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Abstract 
 

We study the stability properties and conditions for the onset of Shilnikov chaos 
in the UK New Keynesian macroeconomy, as well as the shifts in the equilibrium 
dynamics under various policy regimes. We find that Shilnikov chaos emerges for a 
restricted part of the free parameters space in the baseline rational expectations UK 
model with no regime switching. When the UK's central bank showed a weak response to 
inflation in the high inflation regime, the chaos did not occur at all. But Shilnikov chaos 
appears easily in the case of the low-inflation regime, which is associated with the Bank 
of England's use of aggressive monetary policy in recent years. Tightening the monetary 
policy interest-rate-feedback rule via the Taylor coefficient is one of the policy 
alternatives proposed by the local analysis for restoring uniqueness. We find that doing so 
accelerates the emergence of unanticipated phenomena such as Shilnikov's chaotic 
dynamics.  

Our results with UK data are thereby consistent with the results with US data by 
Barnett et al. (2020), who found that the adoption of an active interest rate feedback rule 
in recent years by the Federal Reserve produces Shilnikov chaos and unintentional 
downward drift in interest rates towards the lower bound.  The source of the chaos and 
downward drift in interest rates is adoption of a myopic short-run interest-rate feedback 
rule without a terminal condition as long run anchor. A critical assumption of the results 
with US and UK data are existence of new Keynesian sticky prices. While the model’s 
parameters were calibrated with pre-Brexit data, we expect that our results will be highly 
relevant post-Brexit, as the needed data become available.  Changes in the geometry of 
the Shilnikov fractal attractor set can be expected to be revealing about changes in the 
level and nature of UK economic risk following Brexit. 
 
Keywords: Shilnikov chaos criterion, long-term un-predictability, liquidity trap. 
JEL classification: C61, C62, E12, E52, E63. 
 
1. Introduction 

 
The United Kingdom (UK) economy has undergone significant structural and policy 
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changes in the past decades. The 1970s and the 1980s were characterized by volatile 
inflation and output growth (Benati (2004), Benati (2008)), whereas the period following 
the implementation of inflation targeting in 1992 saw low inflation and output volatility. 
Prior to the implementation of inflation targeting in 1992, the monetary authority used a 
passive monetary policy, by which the interest rate rose less than one-for-one with 
increase in inflation (Nelson and Nikolov (2004)). During this time, the impact of 
monetary policy shocks on inflation was considerable and positive (Castelnuovo and 
Surico (2005)). However, post inflation targeting period when the monetary authority 
used an active monetary policy, the inflation responses were smaller and negative. 
This paper attempts to capture the shifts in the stability dynamics of the model across the 
changing regimes. More specifically, the paper studies the possibility of onset of 
Shilnikov chaos under the different policy regimes for the UK economy. While the 
model’s parameters were calibrated with pre-Brexit data, we expect the results to be 
highly relevant post-Brexit. 

 
The standard New Keynesian (NK) model with an active monetary policy in accordance 
with the Taylor Principle was initially thought to be a sufficient criterion for determinacy 
in NK models. However, there is a large literature on the complex dynamics problems 
that NK models with aggressive interest rate policies produce. Sveen and Weinke (2005, 
2007) show that inclusion of firm-specific capital in a standard NK model can lead to 
multiple equilibria with aggressive interest rate policies. Moreover, following the Taylor 
Principle is not sufficient in the presence of nominal capital income taxation (Røisland 
(2003) and Edge and Rudd (2007)), or in the presence of high government consumption 
(Natvik (2009), Galí et al. (2004)), or in the presence of trend inflation (Coibion and 
Gorodnichenko (2011) and Kiley (2007)). The policy implications of those papers are 
that the higher the effective capital income tax or government consumption, the more 
aggressively the interest rate should respond to inflation in order to attain a determinate 
equilibrium.  
 
Another major obstacle to uniqueness of equilibrium in the NK economy is fiscal policy's 
inability or unwillingness to adjust primary surpluses to stabilize government debt, which 
may conflict with the central bank's inflation objective (Kumhof et al., 2010). Regardless 
of the stance of fiscal policy, the role that the demand for money by agents plays in the 
monetary-transmission mechanism may also undermine the uniqueness of the equilibrium 
and encourage the onset of expectation-driven fluctuations (cf. Benhabib et al. 2001a,b). 
Further limits may result from the way preferences and technologies are introduced into 
the model.  
 
In this paper, using the path-breaking work of Shilnikov (1965), we find that there may 
be further reasons to distrust the ability of Taylor rules to be conducive to stability.6 We 

 
6 Consider, for example, the case in which the policy maker runs an active fiscal-monetary regime. Assume 
further that a change in the conduct of fiscal policy induces uniqueness of the equilibrium around the 
intended steady state. Then, the policy maker may be pressured to renounce discretion in fiscal policy by 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1538-4616.2008.00187.x#b15
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show that this policy may induce a class of policy difficulties emerging from the onset of 
a chaotic attractor. If the economy becomes enmeshed in a chaotic attractor, the policy 
maker faces unwanted challenges. Within a chaotic attractor, there is sensitivity to initial 
conditions, even to infinitesimal changes in initial conditions. Because an initial 
condition can only be known to a finite degree of precision, long-term predictions 
become nearly impossible. It becomes impossible to predict dynamics far into the future. 
Small changes in the initial conditions have major effects on future temporal evolution. 
Furthermore, given the initial value of the predetermined variable, a continuum of initial 
values of the jump variables would result in admissible equilibria.   

 
In this paper, we identify the subset of the parameter space for the UK model that 
supports stable solutions and the subset that supports chaotic dynamics. Based on the 
findings of Liu and Mumtaz (2011) spanning 1970Q1 to 2009Q1, we consider three 
different regimes: a model with fixed parameters, a model with high inflation volatility 
and lower monetary authority reaction to inflation, and a model with low inflation but 
high monetary authority reaction to inflation. In the model with constant parameters, the 
emergence of Shilnikov chaos is supported by a very narrow region. The model of high 
inflation and low reaction of monetary authorities is stable and does not support any form 
of Shilnikov chaos. Finally, the model with low inflation and a highly responsive 
monetary authority yields a large subspace of parameters that supports Shilnikov chaos. 
This case is consistent with the UK policy design in recent decades.  Furthermore, the 
chaos subset expands with a higher intra-temporal elasticity of substitution between 
consumption and money, as well as a higher value of mark up over marginal cost, 
according to our research. As the price stickiness increases, the instability region 
expands. The central role of price stickiness is consistent with the findings of Barnett et 
al. (2020) with US data. 

 
The liquidity trap observed in the UK during the post-inflation targeting period may be 
explained by the existence of this Shilnikov chaotic attractor in the low inflation and 
highly responsive monetary authority regime. The phenomenon has previously been 
linked mainly to the existence of a low-inflation steady state (see Benhabib et al. 
(2001a,b)). However, we offer a different explanation. The economy lingers in specific 
regions along the chaotic attractor, where model dynamics tend to evolve for a long time 
around inflation and nominal interest rates that are lower than expected. The resulting 
unintended downward drift of interest rates on the chaotic attractor set is consistent with 
the findings of Barnett et al (2020) with US data. Another consequence is the post-
inflation targeting regime’s lower and negative inflation responses to monetary policy 
shocks. 
 
While the model’s parameters were calibrated with pre-Brexit data, we expect that our 
results will be highly relevant post-Brexit. Changes in the geometry of the Shilnikov 

 
committing to a marginal tax rate above the real interest rate.  As we show, a consequence could be 
Shilnikov chaos. 
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fractal attractor set can be expected to be revealing about changes in the level and nature 
of UK economic risk following Brexit. 

 
We now present the plan of the paper. In Section 2, we present the model and the implied 
three-dimensional system of first-order differential equations. We also obtain stability 
results for the intended steady state, when monetary policy is active. In Section 3, we 
show that the three-dimensional dynamics, characterizing the solution of the model, can 
satisfy the requirements of the Shilnikov (1965) theorem under plausible calibration 
settings of the NK model for the UK. An example of chaotic dynamics is also discussed, 
along with its sensitivity to perturbations of the bifurcation parameter and the initial 
conditions. We finally consider the policy implications produced by the dynamics of the 
economy within the Shilnikov attractor set.  The conclusion reassesses the main findings 
of the paper.  

 
2. The model 
 
Consider the optimization problem faced by household-firm i in the money-in-the utility-
function, NK model in continuous time.7  We shall call this problem Decision P. 
 
Decision P: 

𝑀𝑀𝑀𝑀𝑀𝑀
𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖,𝑙𝑙𝑖𝑖

� �𝑢𝑢(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) − 𝑓𝑓(𝑙𝑙𝑖𝑖) −
𝜂𝜂
2

(𝜋𝜋𝑖𝑖 − 𝜋𝜋∗)2� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑
∞

0
 

 
subject to 
    �̇�𝑀𝑖𝑖 = (𝑅𝑅 − 𝜋𝜋𝑖𝑖)𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑚𝑚𝑖𝑖 + 𝑝𝑝𝑖𝑖

𝑝𝑝
𝑦𝑦(𝑙𝑙𝑖𝑖) − 𝑐𝑐𝑖𝑖 − 𝜏𝜏 

    �̇�𝑝𝑖𝑖 = 𝜋𝜋𝑖𝑖𝑝𝑝𝑖𝑖                                       
               𝑀𝑀𝑖𝑖(0) = 𝑀𝑀𝑖𝑖0 
     𝑝𝑝𝑖𝑖(0) = 𝑝𝑝𝑖𝑖0 . 

 
Decision P is produced from the framework developed originally in Benhabib et al. 
(2001a,b), which is still a standard reference point for ongoing theoretical research and 
policy advocacy (cf. inter al., Benhabib et al. (2014), Tsuzuki, (2016), Le Riche et al., 
(2017)). For comparability, we adopt the same framework used with US data in Barnett et 
al. (2020), but with UK data we use the model generalized to include money in the utility 

 
7 The money in the utility function approach implicitly uses the derived utility function shown to exist by 
Arrow and Hahn (1971),if money has positive value in equilibrium. A long literature has repeatedly 
confirmed this existence from models having various explicit motives for holding money, such as 
transactions or liquidity constraints (e.g., Feenstra (1986), Poterba and Rotemberg (1987), and Wang and 
Yip (1992).  Recently, in a dynamical framework, Benhabib et al. (2001a,b; 2002) have shown equivalence 
to a money in the production function model.   
The mapping from explicit motives for holding money to the derived utility function does not have a 
unique inverse.  Hence, money in the utility function models cannot reveal the explicit motive for holding 
money.  But the ability to infer the explicit motive is not relevant to our research.  Hence, for our purposes, 
we can assume that money has positive value in equilibrium, without conditioning upon an explicit motive. 
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function. 
 
Prices are sticky in the sense of Rotemberg (1982). The objective of the household-firm 
optimizer is to maximize the discounted sum of a net utility stream, where 𝑢𝑢(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) 
measures utility derived by household-firm i from consumption of the composite good, 
𝑐𝑐𝑖𝑖, and from real money balances, 𝑚𝑚𝑖𝑖, under the time discount rate, 𝜌𝜌. It is assumed that 
𝑢𝑢(. , . ) is twice continuously differentiable in all its arguments and that 

 
𝑢𝑢𝑐𝑐(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) > 0;  𝑢𝑢𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) < 0;  𝑢𝑢𝑚𝑚(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) > 0;  𝑢𝑢𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖,𝑚𝑚𝑖𝑖) < 0,   (1) 

 
where the function subscripts denote partial derivatives. 
 
The function 𝑓𝑓(𝑙𝑙𝑖𝑖) measures the disutility of labor, where 𝑓𝑓(𝑙𝑙𝑖𝑖) is twice continuously 
differentiable, with  𝑓𝑓𝑙𝑙 > 0 and 𝑓𝑓𝑙𝑙𝑙𝑙 < 0 . The term 𝜂𝜂

2
(𝜋𝜋𝑖𝑖 − 𝜋𝜋∗)2 is standard to account for 

deviations of the percentage price change, 𝜋𝜋𝑖𝑖 = �̇�𝑝𝑖𝑖
𝑝𝑝𝑖𝑖

 , with regard to the intended rate 𝜋𝜋∗, 
where 𝑝𝑝𝑖𝑖 is the price charged by individual 𝑖𝑖 on the good it produces, and where the 
parameter 𝜂𝜂 measures the degree to which household-firms dislike to deviate in their 
price-setting behavior from 𝜋𝜋∗. In the household-firm budget constraint, 𝑀𝑀𝑖𝑖 denotes real 
financial wealth, consisting of interest-bearing government bonds, where 𝑅𝑅 is the 
nominal interest rate and 𝑦𝑦(𝑙𝑙𝑖𝑖) is the amount of perishable goods, produced according to 
a production function using labor, 𝑙𝑙𝑖𝑖, as the only input. Real lump-sum taxes are denoted 
by 𝜏𝜏.  
 
Sales of good 𝑖𝑖 are demand determined, so that 

 

𝑦𝑦(𝑙𝑙𝑖𝑖) = �𝑝𝑝𝑖𝑖
𝑝𝑝
�
−𝜙𝜙

𝑦𝑦𝑑𝑑 ,                 (2) 
 
where 𝜙𝜙 > 1 is the elasticity of substitution across varieties, and 𝑝𝑝 is the aggregate price 
level. From the first order conditions solving the Hamiltonian for Decision (P), and 
assuming a symmetric equilibrium in which all household-firm units' behaviors are based 
on the same equations, and with 𝑐𝑐 = 𝑦𝑦(𝑙𝑙) in equilibrium, we have that the following 
three-dimensional system of differential equations, which we shall call System M.8 
 
System M: 
 

�̇�𝜇1 = (𝜌𝜌 − 𝑅𝑅 + 𝜋𝜋)𝜇𝜇1 
𝜂𝜂�̇�𝜋 = 𝜌𝜌(𝜋𝜋 − 𝜋𝜋∗)𝜂𝜂 − 𝑐𝑐(𝜇𝜇1,𝜋𝜋)�(1 − 𝜙𝜙)𝜇𝜇1 + 𝜙𝜙𝑐𝑐(𝜇𝜇1,𝜋𝜋)𝜓𝜓�        
 �̇�𝑀 = (𝑅𝑅 − 𝜋𝜋)𝑀𝑀 − 𝑅𝑅𝑚𝑚(𝑐𝑐(𝜇𝜇1,𝜋𝜋),𝑅𝑅) − 𝜏𝜏. 

 
 

8 Barnett et. al (2020), Benhabib et al. (2001a,b), and Tsuzuki (2016) for details. In system M, subscripts 
are dropped to simplify notation.  
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The first equation denotes the time evolution of the Lagrange multiplier associated with 
the continuous time budget constraint (or shadow price of the real value of aggregate per 
capita government liabilities, real balances, and bonds) at instant of time t. The second 
equation is the well-known New Keynesian Phillips Curve. The third equation is the 
budget constraint at time t. Solutions of system M are admissible equilibrium paths, if the 
Transversality Condition (TVC) 
 

[ ]
0

( ) ( )
0 lim ( )

t

R s s ds

t
e a t

π− −

→∞
= ∫

          (3) 

is satisfied.9  
 

Following Benhabib et al. (2001a,b), we assume that the monetary authority adopts an 
inflation-targeting policy described by the interest rate feedback rule 

 
𝑅𝑅 = 𝑅𝑅(𝜋𝜋).              (4) 

 
The function 𝑅𝑅(𝜋𝜋) is continuous, strictly convex, and satisfies the following properties. 
 
Assumption 1. (Zero lower bound on nominal rates and Taylor principle). Monetary 
authorities set the nominal interest rate as an increasing function of the inflation rate, so 
that 
 

𝑅𝑅 = 𝑅𝑅(𝜋𝜋) > 0;      𝑅𝑅′(𝜋𝜋) > 0; 𝑅𝑅′′(𝜋𝜋) > 0.           (5) 
 

It is further assumed that there exists an inflation rate, 𝜋𝜋∗, at which the following steady-
state Fisher equation is satisfied: 

 
𝑅𝑅(𝜋𝜋∗) = �̄�𝑅.                        (6) 

 
Consider, moreover, the following definition (cf. Benhabib et al., 2001a,b). 
 
Definition 1. Monetary policy is said to be active, if 𝑅𝑅′(𝜋𝜋) > 1 and passive otherwise. 

 
Let us now turn our attention to fiscal policy. We assume that taxes are tuned according 
to fluctuations in total real government liabilities, a, so that 

 
𝜏𝜏 = 𝜏𝜏(𝑀𝑀).            (7) 

 
It is further assumed that there exists a tax rate corresponding to the steady-state state 
level of real government liabilities 
 

 
9 The TVC prevents households from engaging in Ponzi games. 
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𝜏𝜏(𝑀𝑀∗) = �̄�𝜏.          (8) 
 
As in Leeper (1991), Woodford (2003), and Kumhof et al. (2010), we provide a 
definition of the fiscal policy stance. Let us consider the responses of 𝑀𝑀 to its own 
variations 
 

𝜕𝜕�̇�𝑎
𝜕𝜕𝑎𝑎

= 𝑅𝑅(𝜋𝜋) − 𝜋𝜋 − 𝜏𝜏′(𝑀𝑀).        (9) 
 

The dynamic path of total government liabilities is locally stable or unstable, according to 
the magnitude of the marginal tax rate, 𝜏𝜏′(𝑀𝑀). We can provide the following definition. 
 
Definition 2. Fiscal policy is passive, if 𝜏𝜏′(𝑀𝑀∗) > 𝑅𝑅(𝜋𝜋∗) − 𝜋𝜋∗ and active otherwise. 
 
Notice that adopting a passive fiscal policy is tantamount to committing to fiscal 
solvency under all circumstances. 
 
2.1. Equilibrium properties and local stability analysis 
 
The long-run properties of system M are well understood. As discussed by Benhabib et 
al. (2001a,b), system M presents two steady states, one where inflation reaches the so-
called intended level 𝜋𝜋 = 𝜋𝜋∗ and one where inflation is higher or lower than the intended 
rate according to whether monetary policy is passive or active. In the latter case, the 
unintended steady-state may be labeled as a liquidity trap, in which the interest rate is 
zero, or near-zero, and inflation is below the target level.  For notational convenience, let 
us define 𝐏𝐏∗ ≡ (𝜇𝜇1∗,𝜋𝜋∗,𝑀𝑀∗) to be triplet vector of 𝜇𝜇1,𝜋𝜋, and 𝑀𝑀 such that �̇�𝜇1 = �̇�𝜋 = �̇�𝑀 = 0, 
and the inflation is at the intended rate 𝜋𝜋∗.  Simple algebra shows that: 

 

𝜇𝜇1∗ =
𝜙𝜙

𝜙𝜙 − 1
𝑐𝑐(𝜇𝜇1∗,𝜋𝜋∗)𝜓𝜓 

𝜋𝜋∗ = �̄�𝑅 − 𝜌𝜌 
𝑀𝑀∗ = �̄�𝑅𝑚𝑚(𝑐𝑐(𝜇𝜇1∗ ,𝜋𝜋∗),�̄�𝑅)+�̄�𝜏

𝜌𝜌
. 

 
The local stability properties of 𝐏𝐏∗ are fully described in the literature (Benhabib et al., 
2001a; Tsuzuki, 2016). We thereby have the following: 

 
1. When monetary policy is passive, an active fiscal policy always induces uniqueness 

of the equilibrium. Conversely, a policy commitment to preserve fiscal solvency 
under all circumstances leads to an indeterminate equilibrium.  
 

2. When monetary policy is active, the stability properties are more mixed. Specifically: 
 
2a. if money and consumption in the utility function are Edgeworth complements 
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(𝑢𝑢𝑐𝑐𝑚𝑚∗ > 0), a passive fiscal rule still induces uniqueness of the equilibrium. 
Conversely, no equilibria exist in the neighborhood of the steady state in the case of 
an active fiscal policy; 
 

2b. if, conversely, money and consumption in the utility function are Edgeworth 
substitutes (𝑢𝑢𝑐𝑐𝑚𝑚∗ < 0), there exists a critical threshold,  
 

𝑢𝑢𝑐𝑐𝑚𝑚∗ = 𝑢𝑢�𝑐𝑐𝑚𝑚∗ ,       (10) 
 

such that if |𝑢𝑢𝑐𝑐𝑚𝑚∗ | < |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |, then the same stability properties as in (2a) arise. 
Conversely, when |𝑢𝑢𝑐𝑐𝑚𝑚∗ | > |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |, full stability of the intended steady state is 
established when fiscal rule is passive, while indeterminacy of the equilibrium 
prevails when fiscal policy is active.  

 
The development of the main points of the paper requires the intended steady state of 
system M to be a saddle-focus equilibrium. Both cases (2.a) and (2.b) are therefore 
possible candidates. However, to limit the number of cases, we focus on the (2.b) case. 
We therefore assume the following. 

 
Assumption 2. Money and consumption are Edgeworth substitutes, i.e. 𝑢𝑢𝑐𝑐𝑚𝑚∗ < 0.10 
 
Therefore, by limiting the discussion to the case of an active monetary policy under 
Assumption 2, the following statement applies (see Appendix 1).  
 
Proposition 1: Recall Assumption 2 and consider the case of an active monetary policy. 
Then two stability cases can occur according to the magnitude of |𝑢𝑢𝑐𝑐𝑚𝑚∗ |. Consider, first, 
the case, |𝑢𝑢𝑐𝑐𝑚𝑚∗ | < |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |. If fiscal policy is also active, 𝐏𝐏∗ is a repellor, and there are no 
equilibrium paths converging to the steady state. If fiscal policy is passive, 𝐏𝐏∗ is a saddle 
of index 2, and the equilibrium is locally unique. Consider now the case,  |𝑢𝑢𝑐𝑐𝑚𝑚∗ | > |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |. 
If fiscal policy is passive, 𝐏𝐏∗ is an attractor, whereas if fiscal policy is active, there is a 
continuum of equilibria that converge to the steady-state (local indeterminacy). 
 

 
10 The economic implications of a negative 𝑢𝑢𝑐𝑐𝑚𝑚 are well represented in Walsh (2010) for the general case 
of the utility function with non-zero interdependences between leisure, money, and consumption. 
Specifically, if 𝑢𝑢𝑐𝑐𝑚𝑚  < 0, a monetary injection that raises expected inflation will increase consumption, labor 
supply, and output, a situation described as an “asset substitution model” by Wang and Yip (1992). Since 
Edgeworth substitutability is a cardinal property, it is not econometrically testable.  But closely related 
Morishima substitutability is ordinal and has been tested by Serletis and Xu (2019).  They found (see their 
figure 11, p. 21) that consumer goods have consistently been net Morishima substitutes for monetary 
services throughout their sample period, beginning in 1967, but gross complements because of positive 
income effects. Since income effects are not relevant to Edgeworth substitutability, the finding of net 
Morishima substitutability is more relevant to our assumption. Consumer goods might be both net and 
gross substitutes for monetary services, if monetary services are augmented to include credit card services, 
as available with the Divisia monetary aggregates supplied by the Center for Financial Stability. Increased 
consumption is associated with increased use of credit card services. 
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3. Shilnikov chaos 
 

Let us now focus on the case, |𝑢𝑢𝑐𝑐𝑚𝑚∗ | < |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |. Consider a scenario where the policymaker 
runs an active fiscal-monetary regime. Then, by Proposition 1, the policy maker may be 
pressured to increase the marginal tax rate above the real interest rate. In this Section, we 
show that following this policy prescription may induce another class of difficulties. 

 
3.1. An explicit variant of the model 

 
Before proceeding with our analysis, we need to provide specific forms for the implicit 
functions presented in system M. Following the standard literature, we first assume that 
the utility function has constant relative risk aversion in a composite good, which in turn 
is produced with consumption goods and real balances via a CES aggregator as follows: 
 

𝑢𝑢(𝑐𝑐,𝑚𝑚) = �𝜅𝜅𝑐𝑐1−𝛽𝛽+(1−𝜅𝜅)𝑚𝑚1−𝛽𝛽�
1−𝛷𝛷
1−𝛽𝛽

1−𝛷𝛷
,     (11) 

 
where 0 < 𝜅𝜅 < 1 is a share parameter, 𝛽𝛽 measures the intra-temporal elasticity of 
substitution between the two arguments, 𝑐𝑐 and 𝑚𝑚, and 𝛷𝛷 > 0 is the inverse of the 
intertemporal elasticity of substitution. Since we have, for now, assumed that 
consumption and real money balances are Edgeworth substitutes, the following 
parametric restriction is implied. 
 
Remark 1. 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆(𝑢𝑢𝑐𝑐𝑚𝑚∗ ) = 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆(𝛽𝛽 − 𝛷𝛷) . Therefore, Assumption 2 requires 𝛽𝛽 < 𝛷𝛷. 
 
Moreover, it is standard to assume that the disutility of labor is described by: 
 

𝑓𝑓(𝑙𝑙) = 𝑙𝑙1+𝜓𝜓

1+𝜓𝜓
,         (12) 

 
where 𝜓𝜓 > 0 measures the preference weight of leisure in utility. Furthermore, following 
Carlstrom and Fuerst (2003), we also assume a production function linear in labor, 
 

𝑦𝑦(𝑙𝑙) = 𝐴𝐴𝑙𝑙,       (13) 
 
where A denotes the productivity level in the composite goods production. Without loss 
of generality, we set 𝐴𝐴 = 1. 
 
Additionally, we use the specification of the Taylor principle in Benhabib et al. 
(2001a,b), and assume that monetary authorities observe the inflation rate and conduct 
market operations to ensure that 

 
𝑅𝑅(𝜋𝜋) = �̄�𝑅𝑒𝑒(𝐶𝐶/�̄�𝑅)(𝜋𝜋−𝜋𝜋∗),       (14) 
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where C is a positive constant. Notice that, from the above specifications given in (6), our 
chosen functional form in (16) implies that 
 

𝑅𝑅(𝜋𝜋∗) = �̄�𝑅;     𝑅𝑅′(𝜋𝜋∗) = 𝐶𝐶.       (15) 
 
so that C can be interpreted as a Taylor coefficient measuring the intensity of the reaction 
to inflation targeting. 
 
Finally, to satisfy the Transversality Condition defined in (3), we need to assume that the 
economy follows a Ricardian regime, according to the fiscal rule 
 

𝜏𝜏(𝑀𝑀) = 𝛼𝛼𝑀𝑀 − 𝑅𝑅𝑚𝑚,       (16) 
 
where the marginal tax rate 𝛼𝛼 ≡ 𝜏𝜏′(𝑀𝑀) ∈ (0,1). 
 
 
3.2. Shilnikov chaos in system M 

 
In this section, we sketch the whole set of conditions that are necessary to prove the 
existence of a chaotic regime in the equilibrium dynamics described by system M. 
Consider the following generalized version of the Shilnikov (1965) theorem (Chen and 
Zhou (2011)).  
 
Theorem 1. Consider a system of ordinary differential equations 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑,𝛼𝛼),   𝑑𝑑 ∈ ℝ3,   𝛼𝛼 ∈ ℝ1, 
 
with f sufficiently smooth. Assume f has a hyperbolic saddle-focus equilibrium point, 𝑑𝑑0 =
0, at 𝛼𝛼 = 0, implying that eigenvalues of the Jacobian, 𝐽𝐽 = 𝐷𝐷𝑓𝑓,  are of the form 𝛾𝛾 and  
𝜒𝜒 ± 𝜉𝜉𝑖𝑖, where 𝛾𝛾, 𝜒𝜒, and 𝜉𝜉 are real constants with 𝛾𝛾𝜒𝜒 < 0 . Assume that the following 
conditions also hold: 
 
(𝐻𝐻. 1)  The saddle quantity,  𝜎𝜎 ≡ |𝛾𝛾| − |𝜒𝜒| > 0;  
(𝐻𝐻. 2)  There exists a homoclinic orbit, 𝛤𝛤0, based at  𝑑𝑑0. 
 
Then the following results hold: 
 
(1)  The Shilnikov map, defined in the neighborhood of 𝛤𝛤0 possesses an infinite number 
of Smale horseshoes in its discrete dynamics;   
(2)  For any sufficiently small 𝐶𝐶1-perturbation, 𝑆𝑆, of 𝑓𝑓, the perturbed system has at least 
a finite number of Smale horseshoes in the discrete dynamics of the Shilnikov map, 
defined in the neighborhood of 𝛤𝛤0;   
(3)  Both the original and the perturbed system exhibit horseshoes chaos. 
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The application of Theorem 1 to system M requires a set of restrictions on the parameter 
space of the model, such that the system possesses a hyperbolic saddle-focus equilibrium 
point, with a positive saddle quantity, and there exists a homoclinic orbit connecting the 
saddle-focus to itself.  

 
 
3.3. Shilnikov attractor with a UK calibration of the model 
 
We now show that, under specific circumstances, the calibration of the economy with UK 
data can well determine the Shilnikov scenario. We base the calibration of our model on 
the highly regarded Liu and Mumtaz (2011) estimation of a New Keynesian DSGE 
model for the UK, 1970Q1 to 2009Q1, with Markov switching. The paper uses Bayesian 
methods to estimate a baseline rational expectations model with no regime switching (full 
sample constant parameters), and four further versions of the model, in which the British 
economy is assumed to undergo some kind of structural changes across two regimes. The 
most interesting case for us is the model where deep and policy parameters are estimated 
independently in each regime (model M5). This type of estimation proxies a “sample 
split” or “breakpoint” type approach to modeling structural change (see also Lubik and 
Schorfheide (2007)) which allows us to study the onset of the Shilnikov phenomenon 
under different parameterizations and policy formulations. Barnett at al. (2020) similarly 
found Shilnikov chaos in basically the same standard NK model, but with US data and 
the version of the model without money.  Their calibration  of the US model is based on 
Lubik and Schorfheide (2007). 

 
In this regard, it is interesting to realize with UK data that posterior estimates of the 
Taylor coefficient C for the case of no regime switching lead to a point value of 1.56, 
which is very close to the slope suggested by Taylor (1993). However, as soon as we 
allow for a policy rule switch, the Taylor coefficient C statistically bifurcates across the 
two regimes. One regime (prevailing in the mid-1970s) is associated with episodes of 
high inflation and has a posterior for the Taylor coefficient equal to 1.36. The other 
regime, which is characterized by a move towards a more active monetary policy, has a C 
coefficient equal to 2.71. In connection with these data, we anticipate that the Shilnikov 
phenomenon occurs for a narrow region of the parameter space in the case of the baseline 
rational expectations model with no regime switching, but does not occur at all in the 
high inflation regime. On the contrary, it comes up easily in the case of the low-inflation 
regime. It seems therefore that the tightening of the policy rule via the Taylor coefficient 
speeds up the emergence of the unexpected phenomena of chaotic dynamics. 

 
Before starting the discussion of the examples, consider that Liu and Mumtaz’ paper only 
provides direct evidence for the subset (𝜓𝜓, 𝜌𝜌,𝛷𝛷) of the deep parameters. However, 
considering the connection formula between the reduced form implications for the 
linearized Phillips curve of Rotemberg and Calvo models of costly and sticky price 
adjustments (cfr. Benhabib et al., 2014), we have 
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𝜂𝜂 = (𝜙𝜙 − 1) 𝛿𝛿ℎ

�1−𝛿𝛿ℎ��1−𝐹𝐹𝛿𝛿ℎ�
,     (17)  

 
where 𝛿𝛿ℎ is the fraction of firms not able to change their price during the quarter and F is 
the discount factor. We can also proceed by calibrating 𝜂𝜂, provided that some prior 
information on 𝜙𝜙 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚_𝑢𝑢𝑝𝑝

𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚_𝑢𝑢𝑝𝑝−1
 is known.   

 
Unfortunately, the Liu and Mumtaz (2011) paper is of no help in calibrating the (𝛽𝛽, 𝜅𝜅) 
parameters of the utility function. Airaudo and Zanna (2013), in an attempt to simulate 
cyclical and/or chaotic solutions in a DSGE NK model for the UK economy, set 𝜅𝜅 ≅
0.97. Since 𝜏𝜏 cancels out in the computation of the eigenvalues, we are only left with the 
𝛽𝛽 and 𝜙𝜙 elasticities as free parameters, along with the fiscal policy coefficient 𝜏𝜏′.  

 
The heavy parameterization of the model and the frequent numerical anomalies prevent 
us from deriving the parameter space three-dimensional (𝛽𝛽,𝛷𝛷, 𝜏𝜏′) critical surface, beyond 
which the Shilnikov pre-conditions are satisfied. Therefore, we resort to some parametric 
examples. 
 
Example 1. (Constant parameters with no regime switching). Let us first fill the vector of 
the observables (�̄�𝑅,𝜋𝜋∗) for the full sample (1970Q1-2009Q1).  Drawing from World 
Bank databases, we use the averages of the short-run interest rate and the GDP deflator 
to obtain quarterly (�̄�𝑅,𝜋𝜋∗) ≅ (0.021,0.017). Therefore, 𝑟𝑟 = �̄�𝑅 − 𝜋𝜋∗ ≅ 0.004 is the real 
interest rate. Following Liu and Mumtaz (2011), we set (𝜓𝜓,𝜌𝜌,𝛷𝛷) = (4.4,0.01,1.83). 
Moreover, using a baseline estimation of a 5% mark-up as in Benhabib et al., (2001) and 
in Benhabib et al. (2014), we obtain 𝜙𝜙 = 21. Now, recalling the point estimate of 𝛿𝛿ℎ =
0.55, we can also set 𝜂𝜂 ≅ 53.67 (see equation 17) after fixing F at the standard value of 
0.99. In order to comply with Edgeworth substitutability (cf. Assumption 2 and Remark 
1), the parameter 𝛽𝛽 is initially fixed to 1.825, a value below (but very close to) the value 
of 𝛷𝛷. Solving for the characteristic equation (A.2 in Appendix 1) gives: 
 

𝜆𝜆1 = 0.004 − 𝜏𝜏′, 
𝜆𝜆2,3 ≅ 0.005 − 0.00254𝐶𝐶 ± 0.00254�(𝐶𝐶 − 1.0000058)(𝐶𝐶 − 160770). 

 
Therefore, in accordance with Proposition 1, provided that 𝐶𝐶 < 0.005

0.00254
= 1.968504, an 

active monetary-fiscal regime implies one negative eigenvalue and two eigenvalues with 
positive real parts.11 Then, the saddle quantity 𝜎𝜎 is equal to: 
 

𝜎𝜎 ≡ 𝜏𝜏′ − 0.009 + 0.00254𝐶𝐶.   
     

 
11 This numerical requirement on C corresponds to the condition |𝑢𝑢𝑐𝑐𝑚𝑚∗ | < |𝑢𝑢�𝑐𝑐𝑚𝑚∗ | in Proposition 1. 
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Recall now that 𝐶𝐶 is estimated equal to 1.56 in this sample. Thus, if we set 𝜏𝜏′ ≳ 0.00646, 
the saddle quantity is positive and pre-conditions for the existence of Shilnikov chaos are 
satisfied. To test the robustness of this result, we have checked the permanence of the 
Shilnikov pre-conditions for values of 𝛽𝛽 and 𝜙𝜙 progressively drifting away from the 
chosen baseline. Specifically, after setting 𝜏𝜏′ = 0.02, we have studied the characteristics 
of the eigenvalues of the linearized matrix and the sign of 𝜎𝜎 for a grid of values for the 
mark-up and 𝛽𝛽 parameter. Results are in Table 1. What appears clear is that, given the 
assumption of Edgeworth substitutability and our baseline set of parameters, the pre-
conditions of the Shilnikov phenomenon are only satisfied within a very narrow region of 
the domain of the 𝛽𝛽 parameter. This region widens for higher degrees of price stickiness, 
although remaining small. Lowering values of 𝛽𝛽 leads to full stability, initially through 
damped oscillations, and then along qualitatively monotone paths.  
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Table 1. Stability properties of the steady state and Shilnikov pre-conditions for varying 
mark-up and 𝛽𝛽 elasticity. No switching regime. 
 

Mark-up 
Beta        

1.01 1.05 1.1 1.15 1.2 1.3 

1.825 Shilnikov 
𝜎𝜎 =0.0162 

Shilnikov 
𝜎𝜎 =0.0170 

Shilnikov 
𝜎𝜎 =0.0178 

Shilnikov 
𝜎𝜎 =0.0184 

Shilnikov 
𝜎𝜎 =0.0189 

Shilnikov 
𝜎𝜎 =0.0195 

1.82 
Stability 

+ 
CE 

Stability 
+ 

CE 

Shilnikov 
𝜎𝜎 =0.0146 

Shilnikov 
𝜎𝜎 =0.0158 

Shilnikov 
𝜎𝜎 =0.0167 

Shilnikov 
𝜎𝜎 =0.0179 

1.80 
Stability 

+ 
CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Shilnikov 
𝜎𝜎 =0.0065 

Shilnikov 
𝜎𝜎 =0.0117 

1.78 
Stability 

+ 
CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

1.50 
Stability 

+ 
CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

1.10 
Stability 

+ 
CE 

Stability 
+ 

CE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

0.99 
Stability 

+ 
RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

0.50 
Stability 

+ 
RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 

Stability 
+ 

RE 
 
Legend:  

• Region with green characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that Shilnikov pre-conditions in 
Theorem 1 are satisfied.  𝜎𝜎 is the saddle quantity. 

• Region with blue characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated with 
system M has three eigenvalues with negative real parts. CE stands for Complex Eigenvalues. 

• Region with red characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated with 
system M has three eigenvalues with negative real parts. RE stands for Real Eigenvalues. 
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Example 2. (Low-inflation regime with high Taylor coefficient). To fill the vector of 
observables, (�̄�𝑅,𝜋𝜋∗), we now exclude, for the computations from the World Bank 
databases, the episodes of two-digit high inflation from the middle of the 70’s and 
beginning of the 80’s. We obtain (�̄�𝑅,𝜋𝜋∗) ≅ (0.019,0.011). Therefore, 𝑟𝑟 = �̄�𝑅 − 𝜋𝜋∗ ≅
0.008 is the average quarterly real interest rate. Following Liu and Mumtaz’s (2011) 
estimations relative to Regime 1 in model M5, we set (𝜓𝜓,𝜌𝜌,𝛷𝛷) = (1.6,0.01,1.76). 
Moreover, using a baseline estimation of a 5% mark-up as in Example 1, we obtain 𝜙𝜙 =
21. Now, since 𝛿𝛿ℎ = 0.45 in this sample, we can also set 𝜂𝜂 ≅ 29.51 after fixing F to the 
standard value of 0.99. In order to comply with Edgeworth substitutability (cf. 
Assumption 2 and Remark 1), the parameter 𝛽𝛽 is initially fixed to 1.7, which is close, but 
smaller than 𝛷𝛷, the inverse of the temporal elasticity of substitution. Solving for the 
characteristic equation (A.2 in Appendix 1) gives: 
 
𝜆𝜆1 = 0.00756 − 𝜏𝜏′, 
𝜆𝜆2,3 ≅ 0.005 − 1.9 × 10−8𝐶𝐶 ± 1.9 × 10−8�(𝐶𝐶 − 1.009247)(𝐶𝐶 − 7.429411.9 × 1010). 
 
Therefore, in accordance with Proposition 1, an active monetary-fiscal regime implies 
three eigenvalues with positive real parts for 𝐶𝐶 < 0.005

1.9×10−8
=263157.8947. Conversely, a 

fiscal policy switch to a passive rule implies one negative eigenvalue and two eigenvalues 
with positive real parts. Consider now the case of a passive fiscal policy. Then, the saddle 
quantity 𝜎𝜎 is equal to: 
 

𝜎𝜎 ≡ 𝜏𝜏′ − 0.00256 + 1.9 × 10−8𝐶𝐶.   
     

Recall now that 𝐶𝐶 is estimated equal to 2.27 for the low inflation sample. Thus, if we set 
𝜏𝜏′ ≳ 0.0025, the saddle quantity is positive and pre-conditions for the existence of 
Shilnikov chaos are satisfied. We now check the permanence of the Shilnikov pre-
conditions for values of 𝛽𝛽 and 𝜙𝜙 progressively drifting away from the chosen baseline, 
just as we did in Example 1. After setting 𝜏𝜏′ = 0.02, and solving the characteristic 
equation, we obtain the results in Table 2. Given the assumption of Edgeworth 
substitutability, the pre-conditions of the Shilnikov phenomenon are now satisfied in a 
very large region of the domain of the two control parameters, with the saddle quantity 
nearly flat with regard to both control parameters. Only one type of structural change of 
the eigenvalues is observed: a sign-preserving transition of the eigenvalues from complex 
to real, for a high enough mark-up index.  
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Table 2. Stability properties of the steady state and Shilnikov pre-conditions for varying 
mark-up and 𝛽𝛽 elasticity. Low-inflation regime.  
 

Mark-up 
Beta        

1.01 1.05 1.1 1.15 1.2 1.3 

1.75 Shilnikov 
𝜎𝜎 ≅0.017435 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017441 

Shilnikov 
𝜎𝜎 ≅0.017442 

Shilnikov 
𝜎𝜎 ≅0.017443 

Uniq. 
+ 

RE 

1.70 Shilnikov 
𝜎𝜎 ≅0.017416 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017440 

Shilnikov 
𝜎𝜎 ≅0.017441 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

1.65 Shilnikov 
𝜎𝜎 ≅0.017396 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017439 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

1.60 Shilnikov 
𝜎𝜎 ≅0.017376 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017439 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

1.50 Shilnikov 
𝜎𝜎 ≅0.017341 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017439 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

1.10 Shilnikov 
𝜎𝜎 ≅0.017254 

Shilnikov 
𝜎𝜎 ≅0.017439 

Shilnikov 
𝜎𝜎 ≅0.017438 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

0.50 Shilnikov 
𝜎𝜎 ≅0.017226 

Shilnikov 
𝜎𝜎 ≅0.017439 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 

Uniq. 
+ 

RE 
 
Legend:  

• Region with green characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated with 
system M: i) has one negative and two complex conjugate eigenvalues with positive real parts; ii) Shilnikov 
pre-conditions in Theorem 1 are satisfied. 𝜎𝜎 is the saddle quantity. 

• Region with dark blue characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated 
with system M has one eigenvalue with negative real part and two eigenvalues with positive real parts. RE 
stands for Real Eigenvalues. 
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Example 3. (High-inflation regime, low Taylor coefficient). To fill the vector of the 
observables, (�̄�𝑅,𝜋𝜋∗), we only consider the episodes of double-digits high inflation for the 
UK. We obtain (�̄�𝑅,𝜋𝜋∗) ≅ (0.0311,0.0395). Therefore, 𝑟𝑟 = �̄�𝑅 − 𝜋𝜋∗ ≅ −0.009 is the 
average quarterly real interest rate. Following the Liu and Mumtaz’s (2011) estimations 
relative to their Regime 2 in model M5, we set (𝜓𝜓,𝜌𝜌,𝛷𝛷) = (1.11,0.01,2.23). Moreover, 
as in Example 1, using a baseline estimation of a 5% mark-up, we obtain 𝜙𝜙 = 21. Now, 
since 𝛿𝛿ℎ = 0.45, we can also set 𝜂𝜂 ≅ 29.51 after setting F to the standard value of 0.99. 
To comply with Edgeworth substitutability (cf. Assumption 2 and Remark 1), the 
parameter 𝛽𝛽 is initially fixed to 2.2, which is close, but smaller than 𝛷𝛷, the value of the 
inverse of the temporal elasticity of substitution estimated for this regime. Solving for the 
characteristic equation (A.2 in Appendix 1) gives 
 
𝜆𝜆1 = −0.00905 − 𝜏𝜏′, 
𝜆𝜆2,3 ≅ 0.005 − 0.00556𝐶𝐶 ±  0.00556�(𝐶𝐶 −  1.000000227)(𝐶𝐶 −  44912.09494) 

 
Since in this case |𝑢𝑢𝑐𝑐𝑚𝑚∗ | ≅ 0.0111 > |𝑢𝑢�𝑐𝑐𝑚𝑚∗ | = 0.001, in accordance with Proposition 1, 
an active monetary-fiscal regime12 implies three eigenvalues with negative real parts for 
𝐶𝐶 > 1.0000002273. Conversely, a fiscal policy switch to a passive rule implies a 
continuum of equilibria that converge to the steady-state (local indeterminacy). Consider 
now the case of a passive fiscal policy. Then, the saddle quantity 𝜎𝜎 is equal to 
 

𝜎𝜎 ≡ 𝜏𝜏′ − 0.00405 + 0.0556𝐶𝐶   
 
Recall now that 𝐶𝐶 is estimated equal to 1.35 for the high inflation sample. Thus, if we set 
𝜏𝜏′ ≳ 0.0071, the saddle quantity is positive, and pre-conditions for the existence of 
Shilnikov chaos are satisfied. Now, to verify that Shilnikov pre-conditions can never be 
detected in this sample, we allow 𝛽𝛽 and 𝜙𝜙 to progressively drift away from the chosen 
baseline. After setting 𝜏𝜏′ = 0.02 and solving the characteristic equation, we obtain the 
results in Table 3. For the high inflation sample, it is now clear that the pre-conditions 
for the onset of the Shilnikov phenomenon are never satisfied. Only one type of 
topological change of the eigenvalues is observed, namely a transition towards the case 
of three negative real eigenvalues, for a low enough 𝛽𝛽 elasticity.  
 

 
12 Notice that, for this sample, the real interest rate is negative. Thus, an active fiscal policy might consider 
a negative marginal tax rate.  
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Table 3.  Stability properties of the steady state and Shilnikov pre-conditions for varying 
mark-up and 𝛽𝛽 elasticity. High-inflation regime 

Mark-up 
Beta        

1.01 1.05 1.10 1.15 1.20 1.30 

2.20 Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 
2.10 Stability 

+ 
CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 

Stability 
+ 

CE 
2.00 Stability 

+ 
CE 

Stability 
+ 

CE 
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Legenda:  

• Region with blue characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated with 
system M has three eigenvalues with negative real parts. CE stands for Complex Eigenvalues.  

• Region with red characters: combinations of the (𝛽𝛽,𝜙𝜙) parameters such that the Jacobian associated with 
system M has three eigenvalues with negative real parts. RE stands for Real Eigenvalues. 
 
 

The examples discussed above prove the following statement. 
 

Lemma 1. (Fulfillment of pre-condition H.1 in Theorem 1). There are regions of the 
parameter space at which 𝐏𝐏∗ is a saddle-focus with 𝜎𝜎 > 0. 
 
We draw some interesting lessons from these examples. Using the UK data, it appears 
clear that the width of the region of the parameter space at which monetary activism may 
induce the birth of the chaotic attractor depends on the intensity of the Taylor coefficient. 
Low C coefficients (typically associated with high inflation periods in our sample) do not 
seem to introduce the perils of chaotic solutions to Decision P. Conversely, when the 
fight against inflation becomes tougher, then the risk of un-intended dynamics becomes 
substantial. Notice that the phenomenon is twice insidious, since no alert comes from a 
local analysis perspective, which continues to detect the desirable property of uniqueness 
of the equilibrium.  
 
We now show that system M supports the existence of a family of homoclinic orbits 
doubly asymptotic to a saddle-focus in ℝ3. (pre-condition H.2 in Theorem 1). Bella, 
Mattana, and Venturi (2017) describe in detail all necessary steps. We must first put 
system M into normal form by using the eigen-basis. We thereby obtain the following 
(truncated) system  
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�
�̇�𝑤1
�̇�𝑤2
�̇�𝑤3

� = �
𝜒𝜒 −𝜉𝜉 0
𝜉𝜉 𝜒𝜒 0
0 0 𝛾𝛾

� �
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

� +                           

+�
𝐹𝐹1𝑎𝑎𝑤𝑤1𝑤𝑤2  + 𝐹𝐹1𝑏𝑏𝑤𝑤1𝑤𝑤3  + 𝐹𝐹1𝑐𝑐𝑤𝑤2𝑤𝑤3  + 𝐹𝐹1𝑑𝑑𝑤𝑤12 + 𝐹𝐹1𝑒𝑒𝑤𝑤2

2 + 𝐹𝐹1𝑓𝑓 𝑤𝑤3
2

𝐹𝐹2𝑎𝑎𝑤𝑤1𝑤𝑤2  + 𝐹𝐹2𝑏𝑏𝑤𝑤1𝑤𝑤3  + 𝐹𝐹2𝑐𝑐𝑤𝑤2𝑤𝑤3  + 𝐹𝐹2𝑑𝑑𝑤𝑤12 + 𝐹𝐹2𝑒𝑒𝑤𝑤2
2 + 𝐹𝐹2𝑓𝑓 𝑤𝑤3

2

𝐹𝐹3𝑎𝑎𝑤𝑤1𝑤𝑤2  + 𝐹𝐹3𝑏𝑏𝑤𝑤1𝑤𝑤3  + 𝐹𝐹3𝑐𝑐𝑤𝑤2𝑤𝑤3  + 𝐹𝐹3𝑑𝑑𝑤𝑤12 + 𝐹𝐹3𝑒𝑒𝑤𝑤2
2 + 𝐹𝐹3𝑓𝑓 𝑤𝑤3

2
� , (18) 

 
where (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)𝑇𝑇 is the vector of transformed coordinates, and where the 𝐹𝐹𝑖𝑖,𝑗𝑗 
coefficients, with  𝑖𝑖 = 1,2,3 and 𝑗𝑗 = 𝑀𝑀, 𝑏𝑏. . .𝑓𝑓, are combinations of the original parameters 
of the model, also depending on the values of three free constants, 𝜑𝜑𝑖𝑖 , 𝑖𝑖 = 1,2,3, arising 
in the computation of the eigen-basis.  

 
Once the normal form (18) is obtained, the method of undetermined coefficients (Shang 
and Han (2005)) can be applied to derive a polynomial approximation of the analytical 
expressions of both the two-dimensional unstable manifolds associated with 𝜆𝜆2 and 𝜆𝜆3, 
and of the one-dimensional stable manifold associated with 𝜆𝜆1. Then, with given 
parameters, conditions for the existence of the homoclinic loop, doubly asymptotic to the 
saddle-focus equilibrium point, rely on the existence of a triplet of free constants 
(𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3 satisfying the split function, as in Barnett et al. (2020). 

 
  𝛴𝛴 = 𝛯𝛯 + 𝐹𝐹3𝑓𝑓𝛯𝛯2

𝛾𝛾
+ (2𝜒𝜒 − 𝛾𝛾) 𝐹𝐹3𝑎𝑎𝛹𝛹𝛹𝛹+𝐹𝐹3𝑑𝑑𝛹𝛹

2+𝐹𝐹3𝑒𝑒𝛹𝛹2

(2𝜒𝜒−𝛾𝛾)2+4𝜉𝜉2
= 0,      (19) 

 
where 𝛾𝛾 = 𝜆𝜆1, 𝜒𝜒 = 𝑅𝑅𝑒𝑒( 𝜆𝜆2,3), and 𝜉𝜉 = 𝐼𝐼𝑚𝑚( 𝜆𝜆2,3). The reason why the three constants 
(Ξ,Ψ,Ω) are bound to belong to the cube (0,1)3 is strictly related to the geometry of the 
stable and unstable manifolds, which intersect near the origin (in the transformed 
eigenspace) and form the homoclinic loop.13 

 
To verify whether the split function (19) can be satisfied within the NK model, we retake 
the parameters in the two Examples 1 and 2 above and compute all necessary 
coefficients. We have the following. 

 
13 Cf. Kuznetsov (1998, p. 198) for the geometrical interpretation of the split function. 
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Example 4. Set (𝜂𝜂, 𝜅𝜅,𝜓𝜓,𝜌𝜌,𝛷𝛷) ≅ (53.67,0.97,4.4,0.01,1.83) and (�̄�𝑅,𝜋𝜋∗) ≅
(0.021,0.017) as in Example 1. From Table 1, we also choose 𝛽𝛽 = 1.825 and a mark-up 
level of 1.05, implying 𝜙𝜙 = 21. Then, recalling that 𝐶𝐶 = 1.56, we have that if 𝜏𝜏′ > �̃�𝜏′ ≡
0.005038, 𝐏𝐏∗ is a saddle-focus with positive saddle quantity. Set therefore 𝜏𝜏′ = 0.02 as 
in Example 1. Then, there exists a surface of admissible combinations of (𝛯𝛯,𝛹𝛹,𝛺𝛺) 
belonging to the cube (0,1)3 such that the split function is satisfied (cf. Figure 1). 
 
Figure 1. Coordinates of the (𝛯𝛯,𝛹𝛹,𝛺𝛺) constants satisfying the split function. 

 
We now drift away from the baseline 𝜏𝜏′ = 0.02 and determine, given all other 
parameters, the interval of the marginal tax rate for which there emerges a solution of 
the split function for (𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3. More precisely, we iteratively increase 𝜏𝜏′ above 
the critical value �̃�𝜏′ ≡ 0.005038 with a grid of 0.001 and keep track of the values such 
that there exists a solution for 𝛴𝛴 = 0 with (𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3. The procedure reveals that 
there is a wide interval 𝐼𝐼𝜏𝜏′ ≅ (0.005038,0.301) such that, for all 𝜏𝜏′ ∈ 𝐼𝐼𝜏𝜏′, a homoclinic 
loop doubly asymptotic to the saddle-focus equilibrium point is established. 
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Example 5. Set (𝜂𝜂, 𝜅𝜅,𝜓𝜓,𝜌𝜌,𝛷𝛷) ≅ (29.51,0.97,1.11,0.01,2.23) and (�̄�𝑅,𝜋𝜋∗) ≅
(0.019,0.011) as in Example 2. From Table 2, we also choose 𝛽𝛽 = 1.75 and a mark-up 
level of 1.05, implying 𝜙𝜙 = 21. Then, recalling that in this sample 𝐶𝐶 = 2.27, we have 
that if 𝜏𝜏′ > �̃�𝜏′ ≡ 0.00255, 𝐏𝐏∗ is a saddle-focus with positive saddle quantity. Set now 
𝜏𝜏′ = 0.02 as in Example 2. Then, there exists a surface of combinations of (𝛯𝛯,𝛹𝛹,𝛺𝛺) 
belonging to the cube (0,1)3 such that the split function is satisfied (cf. Figure 2). 
 
Figure 2. Coordinates of the (𝛯𝛯,𝛹𝛹,𝛺𝛺) constants satisfying the split function.  

 
We now drift away from the baseline 𝜏𝜏′ = 0.02 and determine, given all other 
parameters, the interval of the marginal tax rate for which there emerges a solution of 
the split function for (𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3. More precisely, we iteratively increase 𝜏𝜏′ above 
�̃�𝜏′ ≡ 0.0025 with a grid of 0.001 and keep track of the values such that there exists a 
solution for 𝛴𝛴 = 0 with (𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3. The procedure reveals that for all values of 
𝜏𝜏′ > 0.07, there exists a homoclinic loop doubly asymptotic to the saddle-focus 
equilibrium point. 

 
The following statement is therefore implied. 

 
Lemma 2. (Fulfillment of pre-condition H.2 in Theorem 1). There exists a sub-region of 
the parameter space such that H.1 and H.2 in Theorem 1 are simultaneously satisfied. 

 
3.4. Existence and properties of the chaotic attractor 

 
We can now go to the main result in this section. Let us take 𝜏𝜏′ as a bifurcation 
parameter. Define the difference  𝜈𝜈 = 𝜏𝜏′ − �̄�𝜏′, where  �̄�𝜏′ belongs to the set of critical 
values such that an admissible solution of the split function exists for (𝛯𝛯,𝛹𝛹,𝛺𝛺) ∈ (0,1)3. 
Let 𝑉𝑉 ⊂ ℝ be a sufficiently small open neighborhood of 0. We have the following result. 
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Proposition 2. (Existence of a Shilnikov chaotic attractor) Assume that the parametric 
conditions in Lemmas 1 and 2 are satisfied. Let 𝜈𝜈 ∈ 𝑉𝑉. Then, given a triplet of initial 
conditions (𝑤𝑤�1(0),𝑤𝑤�2 (0),𝑤𝑤�3(0)), sufficiently close to the origin, system (18) admits 
chaotic, perfect-foresight equilibrium solution. By topological equivalence, the result 
also applies to system M. 
 
Proof. Let Lemmas 1 and 2 apply. Then, Theorem 1 guarantees that there is a non-empty 
set of initial conditions giving rise to orbits of system (18) that will stay forever in the 
neighborhood of the origin. Since, by construction, these trajectories are also valid 
solution trajectories for the original system M, the statement in Proposition 2 is 
confirmed. ∎ 

 
Consider now the following Example 6. To ease the numerical computations, we follow 
Freire et al. (2002), and construct the hypernormal (truncated) form of the vector field M. 
Then we derive the following versal deformation 
 

  �
𝑤𝑤�̇1
𝑤𝑤�̇2
𝑤𝑤�̇3

� = �
0 1 0
0 0 1
𝜀𝜀1 𝜀𝜀2 𝜀𝜀3

� �
𝑤𝑤�1
𝑤𝑤�2
𝑤𝑤�3
��

0
0

𝑑𝑑𝑤𝑤�12 + 𝑘𝑘𝑤𝑤�13
�, (20)  

 
where (𝑤𝑤�1,𝑤𝑤�2,𝑤𝑤�3) is the new set of coordinates arising from the near-identity 
transformation, 𝜀𝜀1 = Det(𝐉𝐉), 𝜀𝜀2 = −B(𝐉𝐉), 𝜀𝜀3 = Tr(𝐉𝐉), and where d and k are 
combinations of the coefficients of the non-linear terms.14 
 
Example 6. Set  (𝛽𝛽, 𝜂𝜂, 𝜅𝜅,𝜓𝜓,𝜙𝜙,𝜌𝜌,𝛷𝛷) ≅ (1.75,29.51,0.97,1.11,21,0.01,2.23), (�̄�𝑅,𝜋𝜋∗) ≅
(0.019,0.011) and (𝐶𝐶, 𝜏𝜏′) ≅ (2.27,0.02) as in Example 2. Then, we know that there 
exists a family of homoclinic loops doubly asymptotic to a saddle-focus equilibrium point 
with positive saddle quantity. Consider initial conditions (𝑤𝑤�1(0),𝑤𝑤�2 (0),𝑤𝑤�3(0)) =
(0.01,0.01,0.01). Then, the perfect-foresight solution trajectory evolves chaotically 
along the attractor represented in Figure 3.  
 
Figure 3. The chaotic attractor in the (𝑤𝑤�1,𝑤𝑤�2 ,𝑤𝑤�3) space.  

 
14 The versal deformation in (20) is a homeomorphism that takes orbits of the flow generated by system M 
onto orbits of (18), preserving orientation and parametrization by time. Hence, system M and system (18) 
are 𝐂𝐂0 topologically conjugate (cf. Wiggins (1991), pp. 297-298). 
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The object in Figure 3 has the distinct shape of the Shilnikov attractor. The dynamics of 
the economy along the spiral attractor have periods of relative quiescence, when the 
phase point approaches the saddle-focus point. Conversely, when the phase point starts to 
spiral away from the saddle-focus point, there is the onset of irregular episodes of 
oscillatory activity. More details on the characteristics of chaotic time profiles of the 
variables are provided in the next sections.  
 
3.5. Economic implications 

 
Economic implications of Proposition 2 are manifold for the dynamics implied by NK 
models. First of all, the existence of a chaotic attractor implies that small changes in 
initial conditions can produce large changes in dynamics over time. Two economies, 
starting contiguously in the space of initial conditions, can follow completely different 
patterns over time. Since an initial condition is known only to a finite degree of precision, 
it is impossible to predict dynamics deterministically over extended periods of time. 

 
Moreover, as discussed in Bella, Mattana and Venturi (2017) for the Lucas’ growth 
model and in Barnett et al. (2020) for the NK model, within the Shilnikov attractor, given 
the initial value of the predetermined variable, there exists a continuum of initial values 
of the jump variables giving rise to admissible equilibria living inside a tubular 
neighborhood of the (perturbed) homoclinic orbit. This is a global indeterminacy 
phenomenon.  

 
However, what is of particular interest for this paper are the qualitative “dimensions” of 
the chaotic attractor generated by the NK model.15 Assume that the relative frequency at 
which an orbit visits different region of the attractor is largely heterogeneous. Then, 
across the volume of all possible coordinates contained in the attractor, the economy 
lingers on particular regions with higher “density.” In the numerical simulations 
developed in the paper, it is evident that the emerging dynamics tend to evolve for a long 

 
15Cf. Farmer et al. (1983) for a classical discussion on the relevant dimensions of a chaotic attractor. 
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time around lower-than-targeted inflation and nominal interest rates. This can be 
interpreted as a liquidity trap phenomenon, which now depends on the existence of a 
chaotic attractor and not on the influence of an unintended steady state as in much of 
related literature.  

 
We have now reconstructed the inflation rate time profile from the chaotic attractor in 
Figure 4. To ease discussion, we have reported its moving average in Figure 4 (window = 
100 iterates), which we have demeaned using the steady-state value of 0.011. First, it is 
central to observe that the dynamics of the inflation rate, in this numerical experiment, 
presents several irregular sudden drops (corresponding to the time when the phase point 
approaches the saddle-focus), before collapsing into an aperiodic cycle, centered on 
lower-than-expected coordinates. This phenomenon has a number of important 
predictions for the behavior of inflation in an economy enmeshed in a chaotic attractor, 
the most important of which being the possibility of long periods during which inflation 
is stubbornly low (akin to a deflationary equilibrium). In this example, average long-run 
inflation is approximately 1% lower than the quarterly steady-state value of 0.011. 16 

 
Figure 4. The moving average of chaotic inflation rate (window = 100 iterations).  

 
The result of a persistent low inflation for economies evolving within the attractor 
appears pervasive in our data. We have conducted extensive numerical simulations, 
changing initial conditions and trying different combinations of the mark-up and 𝛽𝛽 
elasticity in the utility function for which the Shilnikov phenomenon is confirmed (cf. 
Table 2). Qualitative results are invariably confirmed. As a consequence of these 
empirical results, the following statement is implied. 

 
Corollary 1. Assume that the dynamics of the system evolve along the attractor set. Then, 
persistently low inflation rates with regard to the (unique) steady-state value can emerge. 

 
16 Notice that the eigenvalues can be chosen such that inflation can also be persistently negative. 

0 500 1000 1500 2000 2500

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4
10

-3



25 

 

 

 
Corollary 1 has important implications for the debate regarding liquidity traps. As 
discussed in our introduction, this phenomenon has previously been linked mainly to the 
existence of a low-inflation steady state (cf., in particular, Benhabib et al., 2001a,b) and 
to its basin of attraction. We offer an alternative explanation, based on the long-run 
peculiarities of a chaotic attractor and the evolution of the dynamics within that attractor 
set, such that the economy drifts into the liquidity trap without any policy intent. 
 
The differences in the qualitative dynamics arising because of an unintended steady state 
or because of the existence of a chaotic attractor are striking. The time profile for 
inflation featured in Benhabib et al., (2001a,b) for the case of 𝑢𝑢𝑐𝑐𝑚𝑚 < 0, so that 
consumption and real balances are substitutes, shows higher and higher amplitude 
oscillations around the active steady. When the saddle connection is established, inflation 
suddenly drops to the passive (lower) steady state value. This kind of predictable/regular 
behavior of the economy could be traced out by an econometric exercise.  
 
In our case, inflation, along the spiral attractor, has long quiescence periods, possibly 
characterized by a persistent and steep monotonic behavior, followed by bursts of 
irregular oscillatory activity. This kind of pattern is largely unpredictable and cannot be 
inferred by conventional econometric tools, since such behavior violates the regularity 
conditions for available statistical inference methodologies, such as the usually assumed 
properties of the likelihood function and polyspectra (see, e.g., Barnett et al. (1997) and 
Geweke (1992)). 
 
We now proceed to derive more implications for monetary policy from a different point 
of view. Specifically, we explore the effects on the time profile of inflation caused by 
changes in the Taylor coefficient C. First results, although still provisional, are interesting 
and somewhat unexpected.  
 
We find that for C below a certain threshold, inflation time profiles appear to have 
comparable statistical moments across different C and initial conditions. Figure 5, panel 
a, contrasts the moving averages (window = 100) obtained for C = 2.27, our baseline, and 
for C = 1.5. Both time profiles are initialized at (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) =
(0.01,0.01,0.01). Panel b presents the moving averages for the same pair of C, but 
initialized at (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) = (0.1,0,0). 

 
 

Figure 5. Paths of chaotic inflation with lower-than-threshold C 
 

Panel a). (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) = (0.01,0.01,0.01) 
Dashed line: C = 2.27; Solid line C = 1.5 
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Panel b). (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) = (0.1,0,0) 
Dashed line: C = 2.27; Solid line C = 1.5 

 
We see a qualitative change in the statistical moments of the simulated chaotic inflation 
when C is raised above a certain threshold. Preliminary results seem to point that when C 
> 2.9, the mean and volatility of simulated inflation after a given shock to the economy 
are considerably reduced. This implies that, although in the special situation of an 
economy evolving within a chaotic attractor, monetary policy is able to curb inflation 
volatility and keep inflation mean closer to the steady state intended value by using 
extreme values of the Taylor coefficient. However, we also find that extreme values of C, 
for specific initial conditions, may imply the paradoxical result of raising long-run 
inflation mean. Consider Figure 6, where we contrast the baseline simulated inflation 
(solid line) to time profiles of inflation generated for very high Taylor coefficients.  
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Figure 6. Paths of chaotic inflation. Higher-than-threshold C 
 

Panel a). (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) = (0.01,0.01,0.01) 
Solid line: C = 2.27; Dashed line: C = 3 

 
 

Panel b). (𝑤𝑤�1(0),𝑤𝑤�2(0),𝑤𝑤�3(0)) = (0.1,0,0) 
Solid line: C = 2.27; Dashed line: C = 3 

 
 

The choice of the magnitude of the Taylor coefficient becomes therefore central in 
running monetary policy, when the economy is suspected to be entrapped in a chaotic 
attractor. We can think of C as being chosen such that the intended steady-state is 
targeted in the long-run.  
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4. Conclusions  
 
By using the Shilnikov criterion, we discover a “route to chaos” in the money-in-utility 
NK model with standard policy design in the United Kingdom. Although this is not the 
first paper to find chaos in these kinds of models (cf. inter al. Benhabib et al. (2002)), our 
method shares with our paper using US data (Barnett et al. (2020)), the distinct advantage 
of allowing for a complete characterization of the fractal attractor and thereby of the 
intrinsic stochasticity implied by the induced probability measure on the fractal attractor 
set. But in our results with US data, we used a model without money. 
 
The Shilnikov phenomenon occurs for a narrow region of the parameters space in the 
case of no regime switching (full sample), and it does not occur at all for the high 
inflation regime according to Liu and Mumtaz (2011) estimation of a NK DSGE model 
with Markov switching for the British economy. But it comes up easily in the case of the 
low-inflation regime. It seems therefore that the tightening of the policy rule through the 
Taylor coefficient speeds up the way towards the unexpected phenomenon of chaotic 
dynamics. Paradoxically, the adoption of an active Taylor feedback rule in the UK in 
recent years, while successfully lowering and stabilizing inflation, has increased the risk 
of Shilnikov chaos with unexpected downward drift in interest rates to the lower bound, 
at which the usefulness of the Taylor rule is compromised. 
 
Furthermore, given the estimated values of the Taylor coefficient, we find a downward 
bias in the interest rate and inflation orbits, producing a phenomenon similar to a liquidity 
trap. The problems associated with the zero-lower bound on nominal interest rates, would 
thereby not be an intentional objective of central bank policy but of the dynamics of the 
system within the attractor set. The existence of this downward bias could explain the 
recent conundrum of very low real rates of interest that are well below the marginal 
product of capital.   
 
Finally, in order to derive more implications of unintended effects of conventional 
monetary policy, we have used the Taylor coefficient as a bifurcation parameter and 
explored the effects on the simulated time profile of chaotic inflation. Although 
preliminary, the initial findings are interesting and somewhat unexpected. Specifically, 
given the baseline parameter values, there is a threshold of the Taylor coefficient (C) 
below which simulated inflation time profiles have comparable statistical moments across 
different C and initial conditions. Conversely, when the Taylor coefficient is chosen 
above the threshold, a qualitative change in the statistical moments of the simulated 
chaotic inflation is introduced, with a drastic reduction of the volatility and a mean that is 
much closer to the target. Paradoxically, extreme values of C may even imply an increase 
in the long-run inflation mean. 
 
There has been much discussion of the potential consequences of Brexit for economic 
risk within the United Kingdom.  Our results use only pre-Brexit data consistent with our  
calibration of parameters based on the Liu and Mumtaz (2011) well regarded UK model.  
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But the ability to produce the geometry of the fractal attractor set is likely to prove very 
valuable in exploring subsequent results with post-Brexit data.  Comparison of the fractal 
attractor set’s geometry before and after Brexit should provide detailed information about 
the nature of the changes in economic risk caused by Brexit, as the needed data become 
available. 
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APPENDICES 
 

Appendix 1: Proof of Proposition 1. 
 
To establish local stability properties when Edgeworth substitutability prevails, we 
compute the Jacobian matrix of system M, evaluated at 𝐏𝐏∗. We obtain: 

 

𝐉𝐉 = �

0 (1 − 𝑅𝑅′(𝜋𝜋∗))𝜇𝜇1∗ 0
𝑗𝑗21∗ 𝑗𝑗22∗ 0

− �̄�𝑅
𝑢𝑢𝑚𝑚𝑚𝑚
∗ ��̄�𝑅 − 𝑢𝑢𝑐𝑐𝑚𝑚∗

𝑢𝑢𝑚𝑚𝑚𝑚
∗ −𝑢𝑢𝑐𝑐𝑚𝑚∗ �̄�𝑅

𝑢𝑢𝑐𝑐𝑐𝑐∗ 𝑢𝑢𝑚𝑚𝑚𝑚
∗ −𝑢𝑢𝑐𝑐𝑚𝑚∗2

� 0 �̄�𝑅 − 𝜋𝜋∗ − 𝜏𝜏′(𝑀𝑀∗)
�,   (A.1) 

 

where 𝑗𝑗21∗ = −𝜓𝜓𝜙𝜙
𝜂𝜂
𝑐𝑐∗𝜓𝜓 𝑢𝑢𝑚𝑚𝑚𝑚

∗ −𝑢𝑢𝑐𝑐𝑚𝑚∗ �̄�𝑅
𝑢𝑢𝑐𝑐𝑐𝑐∗ 𝑢𝑢𝑚𝑚𝑚𝑚

∗ −𝑢𝑢𝑐𝑐𝑚𝑚∗2
+ (𝜙𝜙−1)

𝜂𝜂
𝑐𝑐∗ and  𝑗𝑗22∗ = 𝜌𝜌 − 𝜓𝜓𝜙𝜙𝑐𝑐∗𝜓𝜓𝑢𝑢𝑐𝑐𝑚𝑚∗ 𝜇𝜇1∗

𝜂𝜂�𝑢𝑢𝑐𝑐𝑐𝑐∗ 𝑢𝑢𝑚𝑚𝑚𝑚
∗ −𝑢𝑢𝑐𝑐𝑚𝑚∗2 �

𝑅𝑅′(𝜋𝜋∗) are 

both positive. The application of the Routh-Hurwitz stability criterion requires the 
computation of: 
 

𝑇𝑇𝑟𝑟(𝐉𝐉) = 𝑗𝑗22∗ + �̄�𝑅 − 𝜋𝜋∗ − 𝜏𝜏′(𝑀𝑀∗),    (A.2) 
                        

𝐷𝐷𝑒𝑒𝑑𝑑(𝐉𝐉) = [�̄�𝑅 − 𝜋𝜋∗ − 𝜏𝜏′(𝑀𝑀∗)][𝑅𝑅′(𝜋𝜋∗) − 1]𝜇𝜇1∗𝑗𝑗21∗                                (A. 3)                                      
         

𝐵𝐵(𝐉𝐉) = [𝑅𝑅′(𝜋𝜋∗) − 1]𝜇𝜇1∗𝑗𝑗21∗ + [�̄�𝑅 − 𝜋𝜋∗ − 𝜏𝜏′(𝑀𝑀∗)]𝑗𝑗22∗                      (A.4) 
 
which represent Trace, Determinant, and Sum of principal minors of J, respectively.  We 
also need to define 

 
𝐺𝐺(𝐉𝐉) = −𝐵𝐵(𝐉𝐉) + 𝐷𝐷𝑒𝑒𝜌𝜌(𝐉𝐉)

𝑇𝑇𝑚𝑚(𝐉𝐉)
                                                                     (A.5).  

 
We now study the local stability properties of system M in the neighborhood of 𝐏𝐏∗, when 
monetary policy is active (𝑅𝑅′(𝜋𝜋∗) > 1). As discussed in the main text, we need now to 
use the Edgeworth elasticity |𝑢𝑢𝑐𝑐𝑚𝑚∗ |. There exists a threshold such that, for any |𝑢𝑢𝑐𝑐𝑚𝑚∗ | <
|𝑢𝑢�𝑐𝑐𝑚𝑚∗ |, 𝑇𝑇𝑟𝑟(𝐉𝐉) > 0 and, for any |𝑢𝑢𝑐𝑐𝑚𝑚∗ | > |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |, 𝑇𝑇𝑟𝑟(𝐉𝐉) < 0. Therefore, the effects of 
changing fiscal policy diverge according to whether the observed Edgeworth elasticity is 
above or below the threshold. Consider first the case of |𝑢𝑢𝑐𝑐𝑚𝑚∗ | < |𝑢𝑢�𝑐𝑐𝑚𝑚∗ |. Then, if the fiscal 
policy is active (�̄�𝑅 − 𝜋𝜋∗ − 𝜏𝜏′(𝑀𝑀∗) > 0), both 𝐷𝐷𝑒𝑒𝑑𝑑(𝐉𝐉) and 𝑇𝑇𝑟𝑟(𝐉𝐉) are positive, whereas 
𝐺𝐺(𝐉𝐉) < 0. There are therefore three sign variations in the Routh-Hurwitz criterion: 𝐏𝐏∗ is a 
repellor. Consider now the case of a passive fiscal policy. Now, while 𝑇𝑇𝑟𝑟(𝐉𝐉) keeps its 
positive sign, 𝐷𝐷𝑒𝑒𝑑𝑑(𝐉𝐉) becomes negative. Then, irrespectively of the sign of 𝐺𝐺(𝐉𝐉), there are 
two variations and one permanence in the Routh-Hurwitz scheme. 𝐏𝐏∗ is a saddle of index 
2. The opposite case of |𝑢𝑢𝑐𝑐𝑚𝑚∗ | > |𝑢𝑢�𝑐𝑐𝑚𝑚∗ | uses similar arguments. 
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