ(p+q)|)T .

Proof. Similar to the proof of Lemma A.1 in Chen and Tsay (1993), letAUt(Zt)W = (d1, . . . , dκ(p+q))
T

and AUt |W| = (g1, . . . , gκ(p+q))
T . Then, for ι = κ+1, . . . ,κp and for ι = κp+κ+1, . . . ,κ(p+ q),

we have |dι| = gι. For ι = 1, . . . ,κ and for ι′ = κp+ 1, . . . ,κp+ κ, by Assumptions B1 and B2,

|dι| = |β1ι1(Uιt, Zt)w1 + · · ·+ βpικ(Uιt, Zt)wκp + γ1ι1(Uιt, Zt)wκp+1 + · · ·+

γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt, Zt)w1|+ · · ·+ |βpικ(Uιt, Zt)wκp|+ |γ1ι1(Uιt, Zt)wκp+1|+ · · ·+

|γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt)w1|+ · · ·+ |βpικ(Uιt)wκp|+ |γ1ι1(Uιt)wκp+1|+ · · ·+ |γqικ(Uιt)wκ(p+q)| = gι,

and

|dι′ | =|β1(ι′−κp)1,τ (Zt)w1 + · · ·+ βp(ι′−κp)κ,τ (Zt)wκp + γ1(ι′−κp)1,τ (Zt)wκp+1 + · · ·+

γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τ (Zt)w1|+ · · ·+ |βp(ι′−κp)κ,τ (Zt)wκp|+ |γ1(ι′−κp)1,τ (Zt)wκp+1|

+ · · ·+ |γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τw1|+ · · ·+ |βp(ι′−κp)κ,τwκp|+ |γ1(ι′−κp)1,τwκp+1|+ · · ·+

|γq(ι′−κp)κ,τwκ(p+q)| = gι′ .

Hence, "AUt(Zt)W"ψ,2 ≤ "AUt |W|"ψ,2.

Proof of Proposition B.1:

Proof. By Proposition 3 in Carrasco and Chen (2002) and Lemma 2 in Pham (1986), Assumption

B1 implies "AUt"ψ,2 < 1 for all Uit ∈ [0, 1]. Then, we can find 0 < δ < 1 and < > 0, such that
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"
;)−1

ȷ=0 AUt+ȷ"ψ,2 < 1− δ. Consequently, by Assumption B2 and Lemma B.1, for some constant

C > 0,

E("Xt+)"|Xt = X) = E

/88888

)−1<

ȷ=0

AUt+ȷ(Zt+ȷ)Xt +

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ(Zt+ı)

.
DUt+ȷ(Zt+ȷ)

88888

,,,,Xt = X

0

+ E

/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ(Zt+ı)

.
µ(Zt+ȷ)

88888

,,,,Xt = X

0

≤

=

>
88888

)−1<

ȷ=0

AUt+ȷ |X|

88888
ψ,2

?

@+ C · E
/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.
|DUt+ȷ |

88888

,,,,Xt = X

0

+ C · E
/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.88888

0

≤

=

>
88888

)−1<

ȷ=0

AUt+ȷ

88888
ψ,2

?

@ "X"+ C · E

88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.
|DUt+ȷ |

88888

+ C · E
/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.88888

0

≤(1− δ)"X"+ C · E

88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.
|DUt+ȷ |

88888+ C · E
/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.88888

0
,

where each element of DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
T is defined in Assumption B2

and the first inequality follows from Jensen’s inequality. Notice that E
888
!)

ȷ=1

A;)−1
ı=ȷ AUt+ȷ

B888 is

bounded and by Assumption B2, E"DUt" is bounded, so that E
888
!)

ȷ=1

A;)−1
ı=ȷ AUt+ȷ

B
|DUt+ȷ |

888

is bounded and the bound does not depend on X and Zt. Thus, we can find a sufficiently large

M > 0 such that when "X" > M ,

(1− δ)"X"+ C · E

88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.
|DUt+ȷ |

88888+ C · E
/88888

)(

ȷ=1

-
)−1<

ı=ȷ

AUt+ȷ

.88888

0
≤ (1− δ1)"X",

where 0 < δ1 < 1. Hence, the compact set K = {X : "X" ≤ M} satisfies that when X /∈ K,

E("Xt+)"|Xt = X) < (1 − δ1)"X". By Lemma 1.1 and Lemma 1.2 in Chen and Tsay (1993),

{Xt} is geometrically ergodic. If X0 is initialized from the invariant measure, then, by the results

of Pham (1986), {Xt} is strictly stationary and α-mixing.
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