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1 Introduction

Since the seminal work by Hsiao, Ching and Wan (2012, hereafter HCW), estimating

average treatment effects (ATE) using panel data approach (PDA) has become widespread

in empirical economics. HCW proposed to construct the counterfactual outcome of a treated

unit by exploiting the cross-sectional dependence driven by a common factor structure for

all units. Under a commonly adopted identification assumption that a policy intervention

does not affect outcomes in the control group, HCW estimated the counterfactual outcome

by a simple linear regression method without estimating factors and loadings. Moreover, the

HCW’s method has an advantage of least data demand which is a very desirable virtue in

some empirical applications. The counterfactual outcome can be estimated using outcome

variables of cross-sectional units and not necessary to use other covariates. For example,

HCW estimated the impact on economic growth of political and economic integration of

Hong Kong with mainland China only using the quarterly real GDP growth rates of 22

countries and regions. Recently, Bai, Li and Ouyang (2014), Ouyang and Peng (2015),

and Li and Bell (2017) relaxed some assumptions made implicitly in HCW and instead of

using AIC type approach to select control units, Li and Bell (2017) and Carvalho, Masini

and Medeiros (2018) suggested using a LASSO type method to select control units when

the number of control units is large with sparsity. Also, Li and Bell (2017) derived the

asymptotic distribution of ∆̂1 which facilitates inference and Carvalho, Masini and Medeiros

(2018) provided a theoretical justification for the LASSO estimate.

By virtue of the aforementioned desirable properties, such as weak assumptions, least

data demand and easy-to-implementation, the HCW’s PDA has received increasing interests

in policy evaluation literature. For example, some influential applications include, but not

limit to, the papers by Chen et al. (2013) for investigating the effect of introducing index

futures trading on the spot price volatility in the Chinese stock market, Bai, Li and Ouyang

(2014) for exploring the influence of property taxes on home prices, Fujiki and Hsiao (2015)

for measuring the net economic impact of the 1995 great Hanshin-Awaji earthquake, Du and

Zhang (2015) for evaluating the effects of home-purchase restrictions and the trial property

taxes on housing prices in China, Ouyang and Peng (2015) for studying the macroeconomic
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effect of the 2008 Chinese Economic Stimulus Program., Bove, Elia and Smith (2017) for

estimating the economic effect of civil war, Ke, Hong and Hsiao (2017) for exploring the

effect of high speed rail projects on the economic growth of targeted city with high speed rail

nodes in China, Li and Long (2018) for examining the effect of the justice reform enacted on

January 1, 1995 in Virginia, Carvalho, Masini and Medeiros (2018) for evaluating the impacts

on inflation and other macroeconomic variables of an anti tax-evasion program implemented

in Brazil. Recently, Ke and Hsiao (2021) applied the HCW’s method to assess the evolution

of economic consequences of the drastic lockdown policy in the epicenter of COVID-19 —

the Hubei Province of China during worldwide curbs on economic activity.

However, the HCW’s method is designed for estimating ATEs and it might not be suf-

ficient in some applications for characterizing policy effects particularly when the outcome

distribution is either asymmetric, heterogeneous or heavy-tailed. For example, how an in-

troduction of futures trading affects spot stock volatility (VIX) is an important policy issue

but still in a big debate. It is well documented in the literature that the distribution of

spot stock VIX is skewed and heavily tailed. To address this issue, Chen et al. (2013)

estimated the impact of introducing index futures trading on stock VIX by employing the

HCW’s PDA. But, the ATE would be distorted by the fact that VIX is usually asymmetric

and heavily tailed. To gauge this phenomenon, let us look at the stock VIX of the monthly

VIX of the stock market in China from January 2002 to February 2021, displayed in Figure 1

given in Section 4 for the estimated density of the pre-treatment, post-treatment and whole

sample VIX of CSI 300 index1. Clearly, one can see from Figure 1 that the distribution of

VIX is evidently asymmetric and heavily tailed and these phenomena can also be strongly

supported from Table 5 in Section 4. To properly assess the impact of introducing futures

trading on stock VIX, we will investigate distributional rather than mean effects on outcome

variables of interest.

Motivated by the aforementioned empirical issues, this paper considers quantile treatment

effects (QTE) to characterize the impact of a policy at any quantile corresponding to whole

1The CSI 300 is a capitalization-weighted stock market index designed to replicate the performance of
the top 300 stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange.
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distributions of the observed outcomes and the counterfactual outcomes. Although there

is a growing literature on identification and estimation of QTEs, see, for example, Firpo

(2007), Firpo, Fortin and Lemieux (2009), Rothe (2010), Chernozhukov, Fernández-Val and

Galichon (2010), Chernozhukov, Fernández-Val and Melly (2013), Cai (2021), Hsu, Lai and

Lieli (2022), and among others, there are very limited efforts on the estimation of QTE with

panel data, as argued by Cai (2021). Perhaps the most recent work includes the papers by

Callaway, Li and Oka (2018) and Callaway and Li (2019), but both considered the estimation

of QTE with panel data in the difference-in-differences setting with fixed time (two or three)

periods. Therefore, to the best of our knowledge, there is still no literature on considering

the estimation of QTE with large panel data as in HCW, as addressed by Cai (2021). Thus,

the main contribution of this paper is to fill this gap. In other words, the novelty of our

paper is to generalize the HCW’s approach to the QTE setting for panel data to obtain a

comprehensive examination of treatment effects. To estimate the counterfactual quantiles

for the treated unit, different from the HCW’s approach and its extensions, we introduce the

conditional cumulative distributional function invariance assumption and propose a simple

method to utilize the relationship between the conditional and unconditional cumulative

distribution functions (CDF). In such a way, both nonparametric and parametric methods

are considered to estimate the conditional CDF. The asymptotic properties for the proposed

QTE estimators are also derived, together with an easily implemented method to construct

a confidence interval based on a blockwise Bootstrap.

As argued in Xiao and Koenker (2009), the quantile estimation is an essential ingredient

in modern risk management in financial applications so that the QTE technique can be used

to evaluate if some new financial policy has a significant impact on the VIX and volatility-

in-volatility2, termed as VVIX in the finance literature, of financial markets or institutes.

Actually, the motivation of this paper comes from investigating whether introducing CSI

300 index futures trading, formally introduced by the China Financial Futures Exchange on

April 16, 2010, has an impact on spot market VIX and its VVIX or not, through the QTE

2The definition of volatility-in-volatility can found in Hollstein and Prokopczuk (2018), Huang et al.
(2019), and Chen et al. (2021). Indeed, similar to VIX, Hollstein and Prokopczuk (2018) and Chen et al.
(2021) provided some empirical evidences that the market VVIX can predict market returns and drive the
time-varying volatility risk.
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analysis. After the introduction, some criticize that the introduction of the index futures

trading may shake the spot market due to the excessive speculation while others believe that

the index futures market can improve the speed and quality of the information flows and

make financial markets more complete. By using the proposed modeling approach, we will

estimate the impact of introducing CSI 300 index futures trading on both VIX and VVIX

of the stock market in China. The detailed analysis results are reported in Section 4.

The rest of the paper is organized as follows. Section 2 first reviews briefly the literature

about studies on treatment effects for panel data and then describes the general setting for

the proposed model. Also, in the same section, we discuss the method of estimating QTE for

panel data, and establish the asymptotic property of the estimator, together with an easily

implemented method to construct a confidence interval based on a blockwise Bootstrap.

Furthermore, we discuss the estimation of the conditional CDF with many control units

based on quantile regression method and dimension reduction approach to choose control

units and covariates. Section 3 provides Monte Carlo simulation studies for accessing the

finite sample performance for the proposed estimators. Section 4 presents an empirical

application which estimates the QTEs of introducing CSI 300 index futures trading on both

the log-return and the volatility of the Chinese stock market. Section 5 concludes. All proofs

are given in the Appendix.

2 QTE for Panel Data

2.1 A Primer on the HCW’s Method

This section is devoted to introducing the framework of the HCW’s method. To this

end, we first define some important notations. Let y1it denote the outcome for the ith unit

in period t with treatment, and y0it denote the outcome for the ith unit in period t with the

absence of treatment, 1 ≤ i ≤ N and 1 ≤ t ≤ T . The treatment effect for the ith unit at

time t is defined as

∆it = y1it − y0it.
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Since y1it and y
0
it cannot be simultaneously observed, the observed outcome is given by

yit = dity
1
it + (1− dit)y

0
it,

where dit = 1 if the ith unit is under the treatment at time t, and dit = 0 otherwise.

The HCW’s model focuses on the case where there is only one treated unit that receives

a treatment at time T1 + 1 for some 1 < T1 < T , and thereafter. Without loss of generality,

it is assumed that it is the first unit. In other words, there is no treatment for yjt with units

j = 2, · · · , N and all t = 1, · · · , T , while for the first unit, there is no treatment for y1t with

t = 1, · · · , T1 either, and the treatment only occurs for y1t with t = T1 + 1, · · · , T . HCW

used the following factor structure to model the cross-sectional dependence across all units

y0it = αi + b⊤i ft + uit, i = 1, · · · , N ; t = 1, · · · , T,

where αi is the ith individual specific intercept, bi is a K×1 vector of factor loadings, ft is a

K× 1 vector (unobservable) common factors and uit is a (mean zero) weakly dependent and

stationary error term. If both T and N are large, the method of Bai and Ng (2002) or the

approach in Pesaran (2006) can be adopted to estimate the common factors ft’s. In the case

that neither T nor N is large, HCW suggested a novel method by using ỹt = (y2t, · · · , yNt)
⊤,

which is called the control units, in lieu of ft, to predict the counterfactual outcome y01t for

post-treatment periods.

Specifically, as in HCW, it is assumed the correlations among cross-sectional units are

due to some common factors that drive all cross-sectional units, although their impacts on

each cross-sectional unit may be different. Therefore, by the correlation between y1t and

{yjt}Nj=2, HCW estimated the counterfactual outcome y01t based on the following regression

model

y01t = β⊤xt + u1t, t = 1, · · · , T1,

where xt = (1, y2t, · · · , yNt)
⊤, β = (β1, · · · , βN)⊤ is a vector of unknown coefficients, and u1t

is a zero mean and finite variance idiosyncratic error term. The estimation of the coefficient

β is then obtained by the ordinary least squared regression method

β̂ = argmin
β

T1∑
t=1

(y1t − β⊤xt)
2.
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By assuming that the data structure remains the same before and after the treatment and

other assumptions; see, for example, the assumptions listed in HCW for details, the predicted

counterfactual outcome of y01t for t = T1 + 1, · · · , T can be estimated by

ŷ01t = β̂⊤xt, t = T1 + 1, · · · , T.

Finally, the estimator of the average treatment effect for the first unit

∆1 = E(∆1t) = E(y11t − y01t)

can be constructed by averaging the difference between the observed outcomes and estimated

counterfactual outcomes over the post-treatment period

∆̂1 =
1

T2

T∑
t=T1+1

(
y11t − ŷ01t

)
,

where T2 = T − T1. Also, HCW suggested using the AIC of Akaike (1974) and the AICC

in Hurvich and Tsai (1989) model selection methods to see if there is a need to use all

cross-sectional units in their approach, which can be improved by a LASSO type method as

proposed and studied by Li and Bell (2017) and Carvalho, Masini and Medeiros (2018).

2.2 Model Setup For QTE

It is well known that if the distributions of potential outcomes poorly concentrate around

the mean or the heterogeneity of outcomes exists, the ATE may not be an ideal representative

for the effect of a treatment. To grab the global effect of a treatment, it is natural to study

the distributional treatment effects. In this section, our focus is on the estimation of the

QTE with panel data.

The setting of panel data is the same as that in HCW. Suppose that we have a panel

data set {(yit, zt); 1 ≤ i ≤ N, 1 ≤ t ≤ T}, where zt is a dz × 1 vector of covariates3. Also, it

is assumed that the time series in the panel data is strictly stationary. For the first unit, a

treatment is implemented from t = T1+1 to t = T and no treatment occurs before t = T1+1.

3For example, in our empirical study in Section 4, it includes 3 macroeconomic variables such as the
monthly CPI growth rate, the monthly M1 growth rate, and the monthly M2 growth rate.
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The remaining N−1 units as a control group remain untreated throughout the time. Denote

T2 = T − T1. For simplicity, let limT→∞ T2/T1 = c throughout the paper, where c > 0 is a

constant, so that limT→∞ T1/T = λ and limT→∞ T2/T = 1− λ with λ = 1/(1 + c). To ease

notation, the panel data are divided into four parts as follows:

Y1 X1

Y2 X2
,

where Y1 = {y1t, t = 1, · · · , T1} represents the first unit from t = 1 to t = T1, X1 =

{(yit, zt); i = 2, · · · , N, and t = 1, · · · , T1} stands for the remaining units from t = 1 to t =

T1, Y2 = {y1t, t = T1+1, · · · , T} is the information for the first unit from t = T1+1 to t = T ,

and X2 = {(yit, zt); i = 2, · · · , N, and t = T1 + 1, · · · , T} is for the remaining units from

t = T1 + 1 to t = T . Let Y 0
2 = {y01t, t = T1 + 1, · · · , T} be the counterfactual outcome of Y2.

For convenience, the observed outcome Y2 is also denoted as Y 1
2 = {y11t, t = T1 + 1, · · · , T}.

Then, the QTE for the first unit after t = T1 is defined as

∆τ = q11τ − q01τ , (1)

where qj1τ is the τth quantile of Fj(y) = P (yj1t ≤ y) for j = 0 and 1 and τ ∈ (0, 1). The next

subsection describes details on how to estimate ∆τ .

2.3 Estimation Procedures

To estimate the QTE, ∆τ , it suffices to estimate q11τ and q01τ , respectively. Since the

outcome for the first unit under treatment with t > T1 is observable, the sample quantile of

Y2 is simply used, denoted as q̂11τ , to estimate q11τ . The difficulty in estimating QTE is due

to the fact that Y 0
2 is not observable, so that it is not straightforward to estimate q01τ . To

estimate the counterfactual quantile for the first unit, different from the factor augmented

idea in HCW, a new method is proposed by utilizing the relationship between the conditional

and unconditional CDFs, described as follows.

To be specific, q01τ is written as

q01τ = inf
{
y : FY 0

2
(y) ≥ τ

}
= inf

{
y : E[FY 0

2 |X2
(y|X2t)] ≥ τ

}
,
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where FY 0
2
(·) is the CDF of y01t for t > T1 and FY 0

2 |X2
(·|·) denotes the conditional CDF of y01t

given X2 for t > T1, which leads to an estimator of q01τ as

q01τ = inf

{
y :

1

T2

T∑
t=T1+1

FY 0
2 |X2

(y|X2t) ≥ τ

}
. (2)

Generally speaking, the conditional CDF FY 0
2 |X2

(y|x) is unknown, so that the above estimator

of q01τ is infeasible. To get a feasible estimate of q01τ from the observed data, it needs to

estimate FY 0
2 |X2

(y|x) first. To this end, the following assumption is needed, which indeed,

is similar to the assumption in a mean setting imposed in HCW and the aforementioned

references and the quantile setting as in Callaway, Li and Oka (2018).

Assumption 1: (Conditional CDF Invariance) The structures of the conditional CDFs of

Y1|X1 and Y 0
2 |X2 are the same; that is, FY1|X1(·|·) = FY 0

2 |X2
(·|·) ≡ F (·|·).

Assumption 1 postulates some kind of structure invariance, which ensures that given

the outcomes of the control group and the covariates, the conditional distribution of the

potential outcome of the treated unit without treatment remains the same before and after

the treatment. With Assumption 1, it is then possible to estimate the counterfactual con-

ditional CDF in the treated group by the observed data before treatment. This assumption

corresponds to Assumption 1 in Rothe (2010) for a nonparametric structural model. Also,

Hsu, Lai and Lieli (2022) adopted the same kind of assumption (see their Assumption 2.3)

in the counterfactual treatment effects settings.

Clearly, under Assumption 1, a kernel method such as Nadaraya-Watson estimation

method or other procedures, can be used to estimate F (y|x) if dx = N − 1 + dz is not

very large. Specifically, F (y|x) can be estimated using the observed data before treatment

as follows

F̃ (y|x) =
∑T1

t=1 I (Y1t ≤ y)Kh (X1t − x)∑T1

t=1Kh (X1t − x)
, (3)

where I(·) is the indicator function, Kh(X1t − x) = h−dxK((X1t − x)/h), K(·) is a higher-

order kernel function as defined in Assumption 44, and h is bandwidth. Then, we plug the

4See Gasser, Müller and Mammitzsch (1985) for details on the definition of higher-order kernel.
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estimated conditional CDF into (2) to obtain

q̃01τ = inf

{
y :

1

T2

T∑
t=T1+1

F̃Y 0
2 |X2

(y|X2t) ≥ τ

}
= inf

{
y : F̃Y 0

2
(y) ≥ τ

}
,

where F̃Y 0
2
(y) := 1

T2

∑T
t=T1+1 F̃Y 0

2 |X2
(y|X2t). Note that when high-order kernels are used in

(3), F̃Y 0
2
(y) could be non-monotonic or take values outside the [0, 1] interval. One can use

the re-weighting method in Rothe (2010) or the monotonization method in Hsu, Lieli and

Lai (2022) to turn F̃Y 0
2
(y) into a monotonically nondecreasing CDF. Here, we follow Hsu,

Lieli and Lai (2022) and let

F̂Y 0
2
(y) = sup

u≤y
F̃Y 0

2
(u) / sup

−∞<u<∞
F̃Y 0

2
(u).

Obviously, F̂Y 0
2
(y) is a CDF with probability one. Then, the estimator of the QTE for the

first unit is given by

∆̂τ = q̂11τ − q̂01τ , (4)

where q̂01τ = inf
{
y : F̂Y 0

2
(y) ≥ τ

}
.

2.4 Asymptotic Theory

In this subsection, we derive the asymptotic results for the proposed estimator of the

QTE defined in (4). To establish the asymptotic results, it is common to impose a time

series structure to the panel data such as strictly stationary and α-mixing. To this end,

some extra assumptions are needed and listed as follows:

Assumption 2: The time series in the panel data is strictly stationary with α-mixing

coefficient satisfying α(s) = O(s−ε0) for some ε0 > 5/2. Also, assume that limT→∞ T2/T1 = c

with 0 < c <∞ so that λ = limT→∞ T2/T ∈ (0, 1).

Assumption 3: (1) The supports of X1t and X2t, denoted by X1 and X2, respectively, are

compact and they satisfy that X2 ⊂ X1. (ii) The density function of X1t is denoted by

fX1(x). Assume that it is uniformly continuous and bounded away from zero on X1. (iii)

For each x ∈ X2, F (y|x) is continuous in y and its conditional density function f(y|x) is

bounded.
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Assumption 4: The kernel functionK(·) satisfies (i)K(u) = 0 if |u| > 1. (ii)
∫
K(u)du = 1.

(iii) For some ℓ > dx,
∫
ujK(u)du = 0 for 1 ≤ j ≤ ℓ and

∫ ∣∣uℓK(u)
∣∣ du < ∞. (iv) K(u) is

ℓ-times differentiable and the derivatives are uniformly continuous and bounded.

Assumption 5: (i) For j = 0 and 1, the stationary distribution of {yj1t, t > T1} has density

function fY j
2
(y) that is bounded away from zero on the support of the distribution. (ii) The

density function fY j
2
(y) is twice differentiable.

Assumption 6: (i) The density function fX1(x) is ℓ-times differentiable on the interior of X1

and the derivatives are uniformly continuous and bounded. (ii) The density function fX2(x)

is ℓ-times differentiable on the interior of X2 and the derivatives are uniformly continuous

and bounded. (iii) The conditional CDF F (y|x) is ℓ-times differentiable with respect to x

on the interior of X1 and the derivatives are uniformly continuous and bounded.

Assumption 7:5 T 1/2hdx/ log(T ) → ∞ and T 1/2hℓ → 0 as T → ∞.

The asymptotic normality of the proposed estimator ∆̂τ is presented in the following

theorem with its detailed proof given in the Appendix. Now, define

σ2
τ =

∞∑
h=−∞

Cov(ξt, ξt−h) +
∞∑

h=−∞

Cov(ηt, ηt−h)

with ξt = ψ1τ (Y2t) − ψ0τ (X2t), ηt = ψ2τ (X1t, Y1t), ψ0τ (X2t) = [τ − F (q01τ |X2t)]/fY 0
2
(q01τ ),

ψ1τ (Y
1
2t) = [τ − I(Y 1

2t ≤ q11τ )]/fY 1
2
(q11τ ), and ψ2τ (X1t, Y1t) =

√
c fX2(X1t)[I(Y1t ≤ q01τ ) −

F (q01τ |X1t)]/[fY 0
2
(q01τ )fX1(X1t)]. According to Davydov’s inequality for α-mixing, which can

be found in the book by Hall and Heyde (1980) and by Assumption 2, one can show easily

that σ2
τ exists.

Theorem 1. Under Assumptions 1-7, then, we have

√
T2(∆̂τ −∆τ )

d→ N
(
0, σ2

τ

)
,

where σ2
τ is the asymptotic variance.

5In practice, h might be taken to be under-smoothed so that this assumption is satisfied, as seen in our
Monte Carlo simulation study in Section 3.
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Consequently, Theorem 1 implies that ∆̂τ = ∆τ + Op(T
−1/2
2 ) so that it is consistent.

Furthermore, it shows that, although the kernel method is used to estimate the conditional

CDF, the proposed QTE estimators can still achieve the
√
T2 convergence rate. Also, Theo-

rem 1 gives clearly that it would be easy to construct (1−α)100% confidence interval (CI) for

∆τ for given τ as ∆̂τ ± zα/2/
√
T2στ if σ2

τ would be known, where zα/2 = Φ−1(1− α/2) is the

critical value. One way to estimate consistently σ2
τ is to employ the heteroskedasticity and

autocorrelation consistent (HAC) estimation of Newey and West (1987) by using ξ̂t and η̂t.

However, due to the complicated structure of σ2
τ , it might not be easy to obtain a consistent

estimate of σ2
τ . Therefore, one might use a Bootstrap approach instead, described in the

next subsection.

2.5 A Bootstrap Inference

The blockwise Bootstrap method as in Künsch (1989) is applied here to construct a CI for

∆τ , described as follows. First, for the sample W1t = (Y1t, X1t), t = 1, 2, · · · , T1, each block

is constructed as V1t = {W1t,W1,t+1, · · · ,W1,t+b1−1}, where t = 1, 2, · · · , T1− b1+1 and b1 =

⌊ 3
√
T1⌋, where ⌊x⌋ denotes the maximum integer less than or equal to x, is the length of each

block, and for the sampleW2t = (Y2t, X2t), t = T1+1, T1+2, · · · , T , each block is constructed

as V2t = {W2t,W2,t+1, · · · ,W2,t+b2−1}, where t = T1+1, T1+2, · · · , T−b2+1 and b2 = ⌊ 3
√
T2⌋

is the length of each block. Second, draw l1 = ⌊T1/b1⌋ sample with replacement from V1 =

{V11, V12, · · · , V1,T1−b+1} and denote the re-sampling sample as V ∗
1 = {V ∗

11, V
∗
12, · · · , V ∗

1l1
};

draw l2 = ⌊T2/b2⌋ sample with replacement from V2 = {V2,T1+1, V2,T1+2, · · · , V2,T−b2+1}

and denote the re-sampling sample as V ∗
2 = {V ∗

21, V
∗
22, · · · , V ∗

2l2
}. Third, define W ∗

1 =

{W ∗
11,W

∗
12, · · · ,W ∗

1,b1l1
} = {V ∗

11, V
∗
12, · · · , V ∗

1l1
} andW ∗

2 = {W ∗
21,W

∗
22, · · · ,W ∗

2,b2l2
} = {V ∗

21, V
∗
22,

· · · , V ∗
2l2
}, where b1l1 ≈ T1 and b2l2 ≈ T2, based on the re-sampling sample W ∗

1 and W ∗
2 , the

QTE can be estimated by the proposed method. Finally, repeat the procedures above for B

(say, B = 1000) times, then the CI can be calculated by the resulting estimators. Actually,

this blockwise Bootstrap procedure is implemented in Section 4 for our empirical study.
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2.6 Choosing Control Units and Covariates

In this subsection, our attempt is paid to considering the case where there are many

control units and covariates, that is, dx is large. For such a case, it is not ideal to estimate

F (·|x) by kernel regression method due to the so-called curse of dimensionality. To avoid this

problem, one can follow the idea in Aı̈t-Shahalia and Brant (2001) and Hall and Yao (2005) to

adopt the index approach as β⊤x to estimate F (·|β⊤x). As argued in Aı̈t-Shahalia and Brant

(2001), indeed, from a statistical perspective, the index avoids the curse of dimensionality

because it allows us to reduce the multivariate problem to one where we can implement

the nonparametric approach described above in a univariate setting since β⊤x is univariate.

Another approach is to estimate the conditional CDF via quantile regression as in Koenker

and Bassett (1978), which is described below in detail.

Let qτ (x) be the τth conditional quantile of F (y|x) so that qτ (x) = F−1(τ |x) ≡ q(τ, x).

Then, we can use q(τ, x) to estimate F (y|x) if q(τ, x) is estimable. Indeed, a simple calcula-

tion leads to the following relationship between conditional CDF and conditional quantile,

F (y|x) =
∫ 1

0

I(q(u, x) ≤ y)du ≈ ε+

∫ 1−ε

ε

I(q(u, x) ≤ y)du (5)

for some small constant ε > 0. Note that the approximation above is for computational

convenience. By assuming that the τth conditional quantile function of Y1 given X1 is

qτ (x) = β⊤
τ x, which includes the model in HCW as a special case. Then, the conditional

quantile is estimated as q̂τ (x) = β̂⊤
τ x, where

β̂τ = argmin
βτ

T1∑
t=1

ρτ (y1t − β⊤
τ X1t) (6)

and ρτ (v) = v[τ − I(v < 0)]. Therefore, in view of (5), the estimated conditional CDF,

F̂ (y|x) becomes to

F̂ (y|x) = ε+

∫ 1−ε

ε

I(β̂⊤
u x ≤ y)du ≈ ε+

m∑
j=1

δjI(β̂
⊤
τj
x ≤ y), (7)

where β̂τj can be obtained from (6) for any ε ≤ τ0 < · · · < τm ≤ 1 − ε and δj = τj −

τj−1 → 0 as m → ∞. Note that the last approximation in (7) might be sensitive to
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the choice of {τj}mj=0 in real applications. Also, the above idea is used in Chernozhukov,

Fernández-Val and Galichon (2010) and Chernozhukov, Fernández-Val and Melly (2013),

respectively. Therefore, if the time series in the panel data is stationary and α-mixing,

similar to Proposition 5 of Chernozhukov, Fernández-Val and Galichon (2010), one can show

that F̂ (y|x) is consistent and enjoys the asymptotic normality as follows:√
T1

[
F̂ (y|x)− F (y|x)

]
d→ N(0, V (y|x)),

where V (y|x) > 0 is the asymptotic variance, which might depend on x and y.

In real applications, if the dimension of cross-section and covariates is large and a sparsity

exists, using all of the control units and covariates may result in unstable estimation. For

such a case, we suggest using the method of quantile regression with a penalty similar to that

in Li and Zhu (2008) and Wu and Liu (2009) to estimate the conditional quantile function.

To be specific, a penalty term is added into (6)

β̂pen,τ = argmin
βτ

T1∑
t=1

ρτ (y1t − β⊤
τ X1t) +

dx∑
j=1

ψλ∗(βτ,j) (8)

for some penalty function ψλ∗(·), say the absolute function as in Li and Zhu (2008) or the

smoothly clipped absolute deviation penalty function as in Wu and Liu (2009). Note that

one can easily implement (8) by using the rqPen package in R in Sherwood and Maidman

(2016) or hreg package in Yi and Huang (2017). Then, the conditional distribution with

penalty is then estimated as

F̂pen(y|x) = ε+

∫ 1−ε

ε

I(β̂⊤
pen,τx ≤ y)dτ

for some small constant ε > 0. Analog to the result in Li and Zhu (2008), the asymptotic

normality may be obtained for dependent data, in particular for sequences that satisfy suf-

ficiently some strong mixing conditions. Actually, via a Monte Carlo simulation study in

Section 3, we explore the effective of the proposed estimator based on the penalized quantile

regression method.

Finally, one extra advantage of using the penalized quantile regression method given in

(8) is that by some simple extensions, one can even deal with the case when the ultra high
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dimension of cross-section and covariates is possibly larger than the dimension of time series

(dx > T1); see Wang, Wu and Li (2012), Sherwood and Maidman (2016), and Yi and Huang

(2017) for details. Such an extension for ultra high dimensional cases is warranted as future

research.

3 Monte Carlo Simulation Studies

In this section, a series of Monte Carlo experiments are conducted to study the finite

sample performances of the proposed QTE estimators for panel data. The first simulation is

designed for low dimensional case in which conditional CDF can be estimated by the kernel

method. The second simulation illustrates the method of parametric quantile regression in

the estimation of the conditional CDF when the number of the control units is moderate.

The last simulation is conducted to show the performance of the quantile regression method

with penalty when facing the high dimension case with sparsity. For the first two simulations,

the sample sizes are set to be T = 200, 400 and 800 with λ = T1/T = 1/2, while for the last

simulation, the sample sizes are set to be T = 100, 200 and 400 with λ = T1/T = 1/2, and

1000 Monte Carlo simulations are carried out for each setting. To assess the performance of

the proposed estimators, we calculate the median of the 1000 absolute errors (MAE), which is

MAE= |∆̂τ−∆τ |, and its standard deviation (SD, presented in the parentheses) for the QTE

estimator ∆̂τ with τ = 0.25, 0.5 and 0.75. In what follows, we use the AR(1) model with

coefficient φ in ξt = φξt−1 + υt specified later, where υt = ζt − 1, and ζt ∼ Exponential(1),

such that υt is a sequence of white noises with mean 0 and variance 1.

Example 1: Suppose N = 3. That is, there are two control units so that dx = 2. Let

y1t =
1√
5
y2t +

2√
5
sin(y3t) +

√
y22t + y23t · εt, 1 ≤ t ≤ T1,

y01t =
1√
5
y2t +

2√
5
sin(y3t) +

√
y22t + y23t · εt, T1 + 1 ≤ t ≤ T,

and y11t = ρt + y01t for T1 + 1 ≤ t ≤ T , where {y2t}Tt=1, {y3t}Tt=1, {ρt}Tt=T1+1 and {εt}Tt=1

are independent, {y2t}T1
t=1 and {y3t}T1

t=1 are generated from an AR(1) model with coefficient

φ = 0.6, {y2t}Tt=T1+1 and {y3t}Tt=T1+1 are generated from an AR(1) model with coefficient
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φ = 0.4, {ρt}Tt=T1+1 is generated from an AR(1) model with coefficient φ = 0.5, and {εt}Tt=1

is a sequence of white noises with the same distribution as {υt}Tt=1. Then, Y1|X1 and Y 0
2 |X2

have the same conditional CDF. The true QTE can be calculated numerically by simula-

tion with a very large sample size for τ ∈ (0, 1). Since the dimension dx = 2 is low in

this simulation, the conditional CDF of Y1|X1 is estimated by the nonparametric method

described in Section 2.3. To construct a higher order kernel K(·) satisfying Assumption 4,

let K(u) =
∏N−1

j=1 e
⊤
1 S

−1(1, uj, · · · , upj)⊤k(uj), where e1 = (1, 0, · · · , 0)⊤ is the unit vector,

S = (µi+r)0≤i,r≤p is a matrix with the element µj =
∫
ujk(u)du, p = ℓ − 2, and k(u) is a

univariate Epanechnikov kernel function, so that K(u) is a fourth-order kernel and p = 2.

The bandwidth satisfying Assumption 7 is given by h = 3.12σX1T
−1/6
1 , where 3.12 is the

rule-of-thumb bandwidth constant for fourth-order Epanechnikov kernel with 2-dimensional

covariates X1, and σX1 is the sample standard deviation of X1. Table 1 represents the results

for the simulation. From Table 1, it can be seen that the finite sample performance of the

proposed QTE estimators is well-behaved in the sense that both the MAE and the SD are

generally small and decrease rapidly with the sample size. Also note that by increasing the

sample size T2 from 100 to 400, the MAE values decrease by almost a half, indicating that

the convergence of the estimators is indeed at the
√
T2 rate.

Table 1: Simulation Results for Example 1

(T1, T2) τ = 0.25 τ = 0.5 τ = 0.75
(100, 100) 0.189 (0.180) 0.194 (0.184) 0.263 (0.239)
(200, 200) 0.141 (0.135) 0.145 (0.137) 0.192 (0.176)
(400, 400) 0.095 (0.089) 0.096 (0.094) 0.134 (0.130)

Example 2: Suppose N = 8. That is we have 7 control units so that dx = 7 without

sparsity. Let

y1t =
1√
7

8∑
i=2

yit + εt, 1 ≤ t ≤ T1, y01t =
1√
7

8∑
i=2

yit + εt, T1 + 1 ≤ t ≤ T,

and y11t = ρt + y01t for T1 + 1 ≤ t ≤ T , where {y2t}Tt=1, · · · , {y8t}Tt=1, {ρt}Tt=T1+1 and {εt}Tt=1

are independent, {y2t}T1
t=1, · · · , {y8t}T1

t=1 are generated from an AR(1) model with coefficient
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φ = 0.6, {y2t}Tt=T1+1, · · · , {y8t}Tt=T1+1 are generated from an AR(1) model with coefficient

φ = 0.4, {ρt}Tt=T1+1 is generated from an AR(1) model with coefficient φ = 0.5, and {εt}Tt=1

is a sequence of white noises with the same distribution as {υt}Tt=1. It can be seen that the

conditional CDFs of Y1|X1 and Y 0
2 |X2 remain the same. The true QTE can be calculated

numerically by simulation with a very large sample size for τ ∈ (0, 1). Due to the moderate

dimension of the covariates (dx = 7) and limmited sample size, a nonparametric method

might not work well so that the quantile regression (QR) method is used to estimate the

conditional CDF of Y1|X1, as in (7). Next, we calculate the MAE and its SD for the QTE

estimator ∆̂τ among the 1000 replications. The results are summarized in Table 2, from

which one can see that the MAE and the SD are generally small and become smaller with

larger sample size, suggesting that the finite sample performance of the proposed QTE

estimators is satisfactory. By increasing the sample size from T2 from 100 to 400, the MAE

values decrease by nearly a half, indicating that the convergence of the estimators is at the
√
T2 rate.

Table 2: Simulation Results for Example 2

(T1, T2) τ = 0.25 τ = 0.5 τ = 0.75
(100, 100) 0.290 (0.240) 0.307 (0.254) 0.357 (0.311)
(200, 200) 0.194 (0.179) 0.214 (0.180) 0.267 (0.219)
(400, 400) 0.146 (0.131) 0.147 (0.137) 0.191 (0.176)

Example 3: In this example, we illustrate the performance of the penalized quantile

regression method in the proposed QTE estimators. Suppose there are dx = 40 control

units, which is large, with a huge of sparsities. Let

y1t =
5

2
·y2t+

7

2
·y3t+0·

41∑
i=4

yit+εt, 1 ≤ t ≤ T1, y01t =
5

2
·y2t+

7

2
·y3t+0·

41∑
i=4

yit+εt, T1+1 ≤ t ≤ T,

and y11t = ρt + y01t for T1 + 1 ≤ t ≤ T , where {y2t}Tt=1, · · · , {y41,t}Tt=1, {ρt}Tt=T1+1 and {εt}Tt=1

are independent, {y2t}T1
t=1, · · · , {y41,t}T1

t=1 are generated from an AR(1) model with coefficient

φ = 0.6, {y2t}Tt=T1+1, · · · , {y41,t}Tt=T1+1 are generated from an AR(1) model with coefficient

φ = 0.4, {ρt}Tt=T1+1 is generated from an AR(1) model with coefficient φ = 0.5 and {εt}Tt=1 is

a sequence of white noises with the same distribution as {υt}Tt=1. Then, the conditional CDFs
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of Y1|X1 and Y 0
2 |X2 are indeed the same. The true QTE can be calculated numerically by

simulation with a very large sample size for τ ∈ (0, 1). Next, we consider both the quantile

regression (QR) approach as in (7) and the penalized quantile regression (PQR) method

with absolute penalty function as in (8) to calculate the MAE and SD value for the QTE

estimator ∆̂τ with τ = 0.25, 0.5 and 0.75, respectively. The results are depicted in Table

3, from which one can observe that when N is large and T is small, the MAE and the SD

calculated by PQR method are smaller than those computed based on the QR procedure,

which, as expected, are in line with our theory. In addition, as T2 increases from 50 to 200,

the MAE based on the PQR method decreases by roughly a half, which suggests that the

convergence of the estimator is at the
√
T2 rate.

Table 3: Simulation Results for Example 3

Method (T1, T2) τ = 0.25 τ = 0.5 τ = 0.75

QR
(50,50) 0.976 (0.978) 0.868 (0.826) 1.009 (1.130)
(100,100) 0.296 (0.270) 0.314 (0.269) 0.373 (0.340)
(200,200) 0.185 (0.163) 0.195 (0.171) 0.242 (0.220)

PQR
(50,50) 0.357 (0.340) 0.378 (0.351) 0.467 (0.432)
(100,100) 0.242 (0.222) 0.262 (0.225) 0.304 (0.298)
(200,200) 0.181 (0.153) 0.187 (0.165) 0.233 (0.205)

4 Empirical Analysis

4.1 Data and Descriptive Statistics

In this section, our method is illustrated by estimating the QTEs of introducing CSI

300 index futures trading on the spot price volatility of the Chinese stock market and its

volatility, respectively. As part of financial reform, the CSI 300 index futures contracts were

formally introduced by the China Financial Futures Exchange on April 16, 2010. Since then,

China opens her own futures market. Whether the introduction of the futures trading has

a positive impact on the stock market in China or not is a controversial issue in finance

literature. Some criticized that the introduction of the index futures trading may shake the

spot market due to the excessive speculation while others believed that the index futures

market can improve the speed and quality of the information flows and make the financial
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markets more complete. To identify the impact of introducing CSI 300 index futures trading

on the volatility of the stock market in China, we take the geographical tie and trade relations

into account, such that 13 major international market indices are selected as the control units,

which include the Hang Seng Index (HSI), the Hang Seng China Affiliated Corporation Index

(HSCCI), Korean Composite Stock Price Index, Japanese Nikkei 225 Index, Singaporean

Strait Times Index, Taiwanese Composite Index, the FTSE 100 Index in KU, the S&P 500

Index in USA, Franch CAC 40 Index, German Frankfurt DAX Index, Brazilian Bovespa

Index, Canadian S&P/TSX Composite Index, and Australian All Ordinaries Index. In

addition, 3 macroeconomic variables are also included: the monthly CPI growth rate, the

monthly M1 growth rate, and the monthly M2 growth rate. The time period of the data is

from January 2002 to February 2021. All the market indices are collected from the Resset

Financial Research Database6 and the macroeconomic data are from the CEIC Database7.

The monthly stock log-returns8 of the 14 market indices are calculated by the difference

of the log-returns between the last day and the first day in a month. Therefore, the total

sample size T = 230. The descriptive statistics for the log-returns of the 14 indices and the

3 macroeconomic variables are reported in Table 4, from which one can see that for most of

market indices, their distribution of the log-return is almost symmetric.

Following Chen et al. (2013), the monthly stock volatilities of the 14 market indices are

calculated as the standard deviation of daily index returns multiplied by the square root of

the number of trading days in that month. The descriptive statistics for the volatilities of

the 14 indices are reported in Table 5, from which it can be observed that the distributions of

volatility for all 14 market indices are asymmetric (see Column 8 in Table 5) and heavy-tailed

(see Column 7 in Table 5), which are strongly supported by observing Figure 1.

For the sample period from January 2002 to June 2011, Chen et al. (2013) employed

the panel data policy evaluation approach by HCW to construct counterfactuals of the

spot market volatility, mainly based on the correlations between China and international

6http://www.resset.cn/endatabases
7https://www.ceicdata.com
8The monthly log-return is computed as rt = log pt − log pt−1, where pt is the closing price at the last

day of the t month, pt−1 is the closing price at the first day of the t month.
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Table 4: Descriptive Statistics of Monthly Return

Index Mean Std. Dev. Median Min. Max. Kurt. Skew.

CSI 300 -0.052 1.056 -0.064 -3.807 4.544 6.350 0.424
HSI -0.088 0.867 -0.065 -2.535 2.303 3.295 0.106
HSCCI -0.113 1.063 -0.100 -3.426 2.993 3.317 -0.022
Korea -0.051 0.827 -0.065 -2.730 2.498 3.982 -0.189
Japan -0.077 0.949 -0.097 -2.650 3.146 4.128 0.464
Singapore -0.023 0.800 -0.090 -2.340 5.368 13.436 1.760
Taiwan 0.037 0.737 -0.037 -2.452 2.921 4.171 0.211
UK -0.160 0.813 -0.254 -1.686 4.224 7.182 1.325
US -0.085 0.821 -0.148 -2.656 4.673 9.084 1.371
France -0.075 0.927 -0.106 -2.262 4.199 5.728 0.972
Germany -0.106 0.943 -0.122 -2.423 4.337 6.298 1.023
Brazil -0.141 1.083 -0.280 -3.380 3.600 4.030 0.430
Canada 0.009 0.767 -0.006 -1.513 5.016 12.538 2.042
Australia -0.012 0.603 -0.012 -1.933 2.187 4.533 0.190
CPI growth rate 0.001 0.028 0.002 -0.095 0.058 4.106 -0.615
M1 growth rate 0.134 0.075 0.127 0.000 0.390 3.053 0.554
M2 growth rate 0.149 0.047 0.142 0.080 0.297 3.861 0.800

The monthly stock log-return is calculated as 100 multiplied by the difference of the log-returns between
the last day and the first day in a month. CPI, M1 and M2 growth rates denote the monthly growth rate
compared to those in the same month of the previous year.

Table 5: Descriptive Statistics of Monthly Volatility

Index Mean Std. Dev. Median Min. Max. Kurt. Skew.

CSI 300 0.066 0.033 0.057 0.013 0.184 4.568 1.334
HSI 0.056 0.032 0.047 0.020 0.325 26.522 3.777
HSCCI 0.068 0.034 0.060 0.026 0.317 15.987 2.712
Korea 0.053 0.030 0.046 0.017 0.249 12.208 2.381
Japan 0.059 0.031 0.053 0.019 0.318 24.820 3.284
Singapore 0.044 0.030 0.037 0.013 0.256 18.776 3.284
Taiwan 0.049 0.025 0.042 0.016 0.142 4.812 1.401
UK 0.047 0.029 0.039 0.012 0.231 13.735 2.711
USA 0.046 0.034 0.037 0.011 0.276 18.382 3.287
France 0.058 0.034 0.049 0.017 0.248 10.028 2.240
Germany 0.059 0.034 0.050 0.018 0.239 9.239 2.165
Brazil 0.073 0.037 0.065 0.028 0.360 28.565 4.116
Canada 0.040 0.031 0.032 0.011 0.290 29.700 4.398
Australia 0.040 0.024 0.035 0.012 0.222 20.896 3.370

The monthly stock index volatility is calculated as the standard deviation of daily index returns multiplied
by the square root of the number of trading days in that month.
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Figure 1: The plot of the estimated density for the pre-treatment, post-treatment and whole
sample VIX of CSI 300 index.

stock markets, and draw the conclusion that the introduction of index futures trading can

significantly reduce the volatility of the Chinese stock market.

However, different from Chen et al. (2013), we consider the QTEs of the index futures

trading on both the log-return and volatility of the Chinese stock market with similar datasets

but with different time periods. According to the introduction date of the CSI 300 index

futures, the whole time period is divided into two sections: the pre-treatment period from

January 2002 to April 2010 which consists of the sample size of T1 = 100 observations and

the post-treatment period from May 2010 to February 2021 which consists of the sample

size of T2 = 130 observations so that λ = 10/23. Finally, considering the sample size and

the number of the control units, the conditional CDF in this application is estimated by the

quantile regression method since dx = 16, which is moderate.

4.2 QTE of Futures Trading on Stock Returns

First, we study the QTE of introducing the index futures trading on the monthly log-

return of the stock market in China. Now, we implement the method proposed in this paper

to calculate the estimated QTEs of CSI 300 index futures trading on the log-return (y1t)

of the Chinese stock market. Figure 2 presents the estimated QTEs of the CSI 300 index
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futures trading on the log-return of the Chinese stock market, together with 95% CI (the red

shaded area) for each quantile based on the blockwise Bootstrap with B = 1000 replications.

Also, the ATE ∆̂1, calculated by the HCW’s approach is plotted by the horizontal (blue)

line, together with its 95% CI (the blue shaded area).

Figure 2: The plot of the estimated QTE is in the red line, ∆̂τ versus τ , together with its
95% CI (the shaded area) based on the blockwise Bootstrap. The horizontal (blue) line is
∆̂1, the ATE calculated by the HCW’s approach.

From Figure 2, it can be seen that first, the 95% CI for ∆̂1 contains basically zero, which

implies that ∆1 should be zero so that the average return is not affected by the introduction

of the CSI 300 index futures trading, which, as expected, is not surprising. Second, the

estimated QTEs changes (decreases almost linearly) with τ and are significantly positive at

the lower quantiles (about 0.008 at the 10% quantile), while significantly negative at the

higher quantiles (about −0.01 at the 90% quantile), which indicates that the introduction of

the CSI 300 index futures trading has different impacts on the log-return of the Chinese stock

market at different quantiles. Indeed, a quantile of log-return can be used to characterize

the risk of log-return, as argued by Xiao and Koenker (2009). For example, a lower quantile

corresponds to the Value-at-Risk (VaR), a well-known downside risk measure in finance

literature. The positive QTEs at the lower quantiles indicate that the introduction of the

CSI 300 futures trading can reduce the VaR by making the negative log-return less negative.

Meanwhile, the negative QTEs at the higher quantiles suggest that the introduction of the
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CSI 300 futures trading can also reduce the VaR by making the positive log-return less

positive. In conclusion, similar to Chen et al. (2013), introducing the CSI 300 futures

trading makes the stock market in China more stable in terms of the VaR. However, Chen et

al. (2013) did not find such an asymmetric effect and then it is hard for them to empirically

interpret why introducing the futures trading can stabilize the spot stock market.

4.3 QTE of Futures Trading on Volatility of Stock Markets

In this subsection, we study the QTEs of introducing the index futures trading on the

volatility of the stock market in China. Different from the previous section, y1t in this

section is volatility instead of log-return. As discussed in Section 1, the QTE can be used

to evaluate the impact of volatility of volatility, see, for example, Huang et al. (2019) for

details. Next, we implement the proposed method to calculate the QTEs of CSI 300 index

futures trading on the volatility of the Chinese stock market. Figure 3 depicts the estimated

QTEs for the CSI 300 index futures trading on the volatility of the Chinese stock market,

together with 95% CI (the red shaded area) for each quantile, which is obtained via the

blockwise Bootstrap with B = 1000 replications. Also, for a comparison purpose, the ATE

∆̂1 calculated by the HCW’s approach is plotted by the horizontal (blue) line, together with

its 95% CI (the blue shaded area).

From Figure 3, first, it is not surprising to see that the estimated median effect ∆̂τ=1/2 is

not the same as the ATE ∆̂1, because the distribution of volatility is asymmetric and heavily

tailed, as seen in Figure 1. Second, it is clear to see that the estimated QTEs decreases in two

phases (two piecewise linear) and are significantly negative and the volatility at the higher

quantile is much negative than that at the lower quantile, which decreases about 0.054 at the

90% quantile compared to only 0.01 at the 10% quantile. The ATE by the HCW’s approach

gives a general effect of the CSI 300 index futures trading on the volatility variation while

the QTE by the proposed method can offer more details for the effect of the CSI 300 index

futures trading on the variation of the volatility. Overall, introducing the CSI 300 futures

trading can reduce the volatility of the stock market and the higher the volatility is, the more

significant the treatment effect demonstrates. The results are consistent with the findings in
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Figure 3: The plot of the estimated QTE is in the red line, ∆̂τ versus τ , together with its
95% CI (the red shaded area) based on the blockwise Bootstrap. The horizontal (blue) line
is ∆̂1, the ATE calculated by the HCW’s approach.

Subsection 4.2 in terms of the Value-at-Risk and both suggest that introducing the CSI 300

futures market can make the stock market more stable in China.

5 Conclusion

To grab a more comprehensive effect of a treatment, this paper considers the estimation

of QTE with panel data which generalizes HCW’s approach from a mean setting to a quantile

framework. To make it possible to use the observational data of control units to estimate

the distributional characteristic of the unobserved counterfactual outcome variable for the

treated units, the invariance conditional CDF assumption is adopted. With this invariance

assumption, a simple method is proposed to estimate the QTE for the treated unit in panel

data. The main issue of the proposed method is the estimation of the conditional CDF. To

estimate the conditional CDF, both nonparametric and parametric models are discussed in

the paper. Furthermore, when the number of control units is greater than the time periods

in panel data, the LASSO type quantile regression method is suggested to estimate the

conditional CDF. In the empirical analysis, the proposed QTE estimator for panel data is

applied to estimate the QTE of the introduction of the CSI 300 index futures market on the
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log-return and the volatility of the stock market in China.

Finally, note that as mentioned earlier, some extensions are warranted as future research.

Appendix: Mathematical Proofs

To prove Theorem 1, we first prove the following two lemmas.

Lemma 1. Under the assumptions in the theorem, we have

√
T2
[
F̃Y 0

2
(y)− FY 0

2
(y)
]

=
1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]

+
1√
T1

T1∑
t=1

√
T2
T1

· fX2(X1t)

fX1(X1t)
· [I(Y1t ≤ y)− F (y|X1t)] + op(1).

for −∞ < y <∞.

Proof of Lemma 1: Note that√
T2
[
F̃Y 0

2
(y)− FY 0

2
(y)
]

=
√
T2

{
1

T2

T∑
t=T1+1

[
F̃ (y|X2t)− F (y|X2t)

]
+

1

T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]}

=
√
T2

{
1

T2

T∑
t=T1+1

[
F̃ (y|X2t)− F (y|X2t)

]
−
∫
[F̃ (y|x)− F (y|x)

]
dFX2(x)

}

+
√
T2

[ ∫
F̃ (y|x)dFX2(x)−

∫
F (y|x)dFX2(x)

]
+

1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]

= S1 + S2 +
1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]
.

Following the proof of Lemma 1 in Rothe (2010), it can be shown easily that S1 = op(1).

Now, our focus is on S2, which can be written as

S2 =
√
T2

[ ∫
F̃ (y|x)dFX2(x)−

∫
F (y|x)dFX2(x)

]
=

√
T2

[ ∫ 1
T1

∑T1

t=1Kh(X1t − x)I(Y1t ≤ y)

f̃X1(x)
dFX2(x)−

∫
F (y|x)dFX2(x)

]
=

√
T2

[ ∫ 1
T1

∑T1

t=1Kh(X1t − x)I(Y1t ≤ y)

f̃X1(x)
dFX2(x)
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−
∫ 1

T1

∑T1

t=1Kh(X1t − x)F (y|x)
f̃X1(x)

dFX2(x)
]

=
√
T2

{∫ 1

T1

T1∑
t=1

Kh(X1t − x)

f̃X1(x)

[
I(Y1t ≤ y)− F (y|X1t)

]
dFX2(x)

+

∫
1

T1

T1∑
t=1

Kh(X1t − x)

f̃X1(x)

[
F (y|X1t)− F (y|x)

]}
dFX2(x)

=
√
T2(A+B), (A.1)

where f̃X1(x) =
1
T1

∑T1

t=1Kh(X1t − x). By Theorem 2 in Masry (1996),

sup
x∈X2

|f̃X1(x)− fX1(x)| = Op

{(
log T1
T1hdx

)1/2

+ hℓ

}
.

Then, under Assumption 7, supx∈X2
|f̃X1(x) − fX1(x)| = op(T

−1/4
1 ). Thus, by applying a

second order Taylor expansion of 1/f̃X1(x) around 1/fX1(x), one obtains that

A =
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

] ∫ fX2(x)

f̃X1(x)
Kh(X1t − x) dx

=
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

] ∫ fX2(x)

fX1(x)
Kh(X1t − x) dx

− 1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

] ∫ fX2(x)

f 2
X1
(x)

[
f̃X1(x)− fX1(x)

]
Kh(X1t − x) dx+ op(T

−1/2
1 )

= A1 − A2 + op(T
−1/2
1 ).

Since K(·) is a high order kernel,

A1 =
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

]fX2(Xt)

fX1(Xt)
+Op(h

ℓ)

=
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

]fX2(Xt)

fX1(Xt)
+ op(T

−1/2)

and

A2 =
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

] ∫ fX2(x)

f 2
X1
(x)

[
f̃X1(x)− fX1(x)

]
Kh(X1t − x) dx

=
1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

] ∫ [ 1

T1

T1∑
s=1

Kh(X1s − x)− fX1(x)

]
Kh(X1t − x)

fX2(x)

f 2
X1
(x)

dx
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=
1

T 2
1

T1∑
s,t=1

[
I(Y1t ≤ y)− F (y|X1t)

][ ∫
Kh(X1s − x)Kh(X1t − x)

fX2(x)

f 2
X1
(x)

dx

−
∫
Kh(X1t − x)

fX2(x)

fX1(x)
dx

]

=
1

T 2
1

T1∑
s,t=1

[
I(Y1t ≤ y)− F (y|X1t)

][
Kh(X1s −X1t)

fX2(X1t)

f 2
X1
(X1t)

− fX2(X1t)

fX1(X1t)

]
+ op(T

−1/2
1 )

=
1

T 2
1

∑
s ̸=t

[
I(Y1t ≤ y)− F (y|X1t)

][
Kh(X1s −X1t)

fX2(X1t)

f 2
X1
(X1t)

− fX2(X1t)

fX1(X1t)

]
+ op(T

−1/2
1 ).

Note that when T1 → ∞ and |s− t| → ∞,

E

{[
I(Y1t ≤ y)− F (y|X1t)

][
Kh(X1s −X1t)

fX2(X1t)

f 2
X1
(X1t)

− fX2(X1t)

fX1(X1t)

] ∣∣∣∣∣X1t, Y1t

}

→
[
I(Y1t ≤ y)− F (y|X1t)

][fX2(X1t)

f 2
X1
(X1t)

·
∫
Kh(x−X1t)fX1(x) dx−

fX2(X1t)

fX1(X1t)

]
= op(T

−1/2
1 ).

So the leading term in A2 is a degenerate second-order U-statistic and

A2 = Op(T
−1
1 h−dx) = op(T

−1/2
1 ).

Therefore,

A = A1 − A2 + op(T
−1/2
1 ) =

1

T1

T1∑
t=1

[
I(Y1t ≤ y)− F (y|X1t)

]fX2(Xt)

fX1(Xt)
+ op(T

−1/2). (A.2)

Similarly, we can show that the term B in (A.1) is op(T
−1/2), together with (A.1), (A.2) and

limT→∞ T2/T1 = c, one has that

S2 =
√
T2
[
A1 − A2 +B1 −B2 + op(T

−1/2
1 )

]
=

1√
T1

T1∑
t=1

√
T2
T1

fX2(Xt)

fX1(Xt)
·
[
I(Y1t ≤ y)− F (y|X1t)

]
+ op(1).

Hence,

√
T2
[
F̃Y 0

2
(y)− FY 0

2
(y)
]

= S1 + S2 +
1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]

=
1√
T1

T1∑
t=1

√
T2
T1

fX2(Xt)

fX1(Xt)
·
[
I(Y1t ≤ y)− F (y|X1t)

]
+

1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]
+ op(1).
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This completes the proof of Lemma 1. □

Lemma 2. Under the assumptions in the theorem, we have

F̂Y 0
2
(y)− F̃Y 0

2
(y) = op

(
T

−1/2
2

)
and

√
T2
[
F̂Y 0

2
(y)− FY 0

2
(y)
]

=
1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]

+
1√
T1

T1∑
t=1

√
T2
T1

· fX2(X1t)

fX1(X1t)
· [I(Y1t ≤ y)− F (y|X1t)] + op(1)

for −∞ < y <∞.

Proof of Lemma 2: We first show that

sup
u≤y

{F̃Y 0
2
(u)} − F̃Y 0

2
(y) = op

(
T

−1/2
2

)
.

By Lemma 1, for r > 0,√
T2
[
F̄Y 0

2
(y − r)− F̃Y 0

2
(y − r)

]
−
√
T2
[
F̄Y 0

2
(y)− F̃Y 0

2
(y)
]

= − 1√
T2

T∑
t=T1+1

[
P
(
y − r < Y 0

2t ≤ y|X2t

)
− P

(
y − r < Y 0

2t ≤ y
)]

− 1√
T1

T1∑
t=1

√
T2
T1

· fX2(X1t)

fX1(X1t)
·
[
I
(
y − r < Y1t ≤ y

)
− P

(
y − r < Y1t ≤ y|X1t

)]
+ op(1)

= G(r) + op(1). (A.3)

It is easy to find that E
[
G(r)

]
= 0 and limr→0+ Var

[
G(r)

]
= 0. By the Markov inequality,

for any ε > 0 and ϵ > 0, there exists a small δ > 0 such that P
(
sup0≤r<δ{G(r)} > ε

)
< ϵ.

Then, (A.3) implies that for any ε > 0 and ϵ > 0, there exists a small δ > 0 and an N1 > 0

such that for all T2 > N1

P
(√

T2

{
sup

y−δ<u≤y

{
F̃Y 0

2
(u)− FY 0

2
(u)
}
−
[
F̃Y 0

2
(y)− FY 0

2
(y)
]}

> ε
)
< ϵ. (A.4)

Note that for any y − δ < u ≤ y, FY 0
2
(u) ≤ FY 0

2
(y). Hence, (A.4) leads to

P
(√

T2

{
sup

y−δ<u≤y

{
F̃Y 0

2
(u)
}
− F̃Y 0

2
(y)
}
> ε
)
< ϵ. (A.5)
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Also, we have that

P
(√

T2

[
sup

u≤y−δ
{F̃Y 0

2
(u)} − F̃Y 0

2
(y)
]
> ε
)

≤ P
(

sup
u≤y−δ

{F̃Y 0
2
(u)} − F̃Y 0

2
(y) > 0

)
= P

(
sup

u≤y−δ
{F̃Y 0

2
(u)− FY 0

2
(u) + FY 0

2
(u)} −

[
F̃Y 0

2
(y)− FY 0

2
(y)
]
− FY 0

2
(y) > 0

)
≤ P

(
sup

u≤y−δ
{F̃Y 0

2
(u)− FY 0

2
(u)}+ FY 0

2
(y − δ)−

[
F̃Y 0

2
(y)− FY 0

2
(y)
]
− FY 0

2
(y) > 0

)
= P

(
sup

u≤y−δ
{F̃Y 0

2
(u)− FY 0

2
(u)} −

[
F̃Y 0

2
(y)− FY 0

2
(y)
]
> FY 0

2
(y)− FY 0

2
(y − δ)

)
.

Note that supu≤y−δ{F̃Y 0
2
(u)− FY 0

2
(u)} −

[
F̃Y 0

2
(y)− FY 0

2
(y)
] p→ 0 by Lemma 1 and FY 0

2
(y)−

FY 0
2
(y − δ) > 0. Then, P

(√
T2

[
supu≤y−δ{F̃Y 0

2
(u)} − F̃Y 0

2
(y)
]
> ε
)
→ 0, which implies that

there exist an N2 such that for all T2 > N2,

P
(√

T2

{
sup

u≤y−δ

{
F̃Y 0

2
(u)
}
− F̃Y 0

2
(y)
}
> ε
)
< ϵ. (A.6)

Combing (A.5) and (A.6) leads to

P
(√

T2

{
sup
u≤y

{
F̃Y 0

2
(u)
}
− F̃Y 0

2
(y)
}
> ε
)

≤ P
(√

T2

{
sup

y−δ<u≤y

{
F̃Y 0

2
(u)
}
− F̃Y 0

2
(y)
}
> ε
)
+ P

(√
T2

{
sup

u≤y−δ

{
F̃Y 0

2
(u)
}
− F̃Y 0

2
(y)
}
> ε
)

≤ 2ϵ

for T2 > max{N1, N2}, which implies that

sup
u≤y

{F̃Y 0
2
(u)} − F̃Y 0

2
(y) = op

(
T

−1/2
2

)
. (A.7)

Next, it is easy to show that

sup
u
{F̃Y 0

2
(u)} = lim

y→∞
sup
u≤y

{F̃Y 0
2
(u)} = lim

y→
F̃Y 0

2
(y) + op

(
T

−1/2
2

)
= 1 + op

(
T

−1/2
2

)
. (A.8)

Combing (A.7) and (A.8) leads to

F̂Y 0
2
(y)− F̃Y 0

2
(y) =

supu≤y{F̃Y 0
2
(u)}

supu{F̃Y 0
2
(u)}

− F̃Y 0
2
(y)

= sup
u≤y

{F̃Y 0
2
(u)}

[
1 + op

(
T

−1/2
2

)]
− F̃Y 0

2
(y) = op

(
T

−1/2
2

)
.

Then, by Lemma 1, we have√
T2
[
F̂Y 0

2
(y)− FY 0

2
(y)
]

=
√
T2
[
F̂Y 0

2
(y)− F̃Y 0

2
(y)
]
+
√
T2
[
F̃Y 0

2
(y)− FY 0

2
(y)
]
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=
√
T2
[
F̃Y 0

2
(y)− FY 0

2
(y)
]
+ op(1)

=
1√
T2

T∑
t=T1+1

[
F (y|X2t)− FY 0

2
(y)
]

+
1√
T1

T1∑
t=1

√
T2
T1

· fX2(X1t)

fX1(X1t)
· [I(Y1t ≤ y)− F (y|X1t)] + op(1).

This completes the proof of Lemma 2. □

Proof of Theorem 1: First, by Theorem 2 of Yoshihara (1995) and Assumption 2, the

following the Bahadur representation for q̂11τ is given by

√
T2(q̂

1
1τ − q11τ ) =

1√
T2

T∑
t=T1+1

ψ1τ (Y
1
2t) + op(1), (A.9)

To prove the theorem, it remains to find the representation for q̂01τ . Define

ZT2 =
√
T2[τ − F̂Y 0

2
(q01τ )]/fY 0

2
(q01τ ).

Note that F̂Y 0
2
(q) is a CDF. For any −∞ < u < ∞, q̂01τ ≤ q01τ + u/

√
T2 implies F̂Y 0

2

(
q01τ +

u√
T2

)
≥ τ . Then, for any ϵ > 0,

P
(√

T2(q̂
0
1τ − q01τ ) ≤ u, ZT2 > u+ ϵ

)
= P

(
q̂01τ ≤ q01τ + u/

√
T2, ZT2 > u+ ϵ

)
≤ P

(
τ − F̂Y 0

2

(
q01τ + u/

√
T2
)
≤ 0, ZT2 > u+ ϵ

)
= P

(√
T2[τ − F̂Y 0

2
(q01τ +

u√
T2
)]

fY 0
2
(q01τ )

≤ 0, ZT2 > u+ ϵ

)
= P (ZT2 +RT2 ≤ u, ZT2 > u+ ϵ) , (A.10)

where

RT2 =

[
F̂Y 0

2
(q01τ )− F̂Y 0

2

(
q01τ +

u√
T2

)
fY 0

2
(q01τ )/

√
T2

−
FY 0

2
(q01τ )− FY 0

2

(
q01τ +

u√
T2

)
fY 0

2
(q01τ )/

√
T2

]

+

[
FY 0

2
(q01τ )− FY 0

2

(
q01τ +

u√
T2

)
fY 0

2
(q01τ )/

√
T2

+ u

]
= RT2,1 +RT2,2.

By Lemma 2, we have that

RT2,1 = − 1

fY 0
2
(q01τ )

{ 1√
T2

T∑
t=T1+1

[
P
(
q01τ < Y 0

2t ≤ q01τ + u/
√
T2|X2t

)
− P

(
q01τ < Y 0

2t ≤ q01τ + u/
√
T2
)]
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+
1√
T1

T1∑
t=1

√
T2
T1

· fX2(X1t)

fX1(X1t)
·
[
I
(
q01τ < Y1t ≤ q01τ + u/

√
T2
)
− P

(
q01τ < Y1t ≤ q01τ + u/

√
T2|X1t

)]}
+op(1).

It is easy to find that the leading term in RT2,1 has a zero mean and its variance goes to zero

as T2 goes to infinity, so RT2,1 = op(1). We also have

RT2,2 →
−ufY 0

2
(q01τ )

fY 0
2
(q01τ )

+ u = 0,

so that RT2 = op(1). Then, by (A.10),

P
(√

T2(q̂
0
1τ − q01τ ) ≤ u, ZT2 > u+ ϵ

)
≤ P (ZT2 +RT2 ≤ u, ZT2 > u+ ϵ) → 0. (A.11)

Similarly, we can prove that for any −∞ < u <∞ and ϵ > 0,

P
(√

T2(q̂
0
1τ − q01τ ) ≥ u, ZT2 < u− ϵ

)
→ 0. (A.12)

Combining (A.11) and (A.12) leads to
√
T2(q̂

0
1τ − q01τ ) = ZT2 + op(1). Then, by Lemma 2,√

T2(q̂
0
1τ − q01τ ) = −

√
T2[F̂Y 0

2
(q01τ )− τ ]/fY 0

2
(q01τ ) + op(1)

=
1√
T2

T∑
t=T1+1

−[F (q01τ |X2t)− τ ]

fY 0
2
(q01τ )

− 1√
T1

T1∑
t=1

1

fY 0
2
(q01τ )

·
√
T2
T1

· fX2(X1t)

fX1(X1t)
· [I(Y1t ≤ q01τ )− F (q01τ |X1t)] + op(1)

=
1√
T2

T∑
t=T1+1

ψ0τ (X2t)−
1√
T1

T1∑
t=1

ψ2τ (X1t, Y1t) + op(1). (A.13)

By (A.9) and (A.13), we have

√
T2(∆̂τ −∆τ ) =

1√
T2

T∑
t=T1+1

[ψ1τ (Y2t)− ψ0τ (X2t)] +
1√
T1

T1∑
t=1

ψ2τ (X1t, Y1t) + op(1)

=
1√
T2

T∑
t=T1+1

ξt +
1√
T1

T1∑
t=1

ηt + op(1) = K1 +K2 + op(1),

where K1 and K2 are clearly defined. By the stationarity, we define C(s) = Cov
(
ηt, ξt+s

)
for

s > 0. A simple algebra gives

Cov(K1, K2) =

√
T1
T2

1

T1

T1∑
s=1

min{s, T2}C(s) +
√
T2
T1

1

T2

T−1∑
s=T1+1

min{T1, T − s}C(s).
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By Kronecker’s lemma, Davydov’s inequality, and Assumption 2, the first term in the right

hand side of the above equation converges to zero and the second term is bounded by∑∞
s=T1+1 |C(s)| → 0 as T1 → ∞ by Assumption 2. Therefore, by the central limit theorem

for α-mixing as in Theorem 2 of Yoshihara (1995), one has√
T2(∆̂τ −∆τ )

d−→ N
(
0, σ2

τ

)
.

This completes the proof of Theorem 1. □
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