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1 Introduction

Linear vector autoregression (VAR) models and their extensions such as vector autore-

gressive moving average (VARMA) models and VARs with exogenous variables (VARX)

were well developed in last century for studying the effects of monetary policy shocks on

macroeconomic variables and modeling the dynamic interdependences among them. These

models mainly arise as powerful tool-kits for macroeconomists but only impose minimal re-

strictions on the identification of large-scale macroeconomic models (Sims, 1980). However,

growing numbers of literature in both theoretical and empirical fields documented nonlinear

features of the data that were frequently used to feed linear VAR models; see, for instance,

Stock and Watson (1996), Tsay (1998), Hansen (2001), Sims and Zha (2006), and references

therein. To introduce more flexibilities in linear VAR models, various nonlinear VAR models

have been proposed. For example, the early and recent works include the nonlinear VAR

models with heteroskedasticity as in Härdle, Tsybakov and Yang (1998), the threshold and

regime switches VAR models in Tsay (1998) and Sims and Zha (2006), respectively, the VAR

models with randomly evolved parameters as in Primiceri (2005), Giraitis, Kapetanios and

Yates (2014), and Giraitis, Kapetanios and Yates (2018), and among others.

Despite the popularity, both linear and nonlinear VAR models suffer from criticisms that

center around the relatively small information set used by low-dimensional VARs. As pointed

out by Bernanke, Boivin and Eliasz (2005), “To conserve degrees of freedom, standard VARs

rarely employ more than six to eight variables”. Indeed, if the dimensions of vector of macroe-

conomic variables in VAR models are too small, large amount of information used by actual

central bank may not be considered in the econometric models. Consequently, the policy

innovations are likely to be measured inaccurately and the results of forecasting or impulse

response analysis may be severely contaminated. To incorporate more variables in the VAR

systems, recent studies explored statistical theories of VAR models under high-dimensional

settings. For example, Hsu, Hung and Chang (2008) proposed a subset selection method

for VAR models based on the least absolute shrinkage and selection operator (LASSO) pe-

nalization. In addition, Guo, Wang and Yao (2016) reduced the dimension of the transition

matrices in VAR models by imposing banded structure and established the convergence

rates of the least squares estimators. Finally, Zhu, Pan, Li, Liu and Wang (2017) embedded

network structure into the VAR models to analyze large-scale social network data.

Although aforementioned methods work fairly well, they assume that the variables en-
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tered in econometric models are observable. Nevertheless, Bernanke et al. (2005) claimed

that the assumption that both the central bank and the econometrician observe all the

elements for estimating VAR model is too strong. As an alternative, Stock and Watson

(2002) seminally introduced the method of factor-augmented forecasts (also known as “dif-

fusion index forecasts”) in the VAR literature to exploit the information in a large set of

macroeconomic variables. After this work, factor-augmented methods are being used by an

increasing number of researchers and begin to fuse with linear VAR models and their variants.

Pioneering contributions include the factor-augmented vector autoregressions (FAVAR) pro-

posed in Bernanke et al. (2005) and the asymptotic theory for the estimated parameters of

the factor-augmented regressions in Bai and Ng (2006). In the further extensions, Dufour

and Stevanović (2013) considered the combination of vector autoregressive moving-average

(VARMA) models and factor-augmented techniques. Moreover, Bai, Li and Lu (2016) de-

rived the inferential theory that corresponds to a maximum likelihood estimation for FAVAR

models. So far, the aforementioned papers are based on the assumption that the coefficients

of the factor-augmented regression models are constant over time. However, the structural

instability of factor-augmented models was also witnessed by numerous studies. For instance,

Corradi and Swanson (2014) constructed a test for the joint hypothesis of structural stability

of both factor loadings and coefficients in factor-augmented forecasting model.

To address these inherent issues in static models, recently, Li, Tosasukul and Zhang

(2020) proposed a univariate factor-augmented predictive regression model with functional

coefficients, which allows the coefficients to vary with a variable. On the other hand, Yan and

Cheng (2020) studied a parametric factor-augmented forecasting model in the presence of

threshold effects. Nevertheless, it still remains unclear to us how to apply factor-augmented

methods to reducing the number of coefficients in the nonlinear VAR models under high

dimensional settings. In addition, the impulse response function, one of the most important

tools for analyzing the influences of monetary policy shocks, may not be derived trivially

when the coefficients of FAVAR models are time-varying. Furthermore, since the performance

of parametric FAVAR models may be undermined by model misspecification and parameter

instability, it is reasonable to consider nonparametric approaches for estimating FAVAR

models with time-varying coefficients.

In this article, we propose a functional coefficient FAVAR, termed as FC-FAVAR, model

to fill these gaps in the literature and is presented in (2) later. In particular, we capture
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nonlinearities in data by using a functional coefficient setting, which allows coefficients of

traditional FAVAR models to vary with a variable. Actually, as elaborated by Cai, Das, Xiong

and Wu (2006) and Cai (2010), a functional-coefficient model can be a good approximation

to a fully nonparametric model and has a great ability to capture heteroscedasticity; see

Cai (2010) for more details. In the last two decades, the functional-coefficient modeling

approach has received much attention on time series studies, to name just a few, Chen

and Tsay (1993), Cai, Fan and Yao (2000), Cai (2007), Dahlhaus and Subba Rao (2006),

Chen and Hong (2016). Technically, we adapt local linear regression method to estimate the

coefficient functions, which has been throughout discussed in Cai et al. (2000). Moreover,

to address the problem of high-dimensionality, we impose an approximate factor modeling

structure commonly used in the analysis of economic and financial time series data. In recent

years, there has been increasing interest on studying the approximate factor model, see, for

example, Chamberlain and Rothschild (1983), Fama and French (1992), Bai and Ng (2002),

Fan, Liao and Mincheva (2013) and the references therein. It is well known in the literature

of dynamic factor models that the information from a large number of time series can be

summarized by a relatively small set of estimated factors, see, e.g., Stock and Watson (2002)

and Bernanke and Boivin (2003). Note that our FC-FAVAR model allows both observed and

unobserved factors to jointly follow a VAR process, which is different from the predictive

factor-augmented model with the structure that the lagged observed variables have no effect

on unobserved factors as in Li et al. (2020). Under our model setting, additional restrictions

of identification are required to obtain corresponding impulse response functions.

Indeed, the motivation of this study arises from a debate over the issue that was found

by various studies that a contractionary monetary policy is often followed by an increase

of the price level, which is contrary to the standard economic theory, the so-called “price

puzzle”, see, e.g., Sims (1992), and Christiano, Eichenbaum and Evans (1999). Sims (1992)

suggested that this puzzle results from the VAR analysis not fully capturing the information.

In order to reduce the price puzzle, Sims (1992) considered adding commodity prices as an

“information variable” in monetary VAR models because it contains information that helps

the Federal Reserve forecast inflation, while Hanson (2004) questioned this explanation about

the role for commodity prices in VAR models, finding that the ability that commodity prices

have to resolve the price puzzle varies over the sample periods. Meanwhile, Bernanke et al.

(2005) followed the idea in Sims (1992) and reduced the huge dimension of information set by
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using a FAVAR model. Other researches of solving the price puzzle include, to name a few,

attributing the omission of output gap (or potential output) to the occurrence of price puzzle

in Giordani (2004), referring cost channel as an alternative explanation for the price puzzle in

Henzel, Hülsewig, Mayer and Wollmershäuser (2009), considering a broad Divisia monetary

aggregate as monetary police indicator rather than the fed funds rate (FFR) in a structural

VAR model in Keating, Kelly and Valcarcel (2014), and among others. To the best of our

knowledge, there is little literature to consider the relations between structural changes of

economic variables and the existence of price puzzle. However, Hanson (2004) found that

the price puzzle is more pronounced in specific sample periods. This observation indicates

that the significance of the price puzzle may be related to the dynamic features of general

economy. In addition, since the driving force for structural changes may be the institutional

changes or the policy interventions, such as the changes of exchange rate systems and the

U.S. quantitative easing policy, features about structural changes can apparently enrich the

information set that the researchers and policy-makers care about and help correct abnormal

results caused by the price puzzle. Thus, due to its ability of capturing features of structural

changes, the proposed FC-FAVAR model may have the potential to reduce the price puzzle.

In this study, we consider the estimation of FC-FAVAR models and apply these models to

reducing the price puzzle. The detailed analysis results are reported in Section 3.

The rest of this paper is organized as follows. In Section 2, the model setup is presented

for the FC-FAVAR model, and a two-stage procedures for estimating functional coefficients as

well as corresponding impulse response functions are also discussed in this section, together

with a simple inference via a Bootstrap approach. In Section 3, our models are applied to

exploring the dynamic effects of innovations to monetary policy on large amounts of economic

variables. Section 4 concludes the paper. Finally, a detailed description of our dataset and

some assumptions for inducing probabilistic properties of FC-FAVAR model are gathered in

Appendix.

2 Econometric Modeling

2.1 Functional Coefficient FAVAR Model

Let Xt = (X1t, . . . , XNt)
T be an N × 1 vector of available predictive variables at time t

for 1 ≤ t ≤ n. For 1 ≤ j ≤M with M ≥ 1, consider following factor-augmented forecasting
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model with functional coefficients

yj,t = γj0(Zjt) +

qy∑
s=1

γTj,s,y(Zjt)Yt−s +

qf∑
r=1

γTj,r,F (Zjt)Ft−r +

p∑
l=1

βTj,l(Zjt)Wt−l + vj,t (1)

for some qy, qf and p, where γj0(·) is a scalar function, Yt = (y1,t, . . . , yM,t)
T is an M×1 vector

of observable economic variables that are contained in Xt, Ft = (F1t, . . . , FKt)
T is a K × 1

vector of unobservable factors, and Wt is a κ × 1 vector of observable covariates, including

possibly some or all of {yj,t}Mj=1 and/or some exogenous variables. In addition, both γj,s,y(·) =

(γsj1,y(·), . . . , γsjM,y(·))T and γj,r,F (·) = (γrj1,F (·), . . . , γrjK,F (·))T are M×1 and K×1 vectors

of functional coefficients, respectively. Finally, βj,l(·) = (βlj1(·), . . . , βljκ(·))T is a κ×1 vector

of functional coefficients and vj,t is an error term. Here, Zjt is an observable scalar smoothing

variable, which might be one part of Wt−l and/or time or other exogenous variables or their

lagged variables. Of course, Zjt can also be an economic index to characterize economic

activities. It is worthwhile to note that Zjt can be set as a multivariate variable. In such a

case, the estimation procedures and the related theory for the univariate case still hold for

multivariate case, but more complicated notations are involved and models with Zjt in very

high dimension are often not practically useful due to the curse of dimensionality; see Cai

et al. (2000) for details.

Importantly, in the case of estimating high dimensional VAR models with functional

coefficients in our empirical studies, we assume that Yt and Ft jointly follow a VAR process.

In addition, for easy exposition, we let p = 0 and qy = qf ≡ q, and the smoothing variable

Zjt is allowed to vary only across different time periods but keeps constant over individual

units. Therefore, model (1) can be written as a VAR model with functional coefficients. In

particular, by letting Zjt = Zt for all 1 ≤ j ≤M , 1 ≤ ι ≤ Q and 1 ≤ ` ≤ Q with Q = M+K,

our FC-FAVAR model is

Pt = γ0(Zt) + Φ(Zt)Pt−1 + Ut, (2)

where Pt = (P T
t , . . . , P

T
t−q+1)T with Pt = (Y T

t , F
T
t )T , γ0(·) = (γ10(·), . . . , γQ0(·), 01×(Qq−Q))

T

is a vector of scalar function γι0(·), and Ut = (u1,t, . . . , uQ,t, 01×(Qq−Q))
T is a vector of error
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terms. In addition, Φ(Zt) is a functional coefficient matrix and is expressed as follows

Φ(Zt) =


Γ1(Zt) Γ2(Zt) . . . Γq−1(Zt) Γq(Zt)
IQ 0 . . . 0 0
0 IQ . . . 0 0
...

...
. . .

...
...

0 0 . . . IQ 0

 ,

where IQ is a Q × Q identity matrix and Γk(Zt) = (γkι`,P (Zt))Q×Q is a Q × Q matrix with

γkι`,P (·) being the functional coefficient for 1 ≤ k ≤ q. Notice that process Pt in (2) is

presented as

Pt = γ0(Zt) + Γ1(Zt)Pt−1 + Γ2(Zt)Pt−2 + · · ·+ Γq(Zt)Pt−q + ut, (3)

where γ0(·) = (γ10(·), . . . , γQ0(·))T and ut = (u1,t, . . . , uQ,t)
T . With models (1) and (2) at

hand, our FC-FAVAR model further assumes that Xt is affected by Pt through a factor model

Xt = ΛFFt + ΛY Yt + et, (4)

where Ft is a K × 1 vector of common factors, ΛF is an N ×K matrix of factor loadings,

ΛY is an N × M matrix of coefficients, and et = (e1t, . . . , eNt)
T is an N × 1 vector of

idiosyncratic errors. To demonstrate high-dimensional setting, the number N is large and it

is commonly assumed to be much greater than the number of factors and observed variables

(K +M � N).

Clearly, the model in (3) covers many well known models in literature as a special case.

In particular, when Yt−k in Pt−k is assume to have no effect on Ft in Pt for 1 ≤ k ≤ q, then

the model in (3) includes the model in Li et al. (2020). In addition, when M = 1 (univariate

case) and factor part is excluded, this model nests that in Chen and Tsay (1993), Cai et al.

(2000) and Cai (2010), and the model in Cai (2007) for Zjt being time. In addition, if Zjt

is time, then model (3) is called time-varying FAVAR model, which includes static FAVAR

model in Bernanke et al. (2005), Bai et al. (2016) and Yamamoto (2019), as well as the

threshold FAVAR model in Yan and Cheng (2020).

Remark 2.1. (Strictly stationary and α-mixing). To apply our estimation procedures, one

has to show that the model given in (2) can generate strictly stationary and α-mixing process.

It is well-established that a geometrically ergodic Markov process initiated from its invariant

distribution is (strictly) stationary and α-mixing (Pham, 1986). Notice that model (2) can
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also be expressed as a vector valued Markov model. Thus, it is common practice to prove

ergodicity to establish the stationarity for FC-FAVAR models and we present an assumption

that induces strictly stationary and α-mixing for process {(Pt, Zt)} in Appendix. Notice that

the detailed proof of this stationarity is similar to that in Cai and Liu (2020) and omitted.

Remark 2.2. (Selection of Zt). Of importance is to choose an appropriate smoothing vari-

able Zt in applying the functional-coefficient FAVAR model in (2). Knowledge on physical

background or economic theory of the data may be very helpful, as we have witnessed in

modeling the real data in Section 3 by choosing Zt to be the monthly series of the difference

between Moody BAA-rated corporate bond and FFR. Without any prior information, it is

pertinent to choose Zt in terms of some data-driven methods such as the Akaike informa-

tion criterion (AIC), cross-validation (CV), and other criteria. Ideally, one would choose

Zt as a linear function of given explanatory variables according to some optimal criterion

or an economic index based on economic theory or background. Nevertheless, here we would

recommend using a simple and practical approach proposed by Cai et al. (2000) in practice.

2.2 Two-stage Estimation Procedures

Our estimation procedures consist of two steps similar to the estimation method in Cai

et al. (2006) for functional coefficient instrumental variables model and in Li et al. (2020)

for univariate case. The first is to estimate vector of latent factors Ft in (4), and then we

perform locally weighted estimation for functional coefficients in (3) using the estimated F̂t

from the first step. The methods of obtaining F̂t include the maximum likelihood estimation

as discussed in Bai et al. (2016), a direct principle component estimation with orthogonality

restriction between the observable and unobservable factors in Yamamoto (2019) and the

construction of unobservable factors based on economic theory in Bernanke et al. (2005)

and among others. In this paper, we prefer the skill proposed in Bernanke et al. (2005) by

identifying unobservable factors as residuals of the regression of the principal components

from the entire dataset on the principal components from “slow-moving variables” and Yt.

This method has the merit of preserving the information of interest rate and interest rate

spread that is closely related to forecast of inflation rate (see Bernanke et al., 1990) without

imposing the assumption that the unobserved factors do not respond to monetary policy

innovations within the period (here, a month). The loss of information of interest rate and

interest rate spread can cause the mis-measurement of inflation rate and amplify the price
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puzzle. The detail of this method is presented in Section 3.

After obtaining the estimated F̂t and given P̂t = (Y T
t , F̂

T
t )T , the second step follows from

estimating (3) by a local linear approach, although a general local polynomial method is also

applicable. The local (polynomial) linear method has been widely used in nonparametric

regression during the past two decades due to its attractive mathematical efficiency, bias

reduction, and adaptation of edge effects; see, for example, Cai et al. (2000). More specif-

ically, let Γ(·) = (γ0(·),Γ1(·), . . . ,Γq(·)) and by assuming that each entry γkι`,P (·) of matrix

Γk(·) has a continuous second derivative, Γ(Zt) can be approximated by a linear function at

any given grid point z0 ∈ R as follows

vec[Γ(Zt)] ≈ vec[Γ(z0)] + vec[Γ(1)(z0)](Zt − z0),

where vec(·) stacks the elements of a m× n matrix as a mn× 1 vector, ≈ denotes the first-

order Taylor approximation and Γ(1)(·) is the first-order derivative of each element of Γ(·).
Thus, (3) is approximated by

Pt ≈ P̂
∗T
t θ + ut,

where θ =

(
vec[Γ(z0)]

vec[Γ(1)(z0)]

)
and P̂

∗
t =

(
P̂ t

(Zt − z0)P̂ t

)
with P̂ t = (1, P̂ T

t−1, . . . , P̂
T
t−q)

T ⊗ IQ,

which becomes a local linear model. Therefore, the locally weighted sum of squares is

n∑
t=1

[Pt − P̂
∗T
t θ]T [Pt − P̂

∗T
t θ]Kh(Zt − z0), (5)

where K(·) is a kernel function, Kh(x) = K(x/h)/h, and h = h(n) is called bandwidth, which

is a sequence of positive numbers tending to zero and controls the amount of smoothing used

in estimation. By minimizing (5) with respect to θ, we obtain the local linear estimate of

Γ(z0), denoted by Γ̂(z0), consisting of the first (qQQ+Q) elements of θ̂, and the local linear

estimator of the derivative of Γ(z0), denoted by Γ̂
(1)

(z0), consisting of the last (qQQ + Q)

elements of θ̂.

In practical implementations of (5), there are some practical issues that need to be

addressed. First, to obtain θ̂, one indeed needs to run a weighted least squares regression.

Second, the number of factors d and lags q are selected by minimizing some well known

criteria such as the nonparametric Bayesian information criterion proposed in Li et al. (2020)

and the nonparametric AIC in Cai and Tiwari (2000). Finally, given the selected d̂ and q̂,

we choose the optimal bandwidth h based on some bandwidth selectors such as the modified
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multifold CV criterion developed in Cai et al. (2000) or the nonparametric AIC type criterion

in Cai and Tiwari (2000), which are attentive to the structure of stationary time series data.

Remark 2.3. (Asymptotics) Notice that the asymptotic theory for Γ̂(z0) can be obtained by

following the ideas in Cai et al. (2006) and Li et al. (2020) and it may not be the exactly

same as that in Cai et al. (2000) because Pt contains vector of latent factors Ft. It would

be very interesting to investigate the asymptotic theory for Γ̂(z0) and sequentially for the

impulse response functions, which is not a trivial task. It is conjectured that the asymptotic

variance of Γ̂(z0) might have an additional term to account for variability of the estimated

latent factors at the first step. We leave this theoretical justification as a future research

topic.

Remark 2.4. (Identification restrictions on factors and policy shocks). It is well known

that the model in (3)-(4) can only be estimated after imposing identification restrictions on

factors and policy shocks. To this end, let X = (X1, . . . , Xn)T , F = (F1, . . . , Fn)T and

F̂ = (F̂1, . . . , F̂n)T , we use the standard normalization implicit in the principal components

in the same way as in Bernanke et al. (2005). That is, we restrict F̂ T F̂ /n = IK. Moreover,

define the rotation matrix for factors as

H = V −1(F̂ TF/n)(ΛT
FΛF/N),

where V is an K ×K diagonal matrix with main diagonal elements as the K largest eigen-

values of XXT/(nN), in descending order. As discussed in Bernanke et al. (2005) and

Yamamoto (2019), by assuming a recursive structure where all the factors in (3) respond

with a lag to change in the monetary policy instrument, ordered last in Yt (e.g., Assumption

B4 holds), then, P̂ = Chol(ûTt ût/n) is a consistent estimate for HP. Thus, no further re-

strictions are required on factors and on the equation (4), and the identification of the policy

shock can be achieved in (3) as if it were a standard VAR.

2.3 Impulse Response Function

The focus in this subsection is on presenting impulse responses with functional coefficients

below, which capture the dynamic interactions among the variables of interest in a wide range

of practical cases. Under the assumption of stationarity of the process Pt, (3) has a vector
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MA(∞) expression as

Pt = µt(Zt) + ut + Ψ1(Zt)ut−1 + Ψ2(Zt)ut−2 + . . . , (6)

where µt(Zt) = γ0(Zt) +
∑∞

k=1 Ψk(Zt)γ0(Zt), Ψk(Zt) = JΦk(Zt)J
T for k ≥ 1, and J =

[IQ, 0Q×Q(q−1)]. In the analysis of structural models, the impulse response functions for

orthogonal shocks are required. For this purpose, we consider the Cholesky decomposition

of covariance matrix Ω = var(ut). Let P be the lower triangular matrix from the Cholesky

decomposition such that Ω = PPT . In addition, let ωt be the corresponding structural

shocks with the relation that ut = Pωt. Then, (6) can be written as

Pt = µt(Zt) +B0ωt +B1(Zt)ωt−1 +B2(Zt)ωt−2 + . . . , (7)

where B0 = P and Bk(Zt) = Ψk(Zt)P for k ≥ 1 is the impulse response function corre-

sponding to the structural shocks ωt. Therefore, impulse response functions of all variables

in Xt can eventually be recovered through (4). Notice that the estimator of Φ(·) is defined as

Φ̂(·), in which we replace Γk(·) of (3) with the corresponding estimator in Γ̂(·) obtained from

the previous subsection. Thus, corresponding impulse response functions can be derived at

each grid point z0 too, which is different from the impulse response function with constant

coefficients. In Section 3, we present the estimated impulse response function B̂k(z0) at given

grid points z0 and analyze the responses of key macroeconomic variables in Xt to monetary

policy shocks.

2.4 Bootstrap Inference for Impulse Response Functions

To construct the confidence interval for structural impulse response functions in our

FC-FAVAR model, we adopt a Bootstrap method, outlined below, which is similar to that

in Gonçalves and Perron (2014) and Yamamoto (2019) for linear factor-augmented model,

and yet the asymptotic validity of our procedure is significantly different from the existing

literature due to our focus on nonparametric Bootstrapping under a functional coefficient

setting. We leave the derivation of the asymptotic validity of our Bootstrap method as a

future study. Under the assumptions in Appendix, our Bootstrap procedure is presented as

follows.

1. Estimate the model in (3) using the two-step procedure outlined in Section 2.2, obtain

Λ̂F , Λ̂Y and matrices of functional coefficient estimates Γ̂k(Zt), P̂ and γ̂0(Zt) at each Zt for
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1 ≤ k ≤ q, as well as the residuals ût in (3) and êt in (4), and construct the structural

impulse response estimate B̂k(z0) at given grid point z0.

2. After demeaning the functional coefficient VAR residuals {ût}nt=1 in the time direction,

resample with replacements the residuals {ût}nt=1 as Q×1 vectors in an i.i.d. fashion, denoted

by {u∗t}nt=1, and generate the Bootstrapped sample P ∗t using

P ∗t = γ̂0(Zt) + Γ̂1(Zt)P
∗
t−1 + Γ̂2(Zt)P

∗
t−2 + · · ·+ Γ̂q(Zt)P

∗
t−q + u∗t

for 1 ≤ t ≤ n, with bias correction that was discussed by Kilian (1998) and Yamamoto

(2019).

3. Demean the the idiosyncratic residuals {{êit}nt=1}Ni=1 in both time and cross-sectional

directions. For each i = 1, . . . , N , we propose the i.i.d. resampling of {êit}nt=1 to obtain

{e∗it}nt=1. Then, generate the Bootstrapped sample X∗t from X∗t = Λ̂FF
∗
t + Λ̂Y Y

∗
t + e∗t , where

(Y ∗Tt , F ∗Tt )T = P ∗t , for 1 ≤ t ≤ n.

4. Use the Bootstrapped sample X∗t to estimate F̂ ∗t , Λ̂∗F and Λ̂∗Y following the first step of

the estimation procedure, and then, estimate the functional coefficient FAVAR in (3) using

F̂ ∗t and Y ∗t to obtain the Bootstrapped estimates Γ̂∗k(z0) and P̂∗ with the same identification

restriction as the original estimate. This yields the Bootstrap estimate of the structural

impulse response B̂
∗
k(z0).

5. Repeat Steps 2–4 B times (say, B = 500 in Section 3) to obtain {B̂
∗
k(z0)}Bk=1.

6. Store the re-centered statistic ck ≡ B̂
∗
k(z0) − B̂k(z0) and compute the 100α/2th and

100(1−α/2)th percentiles c
(α/2)
k and c

(1−α/2)
k , respectively. The resulting 100(1−α)% point-

wise confidence interval for Bk(z0) is [B̂k(z0) − c(α/2)
k , B̂k(z0) − c(1−α/2)

k ] for the given grid

point z0.

Finally, for the sake of simplicity, we use the same bandwidth throughout the proce-

dure and assume that the idiosyncratic errors in the factor model are serially and cross-

sectionally independent, given in Assumption C in Appendix, which is consistent with set-

tings of Gonçalves and Perron (2014). Note that the Bootstrap method presented in Li et

al. (2020) can not be directly applied in this article, since our Bootstrap method requires

generating factors F ∗t at Step 2 and renewing them by F̂ ∗t at Step 4, which implies a different

large sample theory compared to the procedure without estimating new factors based upon

the Bootstrapped sample X∗t in Li et al. (2020). For this regard, the read is referred to

Yamamoto (2019) for a comparative study between these two schemes of Bootstrap.
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3 Empirical Analysis

3.1 Literature Review on Price Puzzle

To clearly describe the common view of the cause of price puzzle, we first formalize the

well-known reaction function of monetary policy that illustrates the relationship between the

policy instrument variable and the data of economic activities. In particular, suppose that

one element of Yt defined in Section 2.1 is the policy instrument of the monetary authority,

denoted as rf,t, then, the monetary policy reaction function is written as follows

rf,t = β(πe,t − π̃) +D(Yt, Ft) + µt, (8)

where πe,t is the expected future rate of inflation based on the information at time t and π̃

is the Fed’s target inflation rate. In addition, µt is a exogenous policy shock which is an

element of ut in (3) and D(Yt, Ft) represents other observable or unobservable arguments

of the reaction function (e.g., the output gap or lags of the policy instrument). Note that

rf,t is selected to be the FFR in this paper. In the impulse response analysis, an impulse is

imposed on µt and then all variables in Xt can be affected by this impulse through (7) and

(4). As pointed out in Sim (1992) and Hanson (2004), if there is a measurement error on

πe,t such that

πe,t = πm,t + πξ,t,

where πm,t represents the “measured” inflation expectations based only upon the information

contained in the estimated model by the researcher, while πξ,t captures information excluded

from the estimation of πe,t, then, (8) becomes the following misspecified model

rf,t = β(πm,t − π̃) +D(Yt, Ft) + νt, (9)

where νt = βπξ,t + µt.

Notice that the estimated policy shock νt is contaminated by a bias βπξ,t, where β is

the degree to which the Fed reacts to inflationary pressures. Given the misspecified reaction

function in (9), even the impact of a “true” policy shock µt upon price level is negative or

zero followed by macroeconomic theory, the impulse response of price level to the estimated

policy shock νt can be positive if βπξ,t has positive impact on the price level. As a result,

an empirical researcher would incorrectly infer that a contractionary policy shock had raised

price level, which cause the price puzzle. For more discussion in detail, the reader is referred

12



to the paper by Hanson (2004). Therefore, the attempt of reducing price puzzle faces two

challenges. First, the feature of πξ,t, which is associated with some omitted variables for

forecasting inflation rate πe,t, needs to be captured. One possible way to resolve the first

challenge is to introduce more variables that could improve the forecast power of inflation

rate into the VAR model. However, Bernanke et al. (2005) argued that the forecast equation

of inflation rate πe,t involves the measurement of potential output and cost-push shock, which

can not be directly observed by both the central bank and the econometrician. Under this

circumstance, a factor-augmented VAR may demonstrate a strength of investigating models

with unobserved variables. Second, the β needs to be estimated with correct specification. As

documented in Hanson (2004), the magnitude of β is different substantially across regimes,

which is obviously referred to as a nonlinear feature. For this reason, it is unnecessarily

feasible to apply linear FAVAR model to studying the effect of monetary policy shock to

macroeconomic variables. Thus, our FC-FAVAR model is well-suitable to reducing price

puzzle because it can not only capture nonlinearities in data, but also extract unobservable

information from a huge dataset. It is worth mentioning that the aim of this empirical

study is to demonstrate the usefulness of the proposed FC-FAVAR model in reducing the

price puzzle compared to the classical FAVAR, rather than eradicating the existence of

price puzzle. Further extensions may be realized through advocating alternative monetary

instrument variables (e.g., Divisia index proposed in the seminal work of Barnett, 1980),

which is out of the scope of this paper.

3.2 Data and Implementation

In this section, the proposed FC-FAVAR model is applied to exploring the effects of

innovations to monetary policy on large amounts of economic variables. In particular, our

dataset Xt in (4) consists of a balanced panel of 100 monthly macroeconomic time series,

which are updates of series used in Bernanke et al. (2005) and Michael, McCracken and Ng

(2016). The data span the period from February 1960 through July 2020. These series are

initially transformed to induce stationarity. The description of the series in the dataset and

their transformation are described in Appendix. In our empirical study, Yt in (1)-(3) could

include policy indicator and observable measures of real activity and prices such as the FFR,

the industrial production index (IP) and the consumer price index (CPI), while Ĉ(Xt) is

the vector of principal components estimated from the entire dataset Xt. Since both Yt and

13



Ĉ(Xt) involve the series of FFR, denoted by FFRt, it would be invalid to identify the effect of

policy shocks when simply estimating a VAR in Yt and Ĉ(Xt). Thus, the direct dependence

of Ĉ(Xt) on FFRt should be removed. By following the procedures in Bernanke et al. (2005),

we first regress Ĉ(Xt) on FFRt in the form of Ĉ(Xt) = bCĈ(F̂t)+bFFRFFRt+et, where Ĉ(F̂t)

is an estimate of all the common components other than FFRt. One way to obtain Ĉ(F̂t) is

to extract principal components from the subset of “slow-moving variables”, which are not

affected contemporaneously by FFRt. The reader is referred to Bernanke et al. (2005) for

more discussion about “slow-moving variables”. Next, we construct F̂t as Ĉ(Xt)− b̂FFRFFRt

and finally estimate the FC-FAVAR model (2) in Yt and F̂t, with FFR ordered last. To

fully demonstrate the usefulness of our FC-FAVAR models, we revisit one of issues that was

discussed in Bernanke et al. (2005) and compare classical FAVAR models with FC-FAVAR

models in the performance of reducing the price puzzle.

3.3 Empirical Results

The analysis in this section aims at comparing the results generated from a standard

FAVAR model in Bernanke et al. (2005) to that from our proposed FC-FAVAR model in (2)

based on the dataset Xt from a new time span. Different from the standard FAVAR, the

proposed FC-FAVAR model allows coefficients to vary with an exogenous variable Zt. Here,

without adding new variable in the model, we choose one of variables from Xt to be Zt. In

this way, the information that contained in the original Xt could not only be preserved, but

also be applied to capturing the structural changes that lie in the multivariate time series

without introducing new variables into the model. Therefore, we choose Zt as the sixth-

lagged spread between Moody BAA-rated corporate bond and FFR, denoted by SFYBAAC

in what follows and in Appendix. This choice of smoothing variable is reasonable, because the

SFYBAAC contains information of both the spread between Moody AAA-rated corporate

bond and FFR, denoted by SFYAAAC in what follows and in Appendix, and the spread

between Moody BAA-rated corporate bond and Moody AAA-rated corporate, denoted by

DEFAULT in what follows. Indeed, Bernanke (1990) suggested that DEFAULT should be

used as a measure of the behavior of perceived default risk in the economy, which has an

influence on the Federal Reserve Bank for making monetary policy decision. Furthermore,

SFYAAAC can serve as a nice indicator of monetary policy changes. Thus, the temporal

changes of SFYBAAC may indicate the shift of environment of decision making for monetary

14



policy. For this regard, the reader is referred to the paper by Bernanke (1990) for more

discussions. It is worth emphasizing that SFYBAAC is not the only choice for smoothing

variable, of course, other variables of economic status may also be suitable to serve as the

smoothing variable and this may be left in a future study.

It is crucial to first show that the coefficients in (3) change over SFYBAAC in the

empirical example. To this end, 36 entries of functional coefficients matrix Γ1(·) with respect

to the changes of SFYBAAC are reported in Figure 1, in which the vertical axis of each panel

measures the functional coefficient and the horizontal axis of each panel measures SFYBAAC.

It is obvious that all functional coefficients in Figure 1 are not constant, but significantly

vary with the changes of SFYBAAC. This observation indicates that the dataset possesses

features of nonlinearity. Therefore, adopting classical FAVAR model in this dataset may

result in severe problem of misspecification and subsequently, the price puzzle.

Based on the analysis in Section 3.1, the reduction of price puzzle follows from the

decrease of the time that the response of price level to policy shocks spends to become

negative. Thus, the faster the curve of impulse response of CPI to monetary policy shocks

becomes negative, the better the model performs in reducing price puzzle. In the next

group of figures, we compare the results of impulse response functions estimated by our

FC-FAVAR model and by classical FAVAR in Bernanke et al. (2005). We choose four grid

points as the data of SFYBAAC on four time points: 1966:09, 1980:01, 2006:09 and 2011:09,

and then obtain impulse responses at these grid points. In October 1979, Fed Chairman

Paul Volcker announced a shift from effectively targeting the federal funds rate to explicitly

targeting non-borrowed reserves. A number of researchers observed that this change of policy

instrument significantly enlarged the β in monetary policy reaction function in (8), causing

a regime-specific phenomenon on structural parameters; see, for instance, Taylor (1999),

Clarida, Gal̀ı and Gertler (2000) and Hanson (2004). Therefore, the first and second time

points 1966:09 and 1980:01 can act as nice proxies of the“pre-Volcker” and “post-Volcker”

periods, respectively, to demonstrate our model’s ability of capturing structural changes in

data. In addition, the third and fourth time points 2006:09 and 2011:09 represent periods of

“pre-financial crisis” and “post-financial crisis”, respectively. It is well-known that the FFR

has been stuck at or near the zero lower bound (ZLB) since 2008, which poses a criticism

about the effectiveness of FFR as monetary policy indicator. Thus, the studies based on the

third and fourth time points are suitable for checking the reliability of FC-FAVAR model
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Figure 1: 36 entries of functional coefficients matrix Γ1(·) with respect to the changes of SFYBAAC
estimated by the FC-FAVAR model with 5 factors and 7 lags.

under extreme conditions of economy.

In Figure 2, the vertical axis measures impulse response functions estimated from classical

FAVAR model, while in Figures 3 and 4, the vertical axis represents B̂k(z0) estimated by
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FC-FAVAR model at given grid point z0, and the horizontal axis in Figures 2-4 represent the

time lag k. Notice that the ι`-th element of B̂k(z0) is interpreted as the effect on variable

ι of a unit innovation in the `-th variable that has occurred k periods ago. In addition, we

standardize the monetary shock to correspond to a 25-basis-point innovation in the FFR.

Figure 2 presents the resulting impulse response functions of FFR, industrial production

and consumer price index of all items for the classical FAVAR proposed in Bernanke et al.

(2005) for two sample periods: 1960:02-2001:08 (the top panel) and 1960:02-2020:07 (the

bottom panel), respectively. The first period ends in August 2001 following Bernanke et

al. (2005), and the second period extends the sample to July 2020. In both two sample

periods, we employ seventh lags and the number of factors is five. Observed that in the

first time span, the response of all variables move in the same way as in Bernanke et al.

(2005), while in the second time span, the response of CPI goes up to positive and fail to

return to negative within 50 lags, which indicates that there is still a strong price puzzle in

the classical FAVAR specification. These results are not surprising, because as the sample

periods enlarged, the information about changes of general economy become significant and

may eventually undermine the estimation results given by the linear FAVAR model.

Figure 2: Impulse response functions of FFR, industrial production and consumer price index of all items
for the classical FAVAR model with 5 factors and 7 lags for two sample periods: 1960:02-2001:08 (the top
panel) and 1960:02-2020:07 (the bottom panel).
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In contrast, Figure 3 displays impulse response functions on four time points obtained

by the proposed FC-FAVAR model for the sample period ends in July 2020 and we use

seven lags for q̂, and five factors for d̂. It is interesting that after considering the changes of

economic environment, the responses of CPI go down to negative within 20 lags at all four

grid points, suggesting that the price puzzle is considerably reduced compared to the results

of classical FAVAR. More specifically, the responses of CPI at time points 1966:09, 1980:01

and 2006:09 drop to negative within 20 lags, which show that FC-FAVAR model can nicely

reduce price puzzle by correcting the measurement error discussed in Section 3.1. For the

result on time point 2011:09, even when FFR reaches to ZLB, the estimated response of CPI

still returns to negative within 20 lags. In this case, although there exists macroeconomic

models with alternative policy instruments that work fairly well in correcting the abnormal

of price level, our FC-FAVAR model can reasonably reduce price puzzle without introducing

new structures in the conventional macroeconomic model and replacing policy instruments.

Of course, it is of great interest to use other variables as policy instruments instead of the

FFR in FC-FAVAR model and we leave this as a future topic.

Finally, Figure 4 shows the impulse responses of selected macroeconomic variables to mon-

etary policy shocks with 90% confidence intervals generated by the proposed FC-FAVAR on

time point 1980:01, which are obtained by the Bootstrap procedure presented in Section 2.4.

The responses are generally of the expected sign and magnitude: following a contractionary

monetary policy shock, prices go down to negative rapidly, money aggregates decline, and

the dollar appreciates. The dividend yields initially jump above the steady state and finally

go down. To sum up, these results seem to demonstrate that measures of the effects of mon-

etary policy are consistent and sensible. Notice that we only display 12 responses of all 100

that could also be investigated technically. The results for the rest responses are available

upon request.

4 Conclusion

In this paper, we investigate a functional coefficient FAVAR model with an application

to resolving the price puzzle and coefficients functionals are estimated by using a two-stage

kernel smoothing method. In addition, there is little literatures regarding the relationship

between the existence of price puzzle and the structural changes in the economic environment.

After considering the changes of specific state of economy, the proposed framework mitigates
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Figure 3: Impulse response functions of FFR, industrial production and consumer price index of all items
for the FC-FAVAR model with 5 factors and 7 lags on 1966:09 (the first row of panel), 1980:01 (the second
row of panel), 2006:09 (the third row of panel) and 2011:09 (the fourth row of panel).

the issue of price puzzle and still allows to estimate responses of large amounts of economic

variables to monetary policy shocks.

There are several issues still worth of further studies. First, it is interesting to introduce
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Figure 4: Impulse responses of 12 variables generated from FC-FAVAR with 5 factors and 7 lags on time
point 1980:01 and corresponding 90% confidence intervals (the dashed lines) obtained from Bootstrapping.

heteroscedasticity into model (2), although a functional coefficient model has an ability to

capture partial heteroscedasticity as argued by Cai (2010), so that the dynamics of mon-

etary policy shocks can also be captured. Second, the asymptotic properties of functional

coefficients and impulse response functions need to be derived and this should not be hard

given the similar precedents of theoretical work in Cai et al. (2000), Cai et al. (2006) and

Li et al. (2020). We leave these important issues as future research topics.
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Appendix

A.1 Descriptions of Dataset

All series are directly taken from the Federal Reserve Bank of St. Louis with a dataset

proposed in Michael et al. (2016) and the format is as that in Bernanke et al. (2005): series

number; series mnemonic; transformation code and series description as appearing in the

database for the data span from 1960:02 to 2020:07. The transformation codes are 1-no

transformation; 2-first difference; 4-logarithm; 5-first difference of logarithm. An asterisk ∗,
next to the mnemonic, denotes a variable assumed to be slow-moving in the estimation.

Table A1: Description of data

Real output and income

1. IPF∗ 5 INDUSTRIAL PRODUCTION: FINAL
PRODUCTS (1992=100, SA)

2. IPC∗ 5 INDUSTRIAL PRODUCTION: CONSUMER
GOODS (1992=100, SA)

3. IPCD∗ 5 INDUSTRIAL PRODUCTION: DURABLE
CONS. GOODS (1992=100, SA)

4. IPCN∗ 5 INDUSTRIAL PRODUCTION: NONDURABLE
CONS. GOODS (1992=100, SA)

5. IPE∗ 5 INDUSTRIAL PRODUCTION: BUSINESS
EQUIPMENT (1992=100, SA)

6. IPM∗ 5 INDUSTRIAL PRODUCTION: MATERIALS
(1992=100, SA)

7. IPMD∗ 5 INDUSTRIAL PRODUCTION: DURABLE
GOODS MATERIALS (1992=100, SA)

8. IPMND∗ 5 INDUSTRIAL PRODUCTION: NONDUR.
GOODS MATERIALS (1992=100, SA)

9. IPMFG∗ 5 INDUSTRIAL PRODUCTION:
MANUFACTURING (1992=100, SA)

10. IPMIN∗ 5 INDUSTRIAL PRODUCTION: MINING (1992=100, SA)

11. IPUT∗ 5 INDUSTRIAL PRODUCTION: UTILITIES
(1992=100, SA)

12. IP∗ 5 INDUSTRIAL PRODUCTION: TOTAL INDEX
(1992=100, SA)

13. IPXMCA∗ 1 CAPACITY UTIL RATE: MANUFAC., TOTAL
(% OF CAPACITY,SA) (FRB)

14. GMPYQ∗ 5 PERSONAL INCOME (CHAINED) (SERIES #52)
(BIL 92$,SAAR)

15. GMYXPQ∗ 5 PERSONAL INC. LESS TRANS. PAYMENTS
(CHAINED) (#51) (BIL 92$,SAAR)

Employment and hours

16. LHEM∗ 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL
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(THOUS., SA)
17. LHUR∗ 1 UNEMPLOYMENT RATE: ALL WORKERS,

16 YEARS & OVER (%, SA)
18. LHU680∗ 1 UNEMPLOY. BY DURATION: AVERAGE

(MEAN) DURATION IN WEEKS (SA)
19. LHU5∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

LESS THAN 5 WKS (THOUS., SA)
20. LHU14∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

5 TO 14 WKS (THOUS., SA)
21. LHU15∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

15 WKS + (THOUS., SA)
22. LHU26∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

15 TO 26 WKS (THOUS., SA)
23. LPNAG∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

TOTAL (THOUS., SA)
24. LPGD∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

GOODS-PRODUCING (THOUS., SA)
25. LPMI∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

MINING (THOUS., SA)
26. LPCC∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

CONTRACT CONSTRUC. (THOUS., SA)
27. LPEM∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

MANUFACTURING (THOUS., SA)
28. LPED∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

DURABLE GOODS (THOUS., SA)
29. LPEN∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

NONDURABLE GOODS (THOUS., SA)
30. LPSP∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

SERVICE-PRODUCING (THOUS., SA)
31. LPTU∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

TRANS. & PUBLIC UTIL. (THOUS., SA)
32. LPTW∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

WHOLESALE (THOUS., SA)
33. LPTR∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

RETAIL (THOUS., SA)
34. LPFR∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

FINANCE, INS. & REAL EST (THOUS., SA)
35. LPGOV∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

GOVERNMENT (THOUS., SA)
36. LPHRM∗ 1 AVG. WEEKLY HRS. OF PRODUCTION

WKRS.: MANUFACTURING (SA)
37. LPMOSA∗ 1 AVG. WEEKLY HRS. OF PROD. WKRS.: MFG.,

OVERTIME HRS. (SA)
38. HWI∗ 2 HELP-WANTED INDEX FOR USA

39. HWIURATIO∗ 2 RATIO OF HELP WANTED/NO. UNEMPLOYED

Consumption

40. GMCQ∗ 5 PERSONAL CONSUMPTION EXPEND
(CHAINED)-TOTAL (BIL 92$, SAAR)

41. GMCDQ∗ 5 PERSONAL CONSUMPTION EXPEND
(CHAINED)-TOT. DUR. (BIL 96$, SAAR)

42. GMCNQ∗ 5 PERSONAL CONSUMPTION EXPEND
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(CHAINED)-NONDUR. (BIL 92$, SAAR)
43. GMCSQ∗ 5 PERSONAL CONSUMPTION EXPEND

(CHAINED)—SERVICES (BIL 92$, SAAR)

Housing starts
and sales

44. HOUST 4 HOUSING STARTS: TOTAL NEW PRIV

45. HSNE 4 HOUSING STARTS: NORTHEAST
(THOUS.U.) S.A.

46. HSMW 4 HOUSING STARTS: MIDWEST
(THOUS.U.) S.A.

47. HSSOU 4 HOUSING STARTS: SOUTH
(THOUS.U.) S.A.

48. HSWST 4 HOUSING STARTS: WEST
(THOUS.U.) S.A.

49. HSBR 4 HOUSING AUTHORIZED: TOTAL NEW PRIV
HOUSING (THOUS., SAAR)

Consumption, orders
and inventories

50. AMDMNOx 5 NEW ORDERS FOR DURABLE
GOODS

51. AMDMUOx 5 UNFILLED ORDERS FOR DURABLE
GOODS

52. BUSINVx 5 TOTAL BUSINESS INVENTORIES

53. ISRATIOx 2 TOTAL BUSINESS: INVENTORIES
TO SALES RATIO

Stock prices

54. FSPCOM 5 S&P’S COMMON STOCK PRICE INDEX:
COMPOSITE (1941-1943=10)

55. FSPIN 5 S&P’S COMMON STOCK PRICE INDEX:
INDUSTRIALS (1941-1943=10)

56. FSDXP 1 S&P’S COMPOSITE COMMON STOCK:
DIVIDEND YIELD (% PER ANNUM)

57. FSDXE 1 S&P’S COMPOSITE COMMON STOCK:
PRICE-EARNINGS RATIO (%, NSA)

Exchange rates

58. EXRSW 5 FOREIGN EXCHANGE RATE: SWITZERLAND
(SWISS FRANC PER U. S.$)

59. EXRJAN 5 FOREIGN EXCHANGE RATE: JAPAN (YEN
PER U. S.$)

60. EXRUK 5 FOREIGN EXCHANGE RATE: UNITED
KINGDOM (CENTS PER POUND)

61. EXRCAN 5 FOREIGN EXCHANGE RATE: CANADA
(CANADIAN $ PER U. S.$)
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Interest rates

62. FYFF 1 INTEREST RATE: FEDERAL FUNDS
(EFFECTIVE) (% PER ANNUM, NSA)

63. FYGM3 1 INTEREST RATE: U. S. TREASURY
BILLS,SEC MKT,3-MO. (% PER ANN, NSA)

64. FYGM6 1 INTEREST RATE: U. S. TREASURY
BILLS,SEC MKT,6-MO. (% PER ANN, NSA)

65. FYGT1 1 INTEREST RATE: U. S. TREASURY CONST
MATUR., 1-YR. (% PER ANN, NSA)

66. FYGT5 1 INTEREST RATE: U. S. TREASURY CONST
MATUR., 5-YR. (% PER ANN, NSA)

67. FYGT10 1 INTEREST RATE: U. S. TREASURY CONST
MATUR., 10-YR. (% PER ANN, NSA)

68. FYAAAC 1 BOND YIELD: MOODY’S AAA CORPORATE
(% PER ANNUM)

69. FYBAAC 1 BOND YIELD: MOODY’S BAA CORPORATE
(% PER ANNUM)

70. SFYGM3 1 Spread FYGM3-FYFF

71. SFYGM6 1 Spread FYGM6-FYFF

72. SFYGT1 1 Spread FYGT1-FYFF

73. SFYGT5 1 Spread FYGT5-FYFF

74. SFYGT10 1 Spread FYGT10-FYFF

75. SFYAAAC 1 Spread FYAAAC-FYFF

76. SFYBAAC 1 Spread FYBAAC-FYFF

Money and credit
quantity aggregates

77. FM1 5 MONEY STOCK: M1 (BIL$,SA)

78. FM2 5 MONEY STOCK: M2 (BIL$,SA)

79. FM3 5 MONEY STOCK: M3 (BIL$,SA)

80. FMFBA 5 MONETARY BASE, ADJ FOR RESERVE
REQUIREMENT CHANGES (MIL$,SA)

81. FMRRA 5 DEPOSITORY INST RESERVES: TOTAL, ADJ
FOR RES. REQ CHGS (MIL$, SA)

82. FMRNBA 5 DEPOSITORY INST RESERVES: NONBOR.,
ADJ RES REQ CHGS (MIL$,SA)

83. FCLNQ 5 COMMERCIAL & INDUST. LOANS
OUTSTANDING IN 1992 DOLLARS (BCI)

84. CCINRV 5 CONSUMER CREDIT OUTSTANDING
NONREVOLVING G19

Price indexes
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85. PWFSA∗ 5 PRODUCER PRICE INDEX: FINISHED
GOODS (82=100, SA)

86. PWFCSA∗ 5 PRODUCER PRICE INDEX: FINISHED
CONSUMER GOODS (82=100, SA)

87. PWIMSA∗ 5 PRODUCER PRICE INDEX: INTERMED MAT.
SUP & COMPONENTS (82=100, SA)

88. PWCMSA∗ 5 PRODUCER PRICE INDEX: CRUDE
MATERIALS (82=100, SA)

89. PUNEW∗ 5 CPI-U: ALL ITEMS (82-84=100, SA)

90. PU83∗ 5 CPI-U: APPAREL & UPKEEP (82-84=100, SA)

91. PU84∗ 5 CPI-U: TRANSPORTATION (82-84=100, SA)

92. PU85∗ 5 CPI-U: MEDICAL CARE (82-84=100, SA)

93. PUC∗ 5 CPI-U: COMMODITIES (82-84=100, SA)

94. PUCD∗ 5 CPI-U: DURABLES (82-84=100, SA)

95. PUS∗ 5 CPI-U: SERVICES (82-84=100, SA)

96. PUXF∗ 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100, SA)

97. PUXHS∗ 5 CPI-U: ALL ITEMS LESS SHELTER (82-84=100, SA)

98. PUXM∗ 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100, SA)

Average hourly
earnings

99. LEHCC∗ 5 AVG HR EARNINGS OF CONSTR WKRS:
CONSTRUCTION ($, SA)

100. LEHM∗ 5 AVG HR EARNINGS OF PROD WKRS:
MANUFACTURING ($, SA)

A.2 Probabilistic Property: Strictly Stationary and α-Mixing

Let F ba be the σ-algebra generated by {(Pt, Zt)}bt=a. Then, a stationary process {(Pt, Zt)}∞t=−∞
is said to be α-mixing (strongly mixing) if the mixing coefficient α(t) defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
−∞, B ∈ F∞t } → 0

t→∞. Denote matrix Φ as the same way as Φ(Zt) in (2). To show strictly stationary and

α-mixing of process {Pt} in (2), the following assumptions are needed.

Assumption A.

A1: Let {Pt} in (2) be a φ-irreducible and aperiodic Markov chain. For all 1 ≤ ι ≤ Q and
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1 ≤ ` ≤ Q, γkι`,P (·) in (2) is bounded such that |γkι`,P (·)| ≤ γkι`,P and the density function

of u`,t in (2) is positive every where on the real line R for all 1 ≤ ` ≤ Q. Furthermore, the

roots of IQ − Γ1L− · · · − ΓqL
q = 0Q×Q all lie outside the unit circle.

A2: Let ut in (3) be an i.i.d. process with ut = Ω1/2ηt, where E(ηt) = 0, var(ηt) = IQ, and

Ω > 0, E(‖ηt‖4) <∞ and the elements of ηt are mutually independent.

Assumption B.

B1: Let λi,F be the ith column of ΛF and let λi,Y be the ith column of ΛY . Then, there

exists a positive constant C large enough such that‖λi,F‖ ≤ C <∞, ‖λi,Y ‖ ≤ C <∞ for all

1 ≤ i ≤ N .

B2: C−2 ≤ σ2
i ≤ C2 for all 1 ≤ i ≤ N , where σ2

i is defined in Assumption C.

B3: The kernel function K(·) is a bounded, symmetric density with a bounded support region.

B4: limN→∞
1
N

ΛT
FΣ−1

ee ΛF = Q exists and is a positive-definite matrix, where Σee is defined

in Assumption C. Furthermore, limn→∞
1
n
F TF = ΣF and limN→∞

1
N

ΛT
FΛF = ΣΛF

exist and

are diagonal matrices, and P in (7) is an upper or lower triangular matrix.

Assumption C.

C1: E(et) = 0; E(ete
T
t ) = Σee = diag(σ2

1, σ
2
2, . . . , σ

2
N); E(e4

it) < ∞ for all 1 ≤ i ≤ N and

1 ≤ t ≤ n. The errors {eit} are independent over i and t. The N × 1 vector et is identically

distributed over t. Furthermore, eit is independent with uτ for all i, t and 1 ≤ τ ≤ n.

C2: Variances σ2
i are estimated in the compact set [C−2, C2].

Assumption A makes the regularity conditions on Pt. It guarantees that Pt is strictly

stationary and α-mixing, which is similar to that in Chen and Tsay (1993) and Cai et al.

(2000). Assumptions B and C are the same as that in Bai et al. (2016) and Yamamoto

(2019). Assumption B is standard and is made on the factors and factor loadings. Notice

that Assumption B4 requires the columns in ΛF to be linearly independent. Otherwise, Q

should be a singular matrix. In addition, Assumption B4 also guarantees that the rotation

matrix H has no effect on the estimation of impulse response functions and the identification

of the policy shock can be achieved in (3) as if it were a standard VAR. Assumption C

centers on the idiosyncratic errors, allowing the correlations over time and cross-section and

the heteroscedasticity over time to be ruled out. Finally, the following theorem is presented

without proof, which might be derived in a similar way as in Cai and Liu (2020).

Theorem A.1. Under Assumption A, if P0 is initialized from the invariant measure, then,

{Pt} defined in (2) is a strictly stationary and α-mixing process.
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