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1 Introduction

Many macroeconomic and financial time series are subject to structural breaks. Structural break in

linear regressions was considered early on by Chow (1960) and Quandt (1960). Seminal works were

mostly designed for the specific case of testing for a single break. See Andrews (1993) who proposes

a supremum-type test, Andrews and Ploberger (1994) consider the exponential-type and average-

type tests, Bai (1995) and Bai (1997a) inter alia. Later on, these methods were extended to detect

the multiple structural breaks. Sequential tests for the null of m versus m+ 1 breaks are provided

in Bai and Perron (1998) and in Bai (1997b). Besides, Bai (1999) proposes a sequential likelihood

ratio test for the null of m versus m + 1 breaks, where all break points are jointly estimated. See

also Bai et al. (1998) for multivariate time series. There are many other statistical procedures that

can be used for detection of break points, such as Andrews et al. (1996), Bai and Perron (2003),

Altissimo and Corradi (2003), Qu and Perron (2007), and Qian and Su (2016). The literature on

detecting the structural break is massive and there are some cost efficient programs to detect the

breaks. For work on structural breaks and estimation, see Pesaran and Timmermann (2005, 2007),

Pesaran et al. (2006), Pesaran et al. (2013), and a comprehensive survey by Casini and Perron

(2018) inter alia.

The current paper does not focus on methods for identifying the break points, as this issue

has been paid enough attention in the literature. Instead, the goal of this paper is to propose a

combined estimator with a minimum risk under the assumption that structural break has in fact

occurred. For estimation of the break points, see Bai and Perron (1998) and Bai and Perron (2003)

which is a consistent global minimizers of the sum of squared residuals.

The common method for estimating the coefficients under structural breaks (after detecting the

break points) is to use the information within each regimes separately, and estimate the coefficients

in each regime. But this estimator by itself may not necessarily minimize the risk in the case

that break points are close to each other or there are not enough data to accurately estimate the

coefficients within each regime. If the distance to break is short, then the parameters are likely to

be poorly estimated relative to those obtained using more data. To overcome this problem, in this

paper we propose the combined estimator of the “unrestricted” estimator, in which we estimate the

coefficients within each regime separately only by using the observations on that specific regime,
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and the restricted estimator. The restricted estimator, in which the coefficients across different

regimes are restricted to be the same as if there is no structural break, uses all the observations in

the sample, t = {1, . . . , T}, to estimate the coefficients. So, it is under the restriction that there is

no break in the model. The advantage of imposing this restriction is that sometimes the break size

is small, so precisely detecting the break point is difficult or not possible. Even under detectable

break points, ignoring that break point and estimating the coefficients by using all observations,

gives a better estimate.

In this paper, we focus on the estimation of regression parameters under multiple structural

breaks, when errors across regimes are heteroskedastic. We propose a minimal mean square error

estimator of regression parameters based on combining the restricted estimator which ignores that

there is a break in the parameters, with the unrestricted estimator which acknowledges the break.

An operational optimal combination weight is introduced. We derive the condition under which the

proposed combined estimator outperforms the unrestricted estimator, in the sense of minimizing the

risk. The combination is convex with the weight between zero and one. We derive the finite sample

properties for the combined estimator, and show that it has a lower risk than the unrestricted

estimator which is the common practice in estimating the parameters under structural breaks.

The analytical finite sample results of the combined estimator are derived based on the large-

sample expansion proposed by Nagar (1959). We also show that the proposed combined estimator

outperforms the unrestricted estimator in terms of the mean squared forecast errors.

Monte Carlo experiments to evaluate the performance of the proposed combined estimator are

carried out. The results confirm the theoretically expected improvements in the combined estimator

compared to the unrestricted estimator under any break size and break points. As an empirical

example, with a large macroeconomic and financial time series, we forecast the US output growth for

1, 6, and 12 month forecast horizons and show the outperformance of using our proposed combined

estimator relative to the unrestricted estimator.

The outline of the paper is as follows. Section 2 sets up the model under multiple structural

breaks model, and introduces a minimal mean squared error combined estimator. Section 3 derives

its finite sample properties analytically. Monte Carlo experiments are presented in Section 4 while

Section 5 presents an empirical study. Finally Section 6 concludes. All proofs are relegated to

Appendix.
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2 The Structural Breaks Model and Combined Estimator

Consider the linear structural break model withm breaks orm+1 regimes. There are T observations,

and the break dates occur at {T1, T2, . . . , Tm}. Suppose the structural breaks model has the

following form:

yt =


x′tβ(1) + σ(1)ut for 1 < t ≤ T1

x′tβ(2) + σ(2)ut for T1 < t ≤ T2
...
x′tβ(m+1) + σ(m+1)ut for Tm < t < T,

(1)

where xt is k × 1 exogenous regressors, and ut ∼ i.i.d.(0, 1). In matrix notation,

Y = Xβ + ε, (2)

where Y =
(
Y ′(1), . . . , Y

′
(m+1)

)′
is a T×1 vector of dependent variable in which Y(i) =

(
yTi−1+1, . . . , yTi

)′
is an li×1 vector, X = diag

(
X(1), . . . , X(m+1)

)
is a T ×(m+1)k block diagonal matrix of regressors

in which X(i) =
(
xTi−1+1, . . . , xTi

)′
is an li × k matrix, i = {1, . . . ,m+ 1}, li = Ti − Ti−1 such that∑

li = T , and we use the convention that T0 = 0, and Tm+1 = T . Also, β =
(
β′(1), . . . , β

′
(m+1)

)′
is

an (m+ 1)k × 1 vector of coefficients, ε =
(
ε′(1), . . . , ε

′
(m+1)

)′
is a T × 1 vector of error terms, with

ε(i) = σ(i)

(
uTi−1+1, . . . , uTi

)′
, such that

ε =


σ(1)(u1, . . . , uT1)′ for 1 < t ≤ T1

σ(2)(uT1+1 , . . . , uT2)′ for T1 < t ≤ T2

...
...

σ(m+1)(uTm+1 , . . . , uT )′ for Tm < t < T.

(3)

We make the following assumptions:

Assumption 1. The T × 1 vector of errors, ε, has a zero conditional mean

E(ε|X) = 0, (4)

and E ε(i)ε′(j) = σ2
(i)Ili for i = j and 0 for i 6= j such that the conditional variance-covariance is

V (ε|X) = E(εε′|X) = Ω = diag
(
σ2

(1)Il1 , . . . , σ
2
(m+1)Ilm+1

)
, (5)

where Ili is an li × li identity matrix and 0 is an li × li matrix of zeros.

Assumption 2. The errors are normally distributed with mean zero and variance-covariance

matrix Ω.
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We note that Assumption 1 implies uncorrelated errors within and across regimes, but they are

heteroskedastic across regimes.

In this paper, we introduce a combined estimator which has a lower risk than the restricted

estimator and unrestricted estimator. In this section, we introduce the structural break model with

restrictions on coefficients. Under the null hypothesis, we define Rβ = r = 0, in which r is a p× 1

vector of zero and R is a p× (m+ 1)k matrix with rank p, which shows the number of restrictions,

as

R =


−Ik Ik 0 0 0 0

0 −Ik Ik 0 0 0
...

...
0 0 0 −Ik Ik 0
0 0 0 0 −Ik Ik

 . (6)

The matrix R considers the difference between coefficients, Rβ =
(
β′(2)−β

′
(1), β

′
(3)−β

′
(2), . . . , β

′
(m+1)−

β′(m)

)′
. Under the alternative hypothesis, Rβ 6= 0.

We propose a minimal mean squared error combined estimator of β as the combination of the

restricted estimator and the unrestricted estimator with a combination weight γ ∈ [0 1] such that

β̂γ = (1− γ)β̂ur + γβ̂r, (7)

where β̂ur and β̂r are the infeasible unrestricted estimator and the infeasible restricted estimator,

respectively. Using the generalized least squares (GLS) in (2) we have

β̂ur =
(
X ′Ω−1X

)−1
X ′Ω−1Y

= β +
(
X ′Ω−1X

)−1
X ′Ω−1ε.

(8)

Further applying GLS in (2) under the restriction Rβ = 0, we have

β̂r = β̂ur −
(
X ′Ω−1X

)−1
R′
[
R
(
X ′Ω−1X

)−1
R′
]−1

R︸ ︷︷ ︸ β̂ur
= β̂ur − Lβ̂ur,

(9)

where L ≡
(
X ′Ω−1X

)−1
R′
[
R
(
X ′Ω−1X

)−1
R′
]−1

R is an (m+ 1)k × (m+ 1)k matrix.

The idea behind the combined estimator in (7) is that when the difference between the restricted

and unrestricted estimator is small, the combined estimator gives more weight to the restricted

estimator which is an efficient estimator under Rβ = 0. However, when the difference is large,

the restricted estimator is biased under Rβ 6= 0, and the combined estimator gives more weight to

4



the unrestricted estimator. Thus, the proposed combined estimator in (7) is a Stein-like shrinkage

estimator that incorporates the trade-off between the bias and variance of the two estimators. All

these are also reflected in the optimal combination weight in (12), that we derive next.

As γ in (7) is unknown, the first step is to find its optimal value. We derive the exact risk for

the combined estimator, and minimize the risk to find the optimal value of the weight. The risk of

the combined estimator with a positive definite weight matrix W is

Risk(β̂γ ,W ) = E
[
(β̂γ − β)′W (β̂γ − β)

]
= Risk(β̂ur,W ) + γ2

[
β′L′WLβ + tr

(
(X ′Ω−1X)−1L′WL

)]
− 2γ tr

(
(X ′Ω−1X)−1L′W

)
.

(10)

By minimizing the risk with respect to γ in (10), the optimal value of the weight denoted by γ∗ is

γ∗ =
tr
(
(X ′Ω−1X)−1L′W

)
β′L′WLβ + tr

(
(X ′Ω−1X)−1L′W

) , (11)

which by plugging the unbiased estimator of its denominator we have

γ∗ =
tr
(
(X ′Ω−1X)−1L′W

)
β̂′urL

′WLβ̂ur

=
tr
(
(X ′Ω−1X)−1L′W

)
(β̂ur − β̂r)′W (β̂ur − β̂r)

.

(12)

See Appendix A.1 for the proof of (12).1 Note that the optimal weight depends on the unknown

value Ω which we will replace with its estimate.

Define notation
¯̂
β as a feasible estimator of β. The feasible unrestricted estimator from (8) is

¯̂
βur = β +

(
X ′Ω̂−1X

)−1
X ′Ω̂−1ε, (13)

where β =
(
β′(1), . . . , β

′
(m+1)

)′
is (m+1)k×1, and Ω̂ = diag

(
σ̂2

(1) Il1 , . . . , σ̂
2
(m+1) Ilm+1

)
= diag

(
S(1) Il1 ,

. . . , S(m+1) Ilm+1

)
where S(i) is a consistent estimates of the σ2

(i) in which S(i) =
ε′
(i)
M(i)ε(i)

li−k and

M(i) = Ili −X(i)

(
X ′(i)X(i)

)−1
X ′(i) with i = {1, . . . ,m+ 1}. See Appendix A.2 for details. We note

1A different combined estimator may be obtained from a Bayesian approach, as considered by Pesaran et al. (2006)
and Maheu and Gordon (2008). It is well known that the posterior mean (a Bayesian shrinkage estimator) can be
shown to combine a prior mean with the likelihood function based sample estimator for the parameters, resulting
in our context a weighted average of the prior mean (the unrestricted estimator using regime specific observations)
and the restricted estimator using pooled data of all regimes, with the weights given by the respective normalized
precision matrices. Our combination weight γ∗ in equation (12) might be related to and compared with those Bayesian
shrinkage estimators. We leave this possibility for future work, and thank Allan Timmermann for bringing this to
our attention.
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that since the Ω matrix is diagonal, we can rewrite the unrestricted estimator as an ordinary least

square estimator.

The feasible restricted estimator from (9) is

¯̂
βr =

¯̂
βur −

(
X ′Ω̂−1X

)−1
R′
[
R
(
X ′Ω̂−1X

)−1
R′
]−1

R
¯̂
βur

=
¯̂
βur − L̂

¯̂
βur,

(14)

where L̂ =
(
X ′Ω̂−1X

)−1
R′
[
R
(
X ′Ω̂−1X

)−1
R′
]−1

R.

Having the feasible restricted and unrestricted estimators, the feasible combination weight, γ̂∗,

can be considered as

γ̂∗ =
tr
(
(X ′Ω̂−1X)−1L̂′W

)
¯̂
β
′
urL̂
′WL̂

¯̂
βur

. (15)

Further, the feasible combined estimator from (7) is

¯̂
βγ = (1− γ̂∗) ¯̂

βur + γ̂∗
¯̂
βr. (16)

We note that for the restricted estimator, Rβ = 0. For example, we can impose a restriction

that all coefficients across regimes are equal, a restriction that the coefficients in some specific

regimes are equal to each other, or any other restrictions. Restricting some of the coefficients to

be identical across some regimes converts the model to the partial structural change model which

is useful since it allows for a broad range of practical interest.

3 Finite Sample Properties: Approximate Bias, MSE, and Risk

In this section, we use the large sample approximation method proposed by Nagar (1959) to analyze

the bias, the mean squared error (MSE) matrix, and the risk for the proposed feasible combined

estimator in (16).

Theorem 1: Under Assumptions 1-2, the bias of the combined estimator, up to order O(T−1), is

given by

Bias
( ¯̂
βγ
)

= E
( ¯̂
βγ − β

)
= −tr(Q)

φ
Lβ, (17)

where Q ≡ W 1/2L(X ′Ω−1X)−1W 1/2, φ ≡ β′L′WLβ, and W > 0 is any user specific choice of

weight, and the second order moment matrix of the combined estimator, up to order O(T−2), is
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MSE
( ¯̂
βγ
)

= E
[( ¯̂
βγ − β

)( ¯̂
βγ − β

)′]
= MSE

( ¯̂
βur
)

+
1

φ2
Lββ′L′

(
tr(Q)

)2
− 2 tr(Q)

φ
L(X ′Ω−1X)−1

+
2 tr(Q)

φ2
Lββ′L′WL(X ′Ω−1X)−1 +

2 tr(Q)

φ2
(X ′Ω−1X)−1L′WLββ′L′,

(18)

where MSE
( ¯̂
βur
)

= (X ′Ω−1X)−1. Further, for a weight matrix W of order O(T ), the risk of the

combined estimator, up to order O(T−1), is given by

Risk
( ¯̂
βγ ,W

)
= E

[( ¯̂
βγ − β

)′
W
( ¯̂
βγ − β

)]

= Risk
( ¯̂
βur,W

)
−

(
tr(Q)

)2

φ2

{
φ−

4
(
β′L′WL(X ′Ω−1X)−1WLβ

)
tr(Q)

}
,

(19)

where Risk
( ¯̂
βur,W

)
= tr

(
(X ′Ω−1X)−1W

)
. �

See Appendix A.3 for the proof of Theorem 1. We note that Q = W 1/2L(X ′Ω−1X)−1W 1/2 =

W 1/2L(X ′Ω−1X)−1L′W 1/2 is a symmetric matrix.

Corollary 1.1: The risk of the combined estimator, up to order O(T−1), is less than the risk of

the unrestricted estimator as long as

d ≡ tr(Q)

λmax(Q)
> 4, (20)

where λmax(Q) represents the maximum eigenvalues of Q. �

The proof of Corollary 1.1 is given in the Appendix A.4.

Corollary 1.2: The bias, up to order O(T−1), and finite sample risk, up to order O(T−1), for the

combined estimator with W = X ′Ω−1X are

Bias
( ¯̂
βγ
)

= − p
φ
Lβ, (21)

Risk
( ¯̂
βγ ,W

)
= Risk

( ¯̂
βur,W

)
− p2

φ

{
1− 4

p

}
, (22)

where the risk of the combined estimator is less than the unrestricted estimator if p > 4 where p is

the number of restrictions for the restricted estimator. �
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The proof of Corollary 1.2 follows immediately after substituting W = X ′Ω−1X and noting

tr(Q) = p. In a special case, when there is only one structural break point so that m = 1, and

p = 2k, the dominance condition in Corollary 1.2 becomes k > 2 which is the Stein’s well-known

dominance condition of a shrinkage estimator. Further, for m ≥ 4 points of structural breaks, our

shrinkage combined estimator dominates the unrestricted estimator for any number of regressors.

We note that when we consider V (ε|X) = σ2Ω where Ω is as given in (5), then we get the

following Corollary.

Corollary 1.3: The large sample approximation bias, up to O(T−1), in (17) and risk, up to

O(T−1), in (19) for the combined estimator, are written as

Bias
( ¯̂
βγ
)

= −σ
2tr(Q)

φ
Lβ (23)

and

Risk
( ¯̂
βγ ,W

)
= Risk

( ¯̂
βur,W

)
−
σ4
[
tr(Q)

]2
φ2

{
φ− 4β′L′WL(X ′Ω−1X)−1WLβ

tr(Q)

}
, (24)

where Risk
( ¯̂
βur,W

)
= σ2tr

(
(X ′Ω−1X)−1W

)
. Therefore, the risk of the combined estimator is less

than the unrestricted estimator as long as d > 4 in (20). �

Remark 1: The result in (23) and (24) immediately follow after substituting Ω as σ2Ω in (17) and

(19), respectively, and they are under the assumption that W = O(T ). In a special case, when we

substitute W = X ′Ω−1X/σ2 in (23) and (24), respectively, we get the bias, up to order O(T−1)

and risk, up to order O(T−1) as

Bias
( ¯̂
βγ
)

= −σ
2p

φ
Lβ, (25)

Risk
( ¯̂
βγ ,W

)
= Risk

( ¯̂
βur,W

)
− σ2p2

φ

{
1− 4

p

}
, (26)

where φ = β′L′X ′Ω−1XLβ. Thus the risk of the combined estimator is less than the risk of the

unrestricted estimator if p > 4. �

The above results in Corollary 1.3 and in its remark are for large-T and fixed σ. However, if T

is fixed and σ is small in Kadane (1971) small sigma sense, W = X′X
σ2 = O( 1

σ2 ), and V (ε|X) = σ2I,

8



then we get the following Corollary.

Corollary 1.4: The small sigma bias and finite sample risk for the combined estimator are

Bias
( ¯̂
βγ
)

= −σ
2p

φs
Lβ, (27)

Risk
( ¯̂
βγ ,W

)
= Risk

( ¯̂
βur,W

)
− σ2p2

φs

{
n− 2

n
− 4

p

}
(28)

where φs = β′L′X ′XLβ, n = T − (m+ 1)k, and the risk of the combined estimator is less than the

risk of the unrestricted estimator if p > 4n
n−2 . �

The proof of Corollary 1.4 is given in Appendix A.4.

Remark 2: We note from the result of Corollary 1.4 that when T is moderately large so that

n/(n−2) ' 1, then the combined estimator has smaller risk compared to the unrestricted estimator

if p > 4. That is, the small sigma results on bias, risk, and improvement condition in Corollary

1.4 are the same as those obtained by the large sample results in Remark 1. Further, the small

sigma condition p > 4n
n−2 = 4 + 8

n−2 implies the condition p > 4 so long as n > 10 since number of

restrictions p is an integer. �

3.1 Forecasting under Structural Break

Besides estimating the parameters of the model, we can use our combined estimator for deriving

forecast under the structural breaks model, and compute the Mean Squared Forecast Error (MSFE)

for the estimators. One solution for forecasting under breaks is to use the observations of the latest

regime and estimate the coefficient based on that. But one can improve the performance of the

forecast in the sense that has a lower MSFE by using observations out of the latest regime, see

Pesaran and Timmermann (2005, 2007), and Pesaran et al. (2013).

For simplicity, assume that we have only one break, m = 1. In order to use our introduced

combined estimator for forecasting purpose, we define a selection matrixG = [0 Ik]. By multiplying

it to the combined estimator, we have Gβ̂γ = (1 − γ)Gβ̂ur + γGβ̂r. Basically, we are focusing on

the second elements of the β′s. By having the combined estimator, we can derive the out of sample

forecast. Define MSFE
(
β̂γ
)
≡ Risk

(
β̂γ , xT+1x

′
T+1

)
, where W = xT+1x

′
T+1 makes the risk the

one step ahead MSFE. Corollary 1.5 shows the finite sample MSFE for our proposed combined

9



estimator.

Corollary 1.5: The finite sample MSFE of the combined estimator is

MSFE
( ¯̂
βγ
)

= E
[( ¯̂
βγ − β

)′
G′ xT+1x

′
T+1 G (

¯̂
βγ − β)

]
= MSFE

( ¯̂
βur
)
− p2

$

{
1− 4

p

}
,

(29)

where $ ≡ β′L′G′xT+1x
′
T+1GLβ. Thus the MSFE of the combined estimator is smaller than that

of unrestricted estimator when p > 4. �

The proof of Corollary 1.5 is in Appendix A.4.

4 Monte Carlo Simulation

This section provides Monte Carlo study of the proposed combined estimator. The goal is to

compare the risk of the unrestricted estimator with the proposed combined estimator. It is shown

that the risk of the proposed combined estimator is lower than the risk of the unrestricted estimator,

regardless of the breakpoints and break sizes. We consider T ∈ {100, 200}, m = 1, and k ∈ {5, 8}.

We try different values for a true breakpoint, b1 = T1
T ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We also

set W = X ′Ω−1X.2 We generate xt and ut such that xt ∼ N(0, 1), and ut ∼ N(0, 1). The data

generating process uses the following model:

yt =

{
x′tβ(1) + σ(1)ut for 1 ≤ t ≤ T1

x′tβ(2) + σ(2)ut for T1 < t ≤ T.
(30)

Let β(1) be a vector of ones, and λ ≡ β(2) − β(1) ∈ {0, 0.25, 0.5, 0.75, 1} shows the true break size

in the coefficients which covers both a weak break (λ = 0) and a strong break (λ = 1). Also,

q = σ(1)/σ(2) shows the ratio of the break in the error term where we set q ∈ {0.5, 1, 2}. The

number of Monte Carlo replications is 1,000.

To incorporate the uncertainty regarding the unknown parameters (b1, λ, q), we estimate the

break point, break size in the coefficient and the ratio of break in error variance. Tables 1-6

show the results for this experiment. The tables show the relative MSE with respect to the

unrestricted estimator, i.e. RMSEγ =
MSE(

¯
β̂γ)

MSE(
¯
β̂ur)

. As it is clear from the results, the proposed

2The results with W = I2k are similar and are not reported to save space.
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combined estimator with weight γ in all situations, regardless of the choice of q or b1, is better

than the unrestricted estimator. This confirms our theoretical results. Besides, as we increase the

number of regressors, k, the ratio of Mean Squared Error (RMSE) gets smaller, especially for small

break size (approximately less than 0.5).

We note that for a small break (small λ), the combination weight assign more weight to the

restricted estimator which uses more observations. Therefore, we expect to see a larger value for γ̂.

But for a large break (large λ), more weight is assigned to the unrestricted estimator. So we expect

to see a smaller value for the γ̂. Figure 1 shows the distribution of γ̂ for different break size in the

slope coefficient. The horizontal axis shows the value of γ̂ and the vertical axis shows the frequency

for 1000 Monte Carlo. In this figure, T = 100, T1 = 80, k = 8, and λ ∈ {0, 0.25, 0.5, 0.75, 1}. To

incorporate the uncertainty associated with the break point and break size, we have estimated the

breakpoint (T1), the ratio of the break in the error variance (q) and the break in the slope coefficient

(λ). As it is clear from this figure, when the break size increases, the value of γ̂ becomes smaller and

the opposite is true for the small break size. Similar pattern can be seen for other specifications.

Remark 3: When there is no break in the true model, λ = 0 and q = 1, it may happen that

the model mistakenly detects a break. As the unrestricted estimator uses observations within each

regime separately, fewer observations are used to estimate the slope coefficients within each regime.

Therefore, the combined estimator outperforms the unrestricted estimator and causes the RMSE

not be equal to one. �

5 Empirical Analysis

We asses the performance of our proposed method by applying that to the 130 macroeconomic and

financial time series from the St. Louis Federal Reserve (FRED-MD) database. We use the monthly

data from Jan 1959 up to Mar 2020. The data are described by McCracken and Ng (2016), who

suggest various transformations to render the series stationary and to deal with missing values.

After losing two observations to data transformation, the sample we use for the analysis is for

1959 : 03 to 2020 : 03 with T = 732 observations. The data are split into 8 groups: output

and income (17 series), labor market (32 series), consumption and orders (10 series), orders and

inventories (11 series), money and credit (14 series), interest rates and exchange rates (21 series),
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prices (21 series) and stock market (4 series).

As suggested by McCracken and Ng (2016), in a large N and large T dimension, we can use

diffusion index forecasting and estimate the factor augmented regression to reduce the dimension.

We estimate the static factors by principal component analysis (PCA) adapted to allow for missing

values. We then select the number of significant factors using the criteria developed in Bai and Ng

(2002), which is a generalization of Mallow’s Cp criteria for large dimensional panels. The criterion

finds eight factors in this sample. The eight factors can be interpreted as real activity/employment,

inflation, term spreads, housing, interest rate variables, stock market variables which is seen in two

of the factors, and output and inventories factors.

We evaluate the usefulness of the estimated factors by forecasting the U.S industrial production

at the 1, 6 and 12 month horizons.3 The model that we use for forecasting take the form of

yht+h = β′h f̂t+h−1 + αh yt+h−1 + εht+h, (31)

where yht+h denotes output growth over the next h months, expressed at an annual rate, that is,

yht+h = (1200/h) ln(IPt+h/IPt). Also f̂t+h−1 is the estimated eight factors at time t+ h− 1.

In order to evaluate the performance of our proposed estimator, we compute the out of sample

MSFE and compare them with MSFE from the unrestricted estimator. We also compare our

results with MSFE based on Pesaran et al. (2013) estimator who propose a weighted least square

method for forecasting under structural breaks. For this purpose, we divide the sample of T

observations into two parts. The first n1 observations is used as an in-sample estimation period,

and the remaining n2 = T − n1 observations is out-of-sample period which we recursively make

one step ahead forecast. Each time that we expand the window, we apply the Schwarz’s Bayesian

Information Criteria (BIC) to choose the predictors out of the nine predictors, and identify break

points by the sequential procedure introduced by Bai and Perron (1998) and Bai and Perron (2003),

where we search for up to eight breaks and set the trimming parameter to 0.1 and the significance

level to 5%. Using an initial estimation period of n1 = 130 months (around 11 years) forecasts

are recursively generated at each point in the out-of-sample period using only the information

available at the time the forecast is made. As the selection of the forecast evaluation period is

3We assume that no structural breaks occur in the forecast period. For forecasting with structural breaks over
the forecast period see Pesaran et al. (2006) which is a Bayesian procedure that allows for such a possibility.
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always somewhat arbitrary, we also report the results with an alternative estimation window sizes,

so the beginning of the various forecast evaluation periods runs from 1970 : 01 (n1 = 130) through

1990 : 01 (n1 = 370). The results are qualitatively similar when a larger number of estimation

period is used. The baseline forecast uses the observations after the last break. Breakpoints are

stable in the recursive estimation procedure. Mainly, the program detects one break. Also, there

are some cases that no break is detected. For example, for h = 1 and n1 = 370, we have 362 out-

of-sample periods. For the first 242 expanding windows, no break is detected. For the remaining

expanding windows (243-362) only one break (around the financial crisis) is detected. Figure 2

shows the histogram of the combination weight, γ̂. We did the same analysis for n1 = 130 and

n1 = 250. The results are similar to Figure 2.

We compare the forecast based on unrestricted estimator with our proposed combined estimator

forecast. Table 7 reports the ratio of MSFE over the benchmark forecast. The results show that

the proposed combined estimator delivers vastly improved forecasts (lower MSFE) compared to

unrestricted estimator for all horizons. It also has outperformance relative to the Pesaran et al.

(2013) estimator. Table 7 also reports the test results based on Diebold and Mariano (1995) statistic

for testing the predictive ability of estimators compare to the benchmark forecast.

6 Conclusion

We introduce the combined estimator of the unrestricted estimator with the restricted estimator

to estimate the coefficients under structural break. The proposed combined estimator turns out to

be a Stein-type shrinkage estimator. We derive the analytical finite sample risk for this estimator

and show that the risk of this estimator is lower than the unrestricted estimator. Monte Carlo

experiments show the improvement in the risk over the unrestricted estimator. As we increase the

number of regressors, we get an even lower risk by using the combined estimator. For some large

break sizes, we can still see improvement relative to the unrestricted estimator, but not as much as

the small breaks. We also apply our estimator for generating the out-of-sample forecast and use the

model for forecasting the US output growth. We find that the MSFE of the proposed estimator is

smaller than the MSFE of the unrestricted estimator. Further, we show that the proposed combined

estimator performs well for longer horizon forecasts.
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A Appendix:

A.1 Proof of equation (12)

To find the MSE and risk of the β̂γ , we first find the optimal value for γ by minimizing the risk.

Risk(β̂γ ,W ) = E
[
(β̂γ − β)′W (β̂γ − β)

]
= Risk(β̂ur,W ) + γ2

[
β′L′WLβ + tr

(
(X ′Ω−1X)−1L′WL

)]
− 2γ tr

(
(X ′Ω−1X)−1L′W

)
.

(a.1)

By minimizing the risk, and noting that tr
(
(X ′Ω−1X)−1L′WL

)
= tr

(
(X ′Ω−1X)−1L′W

)
, we have

γ∗ =
tr
(
(X ′Ω−1X)−1L′W

)
β′L′WLβ + tr

(
(X ′Ω−1X)−1L′W

) . (a.2)

Note that, given a known Ω, the unbiased estimator for the denominator of the weight in (a.2) can

be calculated as

E(β̂′urL
′WLβ̂ur) = β′L′WLβ + tr

(
(X ′Ω−1X)−1L′WL

)
. (a.3)

So, the unbiased estimator for β′L′WLβ is

β̂′urL
′WLβ̂ur − tr

(
(X ′Ω−1X)−1L′WL

)
. (a.4)

Therefore, by plugging the unbiased estimator of the denominator, (a.2) will be

γ∗ =
tr
(
(X ′Ω−1X)−1L′W

)
β̂′urL

′WLβ̂ur
. (a.5)

�

A.2 Proof of the estimated variance

Let us write ∆ = Ω̂− Ω where ∆ is a T × T matrix with elements of orders Op(T
−1/2).

Proof: Remember,

Ω̂ =

S(1) Il1 . . . 0
...

. . . 0
0 0 S(m+1) Ilm+1

 , (a.6)

where S(i) =
ε′
(i)
M(i)ε(i)

li−k , li ≡ Ti − Ti−1 with i = {1, . . . ,m+ 1}. Thus,

E(S(i)) = σ2
(i), (a.7)
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and

var(S(i)) =
2σ4

(i)

li − k
= O

( 1

li

)
. (a.8)

Define, bi = Ti
T , such that 0 < b1 < b2 < · · · < bm < 1 are constant. Thus, S(i) − σ2

(i) = Op(T
−1/2),

and this completes the proof. �

A.3 Proof of Theorem 1

We derive the optimal value of the weight in (12) which depends on the unknown parameter, Ω.

So, we need to plug in the estimate value for the Ω and find the feasible terms for its numerator

and denominator. Notice that, knowing the order of ∆, by expanding Ω̂−1 we have

Ω̂−1 = (Ω + ∆)−1

= Ω−1
(
IT + ∆Ω−1

)−1

= Ω−1 − Ω−1∆Ω−1 + Ω−1∆Ω−1∆Ω−1 − Ω−1∆Ω−1∆Ω−1∆Ω−1 +Op(T
−2)

= O(1) +Op(T
−1/2) +Op(T

−1) +Op(T
−3/2) +Op(T

−2).

(a.9)

Thus,

(X ′Ω̂−1X)−1 = (X ′Ω−1X)−1

(
IT − (X ′Ω−1∆Ω−1X)(X ′Ω−1X)−1 + (X ′Ω−1(∆Ω−1)2X)(X ′Ω−1X)−1

+Op(T
−3/2)

)−1

= A−1 +A−3/2 +A−2 +Op(T
−5/2),

(a.10)

where

A−1 = (X ′Ω−1X)−1,

A−3/2 = (X ′Ω−1X)−1(X ′Ω−1∆Ω−1X)(X ′Ω−1X)−1,

A−2 = −(X ′Ω−1X)−1(X ′Ω−1(∆Ω−1)2X)(X ′Ω−1X)−1+(X ′Ω−1X)−1(X ′Ω−1∆Ω−1X)(X ′Ω−1X)−1

(X ′Ω−1∆Ω−1X)(X ′Ω−1X)−1,

in which the suffixes of A indicate the order of magnitude in probability, e.g., A−2 = Op(T
−2).

Therefore,[
R(X ′Ω̂−1X)−1R′

]−1
=
(
R(X ′Ω−1X)−1R′

)−1 −
(
R(X ′Ω−1X)−1R′

)−1
R(X ′Ω−1X)−1

(X ′Ω−1∆Ω−1X)(X ′Ω−1X)−1R′
(
R(X ′Ω−1X)−1R′

)−1
+Op(1).

(a.11)
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Using (a.11), we can calculate L̂ as

L̂ = (X ′Ω̂−1X)−1R′
[
R(X ′Ω̂−1X)−1R′

]−1
R

= L0 + L−1/2 +Op(T
−1), (a.12)

where

L0 = L = (X ′Ω−1X)−1R′
(
R(X ′Ω−1X)−1R′

)−1
R,

L−1/2 =
(
I − L

)
(X ′Ω−1X)−1(X ′Ω−1∆Ω−1X)L.

Therefore, the feasible term for the denominator of (12) is

¯̂
β
′
urL̂
′WL̂

¯̂
βur = β′L′WLβ + 2 β′L′WLΠ−1/2 + 2 β′L′WL−1/2 β +Op(1)

= O(T ) +Op(T
1/2) +Op(T

1/2) +Op(1),

(a.13)

where Π−1/2 = (X ′Ω−1X)−1X ′Ω−1ε, and the feasible term for the numerator of (12) is

(X ′Ω̂−1X)−1L̂′W = (X ′Ω−1X)−1L′W + (X ′Ω−1X)−1L′−1/2W

− (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1L′W +Op(T
−1)

= O(1) +Op(T
−1/2) +Op(T

−1/2) +Op(T
−1).

(a.14)

Finally, using (a.13) and (a.14), we have

¯̂
βγ − β =

¯̂
βur − β − γ̂∗

( ¯̂
βur −

¯̂
βr
)

=
¯̂
βur − β −

[ 1

φ
− 2

φ2
β′L′WLΠ−1/2 −

2

φ2
β′L′WL−1/2 β

]
tr
(
(X ′Ω−1X)−1L′W

)[
Lβ + LΠ−1/2

]
+Op(T

−2),

(a.15)

where φ = β′L′WLβ. Thus, the MSE, to order Op(T
−2), is

MSE
( ¯̂
βγ
)

= E
[( ¯̂
βγ − β

)( ¯̂
βγ − β

)′]
= MSE

( ¯̂
βur
)

+
1

φ2
Lββ′L′

(
tr(Q)

)2

− tr(Q)

φ
E
[
LΠ−1/2

( ¯̂
βur − β

)′]− tr(Q)

φ
E
[
LΠ−1/2

( ¯̂
βur − β

)′]′
+ tr(Q) E

([ 2

φ2
β′L′WLΠ−1/2 +

2

φ2
β′L′WL−1/2 β

]
Lβ
( ¯̂
βur − β

)′)

+ tr(Q) E

([ 2

φ2
β′L′WLΠ−1/2 +

2

φ2
β′L′WL−1/2 β

]
Lβ
( ¯̂
βur − β

)′)′
= MSE

( ¯̂
βur
)

+
1

φ2
Lββ′L′

(
tr(Q)

)2
− 2 tr(Q)

φ
L (X ′Ω−1X)−1
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+
2 tr(Q)

φ2
Lββ′L′WL (X ′Ω−1X)−1 +

2 tr(Q)

φ2
(X ′Ω−1X)−1L′WLββ′L′. (a.16)

Finally, writing E
[( ¯̂
βγ − β

)( ¯̂
βγ − β

)′
W
]
, where W = O(T ), and taking its trace we get the risk of

this estimator, to order Op(T
−1), is

Risk(
¯̂
βγ ,W ) = Risk(

¯̂
βur,W ) +

1

φ

(
tr(Q)

)2
− 2

φ

(
tr(Q)

)2

+
4 tr(Q)

φ2
tr
(
Lββ′L′WL (X ′Ω−1X)−1

)
.

(a.17)

This completes the proof of Theorem 1. �

In evaluating expectations in (a.16) we have used the following results. Let the T×1 random vector

ε be such that ε ∼ N(0, σ2IT ), and M1 and M2 be arbitrary T × T matrices. Then,

E
[
(ε′M1ε)(ε

′M2ε)
]

= σ4
[
tr(M1)tr(M2) + tr(M1M2) + tr(M1M

′
2)
]
, (a.18)

E
[
εε′M1εε

′
]

= σ4
[
tr(M1)IT +M1 +M ′1

]
. (a.19)

See Ullah (2004).

A.4 Proof of Corollaries 1.1, 1.4, 1.5

Corollary 1.1:

The risk of the combined estimator is less than the risk of the unrestricted estimator if

4 β′L′WL(X ′Ω−1X)−1WLβ

φ
< tr(Q)

sup
W 1/2Lβ

4 β′L′W 1/2W 1/2L(X ′Ω−1X)−1W 1/2W 1/2Lβ

β′L′WLβ
< tr(Q)

4 λmax(Q) < tr(Q).

(a.20)

Thus, the risk of the combined estimator is less than that of the unrestricted estimator if d ≡
tr(Q)

λmax(Q) > 4. �

Corollary 1.4:

Using W = X ′X/σ2 = O(1/σ2),Ω = σ2I, and σ2 = σ̂2 in the combination weight (12), and

expanding the terms up to order σ3, we get

γ̂∗ =
σ̂2 tr(Q)

¯̂
β
′
urL
′X ′XL

¯̂
βur

= ν1 + ν2 +Op(σ
4), (a.21)
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where L = (X ′X)−1R′
(
R(X ′X)−1R

)−1
R = O(1), Q = (X ′X)1/2L(X ′X)−1(X ′X)1/2 = O(1),

tr(Q) = tr(L) = p,

ν1 ≡ σ2ε∗
′
Mε∗ tr(Q)

φs
(
T−(m+1)k

) = Op(σ
2),

ν2 ≡ − 2σ3ε∗
′
Mε∗ tr(Q)

φ2s

(
T−(m+1)k

)[ε∗′X(X ′X)−1L′WLβ
]

= Op(σ
3),

φs = β′L′X ′XLβ = O(1), and ε ≡ σε∗ with ε∗ ∼ N(0, I). Now, rewrite the combined estimator as

¯̂
βγ − β =

( ¯̂
βur − β

)
− γ̂∗

( ¯̂
βur −

¯̂
βr
)

= B̄1 + B̄2 + B̄3 +Op(σ
4),

(a.22)

where

B̄1 ≡ σ(X ′X)−1X ′ε∗ = Op(σ),

B̄2 ≡ −ν1Lβ = − σ2ε∗
′
Mε∗ tr(Q)

φs
(
T−(m+1)k

)Lβ = Op(σ
2),

B̄3 ≡ − σ3ε∗
′
Mε∗ tr(Q)

φs
(
T−(m+1)k

)L(X ′X)−1X ′ε∗ + 2σ3ε∗
′
Mε∗ tr(Q)

φ2s

(
T−(m+1)k

)Lβ ε∗′X(X ′X)−1L′X ′XLβ = Op(σ
3).

Thus, the risk of the combined estimator is

Risk
( ¯̂
βγ ,W

)
= E

[( ¯̂
βγ − β

)′
W
( ¯̂
βγ − β

)]
= E

(
B̄′1WB̄1

)
+ E

(
B̄′2WB̄2

)
+ 2E

(
B̄′1WB̄3

)
,

(a.23)

where, using (a.18) and (a.19)

E(B̄′1 W B̄1) = (m+ 1)k, (a.24)

E(B̄′2WB̄2) =
σ2p2

φs
(
T − (m+ 1)k

)[T − (m+ 1)k + 2
]
, (a.25)

and

E
(
B̄′1WB̄3

)
= − σ2p2

φs
+

2σ2p

φs
. (a.26)

Substituting (a.24) to (a.26) in (a.23) we get the result in Corollary 1.4. �

Corollary 1.5:

Getting the combination weight, γ̂, by using the in-sample prediction weight (see Corollary 1.2),

and setting W = xT+1x
′
T+1, we can derive the one-step ahead MSFE, and have the result of this

Corollary satisfied. �
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(a) λ = 0 (b) λ = 0.25

(c) λ = 0.5 (d) λ = 0.75

(e) λ = 1

Figure 1: Frequency of γ̂ for T = 100, T1 = 80, k = 8 and different λ

Figure 2: Frequency of γ̂ for h = 1, n1 = 370
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Table 1: Simulation results, k = 5, q = 0.5, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.591 0.563 0.535 0.506 0.470 0.437 0.410

0.25 0.652 0.613 0.598 0.590 0.540 0.518 0.503

0.50 0.762 0.727 0.736 0.717 0.682 0.659 0.658

0.75 0.858 0.873 0.842 0.828 0.816 0.773 0.775

1.00 0.936 0.944 0.934 0.918 0.901 0.856 0.853

T = 200

0.00 0.707 0.679 0.650 0.619 0.580 0.550 0.504

0.25 0.808 0.762 0.744 0.721 0.681 0.675 0.667

0.50 0.873 0.861 0.845 0.814 0.803 0.791 0.775

0.75 0.951 0.953 0.939 0.919 0.908 0.890 0.858

1.00 0.984 0.984 0.974 0.961 0.958 0.950 0.914

Note: This table represents the results of the relative MSE for which the benchmark

model is the unrestricted estimator, RMSEγ ≡ MSE(
¯̂
βγ)/MSE(

¯̂
βur). The first

column shows the sample size while the second column shows the true break size in the
coefficient, λ.

Table 2: Simulation results, k = 8, q = 0.5, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.463 0.433 0.392 0.367 0.364 0.306 0.286

0.25 0.536 0.498 0.474 0.451 0.439 0.394 0.366

0.50 0.697 0.655 0.660 0.638 0.618 0.565 0.534

0.75 0.831 0.842 0.830 0.821 0.776 0.728 0.689

1.00 0.912 0.954 0.947 0.939 0.898 0.842 0.799

T = 200

0.00 0.595 0.555 0.521 0.484 0.440 0.401 0.355

0.25 0.717 0.681 0.653 0.626 0.580 0.555 0.529

0.50 0.854 0.852 0.846 0.825 0.781 0.759 0.706

0.75 0.961 0.960 0.947 0.935 0.917 0.880 0.828

1.00 0.977 0.981 0.974 0.965 0.962 0.935 0.899

Note: See the note of Table 1.
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Table 3: Simulation results, k = 5, q = 1, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.578 0.580 0.581 0.588 0.579 0.590 0.599

0.25 0.692 0.719 0.744 0.752 0.737 0.733 0.726

0.50 0.827 0.851 0.895 0.913 0.904 0.875 0.875

0.75 0.899 0.938 0.962 0.974 0.975 0.963 0.948

1.00 0.938 0.965 0.981 0.987 0.991 0.984 0.977

T = 200

0.00 0.661 0.661 0.685 0.664 0.688 0.673 0.701

0.25 0.801 0.816 0.835 0.837 0.834 0.830 0.831

0.50 0.899 0.938 0.953 0.959 0.963 0.956 0.927

0.75 0.949 0.972 0.982 0.981 0.986 0.984 0.968

1.00 0.967 0.983 0.989 0.988 0.992 0.992 0.980

Note: See the note of Table 1.

Table 4: Simulation results, k = 8, q = 1, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.429 0.443 0.458 0.435 0.469 0.465 0.492

0.25 0.595 0.637 0.688 0.675 0.687 0.651 0.636

0.50 0.775 0.849 0.900 0.921 0.902 0.860 0.814

0.75 0.882 0.939 0.961 0.973 0.966 0.948 0.910

1.00 0.933 0.966 0.978 0.987 0.983 0.972 0.952

T = 200

0.00 0.567 0.576 0.581 0.583 0.576 0.578 0.592

0.25 0.749 0.795 0.816 0.828 0.818 0.802 0.767

0.50 0.898 0.937 0.957 0.960 0.966 0.944 0.912

0.75 0.949 0.970 0.981 0.981 0.986 0.975 0.958

1.00 0.969 0.982 0.988 0.988 0.992 0.987 0.975

Note: See the note of Table 1.
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Table 5: Simulation results, k = 5, q = 2, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.383 0.425 0.447 0.472 0.501 0.564 0.620

0.25 0.475 0.515 0.538 0.550 0.578 0.631 0.665

0.50 0.618 0.647 0.683 0.685 0.706 0.738 0.771

0.75 0.728 0.751 0.787 0.806 0.839 0.845 0.861

1.00 0.796 0.826 0.873 0.912 0.929 0.935 0.936

T = 200

0.00 0.488 0.516 0.572 0.593 0.661 0.661 0.720

0.25 0.623 0.643 0.659 0.705 0.734 0.750 0.802

0.50 0.742 0.764 0.793 0.812 0.839 0.844 0.880

0.75 0.819 0.861 0.894 0.923 0.937 0.952 0.954

1.00 0.879 0.922 0.945 0.962 0.975 0.980 0.988

Note: See the note of Table 1.

Table 6: Simulation results, k = 8, q = 2, W = X ′Ω−1X

λ b1 = 0.2 b1 = 0.3 b1 = 0.4 b1 = 0.5 b1 = 0.6 b1 = 0.7 b1 = 0.8

T = 100

0.00 0.263 0.312 0.344 0.348 0.387 0.449 0.473

0.25 0.346 0.392 0.430 0.425 0.461 0.520 0.552

0.50 0.510 0.555 0.609 0.607 0.638 0.674 0.693

0.75 0.655 0.728 0.786 0.821 0.840 0.840 0.824

1.00 0.759 0.830 0.883 0.922 0.940 0.947 0.921

T = 200

0.00 0.342 0.400 0.456 0.487 0.518 0.555 0.585

0.25 0.503 0.554 0.584 0.623 0.624 0.687 0.716

0.50 0.689 0.746 0.775 0.817 0.829 0.847 0.846

0.75 0.807 0.866 0.905 0.930 0.957 0.957 0.950

1.00 0.883 0.922 0.951 0.964 0.978 0.977 0.980

Note: See the note of Table 1.
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Table 7: Out-of-sample forecasting performance with monthly data

h out-of-sample period MSFEγ MSFEur MSFEPPP

1 1970:01-2020:03 0.6643** 0.6690 0.6680*

1980:01-2020:03 0.5835 0.5862 0.5857

1990:01-2020:03 0.5155** 0.5227 0.5226

6 1970:01-2020:03 0.7576*** 0.7784 0.7674***

1980:01-2020:03 0.5301* 0.5383 0.5370

1990:01-2020:03 0.4667 0.4667 0.4667

12 1970:01-2020:03 0.2430*** 0.2467 0.2449

1980:01-2020:03 0.2182*** 0.2211 0.2193

1990:01-2020:03 0.2493*** 0.2520 0.2496

Note: This table reports the ratio of MSFE for different estimators over the
benchmark model. h in the first column shows the forecast horizon. The
second column shows the start date of the out-of sample period which all
ends at 2020:03. In the heading of table, MSFEur is for the case that we
only use post-break observations. MSFEγ represents the results for the γ
weight combined estimator, and MSFEPPP represents the result based on the
method proposed by Pesaran et al. (2013). ***, ** and * indicate significance
at 1%, 5% and 10% based on Diebold and Mariano (1995).
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