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1 Introduction

In program evaluation studies, it is important to learn about the heterogeneous impacts

of policy variables on different points of the outcome distribution of interest. Examples

include, but not limited to, evaluating the effects of government training programs on

lower quantiles of earning distributions studied by LaLonde (1995) and Abadie, Angrist

and Imbens (2002), the effects of the government-subsidized saving program on lower tails

of savings distributions, and among many others. To characterize the heterogeneous effects

along with the outcome distribution, quantile treatment effect (QTE), originally suggested

by Doksum (1974) and Lehmann (1975) and defined as the difference between the quantiles

of the marginal potential distributions of the treatment and control responses, provides a

powerful tool to document such heterogeneity. In the last few decades, QTE has gained

increasing popularity in economics, political science, and many other social, behavioral,

and statistical sciences. Recent studies on QTE include, but not limited to, the papers

by Abadie et al. (2002), Chernozhukov and Hansen (2005), Donald and Hsu (2014), Firpo

(2007), Frölich and Melly (2013), and the references therein. Moreover, Tang (2020) pro-

vided a comprehensive survey on recent developments in modeling methods for QTE.

It is importantly noted that the aforementioned papers mainly focus on identification

and estimation of the quantile treatment effect for the overall population or the treated

group under various assumptions. It is generally believed in program evaluation literature

that the effect of a treatment can be heterogeneous across different individuals as in Heck-

man and Robb (1985) and Heckman et al. (1997). Consequently, in many cases, researchers

may be more interested in studying the effects of programs across different individuals in-

stead of the effects for the overall population or the subpopulation of treated individuals.

For example, it may be of substantive interest to investigate the heterogeneous effect of

maternal smoking during pregnancy on infant birth weight across mothers with different

ages. How to characterize the heterogeneity of treatment effects across different individuals

is a challenge in the treatment effect literature and it has been extensively considered in

the recent literature. Recently, to characterize the heterogeneous effect across different

sub-populations defined by some covariates of interest, Abrevaya, Hsu and Lieli (2015) and

Lee, Okui and Whang (2017) considered the partially conditional average treatment effect
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(ATE). Different from Abrevaya et al. (2015) and Lee et al. (2017), to capture hetero-

geneities for both across-distribution and across-individuals simultaneously, Cai, Fang, Lin

and Tang (2021)1 and Zhou, Guo and Zhu (2021) proposed a partially conditional quantile

treatment effect (PCQTE) model, whereas Tang, Cai, Fang and Lin (2021) considered a

parametric model.

Our motivation in this paper comes actually from the empirical estimation results in

Cai et al. (2021) and Tang et al. (2021) by investigating the QTE of maternal smoking

during pregnancy on infant birth weight across different age groups of mothers. The main

findings in Cai et al. (2021) are that there is a significant negative effect of smoking on infant

birth weight across all mothers’ ages and quantiles considered for both whites and blacks

and there is substantial heterogeneity across different mothers’ ages for whites but not for

blacks. Motivated by these estimation results, from statistical and empirical perspectives,

it is interesting to test whether or not the conditional QTEs conditional on mothers’ ages,

for both whites and blacks, change over mothers’ ages, in other words, whether there exists

heterogeneity for the QTEs of maternal smoking on infant birth weight across different age

groups of mothers for both whites and blacks. To this end, we propose in this paper a novel

test to assess whether there exists heterogeneously distributional effect for an intervention

on outcome of interest across different sub-populations defined by covariates of interest.

Specifically, a nonparametric test is developed for testing the null hypothesis that the

treatment has a constant quantile effect for all subpopulations defined by covariates of

interest. In other words, there is no heterogeneity in QTEs by covariates of interest. To

this end, a consistent test statistic is constructed based on the Cramér-von Mises type

criterion.

Under some regular conditions, we establish the asymptotic distribution of the proposed

test statistic under both the null and alternative hypotheses and investigate the power of

our test against a sequence of local alternatives. However, note that to calculate the

critical value of the proposed test statistic under null hypothesis, one needs to consistently

estimate the conditional density of the potential outcomes conditional on covariates of

interest involved in the asymptotic bias and asymptotic variance, which is not an easy

1Please note that the working paper version of this paper in English with a modification can be down-
loaded at https://econpapers.repec.org/paper/kanwpaper/202005.htm.
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task recognized in the literature. To overcome this problem, a nonparametric Bootstrap

procedure is proposed to approximate the finite-sample null distribution of the proposed

test. Furthermore, the asymptotic validity of the proposed Bootstrap test is justified.

Through Monte Carlo simulations, we demonstrate the power properties of the test in

finite samples. As an empirical illustration, the proposed testing approach is applied to

investigating whether there exists heterogeneity for the QTE of maternal smoking during

pregnancy on infant birth weight across different age groups of mothers. The testing results

show that the QTE of maternal smoking on infant birth weight do change over mother’s age

for all quantile levels considered for whites but not for blacks, which support the findings

obtained in Cai et al. (2021).

Interestingly, this paper is related to some works in literature. For example, first,

Crump, Hotz, Imbens and Mitnik (2008) developed two nonparametric tests based on se-

ries approach, in which the first is to test whether a treatment has a zero average effect

for all sub-populations defined by covariates, and the second is to test whether the ATE

conditional on the covariates is identical for all sub-populations, in other words, whether

heterogeneity exists in ATE by covariates. Second, Lee and Whang (2009) proposed to test

whether the conditional QTE is significant, conditional on the whole set of covariates. By

contrast, our focus is on testing if the partially conditional QTE is a constant, in which

the constant needs to be estimated. More importantly, one may be interested in studying

the heterogeneous effect on some particular covariates instead of the whole set of covari-

ates, for example, the effect of maternal smoking during pregnancy on infant birth weight

across mothers with different ages. Moreover, Escanciano and Goh (2014) considered a

nonparametric test for testing the specification of a linear conditional quantile function

over a continuum of quantile levels and they showed that the use of an orthogonal projec-

tion on the tangent space of nuisance parameters at each quantile index can improve power

and facilitate the simulation of critical values via the application of a simple multiplier

Bootstrap procedure. Finally, Dong, Li and Feng (2019) introduced a new approach to

assess the lack of fit for quantile regression models. They first transformed the lack-of-fit

tests for parametric quantile regression models into checking the equality of two conditional

distributions of covariates. Then, by applying some successful two-sample test statistics in

the literature, two tests are constructed to check the lack of fit for low and high dimen-
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sional quantile regression models. Finally, to calculate the p-values or critical values, they

suggested adopting the wild Bootstrap procedure.

The remainder of this paper is organized as follows. Section 2 introduces the proposed

test statistic and presents its asymptotic properties under the null hypothesis. Also, a

Bootstrap procedure is suggested to approximate the finite-sample null distribution of the

proposed test and the asymptotic validity of the proposed Bootstrap test is theoretically

justified. In Sections 3 and 4, the finite sample properties of our test through Monte

Carlo simulations are investigated and an empirical application is considered, respectively.

Section 5 concludes the paper. Finally, the key steps for proving the theorems can be

found in Appendix, together with some auxiliary lemmas with their detailed proofs given

in Supplement.

2 Testing Heterogeneity for Conditional QTE

2.1 Test Statistic

Let us first introduce the model framework considered in this paper. To this end, let Di

be the binary treatment variable of individual i in population, where Di = 1 if individual

i receives the treatment of interest and otherwise, Di = 0. Using the potential outcome

framework initialized by Rubin (1974), define Yi(0) and Yi(1) to be the potential outcomes

of individual i if it is in the control group or in the treated group, respectively. Also,

assume that Di and Yi are observed, where Yi is the realized outcome as Yi = (1 − Di) ·

Yi(0) + Di · Yi(1). In addition, suppose that Xi, a p-dimensional vector of pre-treatment

variables for individual i, is observed too. Therefore, throughout the paper, it is assumed

that
{
Yi(0), Yi(1), Xi, Di

}
, i = 1, · · · , n, are independent and identically distributed (iid).

Let Zi be a d-dimensional sub-vector of Xi, where 1 ≤ d ≤ p and in particular, d is

small and much smaller than p in many applications. To capture heterogeneities for both

across-distribution and across-individuals simultaneously, Cai et al. (2021) and Zhou et al.

(2021) considered a partially conditional quantile treatment effect model, which is defined

as

∆τ (z) = q1,τ (z)− q0,τ (z), (1)
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where τ ∈ (0, 1) is the quantile level and for j = 0 and qj,τ (z) is the τ -th conditional quantile

function of Yi(j) conditional on Zi = z. It is important to note that for each individual in

the population, only one of Yi(0) and Yi(1) is observable, so that due to the missing variable,

the PCQTE parameter ∆τ (z) in (1) can not be identified without further restrictions on

the data-generating distribution. To identify the functionals in (1), it is common in the

treatment effect literature to assume that assignment to treatment is unconfounded and

that the probability of assignment is bounded away from 0 and 1. Formally, the following

assumption is imposed throughout the paper.

Assumption 1. Assume that

(i) (unconfoundedness) conditional on pre-treatment variables Xi, the potential outcomes

are jointly independent from the treatment variable Di, namely,

(
Yi(0), Yi(1)

)
|= Di | Xi,

where |= indicates statistical independence, and

(ii) (overlap) for almost every x ∈ X , where X is the support of Xi, there exists some small

ε > 0 so that ε < p(x) = P (Di = 1|Xi = x) < 1 − ε, where p(x) is called the propensity

score function.

Part (i) of Assumption 1 is often referred to as the (strongly) ignorable treatment assign-

ment, conditional independence assumption or selection on observables in the econometrics

and/or statistics literature and it requires that conditional on the observed individual char-

acteristics Xi, the treatment assignment Di is independent of the potential outcomes Yi(0)

and Yi(1). Although it is a strong assumption, it has been extensively employed in many

applied fields to study on the effect of treatments or programs, among others, see, for ex-

ample, the papers by Abadie and Imbens (2006, 2016), Hirano, Imbens and Ridder (2003),

Heckman et al. (1998), Dehejia and Wahba (1999), and Firpo (2007). Part (ii) of Assump-

tion 1 states that in the population for almost all values of Xi, both treatment assignment

levels have a positive probability of occurrence. In practice, however, there are often con-

cerns about possible lack of common support. A common approach to address this problem

is to drop observations with the propensity score close to zero or one, and focus on the

treatment effect in the subpopulation with propensity score bounded away from zero and
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one; see Crump et al. (2009) for more details.

Under Assumption 1, Cai et al. (2021) showed that the PCQTE function ∆τ (z) is

nonparametrically identified and further proposed a semiparametric estimation procedure

to estimate ∆τ (z). Specifically, the proposed estimate for ∆τ (z) in Cai et al. (2021) is given

by

∆̂τ (z) = q̂1,τ (z)− q̂0,τ (z), (2)

where for j = 0 and 1,

q̂j,τ = argmin
q

1

n

n∑
i=1

Kh(Zi − z)Ŵn,j(Xi, Di)ρτ (Yi − q)

with Ŵn,0(Xi, Di) = (1 − Di)/[1 − p̂n(Xi)], Ŵn,1(Xi, Di) = Di/p̂n(Xi), and Kh(u) =

K(u/h)/h. Here, K(·) is a kernel function, h is the bandwidth parameter, ρτ (u) =

u · (τ − I{u ≤ 0}) is the check function as in Koenker and Bassett (1978) and Koenker

(2005), and p̂n(x) is the parametric estimate of p(x). Furthermore, the consistency and

asymptotic normality of the proposed semiparametric estimator ∆̂τ (z) are also established

in Cai et al. (2021). The reader is referred to the paper by Cai et al. (2021) for more details.

As discussed in the introduction, in this paper, our interest is to investigate whether

there exists heterogeneity in QTEs across different sub-populations defined by covariates

of interest. To this end, the following hypothesis testing problem is investigated

H0 : ∆τ (z) = δτ for all z ∈ Z versus H1 : ∆τ (z) ̸= δτ for some z ∈ Z (3)

for some constant δτ , where Z is the support of Zi. Under the null hypothesis, the partially

conditional quantile effect of the treatment is a constant and under the alternative, the

PCQTE varies across different sub-populations defined by Zi. Furthermore, the above

testing setting in (3) can be generalized to the following testing problem

H0 : ∆τ (z) = ∆τ,0(z, θτ ) versus H1 : ∆τ (z) ̸= ∆τ,0(z, θτ ), (4)

where ∆τ,0(z, θτ ) is a known function with unknown parameter θτ . The purpose of the test

in (4) is to see whether ∆τ (z) has a particular parametric form, say, a linear function as in
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Tang et al. (2021).

In order to test whether the hypothesis testing problem formulated in (3) holds or not,

the test statistic is constructed based on Cramér-von Mises criterion as follows. To this

end, let

J =

∫ (
∆τ (z)− δτ

)2
dz ≥ 0,

where the integral is taken over Z. Note that J = 0 if and only if the null hypothesis in

(3) is true. Hence, a test statistic using the sample analogue of J is defined by

Jn =

∫ (
∆̂τ (z)− δ̂τ

)2
dz,

where ∆̂τ (z) is the semiparametric estimator (2) of ∆τ (z), and δ̂τ is a
√
n-consistent esti-

mator for δτ , such as the estimator

δ̂τ =
1

n

n∑
i=1

∆̂τ (Zi) (5)

proposed in Cai and Xiao (2012). Note that by following the same idea in Cai and Xiao

(2012), one can show easily that δ̂τ in (5) a is
√
n-consistent estimator of δτ .

Remark 1. If Z is taken to be X in (3), then, the hypothesis testing problem in (3)

collapses into testing whether the conditional QTE is a constant for all values of the co-

variates. Different from our setting, Crump et al. (2008) considered to testing whether the

conditional ATE is a constant or zero for all values of the covariates. However, note that

even though the conditional ATE is equal to a constant, the conditional QTE may not

be a constant. Consequently, our paper complements and extends the paper by Crump

et al. (2008) on testing whether there exists treatment effect heterogeneity across different

sub-populations defined by covariates.

Remark 2. Besides the testing issues displayed in (3) and (4), one may be interested in

testing

H0 : ∆τ (z) ≤ 0 (or ≥ 0) for all z ∈ Z, (6)

which leads to studying the stochastic dominance between Y (0) and Y (1) for all Z. Re-

cently, Lee, Song and Whang (2015, 2018) developed a general method for testing inequality
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restrictions on nonparametric functions using a Bootstrap procedure. Hence, the procedure

as in Lee et al. (2015, 2018) may be used here to test the null hypothesis formulated in (6)

being true or not. These extensions are beyond the scope of this paper but certainly worth

pursuing in future research.

2.2 Limiting Distribution of Test Statistic Jn

This subsection is devoted to investigating the asymptotic properties of the proposed

test statistic Jn. Although the asymptotic theory for Jn can be obtained for any d-

dimensional Zi with d ≪ p, the result is presented only for d = 1 to save notation

throughout the rest of this paper. As pointed out by Abrevaya et al. (2015), the case

for d = 1 is the most relevant case in practice. Before studying the asymptotic properties

of the proposed test statistic Jn, the following technical assumptions are needed, list below.

Assumption 2. (Distributions of Xi and Zi) Xi has a compact support X and the density

function of Xi, fX(x), satisfies infx∈X fX(x) ≥ c for some c > 0. Furthermore, the density

function of Zi, fZ(z) is twice continuously differentiable in Z.

Assumption 3. (i) The conditional density function fY (j)|X(y|x) is continuous and bounded

on the support of Yi(j) and Xi for j = 0 and 1. (ii) The conditional density function

fY (j)|Z(y|z) is continuous and uniformly bounded away from zero in a neighborhood of qj,τ (z)

for j = 0 and 1. It is twice differentiable with respect to z, and its first derivative with

respect to y is continuous and bounded on the support of Yi(j) and Zi.

Assumption 4. For j = 0 and 1, the conditional quantile function qj,τ (z) is continuously

differentiable on the support of Z with bounded second order derivatives.

Assumption 5. (Kernel and bandwidth) (i) The kernel function K(u) is a symmetric,

continuously differentiable probability density function with compact support, [−1, 1], say.

(ii) h→ 0, nh2 → ∞ and nh4 → 0 as n→ ∞.

Assumption 6. (Parametric propensity score function) Suppose the propensity score func-

tion has a parametric form p(x) = p(x; θ0) with a fixed dimensional parameter θ0. Also, as-

sume that the estimated propensity score function p̂n(x) = p(x; θ̂n) satisfies supx∈X
∣∣p(x; θ̂n)−

p(x; θ0)
∣∣ = Op(n

−1/2).
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The restriction imposed on the distribution of Xi in Assumption 2 is commonly used in

the literature on treatment effect evaluation; see Hirano et al. (2003), Abadie and Imbens

(2006, 2016), Firpo (2007), Abrevaya et al. (2015), and among others. Assumption 3 guar-

antees the conditional quantile function qj,τ (z) for j = 0 and 1 is unique and well defined

and the smoothness conditions imposed are easily satisfied in practice. The smoothness

conditions on the conditional quantile function qj,τ (z) for j = 0 and 1 imposed in Assump-

tion 4 are also easily satisfied in practice. Assumption 5 on kernel function and bandwidth

is frequently assumed in the literature on nonparametric estimation. Many commonly

used kernel functions, such as the Epanechnikov kernel, satisfy the requirements. Assump-

tion 6 typically holds for standard parametric estimation methods under reasonably mild

regularity conditions.

Under the assumptions listed above, we now can state our main result on the asymptotic

properties of the proposed test statistic Jn and its proof can be found in Appendix. For easy

presentation, first, define some notations as follows. Let µ0(z;u) = E
{[
I{Yi(0) ≤ q0,τ (u)}−

τ
]2
/[1−p(Xi)]

∣∣Zi = z
}
and µ1(z;u) = E

{[
I{Yi(1) ≤ q1,τ (u)}−τ

]2
/p(Xi)

∣∣Zi = z
}
. Then,

we have the following asymptotic results.

Theorem 1. Suppose that Assumptions 1-6 are satisfied. Then, under the null hypothesis

H0 in (3), one has

n
√
h
(
Jn − µJ

) D−→ N (0, σ2
J),

where

µJ =
ν0(K)

nh

∫ {
µ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
µ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
1

fZ(z)
dz,

and with ν0(K) =
∫
K2(u)du,

σ2
J = 2

∫ (∫
K(t)K(t+ s)dt

)2
ds

∫ {
µ1(u;u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
µ0(u;u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
1

f 2
Z(u)

du,

and under the alternative hypothesis H1,

n
√
h
(
Jn − µJ

) p−→ +∞. (7)
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Following Theorem 1, an asymptotic significance level α0 test is to rejectH0 if n
√
h
(
Jn−

µJ

)
/σJ > Cα0 , where Cα0 is the α0 upper-quantile of the standard normal distribution.

Clearly, (7) implies that the proposed test is consistent. Note that to the best of our

knowledge, the above asymptotic result for testing nonparametric QTE is new in the liter-

ature.

In addition to testing the null hypothesis against fixed alternatives, it is of interest to

consider testing power for local departures from the null. Suppose that δτ is estimated

using (5), we focus on a set of Pitman alternatives represented by

H1n : ∆τ (z) = δτ + ρn · ζ(z), (8)

where ρn = n−1/2h−1/4 → 0 as n→ ∞ and the function ζ(z) satisfies

∫
ζ(z)fZ(z) dz = 0 and 0 <

∫
ζ2(z)dz <∞.

The following theorem shows that our test can distinguish alternatives H1n that get closer

to H0 at rate n−1/2h−1/4 while maintaining a constant power level.

Theorem 2. Under Assumptions 1-6, suppose that the local alternative (8) converges to

the null in the sense that ρn = n−1/2h−1/4. Then,

n
√
h

σJ

(
Jn − µJ

) D−→ N
(
σ−1
J

∫
ζ2(z)dz, 1

)
.

Clearly, it follows from Theorem 2 that under the local alternative (8),

P
(
n
√
h
(
Jn − µJ

)
/σJ > Cα0

)
→ 1− Φ

(
Cα0 − σ−1

J

∫
ζ2(z)dz

)
,

where Φ is the cumulative distribution function of the standard normal distribution. This

indicates that the testing power for local alternative (8) converges to a constant greater

than the significance level α0.
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2.3 A Nonparametric Bootstrap Test

Theorem 1 provides the asymptotic null distribution of the test Jn. Consequently, one

can perform tests for H0 by comparing the value of Jn with its asymptotic critical value.

However, as expected, it can not be used directly for an accurate calculation of critical

values. This is because the test based on the asymptotic distribution might be sensitive

to the choice of bandwidth h and the consistent estimation of µJ and σ2
J in small samples.

In particular, it is well known in the quantile regression literature that the consistent

estimation of the conditional density of Yi(j) given Zi involved in µJ and σ2
J is not an easy

task; see, for example, Koenker and Xiao (2004) and Cai and Xu (2008). To overcome

this difficulty, following Chen et al. (2003) and Firpo et al. (2017), although other types

of Bootstrap methods such as the multiplier Bootstrap in Escanciano and Goh (2014) and

the wild Bootstrap in Dong et al. (2019) can be used, for simplicity, here a nonparametric

Bootstrap procedure is proposed to determine the p-value for Jn. It involves the following

steps.

(1) Generate the ith Bootstrap sample by drawing samples from the original sample{
(Yi, Xi, Di)

}n
i=1

with replacement, denoted by
{
(Y ∗

i , X
∗
i , D

∗
i )
}n
i=1

.

(2) Compute the Bootstrap test statistic

J∗
n =

∫ ((
∆̂∗

τ (z)− δ̂∗τ
)
−
(
∆̂τ (z)− δ̂τ

))2
dz,

where ∆̂∗
τ (z) and δ̂

∗
τ =

∑n
i=1 ∆̂

∗
τ (Z

∗
i )/n are estimated using the Bootstrapping sample{

(Y ∗
i , X

∗
i , D

∗
i )
}n
i=1

, and ∆̂τ (z) and δ̂τ =
∑n

i=1 ∆̂τ (Zi)/n are computed based on the

original data.

(3) Repeat steps (1) and (2) a large number of times, say, B times, to obtain {J∗(j)
n }Bj=1.

(4) Reject H0 at significance level α0 if Jn exceeds the (1 − α0)-th sample quantile of

{J∗(j)
n }Bj=1.

Define J̃∗
n = n

√
h(J∗

n − µJ)
/
σJ . The following theorem justifies the asymptotic validity

of the Bootstrap test with its proof given in Appendix.
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Theorem 3. Suppose the same conditions as in Theorem 1 are satisfied. Then under H0

or H1, we have

sup
y∈R

∣∣∣P(J̃∗
n ≤ y

∣∣ {Yi, Xi, Di}ni=1

)
− Φ(y)

∣∣∣ = op(1),

where Φ(·) is the cumulative distribution function of a standard normal distribution.

Theorem 3 states that the Bootstrap statistic J̃∗
n = n

√
h(J∗

n − µJ)
/
σJ converges to

N (0, 1) in distribution in probability. It is important to note that Theorem 3 holds true

regardless of whether the null hypothesis is true or not. Therefore, when the null hypothesis

is true, the Bootstrap test procedure leads to asymptotically correct size, because condi-

tional on the data, the Bootstrap statistic J∗
n has the same asymptotic distribution as Jn.

When the null hypothesis is false, because the test statistic n
√
h
(
Jn − µJ

)
/σJ diverges to

+∞ as the sample size n goes to infinity as shown in Theorem 1, whereas the Bootstrap

critical value is still finite, the Bootstrap procedure leads to a consistent test.

3 Monte Carlo Studies

In this section, we investigate the finite sample performance of the proposed test Jn by

means of simulation studies. The goal is to assess the accuracy and power of the proposed

test for moderate sample sizes in various scenarios.

Let the data generating process (DGP) be:

Y (0) = γ0
√
U0X2 and Y (1) = λ · ρn ·X1 + γ1

√
U1X2,

where ρn = n−1/2h−1/4, γ0 = 1.0, γ1 = 1.5, U0 and U1 independently follow the U [0, 1] distri-

bution, X1 and X2 are independently generated from U [−1, 1] and Beta(3, 1), respectively,

and the propensity score function is

P (D = 1|X1, X2) =
exp{−0.5 +X1 +X2}

1 + exp{−0.5 +X1 +X2}
.

Finally, the conditional variable Z is taken to be X1. Under this setting, by straightforward

calculations, the conditional quantile function for Y (j) for j = 0 and 1, conditional on

Z = z, is given by q0,τ (z) = γ0aτ and q1,τ (z) = λ ρn z + γ1aτ , respectively, where aτ is the
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unique solution of equation −2a3 + 3a2 − τ = 0 within the interval (0, 1). Therefore, the

PCQTE is

∆τ (z) = λ ρn z + (γ1 − γ0)aτ ,

where λ in the above equation takes different values in the experiment so that we can

investigate empirical sizes and local power curves of the test statistic Jn indexed by λ. It

is easy to see that ∆τ (z) is equal to a constant only when λ = 0, which corresponds to the

null hypothesis. The Bootstrap procedure outlined in Section 2.3 is used to determine the

critical value. The number of Bootstrap replications is set as B = 599. To examine the size

and local power performance of the test statistic Jn, three different sample sizes n = 400,

n = 800 and n = 1600 are considered. To check the sensitivity of the test with respect to

different values of the bandwidth h, motivated by the conditions in Theorem 1, h = c n−1/3

is used with c = 0.5, 1.0 and 2.0. Finally, three quantiles levels, namely, τ = 0.25, 0.5 and

τ = 0.75, are considered. The empirical sizes and local powers of the test Jn are computed

using 1, 000 simulations under the nominal size α = 5%, respectively.

The empirical sizes of the test Jn based on Bootstrap critical value are reported in Table

1. It can be seen that the empirical sizes converge to their nominal sizes as the sample size

n increases. Particularly, when the sample size increases to 1600, the test Jn performs well

in all cases considered. Also, one can observe that the choice of the bandwidth h seems to

have little influence on empirical sizes.

Next, Figures 1-3 display the estimated local power curves with nominal size α = 5% of

the test Jn for different quantile levels and different choices of the bandwidth. In general, the

test Jn performs reasonably powerful in detecting the deviation from the null hypothesis in

all cases considered. Specifically, it can be seen from these figures that the test Jn has power

against local alternatives converging to the null at the rate of ρn = n−1/2h−1/4. Moreover,

it is not surprising that the powers increase quickly with the value of λ increasing. It is

also noticed from these figures that the bandwidth h in a certain range seems to have little

impact on the power of the test.
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Table 1: Empirical sizes of Jn (nominal size α = 5%)

h = 0.5n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75

400 0.030 0.034 0.031

800 0.040 0.037 0.045

1600 0.047 0.053 0.044

h = 1.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75

400 0.043 0.043 0.045

800 0.058 0.052 0.055

1600 0.044 0.053 0.053

h = 2.0n−1/3

λ = 0 n τ = 0.25 τ = 0.5 τ = 0.75

400 0.034 0.036 0.038

800 0.056 0.056 0.054

1600 0.053 0.051 0.053

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.2

0.4
0.6

0.8
1.0

τ = 0.25

λ

Em
pir

ica
l R

eje
cti

on
 R

ate

n = 400
n = 800
n = 1600

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.2

0.4
0.6

0.8
1.0

τ = 0.50

λ

Em
pir

ica
l R

eje
cti

on
 R

ate

n = 400
n = 800
n = 1600

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.2

0.4
0.6

0.8
1.0

τ = 0.75

λ

Em
pir

ica
l R

eje
cti

on
 R

ate

n = 400
n = 800
n = 1600
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Figure 1: Local power curves for test statistic Jn with ρn = n−1/2h−1/4 and bandwidth h = 0.5n−1/3 and
nominal size α = 5%.
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Figure 2: Local power curves for test statistic Jn with ρn = n−1/2h−1/4 and bandwidth h = 1.0n−1/3 and
nominal size α = 5%.
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Figure 3: Local power curves for test statistic Jn with ρn = n−1/2h−1/4 and bandwidth h = 2.0n−1/3 and
nominal size α = 5%.
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4 A Real Example

In this section, the proposed testing approach is applied to investigating whether there

exists heterogeneity for the QTE of maternal smoking during pregnancy on infant birth

weight across different age groups of mothers. To this end, we use the same dataset as in

Abrevaya et al. (2015), composed of vital statistics collected by the North Carolina State

Center Health Services between 1988 and 2002, accessible through the Odum Institute

at the University of North Carolina. As in Abrevaya et al. (2015), our sample is limited

to first-time mothers and as routine in the literature, we also treat blacks and whites as

separate populations throughout. The number of observations is 157, 989 for the blacks

group and 433, 558 for the whites group.

It is generally recognized that low infant birth weight is associated with health and

human capital development throughout life as argued by Black et al. (2007) and Almond

and Currie (2011), and maternal smoking during pregnancy is considered to be the most

important preventable negative cause of low birth weight; see Kramer (1987) for more

discussions. Recently, there have been several studies in the literature to explore how the

effect of maternal smoking during pregnancy on infant birth weight varies across different

values of the mother’s ages by using program evaluation approach. In particular, Abrevaya

et al. (2015) and Lee et al. (2017) considered the ATE of maternal smoking on infant birth

weight conditional on different mothers’ ages, and found different degrees of heterogeneity

by age. The main qualitative finding in Abrevaya et al. (2015) and Lee et al. (2017) is that

smoking has a more severe impact at higher ages. Different from the studies by Abrevaya

et al. (2015) and Lee et al. (2017), Cai et al. (2021) considered the QTE of mothers’ smoking

status during pregnancy on infant birth weight conditional on different mothers’ ages, and

found that the QTEs for the quantile levels considered seem to change significantly over

ages only for whites but not for blacks. Motivated by the estimation results in Cai et al.

(2021), it is further interesting to test statistically whether or not the partially conditional

QTEs, for whites and blacks, change over mothers’ ages. Therefore, our interest in this

section is to test whether the QTE of maternal smoking on infant birth weight varies across

different age groups of mothers using the proposed testing approach in Section 2.

Since our interest is in exploring whether the QTE of maternal smoking during preg-
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nancy on infant birth weight changes across different age groups of mothers, hence the

conditional variable Z is the mother’s age. In addition, the treatment variable D is a

binary variable which takes value 1 if the mother smokes and 0 otherwise. The outcome

variable of interest Y is the infant birth weight measured in grams. Also, in this example,

Y (0) denotes the infant birth weight for the untreated (no-smoking) group and Y (1) stands

for the infant birth weight for the treated (smoking) group.

To explore the treatment effect heterogeneity of mothers’ smoking on infant birth weight

using the proposed testing approach in Section 2, one needs to find certain baseline covari-

ates such that the unconfoundedness assumption holds true, that is, the potential infant

birth weight outcomes are independent of the smoking decision conditional on the base-

line covariates. In this paper, we use the same set of covariates X as in Abrevaya et al.

(2015), which includes the mother’s age, education, month of first prenatal visit, number of

prenatal visits, and indicators for the baby’s gender, the mother’s marital status, whether

the father’s age is missing, gestational diabetes, hypertension, amniocentesis, taking ul-

tra sound exams, previous (terminated) pregnancies, and alcohol use; see Abrevaya et al.

(2015) for the detailed discussion.

To use the proposed testing approach, another problem is how to estimate the unknown

propensity score function p(x). Following Abrevaya et al. (2015) and Cai et al. (2021), here

a logist model is used to estimate the propensity score function p(x) and the explanatory

variables used in the logist model consist of all the elements of X, the square of the

mother’s age, and the interaction terms between the mother’s age and all other elements

of X. Finally, the partially conditional QTE is estimated for mothers aged between 20 and

30 for both whites and blacks.

Table 2 displays the testing results for testing whether the partially conditional QTE

changes over mother’s age. It can be seen clearly from Table 2 that one should reject the

null hypothesis for whites for all quantiles considered at 5%. This means that PCQTEs do

change over mother’s age for all quantile levels considered at the significance level α = 5%

for whites. But, for blacks, there is a strong evidence to support the homogeneity of

PCQTE over mother’s age for all quantile levels considered. These testing results support

strongly the empirical findings obtained in Cai et al. (2021).
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Table 2: Test results for testing if PCQTE function changes over mother’s age.

Quantile level
Test statistic Jn

(Bootstrap p-value)

τ Whites Blacks

0.10 0.022 0.573

0.25 0.002 0.307

0.50 0.033 0.151

0.75 0.035 0.474

0.90 0.042 0.326

5 Conclusion

Motivated by investigating whether or not the conditional QTEs conditional on moth-

ers’ ages, for both whites and blacks, change over mothers’ ages, in other words, whether

there exists heterogeneity for the QTEs of maternal smoking on infant birth weight across

different age groups of mothers for whites and blacks, we propose a nonparametric ver-

sus constant test under quantile regression setting, which is applied to assessing whether

there exists heterogeneously distributional effect for an intervention on outcome of interest

across different sub-populations defined by covariates of interest. To test whether the null

hypotheses of interest holds true or not, a consistent test statistic is proposed based on the

Cramér-von Mises type criterion. To the best of our knowledge, it is believed that this test

is novel in the QTE literature. Under some regular conditions, we establish the asymptotic

distribution of the proposed test statistic under the null hypothesis and its consistency

against fixed alternatives. We also study the power of our test against a sequence of local

alternatives. Also, we propose a Bootstrap procedure to approximate the finite-sample null

distribution of the proposed test. Furthermore, the asymptotic validity of the proposed

Bootstrap test is also established.

Finally, some extensions of our paper can be considered. For example, the first is to

consider the hypothesis formulated in (4) which is a test for nonparametric versus paramet-

ric. Second, one might be interesting in extending our results to time series cases, which

has a potential in a wide range of applications. Such extensions can be warranted as a

future research.
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Appendix: Mathematical Proofs

Note that this appendix provides some key steps for proving Theorems 1, 2 and 3,

together with some auxiliary lemmas with their detailed proofs as well as some notations

given in Supplement.

Proof of Theorem 1: Let ∆τ (z) be the partially conditional QTE conditional on Zi = z

and let δτ =
∫
∆τ (z)fZ(z) dz. Then,

Jn =

∫ (
∆̂τ (z)− δ̂τ

)2
dz =

∫ [(
∆̂τ (z)−∆τ (z)

)
+
(
δτ − δ̂τ

)
+
(
∆τ (z)− δτ

)]2
dz,

where δ̂τ = 1
n

∑n
i=1 ∆̂τ (Zi). Following the proof of Theorem 1 in Cai and Xiao (2012), it is

easy to show that δ̂τ is a
√
n-consistent estimate of δτ under Assumptions 1-6. Under the

null hypothesis H0, ∆τ (z)− δτ ≡ 0, thus, by Lemma 3,

Jn =

∫ ( 1
n

n∑
i=1

γn(Yi, Xi, Di; z) + en

)2
dz

=

∫ ( 1
n

n∑
i=1

γn(Yi, Xi, Di; z)
)2
dz + e2n + 2en

∫
1

n

n∑
i=1

γn(Yi, Xi, Di; z)dz

:= Jn,1 + Jn,2 + Jn,3,

where γn(Yi, Xi, Di; z) = ϱn,1,τ (Yi, Xi, Di; z) − Eϱn,1,τ (Yi, Xi, Di; z) − ϱn,0,τ (Yi, Xi, Di; z) +

Eϱn,0,τ (Yi, Xi, Di; z) and en = Op

(
max

{
lnn√
n
,

√
lnn

(nh)3/4

})
. It is easy to verify that n

√
h Jn,2 =

op(1). Also, by noting that E
(
γn(Yi, Xi, Di; z)

)
= 0, we have

n
√
h Jn,3 = n

√
h · en ·

1

n

n∑
i=1

∫
γn(Yi, Xi, Di; z)dz = n

√
h · en ·Op(n

−1/2) = op(1).

Thus, an application of Lemma 5 leads to

n
√
h
(
Jn − µJ

)
= n

√
h
(
Jn,1 − µJ + Jn,2 + Jn,3

) D−→ N (0, σ2
J).

Now, we consider the case under the alternative hypothesis H1. Under H1, it is easy to

show that Jn − µJ =
∫ (

∆τ (z) − δτ
)2
dz + op(1). Since

∫ (
∆τ (z) − δτ

)2
dz is a positive

constant under H1, so that

n
√
h
(
Jn − µJ

) p−→ +∞.
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This completes the proof of Theorem 1. □

Proof of Theorem 2: Under the local alternative H1n : ∆τ (z) = δτ + ρn · ζ(z) with

ρn = n−1/2h−1/4, we have

Jn =

∫ (
∆̂τ (z)− δ̂τ

)2
dz =

∫ [(
∆̂τ (z)−∆τ (z)

)
+
(
δτ − δ̂τ

)
+
(
∆τ (z)− δτ

)]2
dz

=

∫ [(
∆̂τ (z)−∆τ (z)

)
+Op(1/

√
n) + ρn · ζ(z)

]2
dz

=

∫ (
∆̂τ (z)−∆τ (z)

)2
dz + ρ2n ·

∫
ζ2(z)dz +Op

( 1
n

)
+ 2Op

( 1√
n

)
·
∫ (

∆̂τ (z)−∆τ (z)
)
dz

+2Op

( 1√
n

)
· ρn ·

∫
ζ(z)dz + ρn ·

∫
ζ(z)

(
∆̂τ (z)−∆τ (z)

)
dz

:= J (1)
n + J (2)

n + J (3)
n + J (4)

n + J (5)
n + J (6)

n .

By noting that ρn = n−1/2h−1/4,

∫ (
∆̂τ (z)−∆τ (z)

)
dz =

∫
1

n

n∑
i=1

γn(Yi, Xi, Di; z)dz +Op

(
max

{
lnn√
n
,

√
lnn

(nh)3/4

})

= Op

( 1√
n

)
+Op

(
max

{
lnn√
n
,

√
lnn

(nh)3/4

})
,

and

∫
ζ(z)

(
∆̂τ (z)−∆τ (z)

)
dz = Op

( 1√
n

)
+Op

(
max

{
lnn√
n
,

√
lnn

(nh)3/4

})
,

it is easy to show that n
√
hJ

(k)
n = op(1) for 3 ≤ k ≤ 6. Then, using the result in Theorem

1, we have

n
√
h
(
Jn − µJ

)
= n

√
h
(
J (1)
n − µJ

)
+ n

√
hJ (2)

n + op(1)
D−→ N

(∫
ζ2(z)dz, σ2

J

)
.

This completes the proof of Theorem 2. □

Now, before considering the proof of Theorem 3, first, let P denote the distribution

of {(Yi(0), Yi(1), Xi, Di)}ni=1 and use P ∗ to denote the Bootstrap distribution, which is the

distribution of {(Y ∗
i , X

∗
i , D

∗
i )}ni=1, conditional on {(Yi, Xi, Di)}ni=1. Also, we use E∗ and

Var∗ to denote the expectation and variance with respect to P ∗, respectively. Furthermore,

following Lee et al. (2015), let S1, S2, · · · be a sequence a random variables and a1, a2, · · ·
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be a sequence of positive real numbers. Finally, define Sn = op∗(an) if for any ε > 0 and

ϵ > 0, limn→∞ P
{
P ∗(|Sn/an| > ϵ) > ε

}
= 0. Similarly, Sn = Op∗(an) means that if for any

ε > 0 and ϵ > 0, there exists M > 0 such that lim supn→∞ P
{
P ∗(|Sn/an| > M) > ε

}
< ϵ.

Proof of Theorem 3: It is easy to see that we have the following decomposition

J∗
n =

∫ ((
∆̂∗

τ (z)− δ̂∗τ
)
−
(
∆̂τ (z)− δ̂τ

))2
dz

=

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)2
dz +

∫ (
δ̂∗τ − δ̂τ

)2
dz − 2

∫ (
δ̂∗τ − δ̂τ

)(
∆̂∗

τ (z)− ∆̂τ (z)
)
dz

=

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)2
dz +Op∗(1/n)− 2Op∗(1/

√
n)

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)
dz

:= Qn,1 +Qn,2 +Qn,3.

For the term Qn,1, we have

Qn,1 =

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)2
dz

=

∫ (
1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

))2

dz +Op∗(η
2
n)

+2Op∗(ηn) ·
∫ [

1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψ∗

n,0(R
∗
i ; z)

)]
dz

:= Q(1)
n,1 +Q(2)

n,1 +Q(3)
n,1,

where ηn = max
{

lnn√
n
,

√
lnn

(nh)3/4

}
. It is easy to check that n

√
hQ(2)

n,1 = op∗(1). Also, from

Lemma 10, we know that n
√
hQ(3)

n,1 = op∗(1). Therefore, an application of Lemma 9 leads

to

n
√
h(Qn,1 − µJ)

/
σJ = n

√
h(Q(1)

n,1 − µJ)
/
σJ + op∗(1) −→ N (0, 1)

in distribution in probability. For the term Qn,2, it is easy to see that n
√
hQn,2 = op∗(1).

By using Lemma 10 again, we also know that n
√
hQn,3 = op∗(1). Finally, we have

n
√
h(J∗

n − µJ)
/
σJ = n

√
h(Qn,1 − µJ)

/
σJ + op∗(1) −→ N (0, 1)

in distribution in probability. Because N (0, 1) is a continuous distribution, by Polyā’s

theorem in Bhattacharya and Rao (1986), we obtain Theorem 3. □
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SUPPLEMENTARY MATERIAL

This supplement provides some lemmas for proving the main theorems in the paper, en-

titled “A Nonparametric Test for Testing Heterogeneity in Conditional Quantile

Treatment Effects”.

Define W0(Xi, Di) = 1−Di

1−p(Xi)
and W1(Xi, Di) = Di

p(Xi)
. We also let Ŵn,0(Xi, Di) =

1−Di

1−p̂n(Xi)
and Ŵn,1(Xi, Di) = Di

p̂n(Xi)
, where p̂n(x) = p(x; θ̂n) is the parametric estimate of

the propensity score function p(x) using (Xi, Di), i = 1, · · · , n. To prove Theorem 1, we

first provide the following lemmas.

Lemma 1. Suppose Assumptions 2.1-2.5 hold. Then,

sup
z∈Z

∣∣∣q̄j,τ (z)− qj,τ (z)−
1

n

n∑
i=1

[
ϱn,j,τ (Yi, Xi, Di; z)− Eϱn,j,τ (Yi, Xi, Di; z)

]∣∣∣ = Op

( √
lnn

(nh)3/4

)

for j = 0 and 1, where

q̄j,τ (z) = argmin
q

n∑
i=1

Wj(Xi, Di)hKh,i(z)ρτ (Yi; q)

and

ϱn,j,τ (Yi, Xi, Di; z) = −S−1
n,j,τ (z)Wj(Xi, Di)Kh

(
Zi − z

)
φτ (Yi; qj,τ (z))

with ρτ (y; q) = ρτ (y − q) = (y − q)(τ − I{y ≤ q}), φτ (y; θ) = τ − I{y ≤ θ}, Kh,i(z) =

K
(
(Zi − z)/h

)
/h and

Sn,j,τ (z) =

∫
K(u)fY (j)|Z

(
qj,τ (z)|z+hu

)
fZ(z+hu)du = fY (j)|Z

(
qj,τ (z)|z

)
fZ(z)+O(h

2), j = 0, 1.

Proof of Lemma 1: This result can be proved following the proof of Theorem 1 in Lee

et al. (2015). □

Lemma 2. Suppose that Assumptions 2.1-2.6 are satisfied, then

sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ = Op

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}
, j = 0, 1.
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Proof of Lemma 2: For j = 0 and 1, define cumulative distribution functions

F̄n,j(y | z) =
∑n

i=1Kh,i(z)Wj(Xi, Di)I{Yi ≤ y}∑n
i=1Kh,i(z)Wj(Xi, Di)

and

F̂n,j(y | z) =
∑n

i=1Kh,i(z)Ŵn,j(Xi, Di)I{Yi ≤ y}∑n
i=1Kh,i(z)Ŵn,j(Xi, Di)

.

Then q̄j,τ∗(z) = inf{y : F̄n,j(y | z) ≥ τ ∗} and q̂j,τ∗(z) = inf{y : F̂n,j(y | z) ≥ τ ∗} for 0 < τ ∗ <

1. By the definition of quantile, we have

∣∣∣F̄n,j

(
q̄j,τ∗(z) | z

)
− τ ∗

∣∣∣ ≤ max
i=1,··· ,n

{
Kh,i(z)Wj(Xi, Di)I{Yi ≤ y}∑n

i=1Kh,i(z)Wj(Xi, Di)

}

for any 0 < τ ∗ < 1, hence F̄n,j

(
q̄j,τ∗(z) | z

)
= τ ∗ + Op(1/nh). By using supx∈X

∣∣p(x, θ̂n) −
p(x, θ0)

∣∣ = Op(n
−1/2) as in Assumption 2.6, it is also easy to show that

sup
y∈Yj

sup
z∈Z

∣∣∣F̂n,j(y | z)− F̄n,j(y | z)
∣∣∣ = Op(n

−1/2),

where Yj is the support of Y (j). Let cn = max
{

lnn√
n
, (lnn)2

nh

}
. Then,

F̂n,j

(
q̄j,τ+cn(z) | z

)
= F̄n,j

(
q̄j,τ+cn(z) | z

)
+Op(1/

√
n)

= τ + cn +Op(1/nh) +Op(1/
√
n) > τ (S.1)

in probability as n→ ∞. Similarly,

F̂n,j

(
q̄j,τ−cn(z) | z

)
= F̄n,j

(
q̄j,τ−cn(z) | z

)
+Op(1/

√
n)

= τ − cn +Op(1/nh) +Op(1/
√
n) < τ (S.2)

in probability as n→ ∞. Combining (S.1) and (S.2), we have

P
(
q̄j,τ−cn(z) ≤ q̂j,τ (z) ≤ q̄j,τ+cn(z)

)
→ 1 as n→ ∞.
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Also, one has q̄j,τ−cn(z) ≤ q̄j,τ (z) ≤ q̄j,τ+cn(z) by definition, and it follows that

P
(
sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ ≤ sup

z∈Z

∣∣q̄j,τ+cn(z)− q̄j,τ−cn(z)
∣∣)→ 1 as n→ ∞.

Next, we consider the order of supz∈Z
∣∣q̄j,τ+cn(z) − q̄j,τ−cn(z)

∣∣. Recall that Sn,j,τ∗(z) =∫
K(u)fY (j)|Z

(
qj,τ∗(z)|z + hu

)
fZ(z + hu)du for j = 0 and 1. It is easy to show that

supz∈Z |Sn,j,τ±cn(z) − Sn,j,τ (z)| = O(cn). By using the Bahadur representation of q̄j,τ∗(z)

provided by Lemma 1, it follows that

sup
z∈Z

∣∣q̄j,τ+cn(z)− q̄j,τ−cn(z)
∣∣

≤ sup
z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣+Op

{ √
lnn

(nh)3/4

}
+ sup

z∈Z

∣∣∣S−1
n,j,τ (z)

1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)×
(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}

)
+Op(cn)

∣∣∣
+sup

z∈Z

∣∣∣S−1
n,j,τ (z)E

[
Kh,i(z)Wj(Xi, Di)

(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}

)]
+O(cn)

∣∣∣
≤ sup

z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣

+sup
z∈Z

∣∣∣S−1
n,j,τ (z)

1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)×
(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}

)∣∣∣
+sup

z∈Z

∣∣∣S−1
n,j,τ (z)E

[
Kh,i(z)Wj(Xi, Di)

(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}

)]∣∣∣
+O(cn) +Op

{ √
lnn

(nh)3/4

}
:= M1 +M2 +M3 +Op(cn) +Op

{ √
lnn

(nh)3/4

}
.

For M1, note that FY (j)|Z(qj,τ+cn(z)|z) = τ + cn and FY (j)|Z(qj,τ−cn(z)|z) = τ − cn under

Assumption 2.3. Thus,

2cn = FY (j)|Z(qj,τ+cn(z)|z)− FY (j)|Z(qj,τ−cn(z)|z) = fY (j)|Z(q
∗
n|z)

(
qj,τ+cn(z)− qj,τ−cn(z)

)
,

where q∗n is a point between qj,τ−cn(z) and qj,τ+cn(z), which implies that

M1 = sup
z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣ = O(cn)

by the assumption that fY (j)|Z(q|z) is uniformly bounded away from zero in a neighbor-
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hood of qj,τ (z). For M2, since qj,τ−cn(z) ≤ qj,τ (z) ≤ qj,τ+cn(z) and supz∈Z
∣∣qj,τ+cn(z) −

qj,τ−cn(z)
∣∣ = O(cn), there exists a constant A which does not rely on z, such that

M2 ≤ sup
z∈Z

∣∣∣S−1
n,j,τ (z)

1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}
∣∣∣

≤ sup
z∈Z

∣∣∣∣S−1
n,j,τ (z)

1

n

n∑
i=1

[
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

−E
(
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)]∣∣∣∣
+sup

z∈Z

∣∣∣∣S−1
n,j,τ (z)E

(
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)∣∣∣∣
:= M2,1 +M2,2.

Using Assumption 2.3, we have that

E

[(
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)2]
= E

{
K2
(
(Zi − z)/h

)
p(Xi)

−j(1− p(Xi))
j−1E

[
I{qj,τ (z)− Acn ≤ Yi(j) ≤ qj,τ (z) + Acn}

∣∣Xi

]}
= O(hcn).

Also, note that
{
K
(
(Zi−z)/h

)
Wj(Xi, Di)I{qj,τ (z)−Acn ≤ Yi ≤ qj,τ (z)+Acn} : z ∈ Z

}
is

Euclidean for a constant envelope, which together with lnn
nhcn

= o(1) implies the conditions

required by Theorem II.37 of Pollard (1984) are met. Hence, by Theorem II.37 of Pollard

(1984),

sup
z∈Z

∣∣∣∣ 1n
n∑

i=1

[
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

−E
(
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)]∣∣∣∣ = op(hcn),

together with the fact Sn,j,τ (z) is bounded away from zero, we have thatM2,1 =
1
h
·op(hcn) =

op(cn). It is also easy to show that M2,2 = O(cn). Hence, M2 = Op(cn). Similar to the

proof of M2,2 = O(cn), we can also show that M3 = O(cn). Therefore,

sup
z∈Z

∣∣q̄j,τ+cn(z)− q̄j,τ−cn(z)
∣∣ = Op(cn) +Op

{ √
lnn

(nh)3/4

}
.

S4



Together with (5), we have

sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ = Op(cn) +Op

{ √
lnn

(nh)3/4

}
= Op

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}
.

This completes the proof. □

Lemma 3. Under Assumptions 2.1-2.6 and nh2 → ∞, we have

sup
z∈Z

∣∣∣q̂j,τ (z)−qj,τ (z)− 1

n

n∑
i=1

[
ϱn,j,τ (Yi, Xi, Di; z)−E

(
ϱn,j,τ (Yi, Xi, Di; z)

)]∣∣∣ = Op

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}

for j = 0 and 1.

Proof of Lemma 3: The result comes from Lemma 1 and Lemma 2. □

Lemma 4. Let R1, R2, · · · be an i.i.d. sequence. Suppose that the U-statistic Un =∑
1≤i<j≤n

Hn(Ri, Rj) with symmetric variable function Hn is centered (i.e., E[Hn(R1, R2)] =

0) and degenerated (i.e., E[Hn(R1, R2)|R1 = z1] = 0 almost surely for all z1). Then, if

lim
n→∞

E
[
E2
[
Hn(R1, R3)Hn(R2, R3)

∣∣R1, R2

]]
+ n−1E

[
H4

n(R1, R2)
]

E2
[
H2

n(R1, R2)
] = 0,

we have that as n→ ∞,
21/2

nσn
Un

D−→ N (0, 1),

where σ2
n = E

[
H2

n(R1, R2)
]
.

Proof of Lemma 4: The result is given by Theorem 1 in Hall (1984). □

Lemma 5. Suppose the conditions required by Theorem 1 are satisfied. Then,

n
√
h

{∫ [ 1
n

n∑
i=1

(
ϱn,1,τ (Yi, Xi, Di; z)− Eϱn,1,τ (Yi, Xi, Di; z)

−ϱn,0,τ (Yi, Xi, Di; z) + Eϱn,0,τ (Yi, Xi, Di; z)
)]2

dz − µJ

}
D−→ N (0, σ2

J),

where

µJ =
1

nh

∫
K2(s)ds

∫ {
µ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
µ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
1

fZ(z)
dz,
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and

σ2
J = 2

∫ (∫
K(t)K(t+ s)dt

)2
ds

∫ {
µ1(u;u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
µ0(u;u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
1

f 2
Z(u)

du,

with

µ0(z;u) = E

[
1

1− p(Xi)

(
I{Yi(0) ≤ q0,τ (u)} − τ

)2∣∣Zi = z

]
,

and

µ1(z;u) = E

[
1

p(Xi)

(
I{Yi(1) ≤ q1,τ (u)} − τ

)2∣∣Zi = z

]
.

Proof of Lemma 5: For simplicity, we let

γn(Yi, Xi, Di; z) = ϱn,1,τ (Yi, Xi, Di; z)− Eϱn,1,τ (Yi, Xi, Di; z)

−ϱn,0,τ (Yi, Xi, Di; z) + Eϱn,0,τ (Yi, Xi, Di; z).

Then,

∫ ( 1
n

n∑
i=1

γn(Yi, Xi, Di; z)
)2
dz (S.3)

= 2n−2
∑

1≤i<k≤n

∫
γn(Yi, Xi, Di; z)γn(Yk, Xk, Dk; z)dz + n−2

n∑
i=1

∫
γ2n(Yi, Xi, Di; z)dz

:= In,1 + In,2.

First, we consider the term In,1. Let Ri = (Yi, Xi, Di) and define

Hn(Ri, Rk) =
2

n2

∫
γn(Ri; z)γn(Rk; z)dz.

Then, In,1 =
∑

1≤i<k≤n

Hn(Ri, Rk) is a centered and degenerated U -statistic. Thus,

E
[
Hn(Ri, Rk)

2
]

(S.4)

= E

[
4

n4

∫ ∫
γn(Ri;u)γn(Rk;u) γn(Ri; v)γn(Rk; v) dudv

]
=

4

n4

∫ ∫
E
[
γn(Ri;u)γn(Ri; v)γn(Rk;u)γn(Rk; v)

]
dudv

=
4

n4

∫ ∫
E2
[
γn(Ri;u)γn(Ri; v)

]
dudv.
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It is easy to find that

E
[
Sn,j,τ (z)

−1Wj(Xi, Di)φτ (Yi; qj,τ (z))|Zi = z
]
= 0.

Hence,

E
[
ϱn,j,τ (Yi, Xi, Di; z)

]
(S.5)

= 0− 1

Sn,j,τ (z)
f ′
Z(z)

∂FY (j)|Z(qj,τ (z)|u)
∂u

∣∣∣
u=z

h2
∫
s2K(s)ds+ o(h2) = O(h2)

uniformly in z for j = 0 and 1. Also note that Di(1−Di) = 0, then,

E
[
γn(Ri;u)γn(Ri; v)

]
(S.6)

= E
[(
ϱn,1,τ (Ri;u)− ϱn,0,τ (Ri;u)

)(
ϱn,1,τ (Ri; v)− ϱn,0,τ (Ri; v)

)]
−E
[
ϱn,1,τ (Ri;u)− ϱn,0,τ (Ri;u)

]
E
[
ϱn,1,τ (Ri; v)− ϱn,0,τ (Ri; v)

]
= S−1

n,1,τ (u)S
−1
n,1,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) Di

p2(Xi)
φτ (Yi; q1,τ (u))φτ (Yi; q1,τ (v))

]
+S−1

n,0,τ (u)S
−1
n,0,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1−Di

(1− p(Xi))2
φτ (Yi; q0,τ (u))φτ (Yi; q0,τ (v))

]
+O(h4)

= S−1
n,1,τ (u)S

−1
n,1,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1

p(Xi)
φτ (Yi; q1,τ (u))φτ (Yi; q1,τ (v))

]
+S−1

n,0,τ (u)S
−1
n,0,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1

1− p(Xi)
φτ (Yi; q0,τ (u))φτ (Yi; q0,τ (v))

]
+O(h4)

= S−1
n,1,τ (u)S

−1
n,1,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

)
κ1(Zi;u, v)

]
+S−1

n,0,τ (u)S
−1
n,0,τ (v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

)
κ0(Zi;u, v)

]
+O(h4)

=
1

h
S−1
n,1,τ (u)S

−1
n,1,τ (v)

∫
K(t)K

(
t+

u− v

h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

+
1

h
S−1
n,0,τ (u)S

−1
n,0,τ (v)

∫
K(t)K

(
t+

u− v

h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt+O(h4),

where

κ1(z;u, v) = E
[ 1

p(Xi)
φτ (Yi(1); q1,τ (u))φτ (Yi(1); q1,τ (v))

∣∣Zi = z
]
,

and

κ0(z;u, v) = E
[ 1

1− p(Xi)
φτ (Yi(0); q0,τ (u))φτ (Yi(0); q0,τ (v))

∣∣Zi = z
]
,
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with φτ (y; q) = I(y ≤ q)− τ . Thus,

E2
[
γn(Ri;u)γn(Ri; v)

]
(S.7)

=
1

h2
S−2
n,1,τ (u)S

−2
n,1,τ (v)

(∫
K(t)K

(
t+

u− v

h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

)2
+

1

h2
S−2
n,0,τ (u)S

−2
n,0,τ (v)

(∫
K(t)K

(
t+

u− v

h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt

)2
+

2

h2
S−1
n,1,τ (u)S

−1
n,1,τ (v)S

−1
n,0,τ (u)S

−1
n,0,τ (v)

∫
K(t)K

(
t+

u− v

h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

×
∫
K(t)K

(
t+

u− v

h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt

+2O(h3)S−1
n,1,τ (u)S

−1
n,1,τ (v)

∫
K(t)K

(
t+

u− v

h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

+2O(h3)S−1
n,0,τ (u)S

−1
n,0,τ (v)

∫
K(t)K

(
t+

u− v

h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt+O(h8).

An application of (S.4) and some straightforward calculations imply that

E
[
Hn(Ri, Rk)

2
]

=
4

n4

∫ ∫
E2
[
γn(Ri;u)γn(Ri; v)

]
dudv (S.8)

=
4

n4h

{∫ (∫
K(t)K(t+ s)dt

)2
ds ·

[ ∫
S−4
n,1,τ (u)κ

2
1(u;u, u)f

2
Z(u)du

+

∫
S−4
n,0,τ (u)κ

2
0(u;u, u)f

2
Z(u)du

+2

∫
S−2
n,1,τ (u)S

−2
n,0,τ (u)κ1(u;u, u)κ0(u;u, u)f

2
Z(u)du

]
+ o(1)

}
.

This, coupled with Sn,j,τ (z) = fZ(z)fY (j)|Z(qj,τ (z)|z) +O(h2) for j = 0 and 1, yields

E
[
Hn(R1, R2)

2
]

=
4

n4h

(∫ (∫
K(t)K(t+ s)dt

)2
ds

×
∫ {

κ1(u;u, u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
κ0(u;u, u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
1

f 2
Z(u)

du+ o(1)

)
=

2

n4h

(
σ2
J + o(1)

)
. (S.9)

Similarly, by straightforward calculations, we can obtain

E
[
E2
[
Hn(R1, R3)Hn(R2, R3)

∣∣R1, R2

]]
= O

(( 1

n2h2

)4
h7
)
,
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and

E
[
Hn(R1, R2)

4
]
= O

(( 1

n2h2

)4
h5
)
.

Thus, the condition

lim
n→∞

E
[
E2
[
Hn(R1, R3)Hn(R2, R3)

∣∣R1, R2

]]
+ n−1E

[
Hn(R1, R2)

4
]

(
E
[
Hn(R1, R2)2

])2 = 0

in Lemma 4 is satisfied, so that

√
2

nE1/2
[
Hn(R1, R2)2

] In,1 D−→ N (0, 1),

or equivalently,

n
√
h In,1

D−→ N (0, σ2
J). (S.10)

Now, we move to the term In,2 = n−2
n∑

i=1

∫
γ2n(Yi, Xi, Di; z)dz. Note that

E
[
γ2n(Yi, Xi, Di; z)

]
= E

[
ϱn,1,τ (Yi, Xi, Di; z)

]2
+ E

[
ϱn,0,τ (Yi, Xi, Di; z)

]2
+O(h4)

= S−2
n,1,τ (z)E

[
1

h2
K2
(Zi − z

h

) Di

p2(Xi)
(I{Yi ≤ q1,τ (z)} − τ)2

]
+S−2

n,0,τ (z)E

[
1

h2
K2
(Zi − z

h

) 1−Di

(1− p(Xi))2
(I{Yi ≤ q0,τ (z)} − τ)2

]
+O(h4)

= S−2
n,1,τ (z)E

[
1

h2
K2
(Zi − z

h

) 1

p(Xi)
(I{Yi(1) ≤ q1,τ (z)} − τ)2

]
+S−2

n,0,τ (z)E

[
1

h2
K2
(Zi − z

h

) 1

1− p(Xi)
(I{Yi(0) ≤ q0,τ (z)} − τ)2

]
+O(h4)

= S−2
n,1,τ (z)E

[
1

h2
K2
(Zi − z

h

)
µ1(Zi; z)

]
+ S−2

n,0,τ (z)E

[
1

h2
K2
(Zi − z

h

)
µ0(Zi; z)

]
+O(h4)

= S−2
n,1,τ (z)

[
1

h

(
µ1(z; z)fZ(z)

∫
K2(s)ds+O(h)

)]
+S−2

n,0,τ (z)

[
1

h

(
µ0(z; z)fZ(z)

∫
K2(s)ds+O(h)

)]
+O(h4)

=
1

h

{∫
K2(s)ds ·

(
S−2
n,1,τ (z)µ1(z; z) + S−2

n,0,τ (z)µ0(z; z)
)
fZ(z)

}
+O(1),
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coupled with Sn,j,τ (z) = fZ(z)fY (j)|Z(qj,τ (z)|z) +O(h2) for j = 0 and 1, we have

E
(
In,2
)

=
1

n

∫
E
[
γ2n(Yi, Xi, Di; z)

]
dz (S.11)

=
1

nh

{∫
K2(s)ds ·

∫ (
S−2
n,1,τ (z)µ1(z; z) + S−2

n,0,τ (z)µ0(z; z)
)
fZ(z)dz

}
+O

( 1
n

)
=

1

nh

∫
K2(s)ds ·

∫ {
µ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
µ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
1

fZ(z)
dz +O

( 1
n

)
= µJ +O

( 1
n

)
.

Furthermore,

Var
(
n
√
hIn,2

)
= E

{
n
√
h
[
In,2 − E(In,2)

]}2

(S.12)

= n−1h

{
E

[(∫
γ2n(Yi, Xi, Di; z)dz

)2]
− E2

[ ∫
γ2n(Yi, Xi, Di; z)dz

]}
= n−1h

{
E

[(∫
γ2n(Yi, Xi, Di; z)dz

)2]
−
[ ∫

E
[
γ2n(Yi, Xi, Di; z)

]
dz

]2}
= n−1h

{∫ ∫
E
[
γ2n(Yi, Xi, Di;u)γ

2
n(Yi, Xi, Di; v)

]
dudv −O(h−2)

}
= n−1h

{∫ ∫
E
[
γ2n(Yi, Xi, Di;u)

]
E
[
γ2n(Yi, Xi, Di; v)

]
dudv −O(h−2)

}
= n−1h ·O(h−2) → 0,

together with (S.11), we have

n
√
h
[
In,2 − µJ

]
= n

√
h
[
In,2 − E(In,2)

]
+ op(1) = op(1). (S.13)

It follows by combining (S.3), (S.10) and (S.13) that

n
√
h

{∫ [ 1
n

n∑
i=1

(
ϱn,1,τ (Yi, Xi, Di; z)− Eϱn,1,τ (Yi, Xi, Di; z)

−ϱn,0,τ (Yi, Xi, Di; z) + Eϱn,0,τ (Yi, Xi, Di; z)
)]2

dz − µJ

}
D−→ N (0, σ2

J). □

S10



Lemma 6. Suppose Assumptions 2.1-2.5 are satisfied. Then,

sup
z∈Z

∣∣∣q̄∗j,τ (z)− q̄j,τ (z)−
1

n

n∑
i=1

[
ϱn,j,τ (R

∗
i ; z)− E∗(ϱn,j,τ (R∗

i ; z)
)]∣∣∣ = Op∗

( √
lnn

(nh)3/4

)

for j = 0 and 1, where R∗
i = (Y ∗

i , X
∗
i , D

∗
i )

′,

q̄∗j,τ (z) = argmin
q

n∑
i=1

Wj(X
∗
i , D

∗
i )hK

(Z∗
i − z

h

)
ρτ (Y

∗
i ; q),

and

ϱn,j,τ (Y
∗
i , X

∗
i , D

∗
i ; z) = −S−1

n,j,τ (z)Wj(X
∗
i , D

∗
i )Kh

(
Z∗

i − z
)
φτ (Y

∗
i ; qj,τ (z)).

Proof of Lemma 6: This result can be proved following the proof of Theorem 2 in Lee

et al. (2015). □

Lemma 7. Under Assumptions 2.1-2.6, then, we have

sup
z∈Z

∣∣∣q̂∗j,τ (z)− q̄∗j,τ (z)
∣∣∣ = Op∗

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}

for j = 0 and 1.

Proof of Lemma 7: This result can be proved by the similar arguments to that of Lemma

2 and the details are thus omitted. □

Lemma 8. Suppose Assumptions 2.1-2.6 hold. Then, for j = 0 and 1,

sup
z∈Z

∣∣∣q̂∗j,τ (z)− q̄j,τ (z)−
1

n

n∑
i=1

[
ϱn,j,τ (R

∗
i ; z)− E∗(ϱn,j,τ (R

∗
i ; z))

]∣∣∣ = Op∗

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}
.

Proof of Lemma 8: It is easy to observe that

sup
z∈Z

∣∣∣q̂∗j,τ (z)− q̂j,τ (z)−
1

n

n∑
i=1

[
ϱn,j,τ (R

∗
i ; z)− E∗(ϱn,j,τ (R

∗
i ; z))

]∣∣∣
≤ sup

z∈Z

∣∣∣q̄∗j,τ (z)− q̄j,τ (z)−
1

n

n∑
i=1

[
ϱn,j,τ (R

∗
i ; z)− E∗(ϱn,j,τ (R

∗
i ; z))

]∣∣∣
S11



+sup
z∈Z

∣∣q̂∗j,τ (z)− q̄∗j,τ (z)
∣∣+ sup

z∈Z

∣∣q̄j,τ (z)− q̂j,τ (z)
∣∣

= Op∗

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}

by Lemmas 2, 6 and 7. Therefore, the proof of Lemma 8 is completed. □

Lemma 9. Suppose the conditions required by Theorem 3 are satisfied. Then,

sup
y∈R

∣∣∣∣∣P ∗

{
n
√
h

σJ

[ ∫ (
1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

))2

dz − µJ

]
≤ y

}
− Φ(y)

∣∣∣∣∣ = op(1),

where ψn,j,τ (R
∗
i ; z) = ϱn,j,τ (Y

∗
i , X

∗
i , D

∗
i ; z)−E∗(ϱn,j,τ (Y ∗

i , X
∗
i , D

∗
i ; z)

)
for j = 0 and 1. That

is,

n
√
h

σJ

[ ∫ (
1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

))2

dz − µJ

]

converges to N (0, 1) in distribution in probability.

Proof of Lemma 9: It is noticed that∫ (
1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

))2

dz

=
2

n2

∑
1≤i<j≤n

∫ (
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)(
ψn,1,τ (R

∗
j ; z)− ψn,0,τ (R

∗
j ; z)

)
dz

+
1

n2

n∑
i=1

∫ (
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)2
dz

:= Q∗
n,1 +Q∗

n,2. (S.14)

We first consider the term Q∗
n,1. Define

T ∗
n(R

∗
i , R

∗
j ) =

2

n2

∫ (
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)(
ψn,1,τ (R

∗
j ; z)− ψn,0,τ (R

∗
j ; z)

)
dz.

Then, Q∗
n,1 can be written as a second-order U -statistic as follows:

Q∗
n,1 =

∑
1≤i<j≤n

T ∗
n(R

∗
i , R

∗
j ).

S12



By its definition, it is easy to find that E∗[T ∗
n(R

∗
i , R

∗
j )] = 0 and E∗[T ∗

n(R
∗
i , R

∗
j )|R∗

i ] = 0.

Thus, conditional on {Yi, Xi, Di}ni=1, Q
∗
n,1 is a second-order degenerate U -statistic. To apply

Lemma 4, we need to verify the condition

E∗
[
E∗2[T ∗

n(R
∗
1, R

∗
3)T

∗
n(R

∗
2, R

∗
3)
∣∣R∗

1, R
∗
2

]]
+ n−1E∗[T ∗4

n (R∗
1, R

∗
2)
]

E∗2
[
T ∗2
n (R∗

1, R
∗
2)
] = op(1).

Define

σ∗2
n := E∗(T ∗2

n (R∗
1, R

∗
2)
)

(S.15)

=
4

n4

∫ ∫
E∗
[(
ψn,1,τ (R

∗
1;u)− ψn,0,τ (R

∗
1;u)

)(
ψn,1,τ (R

∗
2;u)− ψn,0,τ (R

∗
2;u)

)
×
(
ψn,1,τ (R

∗
1; v)− ψn,0,τ (R

∗
1; v)

)(
ψn,1,τ (R

∗
2; v)− ψn,0,τ (R

∗
2; v)

)]
dudv

=
4

n4

∫ ∫
E∗2
[(
ψn,1,τ (R

∗
1;u)− ψn,0,τ (R

∗
1;u)

)(
ψn,1,τ (R

∗
1; v)− ψn,0,τ (R

∗
1; v)

)]
dudv

=
4

n4

∫ ∫ [
E∗(ψn,1,τ (R

∗
1;u)ψn,1,τ (R

∗
1; v)

)
+ E∗(ψn,0,τ (R

∗
1;u)ψn,0,τ (R

∗
1; v)

)
−E∗(ψn,1,τ (R

∗
1;u)ψn,0,τ (R

∗
1; v)

)
− E∗(ψn,1,τ (R

∗
1; v)ψn,0,τ (R

∗
1;u)

)]2
dudv.

From (S.5) and some calculations, we have

E∗(ϱn,j,τ (R∗
1;u)

)
=

1

n

n∑
i=1

ϱn,j,τ (Ri;u) (S.16)

= Op

(
E
(
ϱn,j,τ (Ri;u)

)
+

1√
n
Var1/2

(
ϱn,j,τ (Ri;u)

))
= Op

(
h2 +

1√
nh

)
uniformly in u. It follows that for j = 0, 1,

E∗(ψn,j,τ (R
∗
1;u)ψn,j,τ (R

∗
1; v)

)
= E∗(ϱn,j,τ (R∗

1;u)ϱn,j,τ (R
∗
1; v)

)
− E∗(ϱn,j,τ (R∗

1;u)
)
· E∗(ϱn,j,τ (R∗

1; v)
)

= E∗(ϱn,j,τ (R∗
1;u)ϱn,j,τ (R

∗
1; v)

)
+Op

( 1

nh
+ h4

)
,

and

E∗(ψn,1,τ (R
∗
1;u)ψn,0,τ (R

∗
1; v)

)
= −E∗(ϱn,1,τ (R∗

1;u)
)
· E∗(ϱn,0,τ (R∗

1; v)
)
= Op

( 1

nh
+ h4

)
.
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Hence, according to (S.15), we have

σ∗2
n =

4

n4

∫ ∫ [
E∗(ψn,1,τ (R

∗
1;u)ψn,1,τ (R

∗
1; v)

)
+ E∗(ψn,0,τ (R

∗
1;u)ψn,0,τ (R

∗
1; v)

)
−E∗(ψn,1,τ (R

∗
1;u)ψn,0,τ (R

∗
1; v)

)
− E∗(ψn,1,τ (R

∗
1; v)ψn,0,τ (R

∗
1;u)

)]2
dudv

=
4

n4

∫ ∫ (
E∗(ϱn,1,τ (R∗

1;u)ϱn,1,τ (R
∗
1; v)

)
+ E∗(ϱn,0,τ (R∗

1;u)ϱn,0,τ (R
∗
1; v)

)
+Op

( 1

nh
+ h4

))2

dudv

=
4

n4

∫ ∫ (
E∗(ϱn,1,τ (R∗

1;u)ϱn,1,τ (R
∗
1; v)

)
+ E∗(ϱn,0,τ (R∗

1;u)ϱn,0,τ (R
∗
1; v)

))2

dudv

+Op

( 1

n5h
+
h4

n4

)∫ ∫ (
E∗(ϱn,1,τ (R∗

1;u)ϱn,1,τ (R
∗
1; v)

)
+ E∗(ϱn,0,τ (R∗

1;u)ϱn,0,τ (R
∗
1; v)

))
dudv

+Op

( 1

n6h2
+
h8

n4

)
:= A1 + A2 + op

( 1

n4h

)
.

We focus on the term A1. Note that

Var
[
E∗(ϱn,j,τ (R∗

1;u)ϱn,j,τ (R
∗
1; v)

)]
= Var

[ 1
n

n∑
i=1

ϱn,j,τ (Ri;u)ϱn,j,τ (Ri; v)
]

≤ 1

n
E
(
ϱn,j,τ (Ri;u)ϱn,j,τ (Ri; v)

)2
=

1

n
E
(
S−1
n,j,τ (u)S

−1
n,j,τ (v)Wj(Xi, Di)Kh(Zi − u)Kh(Zi − v)φτ (Yi; qj,τ (u))φτ (Yi; qj,τ (v))

)2
=

1

n
· 1

h4
S−2
n,j,τ (u)S

−2
n,j,τ (v)E

{
W 2

j (Xi, Di)K
2
(Zi − u

h

)
×K2

(Zi − v

h

)
φ2
τ (Yi; qj,τ (u))φ

2
τ (Yi; qj,τ (v))

}
=

1

n
· 1

h4
S−2
n,j,τ (u)S

−2
n,j,τ (v)E

{
K2
(Zi − u

h

)
K2
(Zi − v

h

)
×E
(
p−3j(Xi)(1− p(Xi))

−3(1−j)φ2
τ (Yi(j); qj,τ (u))φ

2
τ (Yi(j); qj,τ (v))

∣∣∣Zi

)}
=

1

n
· 1

h3
S−2
n,j,τ (u)S

−2
n,j,τ (v)

∫
K2(s)K2

(
s+

u− v

h

)
ℓj(u+ hs;u, v)fZ(u+ hs)ds = Op

( 1

nh3

)
,

where

ℓj(z;u, v) = E
(
p−3j(Xi)(1− p(Xi))

−3(1−j)φ2
τ (Yi(j); qj,τ (u))φ

2
τ (Yi(j); qj,τ (v))

∣∣∣Zi = z
)
.
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Therefore,

E∗(ϱn,j,τ (R∗
1;u)ϱn,j,τ (R

∗
1; v)

)
=

1

n

n∑
i=1

ϱn,j,τ (Ri;u)ϱn,j,τ (Ri; v)

= E
(
ϱn,j,τ (R1;u)ϱn,j,τ (R1; v)

)
+Op

( 1√
nh3

)
. (S.17)

Then,

A1 =
4

n4

∫ ∫ (
E∗(ϱn,1,τ (R∗

1;u)ϱn,1,τ (R
∗
1; v)

)
+ E∗(ϱn,0,τ (R∗

1;u)ϱn,0,τ (R
∗
1; v)

))2

dudv

=
4

n4

∫ ∫ (
E
(
ϱn,1,τ (R1;u)ϱn,1,τ (R1; v)

)
+ E

(
ϱn,0,τ (R1;u)ϱn,0,τ (R1; v)

)
+Op

( 1√
nh3

))2

dudv.

Using similar arguments as in (S.6), (S.7), (S.8) and (S.9), we have

A1 =
4

n4

[
1

h

∫ (∫
K(t)K(t+ s)dt

)2
ds

×
∫ {

κ1(u;u, u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
κ0(u;u, u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
1

f 2
Z(u)

du+Op

( 1√
nh3

)
+Op

( 1

nh3

)]
=

4

n4h

[ ∫ (∫
K(t)K(t+ s)dt

)2
ds

×
∫ {

κ1(u;u, u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
κ0(u;u, u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
1

f 2
Z(u)

du+Op

( 1√
nh

)
+Op

( 1

nh2

)]
=

2

n4h

(
σ2
J + op(1)

)
.

It is also easy to find that A2 = op

(
1

n4h

)
. Thus,

σ∗2
n = E∗(T ∗2

n (R∗
1, R

∗
2)
)
=

2σ2
J

n4h
+ op

( 1

n4h

)
.

Similarly, by some straightforward but tedious calculations, we can obtain that

E∗
[
E∗2[T ∗

n(R
∗
1, R

∗
3)T

∗
n(R

∗
2, R

∗
3)
∣∣R∗

1, R
∗
2

]]
= Op

( 1

n8h

)
,

and

E∗[T ∗4
n (R∗

1, R
∗
2)
]
= Op

( 1

n8h3

)
.
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Therefore, the condition

E∗
[
E∗2[T ∗

n(R
∗
1, R

∗
3)T

∗
n(R

∗
2, R

∗
3)
∣∣R∗

1, R
∗
2

]]
+ n−1E∗[T ∗4

n (R∗
1, R

∗
2)
]

E∗2
[
T ∗2
n (R∗

1, R
∗
2)
] = op(1)

is satisfied. From Lemma 4 we know that

√
2Q∗

n,1

nσ∗
n

−→N (0, 1)

in distribution in probability. Since σ∗
n =

√
2√

n4h

(
σJ + op(1)

)
, we also have

n
√
hQ∗

n,1

σJ
−→N (0, 1) (S.18)

in distribution in probability. For the term Q∗
n,2, we have

Q∗
n,2 =

1

n2

n∑
i=1

∫ (
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)2
dz

=
1

n2

n∑
i=1

∫ ((
ϱn,1,τ (R

∗
i ; z)− ϱn,0,τ (R

∗
i ; z)

)
− E∗(ϱn,1,τ (R∗

i ; z)− ϱn,0,τ (R
∗
i ; z)

))2
dz

=
1

n2

n∑
i=1

∫ (
ϱn,1,τ (R

∗
i ; z)− ϱn,0,τ (R

∗
i ; z)

)2
dz − 1

n2

n∑
i=1

∫ (
E∗(ϱn,1,τ (R∗

i ; z)− ϱn,0,τ (R
∗
i ; z)

))2
dz

− 2

n2

n∑
i=1

∫ [
E∗(ϱn,1,τ (R∗

i ; z)− ϱn,0,τ (R
∗
i ; z)

)](
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)
dz

:= Q∗
n,2,1 −Q∗

n,2,2 − 2Q∗
n,2,3.

For Q∗
n,2,1, it is easy to obtain that

E∗(Q∗
n,2,1

)
=

1

n2

n∑
i=1

∫ (
ϱn,1,τ (Ri; z)− ϱn,0,τ (Ri; z)

)2
dz,

and

Var∗(Q∗
n,2,1) = Var∗

(
1

n2

n∑
i=1

∫ (
ϱn,1(R

∗
i ; z)− ϱn,0(R

∗
i ; z)

)2
dz

)
(S.19)

=
1

n3
Var∗

(∫ (
ϱ2n,1(R

∗
i ; z) + ϱ2n,0(R

∗
i ; z)

))
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=
1

n3
E∗
(∫ (

ϱ2n,1(R
∗
i ; z) + ϱ2n,0(R

∗
i ; z)

)
dz

)2

− 1

n3

{∫ (
E∗ϱ2n,1(R

∗
i ; z) + E∗ϱ2n,0(R

∗
i ; z)

)
dz

}2

=
1

n3

∫ ∫ (
E∗(ϱ2n,1(R∗

i ;u)ϱ
2
n,1(R

∗
i ; v)

)
+ E∗(ϱ2n,0(R∗

i ;u)ϱ
2
n,0(R

∗
i ; v)

))
dudv

− 1

n3

{∫ (
E∗ϱ2n,1(R

∗
i ; z) + E∗ϱ2n,0(R

∗
i ; z)

)
dz

}2

.

It is easy to obtain that

E

(∫ (
E∗ϱ2n,1(R

∗
i ; z) + E∗ϱ2n,0(R

∗
i ; z)

)
dz

)
=

∫ [
E
(
E∗ϱ2n,1(R

∗
i ; z)

)
+ E

(
E∗ϱ2n,0(R

∗
i ; z)

)]
dz

=
1

h

{∫
S−2
n,1,τ (z)

∫
K2(s)µ1(z + hs; z)fZ(z + hs)ds+ S−2

n,0,τ (z)

∫
K2(s)µ0(z + hs; z)fZ(z + hs)ds

}
= O(1/h),

which implies that∫ (
E∗ϱ2n,1(R

∗
i ; z) + E∗ϱ2n,0(R

∗
i ; z)

)
dz = Op(1/h). (S.20)

Similarly, by straightforward calculations, we can obtain that

E

∫ ∫ (
E∗(ϱ2n,j(R∗

i ;u)ϱ
2
n,j(R

∗
i ; v)

))
dudv

=

∫ ∫
E
(
E∗(ϱ2n,j(R∗

i ;u)ϱ
2
n,j(R

∗
i ; v)

))
dudv

=
1

nh4

∫ ∫
S−2
n,j(u)S

−2
n,j(v)E

[
W 4

j (Xi, Di)K
2
(Zi − u

h

)
K2
(Zi − v

h

)
φ2
τ (Yi; qj,τ (u))φ

2
τ (Yi; qj,τ (v))

]
×ω(u)ω(v)dudv + 1

n2h4

∑
i ̸=k

∫ ∫
S−2
n,j(u)S

−2
n,j(v)E

[
W 2

j (Xi, Di)K
2
(Zi − u

h

)
φ2
τ (Yi; qj,τ (u)

]
×E
[
W 2

j (Xk, Dk)K
2
(Zk − v

h

)
φ2
τ (Yk; qj,τ (v)

]
dudv

=
1

nh3

∫ ∫
S−2
n,j(u)S

−2
n,j(v)

(∫
K2(t)K2

(
t+

u− v

h

)
ℓj(u+ ht;u, v)fZ(u+ ht)dt

)
dudv

+
n(n− 1)

n2h2

∫ ∫
S−2
n,j(u)S

−2
n,j(v)

(∫
K2(s)µj(u+ hs;u)fZ(u+ hs)ds

×
∫
K2(s)µj(v + hs; v)fZ(v + hs)ds

)
dudv
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=
n(n− 1)

n2h2

{(∫
K2(s)ds

)2 ∫ ∫
S−2
n,j(u)S

−2
n,j(v)µj(u;u)µj(v; v)fZ(u)fZ(v)dudv + o(1)

}
+O
( 1

nh2

)
= O(1/h2),

which implies∫ ∫ (
E∗(ϱ2n,1(R∗

i ;u)ϱ
2
n,1(R

∗
i ; v)

)
+ E∗(ϱ2n,0(R∗

i ;u)ϱ
2
n,0(R

∗
i ; v)

))
dudv = Op(1/h

2). (S.21)

From (S.19), (S.20) and (S.21), we have

Var∗(Q∗
n,2,1) =

1

n3
·Op(1/h

2)− 1

n3
·Op(1/h) = op

( 1

n2h

)
.

Then, according to the results in (S.11) and (S.12), we obtain that

E
(
Q∗

n,2,1

)
= E

[
E∗(Q∗

n,2,1

)]
= µJ +O(1/n)

and

Var
(
Q∗

n,2,1

)
= Var

[
E∗(Q∗

n,2,1

)]
+ E

[
Var∗

(
Q∗

n,2,1

)]
= Op

( 1

n3h2

)
+ op

( 1

n2h

)
= op

( 1

n2h

)
,

which lead to

Q∗
n,2,1 = µJ +O(1/n) + op

( 1

n
√
h

)
= µJ + op

( 1

n
√
h

)
.

By noting that E∗(ϱn,j,τ (R∗
1;u)

)
= Op

(
h2 + 1√

nh

)
as in (S.16), it is easy to obtain that

Q∗
n,2,2 =

1

n
·Op

(
h4 +

1

nh

)
= op

( 1

n
√
h

)
and

Q∗
n,2,3 =

1

n
·Op

(
h2 +

1√
nh

)
·Op(1/h) = op

( 1

n
√
h

)
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since nh2 → ∞. Thus, we have

Q∗
n,2 = Q∗

n,2,1 −Q∗
n,2,2 − 2Q∗

n,2,3 = µJ + op

( 1

n
√
h

)
. (S.22)

Combining (S.14), (S.18) and (S.22), we complete the proof of Lemma 9. □

Lemma 10. Suppose the conditions required by Theorem 3 are satisfied. Then,

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)
dz = Op∗(1/

√
n) +Op∗

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}
.

Proof of Lemma 10: According to Lemma 8, we know that

∫ (
∆̂∗

τ (z)− ∆̂τ (z)
)
dz =

∫
1

n

n∑
i=1

(
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)
dz

+Op∗

{
max

{
lnn√
n
,

√
lnn

(nh)3/4

}}
,

where ψn,j,τ (R
∗
i ; z) = ϱn,j,τ (R

∗
i ; z)− E∗(ϱn,j,τ (R∗

i ; z)
)
for j = 0 and 1. Denote

M∗
n =

1

n

n∑
i=1

∫ (
ψn,1,τ (R

∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)
dz.

Obviously, E∗(M∗
n) = 0. We then consider E∗(M∗2

n ). We have

E∗(M∗2
n ) =

1

n2

n∑
i=1

E∗
(∫ (

ψn,1,τ (R
∗
i ; z)− ψn,0,τ (R

∗
i ; z)

)
dz

)2

=
1

n

∫ ∫
E∗
((
ψn,1,τ (R

∗
i ;u)− ψn,0,τ (R

∗
i ;u)

)(
ψn,1,τ (R

∗
i ; v)− ψn,0,τ (R

∗
i ; v)

))
dudv

=
1

n

∫ ∫
E∗(ϱn,0,τ (R∗

i ;u)ϱn,0,τ (R
∗
i ; v)

)
dudv +

1

n

∫ ∫
E∗(ϱn,1,τ (R∗

i ;u)ϱn,1,τ (R
∗
i ; v)

)
dudv

− 1

n

∫ ∫
E∗(ϱn,0,τ (R

∗
i ;u)) · E∗(ϱn,0,τ (R

∗
i ; v))dudv

+
1

n

∫ ∫
E∗(ϱn,0,τ (R

∗
i ;u)) · E∗(ϱn,1,τ (R

∗
i ; v))dudv

+
1

n

∫ ∫
E∗(ϱn,1,τ (R

∗
i ;u)) · E∗(ϱn,0,τ (R

∗
i ; v))dudv

− 1

n

∫ ∫
E∗(ϱn,1,τ (R

∗
i ;u)) · E∗(ϱn,1,τ (R

∗
i ; v))dudv.
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Using the results in (S.17) and (S.6), we obtain that

1

n

∫ ∫
E∗(ϱn,j,τ (R∗

i ;u)ϱn,j,τ (R
∗
i ; v)

)
dudv

=
1

n

∫ ∫ [
E
(
ϱn,j,τ (R1;u)ϱn,j,τ (R1; v)

)
+Op

( 1√
nh3

)]
dudv

=
1

n

[
Op(1) +Op

( 1√
nh3

)]
= Op

(
n−1
)
.

Also, by noting that

E∗(ϱn,j,τ (R∗
1;u)

)
= Op

(
h2 +

1√
nh

)
as in (S.16), we have

1

n

∫ ∫
E∗(ϱn,j,τ (R

∗
i ;u)) · E∗(ϱn,k,τ (R

∗
i ; v))dudv = op

(
n−1
)

for j, k = 0, 1. Therefore,

E∗(M∗2
n ) = Op

(
1/n
)
,

which implies

M∗
n = Op∗

(
1/
√
n
)
.

This completes the proof of Lemma 10. □
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