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Abstract

We model hierarchical cascades of failures among banks linked through an interdependent network. The interaction
among banks include not only direct cross-holding, but also indirect dependency by holding mutual assets outside
the banking system. Using data extracted from the European Banking Authority, we present the interdependency
network composed of 48 banks and 21 asset classes. Since interbank exposures are not public, we first reconstruct
the asset/liability cross-holding network using the aggregated claims. For the robustness, we employ 3 reconstruction
methods, called Anan, Hała and Maxe. Then we combine the external portfolio holdings of each bank to compute
the interdependency matrix. The interdependency network is much more dense than the direct cross-holding network,
showing the complex latent interaction among banks. Finally, we perform macroprudential stress tests for the Euro-
pean banking system, using the adverse scenario in EBA stress test as the initial shock. For different reconstructed
networks, we illustrate the hierarchical cascades and show that the failure hierarchies are roughly the same except
for a few banks, reflecting the overlapping portfolio holding accounts for the majority of defaults. Understanding the
interdependency network and the hierarchy of the cascades should help to improve policy intervention and implement
rescue strategy.
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1. Introduction

In recent years, network models, systemic stress testing and financial stability have attracted growing interest
both among scholars and practitioners (Battiston and Martinez-Jaramillo, 2018). Regular stress tests conducted by
authorities, such as the European Banking Authority, aim to evaluate the performance of individual banks in adverse
scenarios, which are microprudential. Macroprudential outcomes are not simply the summation of micropridential
changes. For example, when financial innovation reduces the cost of diversification, this may trigger a transition from
stationary return dynamic to a nonstationary one (Corsi et al., 2016). Therefore, to be truly macroprudential, it is
necessary to assess the role of network contagion in potentially amplifying systemic risk (Gai and Kapad, 2019).

There are different interactive channels among financial institutions. Figure 1 illustrates 3 types of financial
networks: (a) interbank network, (b) bank-asset bipartite network and (c) interdependent network. The interbank
network characterizes direct credit exposures to other banks and risk contagion can be caused by direct cross-holding.
Take Dungey et al. (2020) for example, they empirically analyze the transmission of shocks between global banks,
domestic banks and the non-financial sector for 11 Eurozone countries. Apart from direct connection, it’s apparent
that banks are indirectly connected by holding overlapping portfolio outside the banking system as in Figure 1 (b).
Barucca et al. (2021) empirically find significant overlapping equity and debt portfolios between different types of
financial institution, providing evidence for the existence of a price-mediated channel of contagion between banks.
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The third type of network is much more complex, including not only direct cross-holding, but also indirect dependency
by holding mutual assets as in Figure 1 (c). This interdependency has been shown as a realistic source of uncertainty
in systemic risk (Roukny et al., 2018). Furthermore, Elliott et al. (2014) study cascading failures in an equilibrium
model of interdependent financial network.

Figure 1: Illustrative examples showing 3 types of financial networks. Circles indicate banks and squares indicate assets.

Since interdependent network model provides two contagion channels and is more realistic, it is worthy of further
study. The main goal of this study is to identify cascade hierarchies in the interdependent financial network. Given
the available literature our contribution is threefold. First, we slightly revised the model of Elliott et al. (2014) by
separating the bank’s “value” delivered to final investors outside the banking system to external liabilities and equity
value. Such division is in line with the balance sheet and can make clear the bank value in the general sense, although
it does not change the derived form of interdependency matrix. This modification also facilitates empirical research
for the European banking system, because the European Banking Authority (EBA) dataset does not provide liability
items, but only asset items and some equity items such as Tier 1 capital. Second, we integrate microprudential stress
test and macroprudential stress test together for the European banking system. Considering that the EBA’s stress test
is microprudential for individual banks, we perform macroprudential stress test by using the adverse scenario in EBA’s
stress test as the initial shock. Third, since granular data on interbank credit exposures is not public, we employ 3
reconstruction methods to form the cross-holding network and then study contagion hierarchies comparatively.

The remainder of the paper is organized as follows. Section 2 presents the literature review. Section 3 introduces
the model and method of identifying cascade hierarchies. Section 4 shows the data and the empirical analyses.
Section 5 concludes the paper.

2. Literature review

As in Figure 1, we review existing literature about network contagion according to the network structures adopted.

2.1. Interbank network contagions

This kind of model shows that contagion can be caused by direct credit exposures among banks. Rogers and
Veraart (2013) model financial market as a directed graph of interbank obligations and study the occurrence of sys-
temic risk. Gai and Kapadia (2010) develop an analytical network contagion model and suggest that financial systems
exhibit a robust-yet-fragile tendency. That is, while the probability of contagion may be low, the influences can be
extremely widespread when problems occur. Similarly, Acemoglu et al. (2015) argue that the extent of financial
contagion exhibits a form of phase transition. In addition, many studies focus on how interbank network topology
creates instability (Bardoscia et al., 2017; Eboli, 2019). Zhang et al. (2021) find that network connectedness of banks
strengthens the relationship between liquidity creation and systemic risk. Brunetti et al. (2019) study the interbank
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market around the 2008 financial crisis and find that the correlation network and the physical credit network behav-
ior different. During the crisis, the correlation network displays an increase in connection, while the physical credit
network shows a marked decrease in connection.

2.2. Overlapping portfolio contagions

When a bank suffers a negative shock to its equity, a natural way to return to target leverage is to sell assets.
Greenwood et al. (2015) present a model in which fire sales propagate shocks across banks. Huang et al. (2013) build
a bipartite banking network model composed of banks and assets and present a cascading failure describing the risk
propagation process during crises. Similarly, Caccioli et al. (2014) show the amplification of financial contagion due
to the combination of overlapping portfolios and leverage, in terms of a generalized branching process. Furthermore,
for quantifying the potential exposure to indirect contagion arising from deleveraging of assets in stress scenarios,
Cont and Schaanning (2019) propose two indicators. Vodenska et al. (2021) build a bipartite network with weighted
links between banks and assets based on sovereign debt holdings, and then model the systemic risk propagation.

2.3. Interdependent network contagions

This kind of model investigates how these two channels (the interbank channel and the overlapping channel) prop-
agate individual defaults to systemic cascading failures. Caccioli et al. (2015) argue that neither channel of contagion
results in large effects on its own. In contrast, when both channels are active, defaults are much more common and
have large systemic effects. Aldasoro et al. (2017) likewise suggest that contagion occurs through deleveraging and
interbank connection. The interdependent network models are also applied to characterize contagions in reinsurance
and derivatives markets (Klages-Mundt and Minca, 2020; Paddrik et al., 2020).

Elliott et al. (2014) study cascading failures in an interdependent financial network. They show that discontinuous
changes in asset values trigger further failures. Furthermore, when banks face potentially correlated risks from outside
the financial system, the interbank connections can share these risks, but they also create the channels by which shocks
can be propagated (Elliott et al., 2021). In addition, some studies find that the overlapping portfolio holding by banks
accounts for the majority of defaults. Chen et al. (2016) confirm that the market liquidity effect has a great potential
to cause systemic contagion. Dungey et al. (2020) show that deleveraging speed and concentration of illiquid assets
play a critical role in cascades. Ma et al. (2021) further prove that illiquidity is a critical factor in triggering risk
contagion and that higher interbank leverage can cause larger losses for both the banks and the external assets. Our
results are consistent with these literature, in the sense that the general contagion hierarchies are mainly determined
by the overlapping channel, while the structure of interbank network is also important for some specific banks.

3. Methodology

3.1. The model

The model follows Elliott et al. (2014), but separates the “value” in their paper, that any bank delivers to final
investors outside the system of cross-holding, to external liabilities and equity value. Concretely, for every bank,
its assets are divided into external assets and interbank assets, and its liabilities are divided into external liabilities
and interbank liabilities. The equity value is the difference between its total assets and its total liabilities. Table 1
illustrates a balance sheet based on this.

Table 1: Balance Sheet of Bank i.

Assets Liabilities

External assets
∑

k Dik pk External liabilities l(e)
i Vi

Interbank assets ai ≡
∑

j Ci jV j Interbank liabilities li ≡
∑

j C jiVi

Net worth vi
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Assume that there are N banks and M external assets. The current value of asset k is denoted pk. Let Dik ≥ 0 be
the fraction of the value of asset k held directly by bank i and let D donate the matrix whose entry is equal to Dik. A
bank can also hold shares of other banks. Let Ci j ≥ 0 is the fraction of bank j owned by bank i, where Cii = 0 for each
i. The cross-holding matrix C can be viewed as a network in which there is a directed link from j to i if cash flows in
that direction, in other words, if i owns a positive share of j.

Let Vi be the total asset value of bank i. This is equal to the value of external assets holding by bank i plus the
value of its claims on other banks:

Vi =
∑

k

Dik pk +
∑

j

Ci jV j. (1)

Equation (1) can be written in matrix notation as

V = Dp + CV (2)

and solved to yield

V = (I − C)−1Dp. (3)

On the other hands, the total value of bank i is also equal to its total liabilities plus its equity value vi. Its total
liabilities constitute of interbank liabilities

∑
j C jiVi and external liabilities l(e)

i Vi, where l(e)
i is the ratio of external

liabilities to total assets. Hence, the equity value of bank i:

vi =
∑

j

Ci jV j −
∑

j

C jiVi +
∑

k

Dik pk − l(e)
i Vi. (4)

Now we denote the capital ratio (i.e. ratio of equity value to total value) of bank i as Ĉii, then

Ĉii ≡ 1 − l(e)
i −
∑
j∈N

C ji. (5)

Note that the off-diagonal entries of the matrix Ĉ are defined to be 0. Hence, Equation (4) can be written in matrix
notation as

v = CV − (I − Ĉ)V + Dp = (C − (I − Ĉ))V + Dp. (6)

Substituting for the total asset value V from (3), this becomes

v = (C − I + Ĉ)(I − C)−1Dp + Dp = (C − I + Ĉ + (I − C))(I − C)−1Dp

= Ĉ(I − C)−1Dp = ADp.
(7)

Here we refer to A = Ĉ(I − C)−1 as the interdependency matrix.
As in Elliott et al. (2014), banks will lose some value in discontinuous ways if their values fall below certain

critical thresholds. In fact, it’s these discontinuities that lead to cascading failures. If the equity value vi of a bank
i falls below some threshold level vi, then the bank is said to fail and incurs failure costs βivi. In many situations, a
natural cap for βi is 1. That is, the maximum loss that can result from the failure of bank i is its value at the time of
failure.

The valuations in (3) and (7) are similar when we include the discontinuous failure costs, and so the total value of
bank i becomes

Vi =
∑
j,i

Ci jV j +
∑

k

Dik pk − βiviIvi<vi
, (8)

where Ivi<vi
is an indicator variable taking value 1 if vi < vi and value 0 otherwise.
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This leads to a new version of (3):

V = (I − C)−1(Dp − b(v)), (9)

where bi(v) = βiviIvi<vi
. Correspondingly, (7) is re-expressed as

v = Ĉ(I − C)−1(Dp − b(v)) = A(Dp − b(v)). (10)

An entry Ai j of the interdependency matrix describes the proportion of j’s costs that i pays when j fails as well as
i’s claims on the external assets that j directly holds.

3.2. Identifying cascade hierarchies
Based on the interdependent model, we can trace the propagation path initiated by a specific shock. At step t, let

Zt be the set of failed banks. Initialize Z0 = ∅ and v = θv0. Assume an adverse scenario that causes prices of mutual
assets to decline. Then the cascade hierarchies can be identified as following. At each step t ≥ 1:

1. Let b̃t−1 be a vector with element b̃i = βivi if i ∈ Zt−1 and 0 otherwise.
2. Let Zt be the set of all k such that entry k of the following vector is negative:

A
[
Dp − b̃t−1

]
− v. (11)

3. Terminate if Zt = Zt−1. Otherwise return to step 1.

When this algorithm terminates at step T , the sets Z1,Z2, ...,ZT correspond to the failure hierarchies.

4. Empirical analyses for European banking system

4.1. Data
We use data collected by the European Banking Authority (EBA) for the 2018 EU-wide stress test. This public

dataset covers a sample of 48 banks in 15 countries in the European Union and European Economic Area at the highest
level of consolidation. Table 2 lists 48 banks and countries they belong to. This dataset not only provides the actual
balance sheet figures and their International Financial Reporting Standard (IFRS) 9 restated figures, but also covers a
three-year horizon baseline and adverse scenarios, which take the end-2017 data as the starting point1.

The actual and restated figures give the exposure values in various asset classes. Table 3 lists 21 asset classes
that we collect from the EBA dataset and provides corresponding EBA items and EBA exposure codes for each
type of asset. Among them, type 2100 indicates the aggregated claims on other credit institutions that one bank
holds. However, granular exposure data on banking networks is not public. The credit exposure networks can be
reconstructed by some inference methods using only aggregated relational data (Anand et al., 2018). The other 20
classes are the external assets mutually holding by 48 banks.

The adverse scenario gives the corresponding exposure values of various asset classes under some assumed
macroeconomic shocks, including a growth in gross domestic product (GDP) in the EU of -1.2%, -2.2% and 0.7%
as of 2018, 2019 and 2020 respectively. This adverse scenario can be viewed as a ideal initial shock with which the
proposed hierarchical contagion model will be tested.

4.2. Reconstruction of interbank network
In order to test the reliability of contagious hierarchies identified by the proposed model, we employ 3 network

reconstruction methods to build the asset/liability cross-holding network. We call these 3 methods Anan (Anand
et al., 2015), Hała (Hałaj and Kok, 2013) and Maxe (Upper and Worms, 2004). Either of 3 methods can reconstruct
interbank networks with aggregated assets and liabilities. However, the EBA dataset only provides asset exposures,
no liability data. We refer to some empirical studies based on these data assuming that for bank i, the aggregated
interbank assets

∑
j Ci jV j equal to the aggregated interbank liabilities

∑
j C jiVi (Chen et al., 2016; Glasserman and

Young, 2015). We now give a brief description for these 3 methods.

1https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2018
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Table 2: Bank list.

Country code Country Bank Bank abbr.

AT Austria Raiffeisen Bank International AG RBI
AT Austria Erste Group Bank AG EBS
BE Belgium KBC Group NV KBC
BE Belgium Belfius Banque SA Belfius
DE Germany DZ BANK AG Deutsche Zentral-Genossenschaftsbank DZ Bank
DE Germany Landesbank Baden-Wurttemberg LBBW
DE Germany Deutsche Bank AG DBK
DE Germany Commerzbank AG CBK
DE Germany Norddeutsche Landesbank - Girozentrale - NORD/LB
DE Germany Bayerische Landesbank BayernLB
DE Germany Landesbank Hessen-Thuringen Girozentrale AdoR Helaba
DE Germany NRW.BANK NRW
DK Denmark Danske Bank Danske
DK Denmark Jyske Bank JYSK
DK Denmark Nykredit Realkredit Nykredit
ES Spain Banco Santander S.A. SAN
ES Spain Banco Bilbao Vizcaya Argentaria S.A. BBVA
ES Spain CaixaBank, S.A. CABK
ES Spain Banco de Sabadell S.A. SAB
FI Finland OP Financial Group OP
FR France BNP Paribas BNP
FR France Groupe Credit Agricole ACA
FR France Societe Generale S.A. GLE
FR France Groupe Credit Mutuel GCM
FR France Groupe BPCE BPCE
FR France La Banque Postale LABP
GB United Kingdom Barclays Plc BARC
GB United Kingdom Lloyds Banking Group Plc LLOY
GB United Kingdom HSBC Holdings Plc HSBC
GB United Kingdom The Royal Bank of Scotland Group Plc RBS
HU Hungary OTP Bank Nyrt. OTP
IE Ireland Bank of Ireland Group plc BIR
IE Ireland Allied Irish Banks Group plc AIB
IT Italy UniCredit S.p.A. UNCRY
IT Italy Intesa Sanpaolo S.p.A. ISP
IT Italy Banco BPM S.p.A. BPM
IT Italy Unione di Banche Italiane Societa Per Azioni UBI
NL Netherlands N.V. Bank Nederlandse Gemeenten BNG
NL Netherlands ABN AMRO Group N.V. ABN
NL Netherlands ING Groep N.V. ING
NL Netherlands Cooperatieve Rabobank U.A. Rabobank
NO Norway DNB Bank Group DNB
PL Poland Powszechna Kasa Oszczednosci Bank Polski SA PKO
PL Poland Bank Polska Kasa Opieki SA PEO
SE Sweden Skandinaviska Enskilda Banken - group SEB
SE Sweden Nordea Bank - group Nordea
SE Sweden Swedbank - group SWDB
SE Sweden Svenska Handelsbanken - group SHB
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Table 3: Asset classes and their EBA data reference codes.

EBA Item EBA Exposure Asset classes

183203, 183303

1100 Central banks and central governments
1200 Regional governments or local authorities
1300 Public sector entities
1400 Multilateral Development Banks
1500 International Organisations

183904, 183905
1700 General governments
2100 Credit institutions
2200 Other financial corporations

183203, 183303

3000 Corporates (Credit Risk) / Non Financial corporations (NPE- Forbearance)
4110 Retail - Secured by real estate property - SME
4120 Retail - Secured by real estate property - Non SME
4200 Retail - Qualifying Revolving
4310 Retail - Other - SME
4320 Retail - Other - Non SME
4500 Retail - SME

183904, 183905 4700 Households

183203, 183303

5000 Secured by mortgages on immovable property
6400 Items associated with particularly high risk
6500 Covered bonds
6600 Claims on institutions and corporates with a ST credit assessment
6700 Collective investments undertakings (CIU)

4.2.1. Anan
Anand et al. (2015) propose a method combining information-theoretic arguments with economic incentives to

keep the realistic features of interbank network. The authors argue that the Minimum Density (MD) method is suitable
for sparse networks such as financial markets, and is able to minimize the cost of additional linkages to reconstruct
the network.

Based on this method, c is defined as the fixed cost of establishing a link, N represents the number of banks.
C notes the matrix of aggregated exposure values. The aggregated interbank assets of bank i are

∑N
j=1 Ci j, and its

aggregated liabilities are
∑N

j=1 C ji. Then, the MD method is formulated as:

min c
N∑

i=1

N∑
j=1

1{Ci j ≥ 0}, s.t.

N∑
j=1

Ci j = ai ∀i = 1, 2, ...,N

N∑
i=1

Ci j = a j ∀ j = 1, 2, ...,N

Ci j ≥ 0 ∀i, j,

(12)

where the integer function 1 is equal to one, only if bank i lends to bank j, and zero otherwise. Here, the authors
design a heuristic to solve this computationally expensive problem.
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4.2.2. Hała
Hałaj and Kok (2013) propose an iterative algorithm to randomly generate a series of interbank networks. At the

initial network, assume that the possibility of all links is the same that all entries in the matrix C0 are equal to zero,
and the unmatched interbank assets and liabilities are initiated as a0 = a and l0 = l. When iterating to the k + 1 step,
a pair of banks (i, j) are randomly selected. Next, extract the random number f from the unit interval to re-scale the
matrix to update the weight Ck+1

i j as follows:

Ck+1
i j = Ck

i j + f k+1 min {ak
i , l

k
j} (13)

and the unmatched assets and liabilities are:

ak+1
i = ak

i −

N∑
j=1

Ck+1
i j and lk+1

j = lkj −
N∑

i=1

Ck+1
i j (14)

The iteration is repeated until no more interbank assets are left to be assigned.

4.2.3. Maxe
Maxe is the maximum entropy method, the basis of iterative methods (Upper and Worms, 2004). In the initial

guess network, the exposure of bank i to bank j is equal to the aggregated exposure of bank i multiplied by the
aggregated exposure of bank j, namely, Qi j = aia j. Next, the network is re-scaled until the constraints are satisfied.
This entails maximizing the entropy function:

−
∑
i, j

Ci, j log(Ci, j/Qi, j) (15)

Entropy optimization can achieve network reconstruction through an effective iterative algorithm. Paltalidis et al.
(2015) employ this method to reconstruct interbank network to study transmission channels of systemic risk.

4.2.4. Reconstructed European interbank networks
Table 4 reports the network statistics we compute for reconstructed networks using above 3 approaches. It’s

shown that the reconstructed networks are very different. Network generated by Maxe has the largest number of links,
the highest density and degree, so as to clustering and core size. This is because Maxe network is fully connected.
Compared Anan with Hala, we find that the Anan network is more sparse, having lower density and clustering, smaller
average degree and core size. The lender/borrower dependency is defined as the average of the market share of the
largest borrower or lender, respectively. The HHI (Herfindahl-Hirschman Index) describes the concentration of both
assets and liabilities. Due to the sparsity of Anan network, it’s reasonable that this network has higher dependency and
concentration. The assortativity characterizes the preference for a network’s nodes to attach to others that are similar.
Both Anan and Hala have negative assortativities, which is consistent with the statistic of the genuine interbank
networks computed in Anand et al. (2018).

Figure 2 displays the European interbank metwork (direct cross-holding matrix C) reconstructed by Anan and
Hała respectively. The widths of the arrows are proportional to the sizes of the cross-holdings. The area of bank node
is proportional to its equity value. The banks with the same color are belong to the same country. The arrow direction
means that the origin bank has claims on the destination bank. Consistent with Table 4, the Anan network is more
sparse than the Hała network. We can also find that in both reconstructed networks, banks from the UK (the pink
node), Germany (the brown node) and France (the blue node) are located in more central positions, showing that these
banks are connected densely.

Figure 3 displays the interdependent matrix A in European banking system reconstructed by Anan and Hała. The
widths of the arrows are proportional to the degrees of inter-dependency. Note that the interdependent matrix A not
only describes the direct cross-holding among banks, but also the indirect claims on the external assets that other
banks hold. Therefore, the interdependent network A are more dense than the direct interbank network C. This is
exactly explain what is interdependency and the difference between interdependency model and simple cross-holding
model.
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Table 4: Network statistics for reconstructed interbank networks.

Anan Hała Maxe

Number of Links 99 344 2256
Density 4.388 15.248 100.000
Avg Degree 2.063 7.167 47.000
Med Degree 1 7 47
Assortativity -0.308 -0.321 NaN
Clustering 0.678 21.794 100.000
Lender Dependency 83.718 57.910 10.708
Borrower Dependency 86.334 71.905 10.708
Mean HHI Assets 0.785 0.463 0.045
Median HHI Assets 1.000 0.439 0.045
Mean HHI Liabilities 0.824 0.639 0.045
Median HHI Liabilities 1.000 0.620 0.045
Core Size (% banks) 10.417 18.750 97.917
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(a) Direct cross-holding C reconstructed by Anan.
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(b) Direct cross-holding C reconstructed by Hała.

Figure 2: Direct cross-holding matrix C in European banking system reconstructed by Anan and Hała. The widths of the arrows are proportional
to the sizes of the cross-holdings. The area of bank node is proportional to its equity value. The banks with the same color are belong to the same
country.

4.3. Cascades
To illustrate the hierarchical cascades, we consider the adverse scenario in EBA 2018 EU-wide stress test. The

initial shock to the values of 20 types of external assets is extracted from the adverse scenario as of 2020. The failure
thresholds v are set to θ times the IFRS 9 restated figures at the end-2017 (which is the actual balance sheet data).
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Figure 3: Interdependent matrix A in European banking system reconstructed by Anan and Hała. The widths of the arrows are proportional to
the degrees of inter-dependency. The area of bank node is proportional to its equity value. The banks with the same color are belong to the same
country.

Various levels of θ are chosen to test the cascade process. If a bank fails, then the loss in value is βvi, where β is set to
0.3 for lower failure cost and 0.8 for higher failure cost.

We examine the results for Anan network, Hała network and Maxe network respectively. In Table 5, Panel A and
B display the hierarchies of cascades for Anan reconstructed network. In case of θ = 0.971, there are 5 banks hit its
failure point under the initial shock. For both levels of failure costs, cascades do not occur. We then raise θ to 0.973
and see how cascades occur. In this case, there are 17 banks failed under the initial shock. Then DZ Bank, BayernLB
and ING are triggered by a contagion when β = 0.3. When failure cost is raised to 0.8, three more banks (EBS, GLE
and UNCRY) are failed in this hierarchy. In the next cascading round, when β = 0.3, LBBW and BBVA are triggered
to fail due to their exposures to the former two rounds of failed banks. For example, both LBBW and BBVA have
claims on DZ Bank (see Figure 2(a)). Pushing β up to 0.8, there are two more banks (Belfius and OP) failed due to
taking higher failure cost.

Panel C and D in Table 5 display the hierarchies of cascades for Hała reconstructed network. The initial failed
banks are the same as the Anan cases. However, cascades are triggered in case of θ = 0.971, that is, causing UBI
to fail. This is due to the fact that cross-holding network reconstructed by Hała has higher connection and density
compared to the Anan network. In the next round, UBI’s failure further causes RBI to fail because RBI has claims
on UBI (see Figure 2(b)). When failure cost is raised to 0.8, similar with the Anan case, there are more banks failed
in each cascading round and finally up to four failure hierarchies. Pushing θ up to 0.973 leads to more banks failed
and would cause failures at earlier levels, but would not change the ordering. Take β = 0.8 for example, in case
of θ = 0.971, the DZ Bank failed at the third hierarchy, while in case of θ = 0.973, the DZ Bank failed at second
hierarchy.

Panel E and F in Table 5 display the hierarchies of cascades for Maxe reconstructed network. It is found that the
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Table 5: Hierarchies of cascades in macroprudential stress test for the European banking system. Three reconstructure algorithms (i.e. Anan, Hała
and Maxe) for the interbank cross-holding network are considered. This table reports the test results with different failure thresholds θ and different
failure cost coefficients β.

β=0.3 β=0.8

Panel A: Anan, θ=0.971

First Failure JYSK, GCM, Rabobank, DNB, SEB, SHB JYSK, GCM, Rabobank, DNB, SEB, SHB

Panel B: Anan, θ=0.973

First Failure RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, Rabobank, DNB, PEO,
SEB, Nordea, SWDB, SHB

RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, Rabobank, DNB, PEO,
SEB, Nordea, SWDB, SHB

Second Failure DZ Bank, BayernLB, ING EBS, DZ Bank, BayernLB, GLE, UNCRY,
ING

Third Failure LBBW, BBVA Belfius, LBBW, BBVA, OP

Panel C: Hała, θ=0.971

First Failure JYSK, GCM, Rabobank, DNB, SEB, SHB JYSK, GCM, Rabobank, DNB, SEB, SHB
Second Failure UBI HSBC, UBI
Third Failure RBI RBI, DZ Bank, ACA, AIB
Fourth Failure LBBW

Panel D: Hała, θ=0.973

First Failure RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, ING, Rabobank, DNB,
PEO, SEB, Nordea, SWDB, SHB

RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, ING, Rabobank, DNB,
PEO, SEB, Nordea, SWDB, SHB

Second Failure DZ Bank, UNCRY Belfius, DZ Bank, LBBW, BBVA, UNCRY
Third Failure LBBW Helaba, OP

Panel E: Maxe, θ=0.971

First Failure JYSK, GCM, Rabobank, DNB, SEB, SHB JYSK, GCM, Rabobank, DNB, SEB, SHB
Second Failure UBI HSBC, UBI
Third Failure RBI RBI, DZ Bank, ACA, AIB
Fourth Failure LBBW

Panel F: Maxe, θ=0.973

First Failure RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, ING, Rabobank, DNB,
PEO, SEB, Nordea, SWDB, SHB

RBI, CBK, Danske, JYSK, BNP, ACA, GCM,
HSBC, AIB, UBI, ING, Rabobank, DNB,
PEO, SEB, Nordea, SWDB, SHB

Second Failure DZ Bank, UNCRY Belfius, DZ Bank, LBBW, BBVA, UNCRY
Third Failure LBBW Helaba, OP

cascading hierarchies are exactly the same as the Hała case. Even compared with the Anan case, the failure banks and
the cascading hierarchies are roughly the same. It’s reasonable since banks’ external assets holdings weight more and
play a key role in cascading dynamics. However, the structure of cross-holding network is also important for some
specific banks. For example, Helaba failed in the cases of Hała and Maxe, while not in the Anan case. Our results are
consistent with Chen et al. (2016), who find that the market liquidity effect has a greater potential than the network
effect to cause systemic contagion.
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5. Concluding remarks

Based on a simple model of interdependent financial networks, we have examined cascades in the European bank-
ing system. The interdependency means that the connections between banks include not only direct cross-holding
(interbank network) but also indirect dependency by holding mutual assets outside the banking system (bipartite net-
work). Through analyzing bank’s balance sheet, an equilibrium matrix is derived to characterize this interdependency.

We use data extracted from the European Banking Authority to illustrate the interdependency. First, we collect 20
classes of external assets mutually holding by 48 banks. For the cross-holding, interbank exposures are not available
but the aggregated claims are public. Then we employ 3 network reconstruction methods to build the asset/liability
cross-holding network. Finally, we compute the interdependency matrix. The interdependency network is much more
dense than the direct cross-holding network, showing the complex latent interaction among banks.

Next we perform macroprudential stress tests for the European banking system, using the adverse scenario in
EBA 2018 EU-wide stress test as the initial shock. For different reconstructed networks, we illustrate the hierarchical
cascades and show that the failure hierarchies are roughly the same except for a few banks, reflecting the overlapping
portfolio holding accounts for the majority of defaults.

Clearly the above tests are based on moderate scenario taken by EBA (recalling that they assume GDP in the EU
only decreases -1.2%, -2.2% and even increases 0.7% as of 2018, 2019 and 2020 respectively), so that the default
threshold must be set to a very high value (i.e. 0.97) to successfully trigger the initial failures. Nonetheless, we
emphasize that understanding the interdependency network and the hierarchy of the cascades can help to improve
policy intervention and implement rescue strategy.

Acknowledgement(s)

We are grateful to * anonymous referees and the editor for their valuable comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

We acknowledge financial support from the National Natural Science Foundation of China (71971081 and U1811462)
and the Fundamental Research Funds for the Central Universities.

References

Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., 2015. Systemic risk and stability in financial networks. American Economic Review 105, 564–608.
doi:10.1257/aer.20130456.

Aldasoro, I., Delli Gatti, D., Faia, E., 2017. Bank networks: contagion, systemic risk and prudential policy. Journal of Economic Behavior &
Organization 142, 164–188. doi:10.1016/j.jebo.2017.05.022.

Anand, K., Craig, B., Von Peter, G., 2015. Filling in the blanks: network structure and interbank contagion. Quantitative Finance 15, 625–636.
doi:10.1080/14697688.2014.968195.

Anand, K., van Lelyveld, I., Banai, A., Friedrich, S., Garratt, R., Halaj, G., Fique, J., Hansen, I., Jaramillo, S.M., Lee, H., Molina-Borboa, J.L.,
Nobili, S., Rajan, S., Salakhova, D., Silva, T.C., Silvestri, L., Stancato de Souza, S.R., 2018. The missing links: a global study on uncovering
financial network structures from partial data. Journal of Financial Stability 35, 107–119. doi:10.1016/j.jfs.2017.05.012.

Bardoscia, M., Battiston, S., Caccioli, F., Caldarelli, G., 2017. Pathways towards instability in financial networks. Nature Communications 8,
14416. doi:10.1038/ncomms14416.

Barucca, P., Mahmood, T., Silvestri, L., 2021. Common asset holdings and systemic vulnerability across multiple types of financial institution.
Journal of Financial Stability 52, 100810. doi:10.1016/j.jfs.2020.100810.

Battiston, S., Martinez-Jaramillo, S., 2018. Financial networks and stress testing: challenges and new research avenues for systemic risk analysis
and financial stability implications. Journal of Financial Stability 35, 6–16. doi:10.1016/j.jfs.2018.03.010.

Brunetti, C., Harris, J.H., Mankad, S., Michailidis, G., 2019. Interconnectedness in the interbank market. Journal of Financial Economics 133,
520–538. doi:10.1016/j.jfineco.2019.02.006.

Caccioli, F., Farmer, J.D., Foti, N., Rockmore, D., 2015. Overlapping portfolios, contagion, and financial stability. Journal of Economic Dynamics
& Control 51, 50–63. doi:10.1016/j.jedc.2014.09.041.

12

http://dx.doi.org/10.1257/aer.20130456
http://dx.doi.org/10.1016/j.jebo.2017.05.022
http://dx.doi.org/10.1080/14697688.2014.968195
http://dx.doi.org/10.1016/j.jfs.2017.05.012
http://dx.doi.org/10.1038/ncomms14416
http://dx.doi.org/10.1016/j.jfs.2020.100810
http://dx.doi.org/10.1016/j.jfs.2018.03.010
http://dx.doi.org/10.1016/j.jfineco.2019.02.006
http://dx.doi.org/10.1016/j.jedc.2014.09.041


Caccioli, F., Shrestha, M., Moore, C., Farmer, J.D., 2014. Stability analysis of financial contagion due to overlapping portfolios. Journal of Banking
& Finance 46, 233–245. doi:10.1016/j.jbankfin.2014.05.021.

Chen, N., Liu, X., Yao, D.D., 2016. An optimization view of financial systemic risk modeling: network effect and market liquidity effect.
Operations Research 64, 1089–1108. doi:10.1287/opre.2016.1497.

Cont, R., Schaanning, E., 2019. Monitoring indirect contagion. Journal of Banking & Finance 104, 85–102. doi:10.1016/j.jbankfin.
2019.04.007.

Corsi, F., Marmi, S., Lillo, F., 2016. When micro prudence increases macro risk: the destabilizing effects of financial innovation, leverage, and
diversification. Operations Research 64, 1073–1088. doi:10.1287/opre.2015.1464.

Dungey, M., Flavin, T.J., Lagoa-Varela, D., 2020. Are banking shocks contagious? evidence from the eurozone. Journal of Banking & Finance
112, 105386. doi:10.1016/j.jbankfin.2018.07.010.

Eboli, M., 2019. A flow network analysis of direct balance-sheet contagion in financial networks. Journal of Economic Dynamics & Control 103,
205–233. doi:10.1016/j.jedc.2019.04.007.

Elliott, M., Georg, C.P., Hazell, J., 2021. Systemic risk shifting in financial networks. Journal of Economic Theory 191, 105157. doi:10.1016/
j.jet.2020.105157.

Elliott, M., Golub, B., Jackson, M.O., 2014. Financial networks and contagion. American Economic Review 104, 3115–3153. doi:10.1257/
aer.104.10.3115.

Gai, P., Kapad, S., 2019. Networks and systemic risk in the financial system. Oxford Review of Economic Policy 35, 586–613. doi:10.1093/
oxrep/grz023.

Gai, P., Kapadia, S., 2010. Contagion in financial networks. Proceedings of the Royal Society A-Mathematical Physical And Engineering Sciences
466, 2401–2423. doi:10.1098/rspa.2009.0410.

Glasserman, P., Young, B.P., 2015. How likely is contagion in financial networks? Journal of Banking & Finance 50, 383–399. doi:10.1016/
j.jbankfin.2014.02.006.

Greenwood, R., Landier, A., Thesmar, D., 2015. Vulnerable banks. Journal of Financial Economics 115, 471–485. doi:10.1016/j.jfineco.
2014.11.006.

Hałaj, G., Kok, C., 2013. Assessing interbank contagion using simulated networks. Computational Management Science 10, 157–186. doi:10.
1007/s10287-013-0168-4.

Huang, X., Vodenska, I., Havlin, S., Stanley, H.E., 2013. Cascading failures in bi-partite graphs: model for systemic risk propagation. Scientific
Reports 3, 1219. doi:10.1038/srep01219.

Klages-Mundt, A., Minca, A., 2020. Cascading losses in reinsurance networks. Management Science 66, 4246–4268. doi:10.1287/mnsc.
2019.3389.

Ma, J.L., Zhu, S.S., Wu, Y., 2021. Joint effects of the liability network and portfolio overlapping on systemic financial risk: contagion and rescue.
Quantitative Finance 21, 753–770. doi:10.1080/14697688.2020.1802054.

Paddrik, M., Rajan, S., Young, H.P., 2020. Contagion in derivatives markets. Management Science 66, 3603–3616. doi:10.1287/mnsc.2019.
3354.

Paltalidis, N., Gounopoulos, D., Kizys, R., Koutelidakis, Y., 2015. Transmission channels of systemic risk and contagion in the european financial
network. Journal of Banking & Finance 61, S36–S52. doi:10.1016/j.jbankfin.2015.03.021.

Rogers, L.C.G., Veraart, L.A.M., 2013. Failure and rescue in an interbank network. Management Science 59, 882–898. doi:10.1287/mnsc.
1120.1569.

Roukny, T., Battiston, S., Stiglitz, J.E., 2018. Interconnectedness as a source of uncertainty in systemic risk. Journal of Financial Stability 35,
93–106. doi:10.1016/j.jfs.2016.12.003.

Upper, C., Worms, A., 2004. Estimating bilateral exposures in the german interbank market: is there a danger of contagion? European Economic
Review 48, 827–849. doi:10.1016/j.euroecorev.2003.12.009.

Vodenska, I., Aoyama, H., Becker, A.P., Fujiwara, Y., Iyetomi, H., Lungu, E., 2021. From stress testing to systemic stress testing: the importance
of macroprudential regulation. Journal of Financial Stability 52, 100801. doi:10.1016/j.jfs.2020.100801.

Zhang, X., Fu, Q., Lu, L., Wang, Q., Zhang, S., 2021. Bank liquidity creation, network contagion and systemic risk: evidence from chinese listed
banks. Journal of Financial Stability 53, 100844. doi:10.1016/j.jfs.2021.100844.

13

http://dx.doi.org/10.1016/j.jbankfin.2014.05.021
http://dx.doi.org/10.1287/opre.2016.1497
http://dx.doi.org/10.1016/j.jbankfin.2019.04.007
http://dx.doi.org/10.1016/j.jbankfin.2019.04.007
http://dx.doi.org/10.1287/opre.2015.1464
http://dx.doi.org/10.1016/j.jbankfin.2018.07.010
http://dx.doi.org/10.1016/j.jedc.2019.04.007
http://dx.doi.org/10.1016/j.jet.2020.105157
http://dx.doi.org/10.1016/j.jet.2020.105157
http://dx.doi.org/10.1257/aer.104.10.3115
http://dx.doi.org/10.1257/aer.104.10.3115
http://dx.doi.org/10.1093/oxrep/grz023
http://dx.doi.org/10.1093/oxrep/grz023
http://dx.doi.org/10.1098/rspa.2009.0410
http://dx.doi.org/10.1016/j.jbankfin.2014.02.006
http://dx.doi.org/10.1016/j.jbankfin.2014.02.006
http://dx.doi.org/10.1016/j.jfineco.2014.11.006
http://dx.doi.org/10.1016/j.jfineco.2014.11.006
http://dx.doi.org/10.1007/s10287-013-0168-4
http://dx.doi.org/10.1007/s10287-013-0168-4
http://dx.doi.org/10.1038/srep01219
http://dx.doi.org/10.1287/mnsc.2019.3389
http://dx.doi.org/10.1287/mnsc.2019.3389
http://dx.doi.org/10.1080/14697688.2020.1802054
http://dx.doi.org/10.1287/mnsc.2019.3354
http://dx.doi.org/10.1287/mnsc.2019.3354
http://dx.doi.org/10.1016/j.jbankfin.2015.03.021
http://dx.doi.org/10.1287/mnsc.1120.1569
http://dx.doi.org/10.1287/mnsc.1120.1569
http://dx.doi.org/10.1016/j.jfs.2016.12.003
http://dx.doi.org/10.1016/j.euroecorev.2003.12.009
http://dx.doi.org/10.1016/j.jfs.2020.100801
http://dx.doi.org/10.1016/j.jfs.2021.100844

	Introduction
	Literature review
	Interbank network contagions
	Overlapping portfolio contagions
	Interdependent network contagions

	Methodology
	The model
	Identifying cascade hierarchies

	Empirical analyses for European banking system
	Data
	Reconstruction of interbank network
	Anan
	Hała
	Maxe
	Reconstructed European interbank networks

	Cascades

	Concluding remarks

