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1 Introduction

Asset return predictability has been studied for decades as a cornerstone research

topic in economics and finance. It has been widely examined in many financial applica-

tions, such as mutual fund performance, conditional capital asset pricing, and optimal asset

allocations. There are two major facets to dealing with asset returns predictability: first,

checking whether the return series is autocorrelated, a random walk, or a martingale differ-

ence sequence (MDS) and second, using financial (state) variables as predictors to determine

whether the financial (state) variables can predict asset returns. There is a vast amount of

literature devoted to testing whether asset returns are autocorrelated, random walk, MDS,

or other types of dependent structures; see Campbell et al. (1997) and the references therein.

Recently, numerous empirical studies have documented the predictability of asset returns

using various lagged financial or state variables, such as the log dividend-price ratio, log

earnings-price ratio, log book-to-market ratio, dividend yield, term spread, default premium,

interest rates, and other economic variables. Although much research has been conducted,

empirical evidence remains inconclusive.

Predictive regression is a conventional method used to check whether some financial vari-

ables have explanatory power for stock return predictability. Classical predictive regression

is a structural predictive linear model:{
yt = α + β xt−1 + ut,

xt = θ + ϕxt−1 + vt
(1)

for 1 ≤ t ≤ T , where |ϕ| < 1, ut = ρ vt+ ϵt, (ϵt, vt) ∼ N(0, diag(σ2
ϵ , σ

2
v)) are independent and

identically distributed (i.i.d.) series and x0 ∼ N(θ(1 − ϕ)−1, σ2
v(1 − ϕ2)−1). In a predictive

regression, the future values of some scalar time series yt can be predicted from the lagged

values of a financial variable xt−1. Therefore, the null hypothesis is no predictability; that is,

H0 : β = 0. Note that this normality assumption may not be required in if the sample size

T is large enough.

Notably, predictive regressions contain econometric issues that have crucial effects on

testing predictability. Campbell (2008), Phillips and Lee (2013), and Phillips (2015) gave

an overview of econometric issues and remedies in predictive regressions. Here, we briefly

review their arguments for completeness. First, the correlation between ut and vt plays

an important role in many applications; see Table 4 in Campbell and Yogo (2006), which

creates the so-called “embedded endogeneity”. Stambaugh (1999) showed that the ordinary

least squares (OLS) estimator for β in (1) is biased in finite samples due to the correlation
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between ut and vt under normality and with stationary regression (|ϕ| < 1), denoted by I(0).

More precisely, the bias of the OLS estimator β̂ can be represented as

E[β̂ − β] = ρE[ϕ̂− ϕ],

where ρ = cov(ut, vt)/var(vt). The autoregressive bias function E[ϕ̂− ϕ] depends only on ϕ

and the sample size T . Thus, the sample autocorrelation is biased downward about −(1 +

3ϕ)/T , and the predictive slope β is biased upward with ρ < 0. Stambaugh (1999) suggested

the first-order bias-correction estimator while Amihud and Hurvich (2004) considered a linear

projection of ut on vt as ut = ρ vt + ϵt and then, regressed yt on v̂t and xt−1 with intercept;

that is,

yt = α + β xt−1 + ρ v̂t + ϵt, (2)

where v̂t is obtained from the second equation in (1). The OLS estimator of β, denoted

by β̂, is a two-stage approach. However, Amihud and Hurvich (2004) assumed that xt is

stationary.

Second, the autoregressive parameter ϕ in xt is assumed to be persistent, which is crucial

for the statistical inference on β. Important contributions about nearly integrated or inte-

grated regressors include Phillips (1987), Elliott and Stock (1994), Cavanagh et al. (1995),

Lewellen (2004), Torous et al. (2005), Campbell and Yogo (2006), Jansson and Moreira

(2006), Amihud et al. (2009), Chen and Deo (2009), Cai and Wang (2014), and the refer-

ences therein. In the literature, a persistent regressor xt is represented in a local-to-unity

framework; that is, ϕ = 1 − c/T, c ≥ 0, denoted by NI(1) if c > 0 or I(1) if c = 0. In-

deed, Cai and Wang (2014) showed that β̂ in (2) has the following asymptotic distribution

T (β̂ − β)
d→ ξc where ξc is a random variable involving the integration of a geometric Brow-

nian motion and “
d→” denotes convergence in distribution; see Cai and Wang (2014) for

details. Therefore, the asymptotic results, in particular the limiting distribution, depend on

c, which is not estimable consistently, although its estimate has a limiting distribution.

Recently, a series of studies have considered some uniform inferences on predictive regres-

sions in the sense that the testing procedure for predictability is robust to general time-series

characteristics on the regressor and errors. These include, but not limited to, the papers

by Campbell and Yogo (2006), Phillips and Magdalinos (2007, 2009), Chen and Deo (2009),

Elliott (2011), Phillips and Lee (2013), Zhu et al. (2014), Kostakis et al. (2015), Breitung

and Demetrescu (2015), Lee (2016), Fang and Lee (2019), Liu et al. (2019), Yang et al.

(2020), Hosseinkouchack and Demetrescu (2021), Demetrescu and Rodrigues (2020), Yang

et al. (2021), Zhu et al. (2021). The reader is referred to the recent survey paper by Liao et al.
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(2018) for more discussions. Actually, Campbell and Yogo (2006) proposed a new method

called the Q-test based on the Bonferroni idea to construct a confidence interval for β for each

ϕ. Chen and Deo (2009) found that the intercept parameter in predictive regression with

persistent covariates makes inference difficult, and they proposed the restricted likelihood

method, which is free of such nuisance intercept parameters. More importantly, the bias of

the restricted maximum likelihood estimates is much less than that of the OLS estimates

near the unit root without loss of efficiency. Phillips and Magdalinos (2009) and Kostakis

et al. (2015) introduced a data-filtering procedure called IVX estimation, which restricts the

degree of persistence of data-filtered IVX instruments within the class of near-stationary

process defined in Phillips and Magdalinos (2007). A standard instrumental variable esti-

mation with the constructed instruments is robust to the general time-series characteristics

of regressors in the sense that the derived estimator converges in distribution to a mixed

normal limit. Hence, the corresponding Wald statistic asymptotically follows the chi-square

distribution under the null. Phillips and Lee (2013) considered the IVX estimation to long-

horizon predictive regressions with persistent covariates while Lee (2016) and Fang and Lee

(2019) extended the IVX filtering method to predictive quantile regression. Zhu et al. (2014)

proposed an empirical likelihood (EL) approach together with a weighted least squares idea

to construct a confidence interval for β, recently, extended by Liu et al. (2019) and Yang

et al. (2021).

In this line of work, predictive regression models investigated in the afoermentioned lit-

erature are assumed to be stable; that is, no structural breaks are allowed. However, as

Stock and Watson (1996) and Lettau and Van Nieuwerburgh (2008) found, economic and

financial variables are subject to smooth or structural changes, which makes it reasonable

to allow for the possibility of structural changes in predictive regression models. Subsequent

research formally considered structural breaks in the predictive regressions. For example,

Viceira (1997), Paye and Timmermann (2006), Rapach and Wohar (2006), and Zhu et al.

(2021) tested for structural breaks and found strong evidence of instability in predictive

regression models. Lettau and Van Nieuwerburgh (2008) focused on level shifts in the pre-

dictor variables and explained that the forecasting relationship may be unstable unless such

shifts are included in the analysis. Recently, Cai et al. (2015) considered a model with coef-

ficients changing smoothly over time, and then proposed a nonparametric testing procedure

to determine whether the time-varying coefficients change over time. They found that the

coefficients were indeed unstable. Recently, Gonzalo and Pitarakis (2012, 2017) and Zhu

et al. (2021) developed tests for the null hypothesis of no predictability against threshold
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predictability in a predictive regression model with threshold effects. A practical question

is how to specify the form of time-varying coefficients; that is, how the coefficients change

over time. In this study, we assume that the coefficients are piecewise constant with struc-

tural changes. Since the work by Perron (1989), it is well known that structural changes in

the data-generating process (DGP) should be considered appropriately to make statistical

inferences reliable. Despite the large body of literature on estimating predictive regression

models, studies pertaining to testing and estimating predictability allowing for structural

changes are scarce.

The main contributions of this study are twofold. First, we consider predictive regressions

in which the model parameters exhibit a structural break on an unknown date. When the

true break date is unknown, we estimate it and propose testing procedures for predictability

based on a consistent estimate of the break fraction, which contrasts sharply with conven-

tional predictability tests. To test for a structural break or parameter instability, important

contributions include Andrews (1993) and Andrews and Ploberger (1994). Bai (1994, 1997)

showed that the break fraction can be estimated consistently by minimizing the sum of

squared residuals (SSR) from the unrestricted model. They derived the limiting distribution

of the estimate of the break date, which can be applied to constructing confidence intervals

for the true break date. Bai and Perron (1998, 2003) considered statistical inference related

to multiple structural changes under general conditions. Elliott and Müller (2006) considered

the problem of testing for general types of parameter variations, including infrequent breaks,

and established a partial-sums-type test based on the residuals obtained from the restricted

model. The proposed tests were optimal as they nearly obtained the local Gaussian power

envelop. The estimator of the break date is referenced in the literature, for instance, in Bai

(1994, 1997), Bai and Perron (1998), Bai et al. (1998), and Kurozumi and Arai (2006).

Second, we propose the EL method based on weighted score equations, first introduced

by Zhu et al. (2014), without allowing for a structural break. Prior studies have considered

weighted estimating procedures, and a normal limiting distribution has been obtained (see,

for example, Ling, 2005; Chan and Peng, 2005). Remarkably, Chan et al. (2012) extended a

weighted estimation method to first-order autoregression, denoted as AR(1), to estimate the

autoregressive parameter and found that the estimate maintains a normal limit regardless

of whether the autoregressive process is I(0), I(1), NI(1), or even explosive (c < 0). They

suggested using the EL method for the weighted score equation of the weighted least squares

estimate to construct confidence intervals for all values of the AR parameter and showed

that confidence intervals obtained by the EL method perform better in finite samples than
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those constructed using the weighted least squares method proposed by So and Shin (1999).

Recently, Li et al. (2014) established EL tests for causality of bivariate first-order au-

toregressive processes. Zhu et al. (2014), Liu et al. (2019) and Yang et al. (2021), most

relevant to this article, considered predictive regressions and applied EL methods to test

the null hypothesis of β = 0 and constructed confidence intervals for β. Chan et al. (2012)

and Zhu et al. (2014) shed new light on predictive regressions as we can avoid estimating

the autoregressive parameter ϕ and test for predictability based on the EL method, which

performs well in finite samples.

In this study, we extend the analysis of Zhu et al. (2014) in a practical direction; that

is, it is to test the instability of model parameters in predictive regressions and to show

that the EL method based on some weighted score equations works well under such general

circumstances. The simulation results indicate that the proposed EL tests have good finite-

sample properties in terms of both size and power. To the best of our knowledge, this study

is the first to incorporate an estimate of the break date and adopt a unified framework in

predictive regressions.

The remainder of this paper is organized as follows. Section 2 introduces predictive re-

gression models that exhibit a structural break on an unknown date. The EL-based method-

ologies are considered, and useful asymptotic results are presented. Section 3 provides simu-

lation results to support the usefulness of the proposed EL method. In Section 4, techniques

are applied to test the predictability of stock returns using a variety of predictive regressors.

Finally, Section 5 provides brief concluding remarks. All technical derivations are presented

in the appendix.

2 Econometric Approaches and Related Theories

We consider a linear predictive regression model that experiences a structural change

on an unknown date. The standard model (1) is modified to allow for a structural change

at date T 0
1 as follows: for t = 1, . . . , T ,

yt = (α1 + β1xt−1)1t≤T 0
1
+ (α2 + β2xt−1)1t>T 0

1
+ ut,

xt = θ + ϕxt−1 +
∞∑
j=0

ψjvt−j,
(3)

where, in what follows, the linear process
∑∞

j=0 ψjvt−j is assumed to be strictly stationary1,

and {ut, vt} is a sequence of i.i.d. random vectors with means zero and finite variances. To

1If {ψj} in model (3) satisfies some condition, say
∑∞

j=0 |ψj | < ∞, it is straightforward to show that∑∞
j=0 ψjvt−j is strictly stationary (see Brockwell and Davis, 1991, p.89)
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test the predictability of model (3), we first consider the joint null hypothesisH0 : β1 = β2 = 0

and propose a unified EL test regardless of whether xt is I(0) or I(1) or NI(1). Moreover, we

consider testing predictability in the pre- and post-break subsamples; that is, H0 : β1 = 0

and H0 : β2 = 0, respectively.

2.1 Testing the joint null hypothesis H0 : β1 = β2 = 0

Note that the null hypothesis of interest is no predictability; that is, H0 : β1 = β2 = 0.

Under the null hypothesis, the predictive regression model in (3) reduces to a change in mean

model as follows:

yt = α11t≤T 0
1
+ α21t>T 0

1
+ ut. (4)

Now, we state some assumptions as follows.

Assumption 1. The magnitude of the level shift can be expressed as |α2 − α1| = δTT
−1/2

where δT = O(T ϵ) for some ϵ ∈ (0, 1/2].

Assumption 2. T 0
1 = [Tλ0] where λ0 ∈ (π, 1− π) for some π ∈ (0, 1/2).

Under Assumption 1, the magnitude of the level shift either is independent of the sample

size or shrinks to zero at a rate slower than T−1/2; thus, the break fraction can be estimated

consistently regardless of whether xt is either stationary or (nearly) integrated under the

null hypothesis (see, for example, Bai, 1994; Bai and Perron, 1998; Kurozumi and Arai,

2006). Assumption 2 is the standard for ensuring that the pre- and post-break subsamples

are asymptotically large enough. We propose a new testing procedure for the null hypothesis

H0 : β1 = β2 = 0 as follows:

• Step 1: Estimate the break dates in the change in mean model (4) using the procedure

recommended in Bai and Perron (1998, 2006).

• Step 2: Split the whole sample into disjoint subsamples in accordance with the esti-

mated break dates.

• Step 3: Compute the EL-based test statistic in each subsample, and add them up to

construct the final statistic.

The break date can be estimated using a global least squares criterion:

T̂1 = argmin
T1∈Λ

ST (T1) (5)
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where Λ = TΛν , Λν = (ν, 1− ν) for some small trimming ν, and ST (T1) is the SSR.

ST (T1) =

T1∑
t=1

(
yt − T−1

1

T1∑
t=1

yt

)2

+
T∑

t=T1+1

(
yt − (T − T1)

−1

T∑
t=T1

yt

)2

for an admissible break date T1. Let λ̂1 = T̂1/T denote the break fraction estimate. The

consistency of λ̂ is well established in the literature.

Remark 1. If no level shift is allowed in (3); that is, α1 = α2 = α. Then, yt = α + ut

(t = 1, . . . , T ) under H0 : β1 = β2 = 0. The EL method established by Zhu et al. (2014) can

be applied to test the null hypothesis without modification. Hence, in this study, we focus on

the change in mean model (4) under the null hypothesis.

However, in both subsamples, the intercepts α1 and α2 are unknown, and the EL method

may fail (see, for example, Chan et al. (2012) and Zhu et al. (2014) for a detailed explanation

of this issue.) To apply the EL method, we considered the following estimation equations:

T 0
1∑

t=1

(yt − α1 − β1xt−1) = 0,

T 0
1∑

t=1

(yt − α1 − β1xt−1)w(xt−1) = 0, (6)

and
T∑

t=T 0
1+1

(yt − α2 − β2xt−1) = 0,
T∑

t=T 0
1+1

(yt − α2 − β2xt−1)w(xt−1) = 0, (7)

where the weight w(xt−1) ≡ xt−1/(1 + x2t−1)
1/2. Solving Equations (6) and (7) yields

the weighted OLS estimates of αj and βj for j = 1, 2. When xt is (nearly) integrated,

(T 0
1 )

−1
∑T 0

1
t=1 utw(xt−1) does not converge in probability to a constant but converges in dis-

tribution to a random variable as T → ∞ because of the intercept term (see, e.g., Chan

and Wei, 1987; Chan et al., 2012). This suggests that the joint limit of (T 0
1 )

−1/2
∑T 0

1
t=1(yt −

α1 − β1xt−1) and (T 0
1 )

−1/2
∑T 0

1
t=1(yt − α1 − β1xt−1)w(xt−1) cannot follow a bivariate nor-

mal distribution. Similarly, the joint limits of (T − T 0
1 )

−1/2
∑T

t=T 0
1+1(yt − α2 − β2xt−1) and

(T − T 0
1 )

−1/2
∑T

t=T 0
1+1(yt − α2 − β2xt−1)w(xt−1) cannot be a bivariate normal distribution.

Hence, when the predictor variable xt is nonstationary, the EL method based on weighted

score equations fails as Wilks’s theorem does not hold.

Zhu et al. (2014) suggested an avenue to avoid this problem. Here, we briefly review this

argument. We can eliminate αj, j = 1, 2, using the first difference. However, this comes at

a cost. When ϕ = 1, that is, xt is an I(1) process, the sequence {xt − xt−1} is a stationary

process. The inference of βj, j = 1, 2, becomes less efficient with the first difference as

the rate of convergence is T 1/2 rather than T with an I(1) process xt. Furthermore, the
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noise components, {ut − ut−1}, are not independent. To accommodate these difficulties,

Zhu et al. (2014) used the first difference with a large lag. Let m = [n/2] where n is the

number of observations in the sample. The observables {yt, xt} take the first difference with

m-horizon differences. Then, we have ỹt = yt − yt+m, x̃t = xt − xt+m, and ũt = ut − ut+m for

t = 1, 2, . . . ,m. The EL function for βj, j = 1, 2 can be constructed using ỹt and x̃t.

The true break date T 0
1 is generally unknown. We use consistent estimates to apply the

EL method. Without losing generality, we assume that T̂1 < T 0
1 . Let m̂1 = [T̂1/2], and

m̂2 = [(T − T̂1)/2]. The difference series {ỹt} is obtained as follows for each subsample: (i)

In the pre-T̂1 subsample, for t = 1, 2, . . . , m̂1, we define ỹt = yt − yt+m̂1 , x̃t = xt − xt+m̂1 , and

ũt = ut − ut+m̂1 .

ỹt = β1 x̃t−1 + ũt, x̃t = ϕx̃t−1 +
∞∑
j=0

ψj ṽt−j.

Taking the difference with a large lag helps ensure that |x̃t|
p→ ∞ when |xt|

p→ ∞ as

t → ∞ where “
p→” denotes convergence in probability. (ii) In the post-T̂1 subsample, for

t = T̂1 + 1, . . . , T̂1 + m̂2, we define ỹt = yt − yt+m̂2 , x̃t = xt − xt+m̂2 , and ũt = ut − ut+m̂2 . It

is noteworthy that the post-T̂1 subsample should be divided into two parts if the estimate

of the break date differs from the true break date, for instance, T̂1 < T 0
1 . More precisely,

yt =

{
α1 + β1 xt−1 + ut, for t = T̂1 + 1, . . . , T 0

1 ,

α2 + β2 xt−1 + ut, for t = T 0
1 + 1, . . . , T,

and

yt+m̂2 = α2 + β2 xt−1 + ut, t = T̂1 + 1, . . . , T̂1 + m̂2.

Hence, we have

ỹt = β2 x̃t−1 + ũt, x̃t = ϕx̃t−1 +
∞∑
j=0

ψj ṽt−j,

where

ũt =

{
(ut − ut+m̂2) + (α1 − α2) + (β1 − β2)xt−1, for t = T̂1 + 1, . . . , T 0

1 ,

(ut − ut+m̂2) for t = T 0
1 + 1, . . . , T̂1 + m̂2.

Correspondingly, we let l̃1(β1) denote the EL-based statistics calculated using data for

t = 1, . . . , T̂1 and l̃2(β2) using data for t = T̂1 + 1, . . . , T . More precisely, based on the

preceding equations, the EL function is defined as

L̃1(β1) = sup

{ m̂1∏
t=1

(m̂1pt) : p1 ≥ 0, . . . , pm̂1 ≥ 0,

m̂1∑
t=1

pt = 1,

m̂1∑
t=1

ptH̃t(β1) = 0

}
,
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where H̃t(β1) = (ỹt − β1 x̃t−1) x̃t−1/(1 + x̃2t−1)
1/2. Note that the supremum is taken with

respect to pt. After applying the Lagrange multiplier technique, we obtain

l̃1(β1) = −2 log L̃1(β1) = 2

m̂1∑
t=1

log{1 + λ̃1H̃t(β1)},

where λ̃1 = λ̃1(β1) satisfies
m̂1∑
t=1

H̃t(β1)

1 + λ̃1H̃t(β1)
= 0.

Similarly,

L̃2(β2) = sup

{ T̂1+m̂2∏
t=T̂1+1

(m̂2pt) : pT̂1+1 ≥ 0, . . . , pT̂1+m̂2
≥ 0,

T̂1+m̂2∑
t=T̂1+1

pt = 1,

T̂1+m̂2∑
t=T̂1+1

ptH̃t(β2) = 0

}
,

where H̃t(β2) = (ỹt − β2 x̃t−1) x̃t−1/(1 + x̃2t−1)
1/2 and

l̃2(β2) = −2 log L̃2(β2) = 2

T̂1+m̂2∑
t=T̂1+1

log{1 + λ̃2H̃t(β2)},

where λ̃2 = λ̃2(β2) satisfies
T̂1+m̂2∑
t=T̂1+1

H̃t(β2)

1 + λ̃2H̃t(β2)
= 0.

To validate Wilks’s theorem for the aforementioned EL method, we assume the following

regularity condition:

• Condition A: E[u1] = 0, E[v1] = 0, E[|u1|2+κ + |v1|2+κ] < ∞ for some κ > 0 and

{ut, vt} is a sequence of i.i.d. random vectors.

Theorem 1. Under Assumptions 1 and 2, suppose that model (4) holds with coefficients ψj

satisfying that the linear process
∑∞

j=0 ψjvt−j is a strictly stationary process, and either (i)

|ϕ| < 1 independent of T (stationary case), (ii) ϕ = 1− c/T for some c > 0 (NI(1) case), or

(iii) ϕ = 1 (I(1) case). Then, under Condition A, we have l̃β(β1,0, β2,0) ≡ l̃1(β1,0)+ l̃2(β2,0)
d→

χ2(2) as T → ∞ where (β1,0, β2,0) denotes the true value of (β1, β2).

Theorem 1 states that a unified EL test rejects the null hypothesis of no predictability in

both regimes H0 : β1 = β2 = 0 at significance level τ if l̃β(0, 0) > χ2
2.1−τ where χ2

2.1−τ denotes

the (1− τ)th quantile of a chi-squared distribution with two degrees of freedom. Confidence

intervals/sets are frequently used in conjunction with point estimates to convey information
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about estimate uncertainty. Based on Theorem 1, the EL confidence set for (β1,0, β2,0) at

level τ can be obtained as follows:

CIτ = {(β1, β2) : l̃β(β1, β2) ≤ χ2
2,1−τ}.

Therefore, the implementation for constructing confidence sets is straightforward without

estimating any additional quantity. Indeed, the function “emplik” in the R package (see

Zhou, 2015) can be employed to compute l̃1(β1) and l̃2(β2) as easily as in the simulation

study below.

2.2 Testing predictability allowing for a structural break

If the joint null hypothesis H0 : β1 = β2 = 0 is rejected, then it is likely that at least one

of the regression coefficients (β1, β2) is nonzero, which supports stock return predictability

in a certain regime.

To test the null hypothesis of no predictability, allowing for a structural change on an

unknown date T 0
1 , we can rewrite the predictive regression (3) as follows:

yt = z′t−1γ1 1t≤T 0
1
+ z′t−1γ2 1t>T 0

1
+ ut, t = 1, . . . , T, (8)

where zt−1 = (1, xt−1)
′ and γi = (αi, βi)

′ for i = 1, 2 otherwise. The magnitude of the change

is denoted by ∥γ2 − γ1∥ = ∥δ∥ ̸= 0 where the notation ∥ · ∥ denotes the Euclidean norm;

that is, ∥k∥ = (
∑m

i=1 k
2
i )

1/2 for k ∈ Rm. To establish the consistency of the estimated break

fraction λ̂, we require the following assumption.

Assumption 3. The magnitude of the level shift can be expressed as ∥γ2 − γ1∥ = ∥δ∥ =

δTT
−1/2 where δT = O(T ϵ) for some ϵ ∈ (0, 1/2].

Although Assumption 3 is particularly well suited to an adequate approximation of the

exact distribution when the predictor variable xt is stationary, it remains adequate for non-

stationary predictor variables (see Bai and Perron, 1998; Bai et al., 1998; Kurozumi and

Arai, 2006). As explained in Elliott and Müller (2007), the break is sufficiently large to be

detected with probability one with any reasonable test for breaks and to estimate its date

in terms of the fraction of the sample consistently under Assumption 3. They considered a

small break, |β2−β1| = dT−1/2 with a constant d in linear regression models and found that

λ0 is not consistently estimable when the regressors are stationary processes.

Remark 2. If the predictor variable xt is integrated, Assumption 3 can be relaxed to the

case where |β2 − β1| = δTT
−1; that is, the magnitude of the slope change shrinks to zero
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at a rate faster than T−1/2. As addressed in Bai et al. (1998), Kurozumi and Arai (2006,

2007), the break fraction can be consistently estimated with a significantly smaller shift in

the cointegrating coefficients. In this study, we consider testing procedures for stock return

predictability regardless of whether the predictor variable is I(0) or I(1), thereby introducing

Assumption 3.

In matrix notation, we can rewrite predictive regression (8) as follows:

Y = X̄T1 γ + U.

For any matrix A, let A′ denote its transpose. Let Y ′ = [y1, . . . , yT ], U
′ = [u1, . . . , uT ],

γ = (γ′1, γ
′
2)

′, and X̄T1 = [X1(λ), X2(λ)] where X1(λ)t = z′t−1 if t ≤ T1 and zero otherwise

while X2(λ)t = z′t−1 if t > T1 and zero otherwise. The break date can be estimated using the

global least-squares criterion:

T̂1 = argmin
T1∈Λ

Y ′(I − PT1)Y,

where PT1 is the matrix that projects on the range space of X̄T1 , i.e., PT1 = X̄T1(X̄
′
T1
X̄T1)

−1X̄ ′
T1
.

The OLS estimate of the regression coefficient γ is γ̂ = (X̄ ′
T̂1
X̄T̂1

)−1X̄ ′
T̂1
Y where X̄T̂1

is con-

structed with the estimate of the break date T̂1.

Proposition 1. Suppose Assumptions 2 and 3 hold true. Subsequently, λ̂
p→ λ0 as T → ∞.

Proposition 1 asserts that the estimated break fraction remains consistent, even when

the magnitude of the break decreases as the sample size increases, regardless of whether the

predictor variable xt is stationary or (nearly) integrated.

Remark 3. Allowing more than one break in predictive regression models is not difficult;

however, because our main interest is to construct EL-based tests for predictability under

general assumptions on the predictor variable and errors, the single break model is effective

for delineating the results.

Remark 4. There may be some concern about estimating a spurious break that does not exist

in the DGP. Nunes et al. (1995) and Bai (1998) showed that the OLS estimate of the break

date T̂1 is a spurious one when the error is an I(1) process. Kuan and Hsu (1998) and Hsu

and Kuan (2008) considered a change in mean model for a fractionally integrated process and

found that a spurious break can be estimated if memory parameter d∗ ∈ (0, 1.5). Recently,

Chang and Perron (2016) considered a linear trend model with a change in slope with or

without a concurrent level shift and showed that it is likely to estimate a spurious break when
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fractionally integrated errors have memory parameters in the interval (0, 1.5), excluding the

boundary case 0.5. In this study, the noise component (ut, vt) is assumed to be i.i.d., which

excludes the risk of estimating a spurious break. Furthermore, Proposition 1 confirms that

the estimate of the break fraction is consistent, regardless of whether the regressor xt is either

I(0) or I(1).

Without a loss of generality, we assume that T̂1 < T 0
1 . Let m̂1 = [T̂1/2], and m̂2 =

[(T − T̂1)/2]. The difference series {ÿt} is obtained as follows for each subsample: (i) In

the pre-T̂1 subsample, for t = 1, 2, . . . , m̂1, we define ÿt = yt − yt+m̂1 , ẍt = xt − xt+m̂1 , and

üt = ut − ut+m̂1 .

ÿt = β1 ẍt−1 + üt.

(ii) In the post-T̂1 subsample, for t = T̂1 + 1, . . . , T̂1 + m̂2, we define ÿt = yt − yt+m̂2 , ẍt =

xt − xt+m̂2 and üt = ut − ut+m̂2 . Then,

yt =

{
α1 + β1 xt−1 + ut, for t = T̂1 + 1, . . . , T 0

1 ,

α2 + β2 xt−1 + ut, for t = T 0
1 + 1, . . . , T,

and

yt+m̂2 = α2 + β2 xt−1 + ut, t = T̂1 + 1, . . . , T̂1 + m̂2,

from Proposition 1. Hence, we have

ÿt = β2 ẍt−1 + üt,

where

üt =

{
(ut − ut+m̂2) + (α1 − α2) + (β1 − β2)xt−1, for t = T̂1 + 1, . . . , T 0

1 ,

(ut − ut+m̂2) for t = T 0
1 + 1, . . . , T̂1 + m̂2.

Based on the preceding equations, the EL function is defined as follows:

L̈1(β1) = sup

{ m̂1∏
t=1

(m̂1pt) : p1 ≥ 0, . . . , pm̂1 ≥ 0,

m̂1∑
t=1

pt = 1,

m̂1∑
t=1

ptḦt(β1) = 0

}
,

where Ḧt(β1) = (ÿt − β1 ẍt−1) ẍt−1/(1 + ẍ2t−1)
1/2. After applying the Lagrange multiplier

technique, we obtain:

l̈1(β1) = −2 log L̈1(β1) = 2

m̂1∑
t=1

log{1 + λ̈1Ḧt(β1)},

where λ̈1 = λ̈1(β1) satisfies
m̂1∑
t=1

Ḧt(β1)

1 + λ̈1Ḧt(β1)
= 0.
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Similarly,

L̈2(β2) = sup

{ T̂1+m̂2∏
t=T̂1+1

(m̂2pt) : pT̂1+1 ≥ 0, . . . , pT̂1+m̂2
≥ 0,

T̂1+m̂2∑
t=T̂1+1

pt = 1,

T̂1+m̂2∑
t=T̂1+1

ptḦt(β2) = 0

}
,

where Ḧt(β2) = (ÿt − β2 ẍt−1) ẍt−1/(1 + ẍ2t−1)
1/2, and

l̈2(β2) = −2 log L̈2(β2) = 2

T̂1+m̂2∑
t=T̂1+1

log{1 + λ̈2Ḧt(β2)},

where λ̈2 = λ̈2(β2) satisfies
T̂1+m̂2∑
t=T̂1+1

Ḧt(β2)

1 + λ̈2Ḧt(β2)
= 0.

The following theorem shows that Wilks’s theorem holds for the proposed EL method.

Proposition 1 is crucial for deriving the asymptotic results in Theorem 2.

Theorem 2. Under Assumptions 2 and 3, suppose that model (8) holds with coefficients

ψj, satisfying that the linear process
∑∞

j=0 ψjvt−j is a strictly stationary process, and either

(i) |ϕ| < 1 independent of T (stationary case), (ii) ϕ = 1 − c/T for some c > 0 (NI(1)

case), or (iii) ϕ = 1 (I(1) case). Then, under Condition A, l̈1(β1,0) and l̈2(β2,0) converge in

distribution to a chi-square limit with one degree of freedom as T → ∞.

According to Theorem 2, unified EL tests can be obtained for testing H0 : β1 = 0 and

H0 : β2 = 0 for model (8) based on l̈1(0) and l̈2(0), respectively. Again, a unified interval set

can be obtained using Theorem 2.

3 Monte Carlo Simulation

In this section, we assess the finite sample properties of this procedure. We initially

focus on the size properties of the test statistics. The DGP is given by (3), with β1 = β2 = 0;

that is,

yt = α1 1t≤T 0
1
+ α2 1t>T 0

1
+ ut, (t = 1, . . . , T ),

as defined in (4). The predictor variable, xt, is specified by

xt = ϕxt−1 +
∞∑
j=0

ψjvt−j,

where the noise components (ut, vt) are contemporaneously correlated as follows:

ut = ρ vt +
√
1− ρ2 ϵt, ρ = −0.95. (9)
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We choose either (i) ψ0 = 1 and ψj = 0 for j ≥ 1 or (ii) ψj = 0.5j for j ≥ 0 in
∑∞

j=0 ψjvt−j and

consider the standard normal distribution for the distributions of (vt, ϵt) in (9). We set the

various parameters at the following values: α1 = 0, α2 = aT−1/2 with a ∈ {4, 8, 12, 16}, λ0 ∈
{0.5, 0.7}, and ϕ ∈ {0.9, 1−2T−1, 1}. In this configuration, the size is the rejection probability

of the joint null hypothesis H0 : β1 = β2 = 0. Three sample sizes, T = 200, 500, 1000, are

considered to cover various-sized structural changes (see, for example, Elliott and Müller,

2007; Chang and Perron, 2018). The number of simulation replications is 5000 for each

parameter combination. We use the R package “emplik” in Zhou (2015) to compute the EL

function.

Tables 1-2 present the size properties of EL methods with a nominal size of 5%. The

results regarding to the empirical size in the case of (i) ψ0 = 1 and ψj = 0 for j ≥ 1 are

in Table 1. We observe that, for sample sizes T ≥ 500, the EL tests have excellent size

control across all values of ϕ. This is particularly true for medium and large level shifts.

For T = 200, EL methods appear to be oversized for small and medium level shifts. When

ϕ = 1, mild size distortion remains even for a large level shift (a = 16). Table 2 presents

the results regarding the empirical size in the case of (ii) ψj = 0.5j for j ≥ 0 in
∑∞

j=0 ψjvt−j.

We find that the EL statistic shows size close to the nominal rate 5% apart from some mild

oversizing for T = 200 and λ0 = 0.7, particularly for ϕ = 1.

Next, we examine the power performance of the test against the deviation from the null

hypothesis H0 : β1 = β2 = 0. The DGP is given by (3):

yt = (α1 + β1xt−1)1t≤T 0
1
+ (α2 + β2xt−1)1t>T 0

1
+ ut, (t = 1, . . . , T ),

Regarding the intercept terms, we set α1 = 0 and α2 = 16T−1/2 (a single large level shift).

We consider two cases for the slope coefficients: (b1) β1 = 0, β2 = bT−1/2, and (b2) β1 = β2 =

bT−1/2 where b ∈ {1, 2, 4, 8}. Note that the DGP is reduced to the conventional predictive

regression without a structural break; that is, yt = α+ βxt−1 + ut, (t = 1, . . . , T ) if α1 = α2

and (b2) holds (see Zhu et al. (2014) for the finite sample performance of the EL-based tests).

Tables 34 present the power properties of the EL method. The results for the empirical power

in the case of (i) ψ0 = 1 and ψj = 0 for j ≥ 1 are listed in Table 3. In Panel (i), we consider

the cases of (b1) β1 = 0 and β2 = bT−1/2. It is clear that the powers of the EL tests increase

with the sample size T and/or magnitude of the slope change b. In Panel (ii), we consider the

case of (b2) β1 = β2 = bT−1/2 where the predictor variable shows the same predictability in

the pre- and post-break subsamples. The proposed EL tests have overall satisfactory power,

and their powers increase as the alternative hypothesis is far from the null hypothesis. The

test for the case of the NI(1) or I(1) is more powerful than that for the stationary case. Table
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Table 1: Finite sample sizes for the test based on Theorem 1 and model (3) with θ = 0 and
normally distributed errors for testing H0 : β1 = β2 = 0. We take ψ0 = 1 and ψj = 0 for
j ≥ 1 in

∑∞
j=0 ψjvt−j.

T = 200 T = 500 T = 1000
(a, ϕ) λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7

(4, 0.9) 0.069 0.074 0.061 0.061 0.056 0.050
(8, 0.9) 0.070 0.073 0.059 0.056 0.052 0.060
(12, 0.9) 0.059 0.056 0.050 0.054 0.054 0.053
(16, 0.9) 0.057 0.062 0.054 0.062 0.051 0.057

(4, 1− 2T−1) 0.070 0.091 0.065 0.080 0.058 0.068
(8, 1− 2T−1) 0.064 0.076 0.056 0.054 0.050 0.054
(12, 1− 2T−1) 0.062 0.058 0.049 0.049 0.046 0.049
(16, 1− 2T−1) 0.053 0.061 0.050 0.049 0.042 0.046

(4, 1) 0.085 0.093 0.075 0.076 0.067 0.076
(8, 1) 0.074 0.085 0.067 0.068 0.061 0.068
(12, 1) 0.070 0.077 0.065 0.072 0.058 0.064
(16, 1) 0.075 0.072 0.064 0.065 0.052 0.064

Note: The DGP is yt = α2 1t>[λ0T ] + ut, where xt = ϕxt−1 +
∑∞

j=0 ψjvt with ψ0 = 1 and ψj = 0

for j ≥ 1, α2 = aT−1/2 with a ∈ {4, 8, 12, 16}, and λ0 ∈ {0.5, 0.7}. For the noise components,
vt ∼ i.i.d.N(0, 1) and ut = ρ vt +

√
1− ρ2 ηt with ηt ∼ i.i.d.N(0, 1). Rejection frequencies are

reported for testing H0 : β1 = β2 = 0 with level 5% for the proposed empirical likelihood test
l̃β(β1, β2).

Table 2: Finite sample sizes for the test based on Theorem 1 and model (3) with θ = 0 and
normally distributed errors for testing H0 : β1 = β2 = 0. We take ψj = 0.5j for j ≥ 0 in∑∞

j=0 ψjvt−j.

T = 200 T = 500 T = 1000
(a, ϕ) λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7

(4, 0.9) 0.069 0.072 0.060 0.066 0.054 0.056
(8, 0.9) 0.054 0.070 0.057 0.058 0.050 0.055
(12, 0.9) 0.058 0.060 0.051 0.062 0.056 0.050
(16, 0.9) 0.051 0.062 0.055 0.058 0.059 0.053

(4, 1− 2T−1) 0.076 0.086 0.063 0.070 0.055 0.063
(8, 1− 2T−1) 0.062 0.066 0.057 0.058 0.046 0.057
(12, 1− 2T−1) 0.057 0.065 0.051 0.053 0.044 0.047
(16, 1− 2T−1) 0.051 0.061 0.047 0.044 0.042 0.044

(4, 1) 0.082 0.092 0.080 0.072 0.071 0.078
(8, 1) 0.074 0.087 0.068 0.071 0.061 0.069
(12, 1) 0.074 0.077 0.064 0.063 0.062 0.058
(16, 1) 0.066 0.076 0.059 0.061 0.054 0.053

Note: The DGP is yt = α2 1t>[λ0T ] + ut, where xt = ϕxt−1 +
∑∞

j=0 ψjvt−j with ψj = 0.5j for j ≥ 0.
The notes of Table 1 apply.

4 reports the results regarding the empirical power in the case of (ii) ψj = 0.5j for j ≥ 0 and

shows patterns similar to those obtained in Table 3, indicating that our method is robust

against the dependent or independent errors in modeling the predicting variable.
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Table 3: Finite sample powers for the test based on Theorem 1 and model (3) with θ = 0
and normally distributed errors for testing H0 : β1 = β2 = 0. We take ψ0 = 1 and ψj = 0 for
j ≥ 1 in

∑∞
j=0 ψjvt−j.

T = 200 T = 500 T = 1000
λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7

(i) (b1) holds
ϕ = 0.9 b = 1 0.187 0.192 0.164 0.145 0.153 0.130

b = 2 0.478 0.361 0.470 0.325 0.478 0.304
b = 4 0.991 0.872 0.999 0.931 1.000 0.923
b = 8 1.000 0.999 1.000 1.000 1.000 1.000

ϕ = 1− 2T−1 b = 1 0.563 0.414 0.868 0.599 0.977 0.807
b = 2 0.952 0.737 0.999 0.949 1.000 0.996
b = 4 0.999 0.986 1.000 0.999 1.000 1.000
b = 8 1.000 0.999 1.000 1.000 1.000 1.000

ϕ = 1 b = 1 0.681 0.505 0.916 0.676 0.986 0.847
b = 2 0.975 0.795 0.999 0.962 1.000 0.997
b = 4 1.000 0.990 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

(ii) (b2) holds
ϕ = 0.9 b = 1 0.262 0.305 0.261 0.266 0.249 0.266

b = 2 0.813 0.830 0.802 0.815 0.803 0.803
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1− 2T−1 b = 1 0.857 0.882 0.994 0.997 1.000 1.000
b = 2 0.999 0.999 1.000 1.000 1.000 1.000
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1 b = 1 0.944 0.951 0.998 0.998 1.000 1.000
b = 2 1.000 1.000 1.000 1.000 1.000 1.000
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

Note: The DGP is yt = (α1 + β1xt−1)1t≤T 0
1
+ (α2 + β2xt−1)1t>T 0

1
+ ut, where xt = ϕxt−1 +∑∞

j=0 ψjvt with ψ0 = 1 and ψj = 0 for j ≥ 1. Regarding the intercept terms, we set α1 = 0

and α2 = 16T−1/2 (a single large level shift). As for slope coefficients, we consider two cases:
(b1) β1 = 0, β2 = bT−1/2, and (b2) β1 = β2 = bT−1/2 where b ∈ {1, 2, 4, 8}. See notes to
Table 1.

Moreover, simulation experiments are devised to compare the finite sample performance

of the EL tests with the IVX-based test. In contrast to the proposed EL method, the

IVX-based test has no test statistic, and its limiting distribution for the null hypothesis

H0 : β1 = β2 = 0 in (4). For a fair comparison, we consider the case with an unknown break

date and test the null hypothesis H0 : β1 = 0; that is, we test for stock return predictability

in the pre-break subsample. We report the finite sample rejection frequencies of the IVX-

based test by Kostakis et al. (2015) along with those of the EL test. Table 5 presents the
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Table 4: Finite sample powers for the test based on Theorem 1 and model (3) with θ = 0
and normally distributed errors for testing H0 : β1 = β2 = 0. We take ψj = 0.5j for j ≥ 0 in∑∞

j=0 ψjvt−j.

T = 200 T = 500 T = 1000
λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7 λ0 = 0.5 λ0 = 0.7

(i) (b1) holds
ϕ = 0.9 b = 1 0.275 0.246 0.269 0.203 0.263 0.196

b = 2 0.832 0.586 0.863 0.589 0.853 0.588
b = 4 0.999 0.990 1.000 0.994 1.000 0.999
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1− 2T−1 b = 1 0.807 0.575 0.987 0.841 1.000 0.965
b = 2 0.994 0.915 1.000 0.996 1.000 1.000
b = 4 1.000 0.999 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1 b = 1 0.875 0.631 0.993 0.867 0.999 0.977
b = 2 0.997 0.938 1.000 0.999 1.000 1.000
b = 4 1.000 0.999 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

(ii) (b2) holds
ϕ = 0.9 b = 1 0.457 0.483 0.468 0.477 0.465 0.486

b = 2 0.999 0.998 0.998 0.999 0.996 0.997
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1− 2T−1 b = 1 0.991 0.994 1.000 1.000 1.000 1.000
b = 2 1.000 1.000 1.000 1.000 1.000 1.000
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

ϕ = 1 b = 1 0.995 0.998 1.000 1.000 1.000 1.000
b = 2 1.000 1.000 1.000 1.000 1.000 1.000
b = 4 1.000 1.000 1.000 1.000 1.000 1.000
b = 8 1.000 1.000 1.000 1.000 1.000 1.000

Note: The DGP is yt = (α1 + β1xt−1)1t≤T 0
1
+ (α2 + β2xt−1)1t>T 0

1
+ ut, where xt = ϕxt−1 +∑∞

j=0 ψjvt−j with ψj = 0.5j for j ≥ 0. See notes to Tables 1 and 3.

size and power properties of the aforementioned tests. The DGP is specified as follows:

yt = (α1 + β1xt−1) + ut, xt = ϕxt−1 + vt with λ0 = 0.5, α1 = aT−1/2 with a ∈ {4, 8, 12, 16},
and β1 = bT−1/2 with b ∈ {0, 1, 2, 4, 8}. We first consider the case of b = 0 for size comparison.

For the noise components, vt ∼ N(0, 1) and ut = ρvt + (1− ρ2)1/2ϵt with ϵt ∼ N(0, 1). The

sample sizes are T = 200, 500, 1000. The proposed EL methods have empirical sizes close to

the nominal level of 5%.

The IVX-based test reveals several interesting features. If the predictor variable xt is

(nearly) integrated, the IVX-based test can be somewhat liberal because the finite sample

rejection frequencies are above the nominal level of 5%. Size distortions for the IVX-based
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Table 5: Comparison of finite sample sizes and powers

b = 0 b = 1 b = 2 b = 4 b = 8
(a, ϕ) IVX EL IVX EL IVX EL IVX EL IVX EL

T = 200
(4, 0.9) 0.073 0.050 0.193 0.124 0.404 0.387 0.412 0.838 0.479 0.993
(8, 0.9) 0.060 0.060 0.235 0.136 0.632 0.482 0.586 0.925 0.516 0.993
(12, 0.9) 0.045 0.059 0.245 0.133 0.778 0.495 0.780 0.968 0.592 0.996
(16, 0.9) 0.044 0.059 0.245 0.131 0.833 0.517 0.928 0.988 0.705 0.996

(4, 1− 2T−1) 0.093 0.055 0.376 0.319 0.482 0.719 0.640 0.955 0.772 0.999
(8, 1− 2T−1) 0.072 0.054 0.497 0.395 0.536 0.754 0.652 0.961 0.773 0.998
(12, 1− 2T−1) 0.066 0.058 0.622 0.476 0.631 0.794 0.692 0.958 0.786 0.998
(16, 1− 2T−1) 0.070 0.053 0.720 0.513 0.729 0.835 0.721 0.966 0.791 0.999

(4, 1) 0.090 0.054 0.520 0.460 0.665 0.824 0.802 0.972 0.886 0.999
(8, 1) 0.076 0.066 0.554 0.486 0.683 0.837 0.800 0.972 0.887 0.999
(12, 1) 0.079 0.067 0.633 0.543 0.704 0.841 0.818 0.972 0.899 0.999
(16, 1) 0.080 0.069 0.683 0.578 0.723 0.843 0.813 0.974 0.891 0.999

T = 500
(4, 0.9) 0.059 0.055 0.161 0.141 0.388 0.442 0.340 0.947 0.388 1.000
(8, 0.9) 0.041 0.050 0.229 0.150 0.692 0.508 0.520 0.992 0.405 1.000
(12, 0.9) 0.042 0.054 0.258 0.143 0.835 0.517 0.820 0.999 0.473 1.000
(16, 0.9) 0.041 0.057 0.254 0.147 0.858 0.533 0.963 1.000 0.605 1.000

(4, 1− 2T−1) 0.076 0.046 0.409 0.567 0.532 0.894 0.701 0.996 0.824 1.000
(8, 1− 2T−1) 0.068 0.046 0.512 0.627 0.575 0.902 0.728 0.997 0.832 1.000
(12, 1− 2T−1) 0.054 0.050 0.639 0.690 0.614 0.911 0.724 0.997 0.834 1.000
(16, 1− 2T−1) 0.066 0.046 0.736 0.761 0.692 0.924 0.724 0.998 0.836 1.000

(4, 1) 0.078 0.045 0.552 0.700 0.699 0.939 0.834 0.997 0.909 1.000
(8, 1) 0.063 0.055 0.590 0.702 0.721 0.928 0.840 0.998 0.903 1.000
(12, 1) 0.063 0.060 0.621 0.724 0.717 0.924 0.823 0.996 0.909 1.000
(16, 1) 0.068 0.057 0.667 0.767 0.731 0.943 0.835 0.997 0.910 1.000

T = 1000
(4, 0.9) 0.061 0.052 0.149 0.138 0.379 0.454 0.302 0.981 0.329 1.000
(8, 0.9) 0.043 0.484 0.228 0.165 0.680 0.511 0.501 0.997 0.341 1.000
(12, 0.9) 0.038 0.052 0.252 0.149 0.820 0.531 0.838 0.999 0.362 1.000
(16, 0.9) 0.037 0.043 0.254 0.168 0.848 0.543 0.979 1.000 0.506 1.000

(4, 1− 2T−1) 0.086 0.049 0.450 0.763 0.590 0.972 0.748 1.000 0.848 1.000
(8, 1− 2T−1) 0.068 0.043 0.503 0.776 0.595 0.977 0.752 1.000 0.844 1.000
(12, 1− 2T−1) 0.061 0.043 0.581 0.804 0.629 0.978 0.753 1.000 0.858 1.000
(16, 1− 2T−1) 0.057 0.045 0.687 0.851 0.674 0.980 0.772 1.000 0.857 1.000

(4, 1) 0.077 0.051 0.590 0.823 0.743 0.984 0.860 1.000 0.922 1.000
(8, 1) 0.052 0.058 0.608 0.828 0.739 0.985 0.863 1.000 0.923 1.000
(12, 1) 0.059 0.061 0.649 0.832 0.749 0.980 0.858 1.000 0.921 1.000
(16, 1) 0.065 0.063 0.663 0.850 0.766 0.980 0.862 1.000 0.925 1.000

Note: The DGP is yt = (α1+β1xt−1)1t≤T 0
1
+ut and xt = ϕxt−1+vt, where λ0 = 0.5, α1 = aT−1/2

with a ∈ {4, 8, 12, 16}, and β1 = b T−1/2 with b ∈ {0, 1, 2, 4, 8}. Note b = 0 for size comparison.
For the noise components, vt ∼ i.i.d.N(0, 1) and ut = ρ vt +

√
1− ρ2 ηt with ηt ∼ i.i.d.N(0, 1).

Rejection frequencies are reported for testing H0 : β1 = 0 with level 5%.
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test remain, even when the sample size and magnitude of the level shift are relatively large.

Overall, EL methods are remarkable in terms of size control, which confirms their validity,

allowing a structural break in predictive regression. For b > 0, we examine the power proper-

ties of the aforementioned tests without size adjustment because there is no oversizing in the

proposed EL tests. Surprisingly, the IVX-based test shows non-monotonic power against the

alternative hypothesis of predictability such that the power of the test can decrease as the

magnitude of change increases. For example, when ϕ = 0.9, the power of the IVX-based test

decreases as the magnitude of break b becomes greater than two, regardless of the sample

size. This finding highlights that the IVX-based test statistic may not be reliable when there

exists at least a structural break in the predictive regressions.

In simulation experiments, we consider predictive regressions under practical assumptions

on the predictor variable and errors: (i) there exists a structural break in the predictive

regression model, (ii) the predictor variable can be stationary or nonstationary, and (iii) the

errors (ut, vt) are contemporaneously correlated. The simulation results appear to support

the proposed EL methods having good finite sample properties in terms of both size and

power. The results shed new light on testing for stock return predictability because the

EL methods can help address various time-series characteristics of the predictor variable

and incorporate a structural break on an unknown date in predictive regressions. Because

the IVX-based test requires a complicated implementation and, more importantly, does not

provide a theoretical justification for the joint null hypothesis of no predictability; that is,

H0 : β1 = β2 = 0, the proposed EL method can be a useful complement to testing for asset

return predictability.

It is noteworthy that the powers of the EL tests are very close to 1 if the magnitude of

the level shift is sufficiently large, α2 = 16T−1/2, in the predictive regression. This result

indicates that the magnitude of the change in predictive regression plays an important role in

the finite sample properties of the proposed EL tests. For further investigation, we allowed

the values of β1 to range from 1 to 1 in increments of 0.1. For other parameters, we set β2 = 0,

ρ = −0.95, θ = 0, ϕ = 0.99, and T = 150. The noise components (vt, ϵt) ∼ i.i.d.N(0, 1).

The break date can be estimated by minimizing the SSR, as described in (5). For the null

hypothesis of β2 = 0, rejection frequencies are shown in Figure 1. Because we set α1 = α2 = 0

in the DGP, the EL method with known α, which is free from splitting the data into two

parts, is well defined (labeled EL1) whereas the EL method with unknown α, l̈2(β2) allows

for an irrelevant intercept (EL2). We simulate the following statistics: EL1 with T̂1, EL1

with T 0
1 , EL2 with T̂1, and EL2 with T 0

1 . The tests EL1 with T̂1 and EL2 with T̂1 suffer
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Figure 1: Rejection Probabilities of EL tests for H0 : β2 = 0

Note: The DGP is yt = β1 xt−11t≤[λ0T ] + ut with λ0 = 0.5, xt = 0.99xt−1 + vt, ut = ρ vt + (1 − ρ2)1/2 ϵt,
ρ = −0.95, (vt, ϵt) ∼ i.i.d.N(0, 1), and T = 150. Rejection frequencies are reported for testing H0 : β2 = 0
as β1 varies from −1 to 1.

from some liberal size distortions unless |β1| is large. This suggests that the estimates T̂1 are

variable when |β1| is not sufficiently large. This randomness translates into distributions of

EL tests constructed with T̂1, which are far from the true break date case, and liberal size

distortions occur. Compared to test EL2 with T̂1, test EL1 with T̂1, which uses the fact that

the intercept terms α1 and α2 are known, is less affected by this problem, although some

size distortions remain. The finite sample properties of EL methods emphasize that testing

for and estimating the break date in the predictive regression is crucial to make EL tests

statistically reliable.

4 Empirical Analysis

In this section, we apply the EL method to test stock return predictability. Specifically,

the predictable variable yt is the monthly S&P 500 value-weighted log excess return, and the

predictor variable xt includes the log dividendprice (d/p) ratio, log earningsprice (e/p) ratio,

dividend yield (dy), book-to-market (b/m) ratio, treasury bill rates (tbl), default yield spread

(dfy), log dividend payout (d/e) ratio, net equity expansion (ntis), and term spread (tms).

The dataset contains monthly data and spans 1927:01 to 2012:12; hence, the sample size is

T = 1032. The monthly returns are computed by the difference between the S&P 500 index,

including dividends, and the one-month Treasury bill rate. Data from Goyal and Welch

(2008) have been widely used in the predictive regression literature, such as Cenesizoglu and
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Timmermann (2008), Maynard et al. (2011), Kostakis et al. (2015), Liu et al. (2019), and

Lee (2016) and Fang and Lee (2019) in a quantile regression framework. Distinguished from

existing methodologies such as Lewellen (2004), Campbell and Yogo (2006), Cai and Wang

(2014), it is unnecessary for EL methods to evaluate the persistence of the predictor variable

xt. In fact, based on unit root tests, both d/p and e/p ratios are I(1) or NI(1) processes (see

Cai et al. (2015) for details).

Table 6 presents the EL test results where the p-values for testing H0 : β = 0 and

H0 : β1 = β2 = 0 are reported. The EL2 statistic in Zhu et al. (2014) is designed to test

Table 6: p-values of predictability tests on the S&P 500 excess returns (1927:01 – 2012:12)

EL2 l̃β(β1, β2)
H0 : β = 0 H0 : β1 = β2 = 0

d/p 0.1495 0.4484
e/p 0.0256 0.7036
dy 0.0798 0.3410
b/m 0.0844 0.6071
tbl 0.6702 0.0725
dfy 0.5680 0.6288
d/e 0.9900 0.3750
ntis 0.4951 0.7736
tms 0.9293 0.3199

Note: This table reports p-values of EL tests for the null hypothesis of no predictability. The
predictor variables are the log dividend-price (d/p), log earnings-price (e/p) ratios, dividend
yeild (dy), book-to-market (b/m) ratio, Treasury-bill rate (tbl), default yield spread (dfy),
log dividend-payout (d/e) ratio,net equity expansion (ntis), and term spread (tms). The
EL2 statistics in Zhu et al. (2014) is designed to test the null hypothesis of no predictability,
H0 : β = 0 with an unknown intercept α whereby non level shift is allowed. The l̃β(β1, β2)
statistic also tests the null hypothesis of no predictability, H0 : β1 = β2 = 0, allowing for a
level shift. We estimate the date of a level shift, 1942:04, and use it to implement l̃β(β1, β2).
The results in bold indicate the rejection of the null hypothesis of no predictability at the
10% significance level.

the null hypothesis of no predictability H0 : β = 0 with an unknown intercept α whereby no

level shift is allowed. The l̃β(β1, β2) statistic also tests the null hypothesis of no predictability,

H0 : β1 = β2 = 0, allowing for a level shift. As the former null hypothesis can be rejected

because of different intercepts, we can infer whether the valuation ratios considered induce

episodic predictability.

Specifically, we estimate the date of a level shift in the monthly S&P 500 value-weighted

log excess return, 1942:04, and use it to implement l̃β(β1, β2). The results in bold indicate

the rejection of the null hypothesis of no predictability at the 10% significance level. Focus-

ing first on the dy series, we find that, based on the EL2 statistic, the null hypothesis of no
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predictability induced by dy is rejected with a p-value of 0.0798. On the other hand, our new

test statistic leads to a non-rejection of the null hypothesis H0 : β1 = β2 = 0, which implies

that predictability over the full sample is likely to occur because of unequal intercepts arising

from macroeconomic policy changes rather than the dy predictor. This is consistent with

the preceding literature, which claims that the predictability of dividend yield has declined

because of greater dividend smoothing. Moreover, we find similar patterns for the e/p and

b/m predictors, suggesting there is very little evidence of regime-specific predictability, con-

sistent with what has been documented in the predictive regression literature (see Kostakis

et al. (2015), Gonzalo and Pitarakis (2017), and Liu et al. (2019)).

We find an interesting feature of Treasury-bill rates (tbl) as a predictor variable. EL2

cannot reject the null hypothesis H0 : β = 0 while the l̃β(β1, β2) statistic rejects the null

hypothesis H0 : β1 = β2 = 0 with a p-value of 0.0725. This result strongly supports the

idea that predictability is driven by the tbl predictor rather than a level shift. Recently,

Kostakis et al. (2015) considered the sub-period 1952:012012:12 and found predictability for

the predicting variables of T-bill (tbl) and term spread (tms) at the 10% significance level.

The Q-test of Campbell and Yogo (2006) finds that tbl, tms, and dy are marginally significant

at the 10% level. As evidence that predictability has diminished in recent sample periods

(see, for example, Campbell and Yogo, 2006), it is noteworthy that tbl has more information

on stock return predictability. By contrast, there is no evidence of predictability for the

d/p, dfy, d/e, ntis, and tms from the l̃β(β1, β2) statistics. For the period 1927:012012:12, the

Q-test of Campbell and Yogo (2006) showed that dy, bm, and ntis are significant at the 10%

level while the IVX-based test of Kostakis et al. (2015) found that the null of no predictability

can be rejected at the 5% level only for e/p, b/m, and ntis and at the 10% level for dy. The

Q-test and IVX-based test are designed for persistent predictor variables without allowing

for the possibility of a level shift in the predictive regression. In particular, the Bonferroni-

type test (Q-test) is valid if the predictor variable is as persistent as an NI(1) process with

strong assumptions, such as normality and known covariance of innovations. Hence, the test

results based on existing methods may be misleading if a level shift exists. The empirical

findings reveal the merits of EL methods that complement the existing methods.

Before finishing this section, we must briefly discuss the stationarity assumption for the

predictor variables. To understand the implications of this assumption, we examine it in two

different ways. From an economic perspective, the predictor variables should be stationary;

that is, |ϕ| < 1. Otherwise, an explosive bubble may exist in stock prices. In other words, the

predicted variable cannot be stationary if the predictor variable is nonstationary, which is still
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a controversial topic in empirical studies. As noted in Lettau and Van Nieuwerburgh (2008),

a level shift in the predictor variable is also a form of nonstationarity. From a statistical

perspective, it is preferable to make tests reliable regardless of whether the predictor variables

are stationary or nonstationary. However, the test results cannot identify the time-series

characteristic of the predictor variable. Because it makes little sense to predict asset returns

with an integrated process, further investigation of the predictor variable might be required

(see also Liu et al. (2019)).

5 Concluding Remarks

In this study, we consider predictive regression models in which model parameters ex-

hibit a structural break on an unknown date and the predictor variable is allowed to be either

stationary or (nearly) integrated. As addressed by Viceira (1997), Paye and Timmermann

(2006), and Rapach and Wohar (2006), parameter instability in predictive regressions is a

long-standing problem. The main contribution of this study to the literature is to provide

a unified approach that is valid regardless of the time-series characteristics of the predictor

variable when the model parameters are unstable in predictive regressions. We established

novel testing procedures for asset return predictability using EL methods based on weighted

score equations and studied their asymptotic distributions. The proposed methods are par-

ticularly useful because they allow us to distinguish predictability generated by a certain

predictor variable from that induced by a permanent shift in level, and they require no prior

knowledge as to (i) whether the predictor variable is stationary or nonstationary and (ii)

whether the noise components are contemporaneously correlated or not, common cases in

practice. Simulations have demonstrated the usefulness of EL methods and demonstrated

clear improvements over existing tests. Furthermore, an extension of practical interest is

to generalize our model to analyze a large global dataset, which is useful for capturing the

predictable component of stock returns (see, for example, Paye and Timmermann, 2006;

Hjalmarsson, 2010). Such investigations, among others, are objects of ongoing research.
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Appendix: Mathematical Proofs

To prove Theorem 1, we consider the following predictive regression model with a struc-

tural break on an unknown date T 0
1 for t = 1, . . . , T ,

yt = (α1 + β1xt−1)1t≤T 0
1
+ (α2 + β2xt−1)1t>T 0

1
+ ut,

.xt = θ + ϕxt−1 +
∞∑
j=0

ψjvt−j,

We provide only the proof of Theorem 1 under the following setting:

θ = 0, ϕ = 1− c T−1 for some c ∈ R (A.1)

because the proofs for the other cases are straightforward. In particular, when xt is stationary,

we can prove Theorem 1 based on the weak law of large numbers, the central limit theorem

for martingales in Hall and Heyde (1980), and the standard arguments for establishing the

profile EL method based on estimating equations in Qin and Lawless (1994). We state the

following lemmas before proving Theorem 1: All limit statements are considered as T → ∞
whenever there is no confusion.

The estimate of the break date T̂1 can be obtained using a global least squares criterion,

as explained in (5). Here, we consider the case in which T̂1 < T 0
1 ; that is, the estimated

break date is located in the pre-T 0
1 subsample. Owing to symmetry, the same arguments can

be applied to the case where T̂1 > T 0
1 . We consider two subsamples: the pre-T̂1 subsample

and the post-T̂1 subsample. We define this set as follows:

V (ϵ) = {T1 : |T1 − T 0
1 | < ϵ, ∀ϵ > 0},

From Proposition 1, Pr(T̂1 ∈ V (ϵ)) → 1, regardless of whether xt is stationary or (nearly)

integrated. Hence, it suffices to consider the behavior of EL methods for all T1 ∈ V (ϵ). Let

m1 ≡ [T1/2] and m2 ≡ [(T − T1)/2].

Lemma 1. Under the conditions of Theorem 1 and (A.1), we have

1√
T

m1∑
t=2

H̃t(β1,0) =

(
1√
T

m1∑
t=2

ũt

)
x̃m1−1√
1 + x̃2m1−1

+ op(1)

and
1√
T

T1+m2∑
t=T1+2

H̃t(β2,0) =

(
1√
T

T1+m2∑
t=T1+2

ũt

)
x̃T1+m2−1√
1 + x̃2T1+m2−1

+ op(1),

where H̃t(βj,0) = (ỹt − βj,0 x̃t−1) x̃t−1/(1 + x̃2t−1)
1/2 and βj,0 denotes the true value of βj for

j = 1, 2.
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Proof of Lemma 1. It follows from Phillips (1987) under (A.1),

T−1/2x[Tr] ⇒ Kc(r), (A.2)

where Kc(r) =
∫ r

0
e−(r−s)cdWu(s) is a diffusion process and Wu(s) is a one-dimensional Brow-

nian motion with variance σ2
u = Var(ut) + 2Ω1, and Ω1 =

∑∞
k=2 E[u1uk]. Here, “⇒” denotes

a weak convergence in the Skorohod topology. From (A.2), we obtain

1√
T

m1∑
t=2

H̃t(β1,0) =
1√
T

m1∑
t=2

( t∑
j=1

ũj −
t−1∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

=
1√
T

m1∑
j=1

ũj
x̃m1−1√
1 + x̃2m1−1

+
1√
T

m1−1∑
t=2

( t∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

− 1√
T

m1∑
t=2

( t−1∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

=

(
1√
T

m1∑
t=2

ũt

)
x̃m1−1√
1 + x̃2m1−1

+
1√
T

m1−1∑
t=2

( t∑
j=1

ũj

)(
x̃t−1√
1 + x̃2t−1

− x̃t√
1 + x̃2t

)
+ op(1).

(A.3)

It follows from Taylor expansion that

x̃t−1√
1 + x̃2t−1

− x̃t√
1 + x̃2t

= (1 + ξ2t )
−3/2(x̃t−1 − x̃t), (A.4)

where ξt lies between x̃t−1 and x̃t. From (A.2), we have |x̃t−1|/ta
p→ ∞, |x̃t|/ta

p→ ∞, and

|x̃t−1 − x̃t|/ta
p→ 0 for any a ∈ (0, 1/2) as t→ ∞, thereby

|ξt|/ta
p→ ∞ for any a ∈ (0, 1/2) as t→ ∞. (A.5)

By (A.2), (A.3)-(A.5), we have

1√
T

m1∑
t=2

H̃t(β1,0) =

(
1√
T

m1∑
t=2

ũt

)
x̃m1−1√
1 + x̃2m1−1

+ op(1). (A.6)

The post-T1 subsample is divided into two parts around T 0
1 . More precisely,

yt =

{
α1 + β1 xt−1 + ut, for t = T1 + 1, . . . , T 0

1 ,

α2 + β2 xt−1 + ut, for t = T 0
1 + 1, . . . , T,

and

yt+m2 = α2 + β2 xt−1 + ut, t = T1 + 1, . . . , T1 +m2.

On the set V (ϵ), it holds that (t+m2) > T 0
1 for t = T1+1, . . . , T1+m2. Hence, ỹt = β2 x̃t−1+ũt,

where

ũt =

{
(ut − ut+m2) + (α1 − α2) + (β1 − β2)xt−1, for t = T1 + 1, . . . , T 0

1 ,

(ut − ut+m2), for t = T 0
1 + 1, . . . , T1 +m2.
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It is straightforward to show that

1√
T

T1+m2∑
t=T1+2

H̃t(β1,0) =
1√
T

T1+m2∑
t=T1+2

( t∑
j=1

ũj −
t−1∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

=
1√
T

T1+m2∑
j=1

ũj
x̃T1+m2−1√
1 + x̃2T1+m2−1

+
1√
T

T1+m2−1∑
t=T1+2

( t∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

− 1√
T

T1+m2∑
t=T1+2

( t−1∑
j=1

ũj

)
x̃t−1√
1 + x̃2t−1

+
1√
T

T1+m2∑
t=T1+2

[(α1 − α2) + (β1 − β2)xt−1]
x̃t−1√
1 + x̃2t−1

=

(
1√
T

T1+m2∑
t=2

ũt

)
x̃T1+m2−1√
1 + x̃2T1+m2−1

+
1√
T

T1+m2−1∑
t=T1+2

( t∑
j=1

ũj

)(
x̃t−1√
1 + x̃2t−1

− x̃t√
1 + x̃2t

)
+ op(1),

(A.7)

where T1 is in the set V (ϵ) with probability approaching 1; therefore, the number of terms

in the summation
∑T1+m2

T1+2 is finite, which suggests that T−1/2
∑T1+m2

t=T1+2[(α1 − α2) + (β1 −
β2)xt−1]x̃t−1/(1 + x̃2t−1)

1/2 p→ 0 because m2 = [(T − T1)/2]. Using (A.2), (A.4), (A.5) and

(A.7), we have

1√
T

T1+m2∑
t=T1+2

H̃t(β2,0) =

(
1√
T

T1+m2∑
t=T1+2

ũt

)
x̃T1+m2−1√
1 + x̃2T1+m2−1

+ op(1). (A.8)

Hence, the lemma follows from (A.6) and (A.8). ■

Lemma 2. Under the conditions of Theorem 1 and (A.2), we have

1

T

m1∑
t=2

H̃2
t (β1,0)

p→ Σ and
1

T

T1+m2∑
t=T1+2

H̃2
t (β2,0)

p→ Σ,

where Σ = E[ũ21].

Proof of Lemma 2. Using (A.2), (A.4) and (A.5), we have

1

T

m1∑
t=2

H̃2
t (β1,0) =

1

T

m1∑
t=2

ũ2t
x̃2t−1

1 + x̃2t−1

=
1

T

m1∑
t=2

ũ2t + op(1) = E[ũ21] + op(1).

Similarly, we show that T−1
∑T1+m2

t=T1+2 H̃
2
t (β2,0)

p→ Σ. Therefore, Lemma 2 holds. ■

Lemma 3. Suppose that Condition A holds. Then,

max
2≤t≤m1

∥H̃t(β1,0)∥ = Op(T
1/2) and max

T1+2≤t≤T1+m2

∥H̃t(β2,0)∥ = Op(T
1/2).
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Proof of Lemma 3. Clearly, E[H̃t(β1,0)] = 0 and E[H̃t(β1,0)
2] ≤ E[ũ2t ] = O(1), implying

that (
E

[
max

2≤t≤m1

∥H̃t(β1,0)∥
])2

≤ E

[(
max

2≤t≤m1

∥H̃t(β1,0)∥
)2]

≤
m1∑
t=2

E[H̃t(β1,0)
2] = O(T ),

where the first inequality is implied by Jensen’s inequality. As a result,

max
2≤t≤m1

∥H̃t(β1,0)∥ = Op(T
1/2).

In a similar way, we can show that

max
T1+2≤t≤T1+m1

∥H̃t(β2,0)∥ = Op(T
1/2).

This completes the proof of Lemma 3. ■

Proof of Theorem 1. Using Lemmas 1-3 and the standard arguments in the proof of the

EL method (Owen, 2001, Chapter 11), both l̃1(β1,0) and l̃2(β2,0) converge in distribution to a

chi-square limit with one degree of freedom. Consequently, the EL statistic in each regime is

independent of the others, suggesting that their summation goes to χ2(2), which completes

the proof of Theorem 1. ■

Proof of Proposition 1. For the proof, see Proposition 4 in Bai and Perron (1998) and

Proposition 2 in Kurozumi and Arai (2006). ■

Proof of Theorem 2. It can be shown in the same way as in Theorem 1. ■
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