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risk management. Classical models for dependence often encounter a lack of fit in the joint tails, calling

for additional flexibility. This paper introduces a new semiparametric time-varying mixture copula

model, in which both weights and dependence parameters are deterministic and unspecified functions

of time. We propose penalized time-varying mixture copula models with group smoothly clipped

absolute deviation penalty functions to do the estimation and copula selection simultaneously. Monte

Carlo simulation results suggest that the shrinkage estimation procedure performs well in selecting

and estimating both constant and time-varying mixture copula models. Using the proposed model and

method, we analyze the evolution of the dependence among four international stock markets, and find

substantial changes in the levels and patterns of the dependence, in particular around crisis periods.
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1. Introduction

Copulas have received considerable attention because they offer great flexibility to model

multivariate distributions and to characterize nonlinear dependence and tail dependency. A

copula function glues various types of marginal distributions, including symmetric, skewed

and heavy-tailed distributions, into a multivariate distribution, and by Sklar’s theorem

(1959), this is always possible. The variety of dependence patterns is of great importance for

financial and macroeconomic time series, which leads to many applications, such as volatility

clustering (Ning, Xu and Wirjanto, 2015), real-time density forecasting (Smith and Vahey,

2016), stock returns modeling under non-stationarity (Wollschläger and Schäfer, 2016), sys-

temic risk (Mensi et al., 2016), and so on.

Among various applications of copula models, studying co-movements of returns across

international equity markets is one of the most popular topics. For example, Hu (2006),

Cai and Wang (2014), and Liu et al. (2019) employ time-invariant mixture copula models

and find that international equity markets usually show lower tail dependence, which implies

that the markets are more likely to crash together than to boom together. However, the

dependence structures among international equity markets are likely to change substantially

over time because international financial markets change from time to time so that a time-

invariant copula model is incapable of capturing the evolution of the dependence structures.

Therefore, a time-varying copula model is needed to solve this problem.

In the literature, time-varying copulas or dynamic copulas have been extensively used

to model multiple financial time series. For example, Patton (2006) uses a symmetrized

Joe-Clayton copula in which the dependence structure follows an autoregressive moving av-

erage (ARMA)-type process to capture asymmetric dependence between mark-dollar and
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yen-dollar exchange rates. Hafner and Reznikova (2010) propose a semiparametric dynamic

copula (SDC) model in which the copula parameter changes over time in a nonparamet-

ric way. Other dynamic copulas include dynamic stochastic copula models (Hafner and

Manner, 2012), stochastic copula autoregressive models (Almeida and Czado, 2012), gen-

eralized autoregressive score models (Creal, Koopman and Lucas, 2013), variational mode

decomposition methods (Mensi et al., 2016), single-index copula models (Fermanian and

Lopez, 2018), and semiparametric copula models under non-stationarity (Nasri, Rémillard

and Bouezmarni, 2019), among others. For a comprehensive survey of dynamic copulas and

their applications in financial time series analysis, readers are referred to the survey paper

by Patton (2012a).

Although many time-varying copula models have been proposed in the literature, most

of them rely on a single copula instead of a mixture copula. Thus, although the copula

dependence parameters which reflect the levels of dependence can change with time, the

copula function which represents the pattern of dependence is still time-invariant. However,

international equity markets may exhibit different dependence patterns during different time

periods, i.e., in tranquil periods and in crisis periods, and hence a single copula model is inad-

equate. Therefore, in this paper, we contribute to the literature by proposing a time-varying

mixture copula model with both time-varying dependence parameters and weights (or coeffi-

cients of component copulas in a mixture copula model) to analyze the co-movements across

international equity markets. Indeed, the weights in a mixture copula model summarize the

dependent patterns or shapes and their magnitudes signify the importance of the correspond-

ing copulas. By allowing the weights to be dynamic, we can recognize different dependence

patterns during different time periods. Furthermore, we do not specify any parametric form
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for the weights and dependence parameters in a time-varying mixture copula model, and use

a data-driven method for their specification. In this way, we alleviate typical misspecification

problems in copulas. The proposed model can be considered as an ideal copula model, as

described in Patton (2012b), in the sense that it accommodates dependence of either positive

or negative sign, captures both symmetric and asymmetric dependence, and allows for the

possibility of non-zero tail dependence. The proposed model is different from prior studies

which focus exclusively on single copula models (Hafner and Reznikova, 2010; Acar, Craiu

and Yao, 2011). It also differs from previous mixture copula models that assume either the

weights or dependence parameters do not change with time (Garcia and Tsafack, 2011; Liu

et al., 2019). Finally, it generalizes the time-varying optimal copula model of Liu, Ji and

Fan (2017) which assumes a single copula at each time point.

An important issue is that the range of both copula dependence parameters and their

corresponding weights are restricted, e.g. θ ∈ (−1, 1) for a Gaussian copula, θ ∈ (0,∞)

for a Clayton copula, and the weights satisfying λk ∈ [0, 1] and
∑

k λk = 1. To overcome

this difficulty in the nonparametric estimation, Abegaz, Gijbels and Veraverbeke (2012) and

Acar, Craiu and Yao (2011) use some known inverse functions to ensure that the copula

parameters are properly defined and employ a local polynomial framework to estimate the

dependence parameters. However, in the asymptotic properties both the bias and variance

depend on the choice of the inverse link function, see, e.g., Theorem 2 of Abegaz, Gijbels

and Veraverbeke (2012) and Corollary 1 of Acar, Craiu and Yao (2011). It is nontrivial to

find an optimal inverse link function in a large functional space. In this study, we employ a

local constant (Nadaraya-Watson) kernel method without choosing any inverse link function

and show that the local constant estimators have the same asymptotic behavior as the local
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linear estimators at the interior points: both have the same bias and variance terms as well

as the same convergence rate.

To reduce the risk of over-fitting and efficiency loss, we propose a penalized time-varying

mixture copula model with the group smoothly clipped absolute deviation (SCAD) penalty

term as in Fan and Li (2001) to do the estimation and copula selection simultaneously.

The functional norms of the weight functions are penalized so that we can shrink them

to zeros if contributions of corresponding copulas are small. To facilitate the estimation,

we propose a semiparametric version of the expectation maximization (EM) algorithm for

the estimation of the weights and dependence parameters in the penalized local copula log-

likelihood function. Furthermore, we discuss other important practical issues including the

bandwidth and tuning parameter selection, and confidence intervals. In a simulation study,

we consider mixture copulas with both constant and time-varying weights and dependence

parameters. The results show that the proposed method can correctly select the appropriate

copulas and accurately estimate the unknown parameters in both cases.

In the application, we employ the proposed model and method to investigate the evolu-

tion of the dependence structures among four international stock markets (the United States,

the United Kingdom, Hong Kong and South Korea), using 28 years of weekly returns on the

main equity indices. Interestingly, based on the analysis using the proposed model, we find

that all pairs of markets show lower tail dependence but no upper tail dependence, since the

Clayton and Frank copulas are always selected while the Gumbel is always filtered out. We

also observe that the dependence exhibits quite different levels and patterns during different

periods, e.g., in tranquil periods and in crisis periods. The detailed results for analyzing this

empirical example can be found in Section 4.
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The remainder of the paper is organized as follows. Section 2 introduces the proposed

time-varying mixture copula models. In the same section, we introduce penalized time-

varying mixture copula models. Three practical issues are discussed including a semipara-

metric EM algorithm, the bandwidth and tuning parameter selection, and the construction

of pointwise confidence intervals by using Bootstrap. Section 3 reports the Monte Carlo

simulation results. Section 4 applies the model and method to examine the evolution of

the dependence among four international stock markets. The final section provides some

concluding comments, and the mathematical proofs are gathered in the online supplement.

2. Time-Varying Mixture Copula Models

2.1 Model setup

In this section, we model the time-varying mixture copula in a semiparametric way so that

the dynamics in both the weights and dependence parameters are simultaneously captured.

Let {Xi}Ti=1 = {X1i, X2i, · · · , XNi}Ti=1 be a N -dimensional time series sequence and Zi a

vector of predetermined or exogenous variables. Denote by Fi−1 the σ-field generated by

{Xi−1,Xi−2, ...;Zi,Zi−1, ...}. We assume that Xi follows

Xi = µi(ψ01) + Σi(ψ02)
1/2εi, i = 1, . . . , T, (2.1)

where µi(ψ01) = E{Xi|Fi−1} with ψ01 being the parameters for the conditional mean,

Σi(ψ02) = diag(σ2
1i(ψ02), · · · , σ2

Ni(ψ02)) with ψ02 being the parameters for the conditional

variance, and σ2
si(ψ02) = E{(Xsi − µsi(ψ01))

2|Fi−1} for s = 1, · · · , N . ψ01 and ψ02 are

unknown parameters with fixed dimensions.
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2.1 Model setup7

We further assume that the standardized innovations {εi ≡ (ε1i, · · · , εNi)ᵀ} are indepen-

dent of Fi−1. For each s ∈ {1, · · · , N}, {εsi}Ti=1 have zero means and one unit standard

deviation. The settings specified here cover many commonly used specifications such as

ARCH, GARCH, vector autoregressions (VAR), and so on (see Chen and Fan, 2006 for a

detailed discussion).

For example, for s = 1, · · · , N , Xsi may follow an AR-GARCH model with exogenous

variables as

Xsi = ϕs0 + ϕs1Xs,i−1 + · · ·+ ϕspXs,i−p + φsZsi + σsiεsi,

σ2
si = αs0 + αs1(Xs,i−1 − ϕs0 − ϕs1Xs,i−2 − · · · − ϕspXs,i−p−1 − φsZs,i−1)2 + βs1σ

2
s,i−1

where the parameters satisfy αs0 > 0, αs1 > 0, βs1 > 0, and (αs1 + βs1) < 1. More examples

about the specifications of the conditional mean and conditional variance in (2.1) can be

found in Chen and Fan (2006). Note that for simplicity, we only consider AR models (without

using exogenous variables Zi) for the conditional mean in the simulation and application

sections.

The goal of this paper is to estimate the joint distribution of {εi ≡ (ε1i, · · · , εNi)ᵀ} based

on a time-varying mixture copula model. Theoretically, the time-varying mixture copula

model can be written as a linear combination of infinite single copula terms as

C(F1(y1), · · · , FN(yN); δ(ti)) =
∞∑
k=1

λk(ti)Ck(F1(y1), · · · , FN(yN); θk(ti)),

where {Ck(·; ·)}∞k=1 is a set of candidate copulas, ys, s = 1, · · · , N , denote the realizations of

innovations, and Fs(·) are the marginal distribution functions. We rescale time ti by ti = i/T

to provide the asymptotic justification for nonparametric smoothing estimators. The under-
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2.1 Model setup8

lying assumption is that there is an increasingly intense sampling of data points that can be

used to derive consistent estimation, see e.g., Robinson (1991) and Cai (2007). {Ck(·; ·)}∞k=1

can be regarded as known basis copula functions so that C(F1(y1), · · · , FN(yN); δ(ti)) can

be regarded as a series expansion based on the basis copula functions {Ck(·; ·)}∞k=1. In real

applications, we use finite number of d single copulas to approximate the true one

C(F1(y1), · · · , FN(yN); δ(ti)) =
d∑

k=1

λk(ti)Ck(F1(y1), · · · , FN(yN); θk(ti)), (2.2)

where {C1(·; ·), ..., Cd(·; ·)} is a set of candidate copulas. Further, δ(ti) = (θ(ti)
ᵀ, λ(ti)

ᵀ)ᵀ is

a vector of (p1 + · · · + pd)-dimensional dependence parameters θ(ti) = (θ1(ti)
ᵀ, ..., θd(ti)

ᵀ)ᵀ

and d-dimensional weights λ(ti) = (λ1(ti), ..., λd(ti))
ᵀ. For simplicity of presentation, we

set p1 = · · · = pd = 1. The weight λk(ti) controls the contribution of the copula Ck and

satisfies both 0 ≤ λk(ti) ≤ 1 and
∑d

k=1 λk(ti) = 1 for all ti ∈ [0, 1]. The parameter θk(ti)

represents the level of the dependence corresponding to the copula Ck at time ti. The

above mixture copula model implies that the joint cumulative distribution function of a

random vector (ε1i, · · · , εNi) is given by a linear combination of Ck(F1(·), · · · , FN(·); θk(ti))

with time-varying weights λk(ti).

When using (2.2) to approximate the true model, we may have a misspecification problem

since some true single copulas might be excluded. To avoid this problem, we can first consider

a large candidate copula set and then employ the copula model selection procedures discussed

in Section 2.2 to filter out the “insignificant” component copulas. Furthermore, even if some

true single copulas are not included in this approximation so that the model is misspecified,

we can still estimate and select the closest mixture copula model by the model selection

criterion described in Section 2.2 (see Cai and Wang, 2014). Therefore, the model in (2.2)
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2.1 Model setup9

is flexible enough to capture a true copula in real applications.

Remark 1. In models (2.1)-(2.2), one can allow ψ01, ψ02, and F1(·), · · · , FN(·) to depend

on time. However, for simplicity, here we assume that the marginals in (2.2) and ψ01 and

ψ02 in (2.1) do not depend on time, because our main focus is on time-varying weights

and dependence parameters in a mixture copula and its copula selection. It would be an

interesting research topic to investigate the case with time-varying ψ01, ψ02 and marginals

F1(·), · · · , FN(·).

Next, to discuss the identification issue of the model in (2.2), similar to the time-invariant

model proposed in Cai and Wang (2014) (see Definition 1 in Cai and Wang, 2014), we let

u = (u1, · · · , uN)ᵀ with us = Fs(ys), s = 1, · · · , N , and define two time-varying mixture

copulas C(u; δ(ti)) =
∑d

k=1 λk(ti)Ck(u; θk(ti)) and C∗(u; δ∗(ti)) =
∑d∗

k=1 λ
∗
k(ti)C

∗
k(u; θ∗k(ti))

to be identified, i.e. C(u; δ(ti)) ≡ C∗(u; δ∗(ti)), if and only if d = d∗ and we can order the

summations such that λk(ti) = λ∗k(ti) and Ck(u; θk(ti)) = C∗k(u; θ∗k(ti)) for all possible values

of u, k = 1, · · · , d and ti ∈ [0, 1]. Without loss of generality, we assume that the time-varying

mixture copula model under investigation is identified.

In the following, we propose a three-step estimation procedure.

Step 1: We estimate ψ01 and ψ02 in model (2.1) by specifying conditional mean models

for µ(ψ01), such as ARMA model, and conditional volatility models for Σ(ψ02), such as

GARCH model. To see the various conditional mean models and conditional volatility

models, as well as their corresponding estimation methods, the reader is referred to Chapters

2 & 3 in Tsay (2010).
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Step 2: After obtaining the estimates ψ̂1 and ψ̂2 from the first step, we calculate

ε̂i = Σ
−1/2
i (ψ̂2)(Xi − µi(ψ̂1)),

and then the marginal distribution functions can be estimated by the rescaled empirical

distribution of the residuals

F̂s(ys) =
1

T + 1

T∑
j=1

I(ε̂sj ≤ ys), s = 1, · · · , N,

with I(·) being an indicator function. For i = 1, · · · , T , denote ûi = (û1i, · · · , ûNi)ᵀ with

ûsi = F̂s(ε̂si).

Step 3: Given the estimators ûi from the second step, we employ the profile likelihood

method and calculate the nonparametric estimator δ̂(τ) = (θ̂(τ)ᵀ, λ̂(τ)ᵀ)ᵀ at a given point

τ ∈ (0, 1) by maximizing the local copula log-likelihood function as

δ̂(τ) = arg max
(θ(τ),λ(τ))

T∑
i=1

log

(
d∑

k=1

λk(τ)ck(ûi, θk(τ))

)
Kh(ti − τ), (2.3)

where ck(·) is the density function of copula Ck(·), Kh(·) = K(·/h)/h with K(·) being a

kernel function and h a bandwidth that tunes the smoothness of the kernel estimator. In

our simulation and empirical study, the commonly adopted Epanechnikov kernel function

K(z) = 3/4(1− z2)I(|z| ≤ 1) is used.

Remark 2. Lemma A.1 in Chen and Fan (2006) shows that supys |F̂s(ys) − Fs(ys)| =

Op(T
−1/2) holds for the rescaled empirical distribution function. It implies that the esti-

mator F̂s(·) has the
√
T convergence rate so that it has little effect on the nonparametric
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2.2 Penalized time-varying mixture copula models11

estimators δ̂(τ) in large samples.

In the following, we present the copula selection procedure and its asymptotic properties.

The regularity conditions and asymptotic properties for unpenalized estimators are given in

the online supplement.

2.2 Penalized time-varying mixture copula models

When many candidate copula families are included in the proposed time-varying mixture cop-

ula model, there is a risk of overfitting and efficiency loss, which motivates us to do the esti-

mation and copula selection simultaneously. For this purpose, we define a T×(2d) matrix δ =

(δ(t1), · · · , δ(tT ))ᵀ = (θ·1, · · · , θ·d, λ·1, · · · , λ·d), where δ(tj) = (θ1(tj), · · · , θd(tj), λ1(tj), · · · , λd(tj))ᵀ

for j = 1, · · · , T , and θ·k = (θk(t1), · · · , θk(tT ))ᵀ and λ·k = (λk(t1), · · · , λk(tT ))ᵀ for k =

1, · · · , d. We follow the idea of the group least absolute shrinkage and selection operator

(LASSO) as in Yuan and Lin (2006) and propose the following penalized local log-likelihood

function as

QP (δ) =
T∑
j=1

T∑
i=1

`(ûi, δ(tj))Kh(ti − tj)− T
d∑

k=1

Pγk(‖λ·k‖) +
T∑
j=1

ρtj

(
1−

d∑
k=1

λk (tj)

)
(2.4)

where `(ûi, δ(tj)) = log(
∑d

k=1 λk(tj)ck(ûi, θk(tj))), ûi = (û1i, · · · , ûNi)ᵀ are obtained from

Steps 1-2 as in Section 2.1, Pγk(·) is a penalty function with the tuning parameter γk,

‖λ·k‖=(λ2k(t1)+· · ·+λ2k(tT ))1/2, and ρtj is a Lagrange multiplier for the constraint
∑d

k=1 λk (tj) =

1. The norm of λ·k, i.e. ‖λ·k‖, is penalized so that we can shrink the weight function λk(·)

to zero if the contribution of copula Ck(·) is small. We do not penalize the dependence pa-

rameters θk(·) since our main focus is on the copula selection. Clearly, the purpose of using

the penalized locally weighted log-likelihood function is to select important copula families.
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2.2 Penalized time-varying mixture copula models12

Various penalty functions have been proposed over the last decades. As pointed out

by Fan and Li (2001), a good penalty function should satisfy the following three properties:

unbiasedness for the non-zero coefficients, sparsity, and continuity of the resulting estimators

to avoid instability in model prediction. Here, we propose to use the SCAD penalty function

proposed by Fan and Li (2001) that enjoys all three properties, although many other penalty

functions are applicable including the classical LASSO in Tibshirani (1996) and adaptive

LASSO in Zou (2006). The first-order derivative P ′γk(z) of the continuous SCAD penalty

function Pγk(z) is given by

P ′γk(z) = γkI(z ≤ γk) +
(%γk − z)+

(%− 1)
I(z > γk)

for some % > 2, where (%γk − z)+ = max(%γk − z, 0). For simplicity of presentation, we

assume that the tuning parameters γk are the same for all k = 1, · · · , d by taking γk = γT .

We select % = 3.7 from a Bayesian risk point of view as suggested by Fan and Li (2001)

who state that this choice provides a good practical performance for various model selection

problems.

To find the asymptotic properties of the penalized estimator, we assume that the first

d0 functional weights are nonzero and the remaining d − d0 functional weights are zero.

That is, λ0(τ) = [λᵀ0a(τ), λᵀ0b(τ)]ᵀ, where λ0a(τ) = [λ01(τ), · · · , λ0d0(τ)]ᵀ with ‖λ·0k‖ 6= 0

for 1 ≤ k ≤ d0 and λ0b(τ) = [λ0(d0+1)(τ), · · · , λ0d(τ)]ᵀ with ‖λ·0k‖ = 0 for d0 + 1 ≤

k ≤ d. Similarly, we let θ0(τ) = [θᵀ0a(τ), θᵀ0b(τ)]ᵀ with θ0a(τ) = [θ01(τ), · · · , θ0d0(τ)]ᵀ and

θ0b(τ) = [θ0(d0+1)(τ), · · · , θ0d(τ)]ᵀ, in which θ0b(τ) can be arbitrary since the corresponding

weights are zeros. Moreover, we define δ0(τ) = [θᵀ0(τ), λᵀ0(τ)]ᵀ and δ0a(τ) = [θᵀ0a(τ), λᵀ0a(τ)]ᵀ,

and their corresponding penalized estimators δ̂γT (τ) = [θ̂ᵀγT (τ), λ̂ᵀγT (τ)]ᵀ and δ̂a,γT (τ) =
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2.2 Penalized time-varying mixture copula models13

[θ̂ᵀa,γT (τ), λ̂ᵀa,γT (τ)]ᵀ, respectively. One can partition δ0(τ) into an identified subset [θᵀ0a(τ),

λᵀ0a(τ), λᵀ0b(τ)]ᵀ and an unidentified subset θ0b(τ) in which the former is unique and the lat-

ter is a vector of arbitrary fixed points. Furthermore, we include the following additional

technical conditions:

(B1) limT→∞ infz→0+ P
′
γT

(z)/γT > 0, h ∝ T−1/5 and T−1/10γT → 0, as T →∞.

The condition limT→∞ infz→0+ P
′
γT

(z)/γT > 0 can be found in Lemma 1 of Fan and Li

(2001). The last condition in B1 imples that the order of the tuning parameter γT needs to

be smaller than T 1/10, which will be crucial for the consistency result in Theorem 1 and the

oracle property in Theorem 2.

Theorem 1. Let {X1i, · · · , XNi}Ti=1 be a strictly stationary α-mixing sequence following the

proposed models (2.1)-(2.2). For a fixed point τ ∈ (0, 1), under Conditions A1-A6 in the

online supplement and B1, there exists a
√
Th-consistent estimator δ̂γT (τ) that maximizes

(2.4) satisfying ‖δ̂γT (τ)− δ0(τ)‖ = Op(1/
√
Th).

Remark 3. Theorem 1 shows the consistency for the nonparametric kernel-based estimator

δ̂γT (τ) at a given point τ ∈ (0, 1).

Theorem 2. (Oracle Property). Let {X1i, · · · , XNi}Ti=1 be a strictly stationary α-mixing

sequence following the proposed models (2.1)-(2.2). For a fixed point τ ∈ (0, 1), under

Conditions A1-A6 in the online supplement and B1, we have

(a) Sparsity: ‖λ̂·k‖ = 0 for k = d0 + 1, · · · , d,

(b) Asymptotic normality:

√
Th(δ̂a,γT (τ)− δ0a(τ)− h2Ba(τ))→ N(0, v0Σa(τ)−1Ωa(τ)Σa(τ)−1),
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where v0 =
∫
K2(z)dz, Σa(τ) = −E{`′′(ui, δ0a(τ))|ti = τ}, Ωa(τ) =

∑∞
s=−∞ Γa,s(τ) with

Γa,s(τ) = E{`′(ui, δ0a(τ))`′(ui+s, δ0a(τ))ᵀ|ti = τ} and the bias term h2Ba(τ) = h2

2
δ′′0a(τ)µ2

with µ2 =
∫
z2K(z)dz. `′(ui, δ0a(τ)) and `′′(ui, δ0a(τ)) respectively denote the first and second

derivatives of `(ui, δ0a(τ)) with respect to δ0a(τ).

Sparsity is an important statistical property in high-dimensional statistics. By assuming

that only a small subset of copula families is important, it can reduce complexity so that

it improves interpretability and predictability of the model. The sparsity property from

Theorem 2 demonstrates that the penalized time-varying mixture copula model shrinks su-

perfluous components of the weight vector exactly to zero with probability one as the sample

size T goes to infinity.

2.3 Practical issues

A. A semiparametric EM algorithm. One possible way to optimize the penalized local log-

likelihood copula function in (2.4) is to use a coordinate descent approach. However, it is

usually not easy to obtain the explicit forms of the first and second derivatives of the object

function, especially when the number of copulas is large and there exist some constraints on

the weights and dependence parameters. As stated in Cai and Wang (2014), the expectation

maximization (EM) algorithm is one of the most popular algorithms for finding the maxi-

mum likelihood estimation of the finite mixture model. Hence in this section, we propose

a semiparametric version of the EM algorithm to estimate the weights and dependence pa-

rameters, which dramatically reduces the computational complexity. It iteratively alternates

between an expectation step (E-step) and a maximization step (M-step). The E-step updates

the weights of each copula with given dependence parameters, and the M-step maximizes
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2.3 Practical issues 15

the local log-likelihood with respect to the dependence parameters for given copula weights.

For details of the EM algorithm and its applications in parametric mixture copula models,

see Cai and Wang (2014).

To develop a semiparametric version of the EM algorithm for the proposed model, we

follow Fan and Li (2001) and Cai, Juhl and Yang (2015) and approximate equation (2.4) by

QP (δ) ≈
T∑
j=1

[
T∑
i=1

`(ûi, δ(tj))Kh(ti − tj)− T
d∑

k=1

P ′γk(‖λ̂
(0)
·k ‖)

2‖λ̂(0)·k ‖
λ2k(tj) + ρtj

(
1−

d∑
k=1

λk (tj)

)]

+ {terms unrelated to δ}

where λ̂
(0)
·k are the estimates from the previous iteration. At the first iteration, λ̂

(0)
·k denotes

a set of starting values for the weights.

Then the estimator δ̂(tj) at a given iteration step can be obtained by maximizing the

criterion function

QP (δ(tj)) =
T∑
i=1

`(ûi, δ(tj))Kh(ti − tj)− T
d∑

k=1

P ′γk(‖λ̂
(0)
·k ‖)

2‖λ̂(0)·k ‖
λ2k(tj) + ρtj

(
1−

d∑
k=1

λk (tj)

)
.

We take the first derivative of QP (δ(tj)) with respect to λk(tj), and multiply both sides by

λk(tj), which leads to

T∑
i=1

λk(tj)ck(û1i, · · · , ûNi, θk(ti))
cc(û1i, · · · , ûNi, δk(ti))

Kh(ti−tj)−T
P ′γk(‖λ̂

(0)
·k ‖)

‖λ̂(0)·k ‖
λ2k(tj)−ρtjλk(tj) = 0, k = 1, . . . , d,

where cc(û1i, · · · , ûNi, , δk(ti)) =
∑d

k=1 λk(ti)ck(û1i, · · · , ûNi, θk(ti)).

We next introduce the expectation and maximization steps.

Expectation step
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2.3 Practical issues 16

Let λ
(0)
k (τ) and θ

(0)
k (τ) be the initial estimators in each iterative step. Given a grid point τ ,

we update the new weight parameters λ
(1)
k (τ) as

λ
(1)
k (τ) =

( T∑
i=1

λ
(0)
k (τ)ck(û1i, · · · , ûNi, θ(0)k (τ))

cc(û1i, · · · , ûNi, δ(0)k (τ))
Kh(ti−τ)−TD(0)

k

)
/
( T∑
i=1

Kh(ti−τ)−T
d∑

k=1

D
(0)
k

)
,

for k = 1, . . . , d, where D
(0)
k =

P ′γk
(‖λ̂(0)·k ‖)

‖λ̂(0)·k ‖
λ
(0)2
k (τ).

Maximization step

After updating the weight λ
(0)
k (τ) with λ

(1)
k (τ) from the above E-step, we obtain the depen-

dence estimator θ(1)(τ) by maximizing the objective function QP (δ(τ)) with respect to the

dependence parameter θ. Note that the penalty and constraint terms of QP (δ(τ)) do not

depend on θ, so that it is equivalent to maximize Q(δ(τ)) =
∑T

i=1 `(ûi, δ(τ))Kh(ti − τ). We

use a one-step Newton-Raphson method:

θ(1)(τ) = θ(0)(τ)− Q′θ(δ
(0)(τ))

Q′′θ(δ
(0)(τ))

,

where Q′θ(δ(τ)) and Q′′θ(δ(τ)) are the first and second derivatives of Qθ(δ(τ)) with respect

to θ, respectively. It may not be easy to find explicit expressions for Q′θ(δ(τ)) and Q′′θ(δ(τ)),

in which case one can use numerical derivatives as

Q′θk(δ(τ)) ≈ Q(δ(τ)+ςιk)−Q(δ(τ)−ςιk)
2ς

and Q′′θk(δ(τ)) ≈
Q′θk

(δ(τ)+ςιk)−Q′θk (δ(τ)−ςιk)
2ς

where ς is a small positive real number and ιk is a (2d)-dimensional vector with the k-th

element being one and the others being zero.

B. Bandwidth and tuning parameter selection. The bandwidth h determines the trade-off

between the bias and variance of the nonparametric estimators, while the tuning parameter
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2.3 Practical issues 17

γT adjusts the weight for the penalty term. We need to choose suitable regularization pa-

rameters to do the nonparametric estimation and variable selection simultaneously. Various

methods for the selection of bandwidths and tuning parameters have been proposed in the

variable selection literature, such as cross-validation, AIC- and BIC-type criteria, among

others. Due to the time series nature of the sequence {X1i, · · · , XNi}Tt=1, we propose using a

forward leave-one-out cross-validation to select both the bandwidth h and tuning parameter

γT in the penalty term simultaneously.

Define δ̂(h, γT ) as the nonparametric estimators for the penalized time-varying mixture

copula models in (2.4) with a known bandwidth h and tuning parameter γT . For each data

point i0 + 1 ≤ i∗ ≤ T , we use the data {X1i, · · · , XNi, i < i∗} to construct the estimate

δ̂t∗(h, γT ) at the sample point {x1i∗ , · · · , xNi∗}, where i0 is the minimum window size used

to estimate δ̂i0+1(h, γT ). Under this forward recursive scheme, we obtain the sequential

estimators {δ̂i∗(h, γT )}Ti∗=i0+1. The optimal bandwidth h∗ and tuning parameter γ∗T can be

obtained by maximizing the objective function

(h∗, γ∗T ) = arg max
(h,γT )

T∑
i∗=i0+1

{`(ûi∗ , δ̂(t∗i ))|δ̂i∗(h, γT )}, (2.5)

and (h∗, γ∗T ) is the forward leave-one-out cross-validation estimator in terms of the log-

likelihood.

C. Confidence intervals. For inference, i.i.d bootstrap approaches are not applicable here

because most of the financial/economic data are dependent. Patton (2012a) suggests a block

bootstrap to construct the pointwise confidence intervals on copula dependence parameters

for serially dependent data although its theoretical properties require formal justification.

The intuition behind this method is that, by dividing the data into several blocks, it can
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preserve the original time series structure within a block. A simple block bootstrap for

calculating confidence intervals can be implemented as follows:

i. Generate a sample sequence {x∗1,i, · · · , x∗N,i}Ti=1 from the original data {x1,i, · · · , xN,i}Ti=1

using a stationary bootstrap technique as described in the online supplement;

ii. Obtain û∗1i, · · · , û∗Ni by Steps 1-2 described in Section 2.1;

iii. Calculate new local constant estimators δ̂∗(τ) at the grid point τ by equation (2.4)

with estimators {û∗1i, · · · , û∗Ni}Ti=1;

iv. Repeat Steps i-iii M times (say, M=1000), and get M values of the estimators δ̂∗(τ) as

an empirical sample at each grid point τ . Let the α/2-th and (1− α/2)-th percentiles

of the sample sequence {δ̂∗(τ)} be qα/2 and q1−α/2, respectively; and

v. The empirical 100(1− α)% confidence interval for δ̂(τ) is [qα/2, q1−α/2].

3. Monte Carlo Simulation Studies

This section illustrates the finite-sample performance of the proposed estimation and selec-

tion method through a series of simulation studies. We consider the bivariate case where the

data are generated by AR(1)-GARCH(1,1) processes:

xsi = ϕsxs,i−1 + esi, s = 1, 2; i = 2, ..., T,

where ϕ1 = 0.1, ϕ2 = 0.05, esi = σsiεsi, εsi has a standard normal marginal distribution and

σ2
si = αs0 + αs1e

2
s,i−1 + βs1σ

2
s,i−1,
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3.1 Case I simulations19

where α10 = 0.0001, α11 = 0.02, β11 = 0.93 for the first margin, and α20 = 0.0001, α21 =

0.03, β21 = 0.92 for the second margin. Our working mixture copula model consists of

three copulas: the Gumbel, Frank and Clayton copulas, which are widely used in empirical

studies. The Frank copula shows a symmetric dependence structure, while the Clayton

and Gumbel copulas are asymmetric. In particular, the Clayton copula displays strong

lower tail dependence, while the Gumbel copula exhibits strong upper tail dependence. The

dependence structure between ε1i and ε2i is governed by a time-varying mixture copula

models as

(ε1i, ε2i) ∼
3∑

k=1

λk(ti)Ck(u1, u2; θk(ti)),

where one of the three weight parameters (λ1, λ2 and λ3) is zero.

We consider two cases for the weights and dependence parameters. First, the weights

and dependence parameters are set to constants. Second, they are time-varying according to

some given functions. In each case, we simulate three mixture copulas with two components.

The sample size T = 400 and 800, and each simulation is repeated 1000 times (M = 1000).

For each sample we calculate the estimated weights and dependence parameters on a grid of

50 equally spaced points τj = −0.01 + 0.02j for j ∈ {1, 2, ..., 50}.

3.1 Case I simulations

We first consider the scenario where data are generated from mixture copulas with constant

weights and dependence parameters. Let λ1, λ2 and λ3 denote the weights of the Gum-

bel, Frank and Clayton copulas respectively, and θ1, θ2 and θ3 denote the corresponding

dependence parameters. We consider the following models for the weights and dependence

parameters:
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3.1 Case I simulations20

• Model 1: λ1 = 1/2, λ2 = 1/2, λ3= 0, θ1 = 6, θ2 = 4;

• Model 2: λ1 = 1/2, λ2 = 0, λ3= 1/2, θ1 = 6, θ3 = 5;

• Model 3: λ1 = 0, λ2 = 1/2, λ3= 1/2, θ2 = 4, θ3 = 5.

We summarize the estimation results for the weights and dependence parameters in

the Case I simulations in Tables 1-2, Panel A. Table 1, Panel A presents the percentages

corresponding to the correctly and incorrectly (in parentheses) selected copulas. From Table

1, Panel A, the proposed method performs very well in selecting appropriate copulas from

mixture copula models with constant parameters, although our method is designed for time-

varying mixture copula models. For all three models, the correct component copulas are

selected with 100% probability. Moreover, the probability that the incorrect copulas are

chosen is small. There is zero probability of selecting the incorrect copulas for the mixture

of Gumbel and Frank, and the mixture of Clayton and Frank. For the mixture model

consisting of the Gumbel and Clayton copulas, the chance to incorrectly select the Frank

copula is also small and decreases with T .

To examine the performance of the proposed method in estimating the unknown param-

eters, we calculate the mean square errors (MSEs) of the estimated weights and dependence

parameters for the mixture copula models under Case I simulations. The MSEs are calcu-

lated as

MSE(θ̂k) =
1

M

1

50

M∑
m=1

50∑
j=1

(
θ̂mk(τj)− θk

)2
, and

MSE(λ̂k) =
1

M

1

50

M∑
m=1

50∑
j=1

(
λ̂mk(τj)− λk

)2
, for k = 1, 2, 3,
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3.1 Case I simulations21

Table 1: Percentages of correctly (incorrectly) chosen copulas for models in Case I (Panel A) and Case II
(Panel B) simulations, when the working mixture copula model is time-varying

Model T Gumbel Frank Clayton
Panel A: Case I
Gumbel+Frank 400 1.000 1.000 (0.000)

800 1.000 1.000 (0.000)
Gumbel+Clayton 400 1.000 (0.115) 1.000

800 1.000 (0.073) 1.000
Clayton+Frank 400 (0.000) 1.000 1.000

800 (0.000) 1.000 1.000

Panel B: Case II
Gumbel+Frank 400 1.000 1.000 (0.000)

800 1.000 1.000 (0.000)
Gumbel+Clayton 400 1.000 (0.143) 1.000

800 1.000 (0.058) 1.000
Clayton+Frank 400 (0.011) 1.000 1.000

800 (0.000) 1.000 1.000

NOTE: Values without parentheses are the percentages that copulas in the mixture copulas are chosen
correctly. Values with parentheses are the percentages that copulas not in the mixture copulas are chosen
incorrectly.

where 50 is the number of grid points and M = 1000 is the replication time.

The results are shown in Table 2, Panel A. As expected, the MSEs decrease when the

sample size increases for all three models.

Table 2: Mean squared errors of the estimated weights and dependence parameters for models in Case I
(Panel A) and Case II (Panel B) simulations, when the working mixture copula model is time-varying

Model T (λ1, θ1) (λ2, θ2) (λ3, θ3)
Panel A: Case I
Gumbel+Frank 400 (0.007, 0.513) (0.007, 0.858)

800 (0.003, 0.239) (0.003, 0.380)
Gumbel+Clayton 400 (0.006, 0.570) (0.008, 0.727)

800 (0.003, 0.326) (0.004, 0.365)
Clayton+Frank 400 (0.006, 0.829) (0.006, 0.653)

800 (0.001, 0.426) (0.001, 0.395)

Panel B: Case II
Gumbel+Frank 400 (0.009, 2.085) (0.009, 1.509)

800 (0.004, 0.630) (0.004, 0.497)
Gumbel+Clayton 400 (0.006, 0.920) (0.008, 2.971)

800 (0.002, 0.416) (0.003, 0.985)
Clayton+Frank 400 (0.009, 1.978) (0.009, 1.763)

800 (0.004, 0.716) (0.004, 0.855)
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In the online supplement, we further evaluate the quality of the estimators graphically.

Figures S1-S3 in the supplement respectively display simulation results of the weights and

dependence parameters for Models 1-3 under Case I simulations. In each figure, the black

solid line denotes true parameters (the weight or dependence parameter), and two curves

respectively represent medians (blue) and means (red) of the 1000 simulation parameter

function estimates at the grid points. The two green dashed lines represent the 5% and 95%

percentiles of the parameter estimates at the grid points. To save space, we only present the

results for T = 800. In all three models, the median and mean curves are close to the true

parameter paths, which are constant in this case.

3.2 Case II simulations

In the Case II simulations, the weights and dependence parameters are dynamic according

to the following functions:

• Model 1: λ1(τ) = 0.7 − 0.4 sin2(π
2
τ), λ2(τ) = 1−λ1(τ), λ3(τ) = 0, θ1(τ) = e2τ + 3,

θ2(τ) = 6τ 2 + 4;

• Model 2: λ1(τ) = 0.7 − 0.4 sin2(π
2
τ), λ2(τ) = 0, λ3(τ) = 1−λ1(τ), θ1(τ) = e2τ + 3,

θ3(τ) = ln(1 + τT ) + 3;

• Model 3: λ1(τ) = 0, λ2(τ) = 0.7 − 0.4 sin2(π
2
τ), λ3(τ) = 1−λ2(τ), θ2(τ) = 6τ 2 + 4,

θ3(τ) = ln(1 + τT ) + 3;

where λk(τ) and θk(τ), k = 1, 2, 3, respectively represent the weights and dependence pa-

rameters of the Gumbel, Frank and Clayton copulas.

Tables 1-2, Panel B show the estimation results for this case. We use Table 1, Panel

B to examine whether the proposed method can efficiently select appropriate copulas from

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.2 Case II simulations23

different time-varying mixture copula models. As in Table 1, Panel A, the values without

parentheses correspond to the percentages that copulas in the mixture models are selected

correctly, and the values within parentheses are the percentages that copulas not in the

mixture models are selected incorrectly. For all three time-varying mixture copula models,

the correct copulas are selected in all replications. For the mixture of the Gumbel and

Frank, the probability of choosing the incorrect copula (Clayton) is zero. For the other two

mixtures, the chance to select incorrect copulas is also small. For example, when T = 800,

there is only 5.8% to select Frank when data are generated from a mixture of Gumbel and

Clayton. Therefore, Table 1, Panel B demonstrates the good performance of the proposed

method in copula selection for mixture copulas with dynamic parameters.

We now use Table 2, Panel B to check whether the proposed method can accurately

estimate the unknown parameters under the Case II simulations. Again, we omit the results

of the marginal parameters to save space. In Table 2, Panel B, we calculate the MSEs of

the estimated weights and dependence parameters for the mixture copulas with dynamic

parameters. Similar to the Case I simulations, the MSEs are calculated as MSE(θ̂k) =

1
M

1
50

M∑
m=1

50∑
j=1

(
θ̂mk(τj)− θk(τj)

)2
and MSE(λ̂k) = 1

M
1
50

M∑
m=1

50∑
j=1

(
λ̂mk(τj)− λk(τj)

)2
, for k =

1, 2, 3. We note two observations from Table 2, Panel B. First, as the sample size increases

from 400 to 800, the MSEs decrease and the estimates become more accurate. Second,

compared to the results in Table 2, Panel A, the MSEs in Panel B are larger in most cases.

This is not surprising because the true models in Case II are time-varying mixture copulas

with dynamic parameters, which are more difficult to estimate than the true models in Case

I (mixture copulas with constant parameters).

Figures S4-S6 in the online supplement present the estimated and the true parameter
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paths for different time-varying mixture copulas models (T = 800). We can observe from

Figures S4-S6 that the median and mean paths are still close to the true parameter functions

in all models.

We next employ time-invariant mixture copula models for comparision (we thank one

anonymous reviewer for suggesting this.). That is, the working mixture copula model still

consists of the Gumbel, Frank, and Clayton copulas, but now the weights and dependence

parameters are assumed to be constants. We use the penalized likelihood method of Cai

and Wang (2014) for estimation, and the mean square errors (MSEs) of the estimates are

presented in Table 3 (Panel A for Case I, and Panel B for Case II). Comparing the results in

Table 3 with the results in Table 2, we observe that when the true models are time-invariant

(Case I), employing time-invariant working mixture copula models may indeed gain some

efficiency, but the differences between the two types of working models are minor. However,

when the true models are dynamic (Case II), using time-invariant mixture copula models

show much worse estimation results than those yielded by time-varying working mixture

copula models.

Finally, to check the robustness of the proposed method, we consider two additional

candidate copulas: rotated Gumbel and rotated Clayton, and both of them can capture

negative dependence. That is, our working mixture copula model now consists of five copulas:

the Gumbel, Frank, Clayton, rotated Gumbel, and rotated Clayton copulas. The ture model

is still set to be a mixture of two copulas. Therefore, three of the five weight parameters are

equal to zero in this case. Denote λ4 and λ5 as the weights of rotated Gumbel and rotated

Clayton respectively. To save space, we only consider Model 3 of Case II (Clayton+Frank) as

the true mixture copula: λ1(τ) = 0, λ2(τ) = 0.7− 0.4 sin2(π
2
τ), λ3(τ) = 1−λ2(τ), λ4(τ) = 0,
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Table 3: Mean squared errors of the estimated weights and dependence parameters for models in Case I
(Panel A) and Case II (Panel B) simulations, when the working mixture copula model is time-invariant

Model T (λ1, θ1) (λ2, θ2) (λ3, θ3)
Panel A: Case I
Gumbel+Frank 400 (0.005, 0.313) (0.005, 0.596)

800 (0.002, 0.161) (0.002, 0.279)
Gumbel+Clayton 400 (0.005, 0.405) (0.006, 0.603)

800 (0.003, 0.183) (0.003, 0.290)
Clayton+Frank 400 (0.004, 0.713) (0.004, 0.551)

800 (0.001, 0.325) (0.001, 0.272)

Panel B: Case II
Gumbel+Frank 400 (0.052, 10.664) (0.047, 9.023)

800 (0.029, 5.026) (0.026, 4.357)
Gumbel+Clayton 400 (0.038, 8.428) (0.055, 20.799)

800 (0.016, 3.343) (0.023, 8.098)
Clayton+Frank 400 (0.062, 11.370) (0.070, 12.385)

800 (0.027, 5.839) (0.031, 7.648)

Table 4: Selection and estimation performance of the proposed method when considering five candidate
copulas: Gumbel, Frank, Clayton, rotated Gumbel, and rotated Clayton

Panel A: Selection Gumbel Frank Clayton Rotated Gumbel Rotated Clayton
T = 400 (0.000) 1.000 0.986 (0.000) (0.000)
T = 800 (0.000) 1.000 1.000 (0.000) (0.000)

Panel B: Estimation λ2 θ2 λ3 θ3
T = 400 0.014 2.873 0.014 3.115
T = 800 0.006 1.066 0.006 1.287

NOTE: The true model is a mixture copula of Clayton and Frank: λ1(τ) = 0, λ2(τ) = 0.7 − 0.4 sin2(π
2 τ),

λ3(τ) = 1−λ2(τ), λ4(τ) = 0, λ5(τ) = 0, θ2(τ) = 6τ2 + 4, θ3(τ) = ln(1 + τT ) + 3.

λ5(τ) = 0, θ2(τ) = 6τ 2 + 4, θ3(τ) = ln(1 + τT ) + 3.

Table 4 presents the selection and estimation performance of the proposed method when

employing a larger candidate copula set. The results in Panel A of Table 4 once again

support the finding that the proposed method can accurately select the appropriate copulas.

Even for T = 400, the probability of correctly selecting Clayton and Frank is very close or

equal to 100%. Furthermore, the percentage that the redundant copulas (Gumbel, rotated

Gumbel, and rotated Clayton) are selected is zero. In Panel B, we report the MSEs of the

estimated weights and dependence parameters for Frank (λ2 and θ2) and Clayton (λ3 and
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θ3). Compared with the estimation results in Table 2, Panel B, we find that increasing the

number of the candidate copulas from three to five only moderately lower the accuracy of

the estimation. Figure S7 in the online supplement provides more graphical evidence of the

performance of the proposed method in estimating unknown parameters in this case.

4. An Empirical Study

In this section, we apply the proposed model and method to analyze the co-movements of

returns among international stock markets during different periods. Specifically, we consider

weekly returns of the Morgan Stanley Capital International (MSCI) equity indices of four

economies (in U.S. Dollars): the United States (US), the United Kingdom (UK), Hong Kong

(HK), and South Korea (KR). These four economies are much affected by the Asian crisis of

1997 and/or the global financial crisis of 2008. By analyzing the evolution of the dependence

structures among these four markets, we can examine how these markets are related, for

example, in tranquil periods and in crisis periods.

4.1 Data

The data we use span the period of over 28 years from January 1990 until July 2018, with

a total of 1488 observations for each economy. We first obtain the equity indices from

Datastream and then calculate their log-returns by rs,i = log(Ps,i) − log(Ps,i−1), where Ps,i

is the stock index of the i-th market at time i. We use weekly data instead of daily data to

remove the effect of different trading hours for international stock markets (Chollete, Heinen

and Valdesogo, 2009; Hafner and Reznikova, 2010). Descriptive statistics are presented in

Table 5, Panel A. The United States market exhibits the highest mean and median returns.
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Table 5: Summary statistics and correlations

US UK HK KR
Panel A: Summary statistics

Mean (%) 0.140 0.061 0.136 0.061
Median (%) 0.284 0.193 0.277 0.218

Min (%) -16.75 -15.21 -16.79 -40.25
Max (%) 10.34 11.56 14.03 30.02
Std. Dev. 0.022 0.026 0.032 0.047
Skewness -0.669 -0.425 -0.482 -0.515
Kurtosis 7.892 6.117 5.813 10.556

JB statistic 1595 647 548 3606
JB p-value 0.000 0.000 0.000 0.000

Panel B: Correlations
UK KR HK

US 0.681 (0.451) 0.389 (0.249) 0.487 (0.330)
UK 0.409 (0.280) 0.515 (0.351)
KR 0.495 (0.350)

NOTE: Panel A presents the summary statistics of weekly index returns for the United States (US), the
United Kingdom (UK), Hong Kong (HK) and South Korea (KR). All returns are expressed in U.S. dollars
from January, 1990 to July, 2018, which correspond to a sample of 1488 observations. JB statistic and JB
p-value refer to Jarque-Bera test of normality. Panel B reports the linear correlation coefficients and the
Kendall’s τs (Kendall’s τs are in parentheses) across the US, UK, HK and KR markets.

The Korea market shows the largest volatility of returns. We employ the Jarque-Bera test

for normality and the test strongly rejects the null hypothesis for all series.

Table 5, Panel B reports the unconditional correlation coefficients and Kendall’s τs (in

parentheses) across the four markets. We observe that the US and UK markets display

the highest correlation, based on both the correlation coefficient (0.681) and the Kendall’s

τ (0.451). The US-HK, UK-HK, and HK-KR pairs show similar dependence of moderate

size (around 0.5 for the correlation coefficients and around 0.35 for Kendall’s τs). The least

dependent pairs are US-KR (0.389 for correlation and 0.249 for Kendall’s τ) and UK-KR

(0.409 for correlation and 0.280 for Kendall’s τ).
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4.2 The models for the marginal distributions

First of all, we model the marginal distributions of the data. We employ AR(p)-GARCH(1,1)

models, a special case of model (2.1) presented in Section 2, to capture possible autocorrela-

tion and conditional heteroscedasticity in returns. The Bayesian information criterion (BIC)

is used to select the appropriate number of lags p of the AR(p) models. Specifically, we use

the following models for the marginal distributions:

Xsi = ϕs0 +

p∑
k=1

ϕskXs,i−k + esi, esi = σsiεsi,

σ2
si = αs0 + αs1e

2
s,i−1 + βs1σ

2
s,i−1,

where Xsi denotes the return of the s-th market at time i. The innovations εsi are assumed

to be i.i.d for i = 1, · · · , T with a fixed s, and the distribution is estimated through the

rescaled empirical distribution of the residuals. Model diagnostics such as portmanteau type

tests for the mean and the variance confirm our model specifications. To economize on space

they are not reported here but available upon request.

Table 6: Estimation results and tests of the marginal distribution models

AR(p) GARCH(1,1) LB
ϕ1 α0 α1 β1 4 16

(s.e.) (s.e.) (s.e.) (s.e.)
US -0.118 0.007E-3 0.100 0.890 0.617 0.643

(0.026) (0.004E-3) (0.019) (0.019)
UK -0.098 0.023E-3 0.127 0.840 0.892 0.577

(0.027) (0.009E-3) (0.028) (0.036)
HK 0.020E-3 0.098 0.885 0.112 0.155

(0.008E-3) (0.020) (0.023)
KR 0.045E-3 0.115 0.862 0.120 0.337

(0.015E-3) (0.020) (0.023)

NOTE: The second to fifth columns report parameter estimates of AR(p)-GARCH(1,1) models. Values in
parentheses are corresponding standard errors. The sixth and seventh columns report the p-values of the
Ljung-Box (LB) tests for autocorrelation of the residuals using 4 and 16 lags, respectively.
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4.3 The models for the copula

We focus on studying the dependence structures of four pairs (US-UK, US-HK, UK-HK, and

HK-KR) which have relatively large correlation coefficients. Scatter plots (omitted here) of

four pairs of standardized returns show violations of elliptical multivariate distributions,

because asymmetry and a large number of outliers can be observed in all pairs. Therefore,

we employ a mixture copula model including the Clayton, Frank and Gumbel copulas to

implement copula selection and estimation. In such a way, we can capture various dependence

structures in the data such as lower or upper tail dependence, or a symmetric but non-

elliptical dependence structure.

We first fit the data to a time-invariant mixture copula model to examine the overall

dependence structures during the period of 28 years. The penalized likelihood method of Cai

and Wang (2014) is employed to select and estimate the model. The results are reported in

Table 7. We have two findings from Table 7. First, the Gumbel copula is excluded from the

mixture model for all pairs of data, implying that no pairs exhibit upper tail dependence.

Second, the Clayton copula is selected and the weight and dependence parameters are sta-

tistically significant away from zero for all pairs. This indicates that lower tail dependence

can be found for all pairs of markets. These two findings are similar to those in Cai and

Wang (2014).

Although the time-invariant model can tell us that overall the pairs of markets show

lower tail dependence, it can neither capture the evolution of the dependence structures,

nor distinguish between the dependence structures in tranquil periods and those in crisis

periods. Therefore, we next employ the time-varying mixture copula model proposed in this

paper to analyze the dependence structures of the international stock markets. Figures 1-4
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Table 7: Estimation results of the time-invariant mixture copula models for international markets

Markets Clayton Gumbel Frank
λ US-UK 0.285(0.241,0.329) 0 0.715(0.671,0.759)

US-HK 0.314(0.268,0.360) 0 0.686(0.640,0.732)
UK-HK 0.352(0.304,0.399) 0 0.648(0.601,0.696)
HK-KR 0.208(0.150,0.267) 0 0.792(0.733,0.850)

θ US-UK 0.836(0.781,0.890) 5.172(4.823,5.521)
US-HK 0.594(0.536,0.652) 3.761(3.565,3.956)
UK-HK 0.657(0.585,0.729) 4.148(3.862,4.433)
HK-KR 0.918(0.848,0.987) 3.208(2.923,3.493)

NOTE: This table presents estimates of the weights (λ) and dependence parameters (θ) of time-invariant
mixture copula models using the penalized likelihood method of Cai and Wang (2014). Values in parentheses
are the 90% confidence interval of the estimates.

respectively present the estimation results and the 90% confidence intervals of all nonzero

weights and dependence parameters for the US-UK, US-HK, UK-HK, and HK-KR pairs.

In each figure, the path of the estimated parameter (the weight or dependence parameter)

is represented by a blue solid line. The two red dashed curves show the 90% confidence

intervals of each estimated parameter. The green two-dashed line (horizontal line) is the

estimate using the time-invariant mixture copula model. We have several interesting results

from these figures.

First, for all pairs of markets, the Clayton and Frank copulas are selected at any time

period of the 28 years. The confidence intervals for the weights on Clayton and Frank do

not cover zeros, showing that they are always statistically significant. On the other hand,

the weight on Gumbel is always zero during the 28 years for all pairs. Therefore, the four

pairs of markets show significantly lower tail dependence, but no upper tail dependence from

1990 to 2018. Second, we observe notable fluctuations of both the weights and dependence

parameters during the 28-year period for all four pairs of markets, implying the limitation

of time-invariant copula models.

For the US-UK pair presented in Figure 1, the weight and dependence parameter of
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Figure 1: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the US-UK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.

the Clayton copula are both relatively small in the early 1990s. Meanwhile, the dependence

parameter of the Frank copula is also small during this period. These findings show that both

the lower tail dependence and the overall dependence are weak at the beginning of the 1990s.

The dependence parameter of Clayton increases sharply after the events of September 11,

2001. At the same time, the weight of Clayton also reaches a relatively high value. During

the financial crisis of 2008, the weight and dependence parameter of the Clayton copula, and

the dependence parameter of the Frank copula all increase sharply, reaching their maxima

around 2010. This implies that the lower tail and general dependence of the two markets

attains high levels in crisis periods.

Turning to the US-HK and UK-HK pairs, the dependence structures display similar

evolution paths (see Figures 2-3). Both pairs show relatively weak lower tail dependence

and overall dependence during the 1990s. A notable jump in the Clayton parameter took
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Figure 2: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the US-HK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.
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Figure 3: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the UK-HK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.

place in 2008 for both pairs due to the financial crisis. An increase in the weight on Clayton

can be observed during the same time period.
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The last figure (Figure 4) exhibits the dependence structure of the HK-KR pair. These

two markets are strongly affected by the Asian crisis of 1997. Therefore, we can observe a

relatively high level of the Clayton parameter, and a quick increase in the weight on Clayton

in 1997. During the periods of the financial crisis of 2008, a significant increase and a

remarkable jump in the weight and dependence parameter of the Clayton copula are also

detected for this pair of markets.
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Figure 4: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the HK-KR pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.

Finally, we check the goodness-of-fit of the estimated time-varying mixture copula model

with the Kolmogorov-Smirnov (KS) test, the Cramer-von Mises (CM) test, and the Anderson-

Darling (AD) test for correct copula specification. The procedures of doing the goodness-

of-fit can be found in the online supplement. Table 8 reports the bootstrap p-values of the

three tests. All models pass these three tests with large p-values.
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Table 8: Goodness-of-fit tests for the time-varying mixture copula models

Markets KS CM AD
US-UK 0.256 0.244 0.250
US-HK 0.670 0.470 0.686
UK-HK 0.468 0.474 0.530
HK-KR 0.362 0.372 0.592

NOTE: This table reports the p-values from three goodness-of-fit tests including the Kolmogorov-Smirnov
(KS) test, the Cramer-von Mises (CM) test and the Anderson-Darling (AD) test.

5. Conclusion

In this paper, we introduce a time-varying mixture copula model, in which both the weights

and dependence parameters are deterministic functions of time. To reduce the risk of over-

fitting and efficiency loss, we propose a penalized time-varying mixture copula model with

the SCAD penalty term to do the estimation and copula selection simultaneously. Based

on α-mixing conditions, large sample properties of the penalized and unpenalized estimators

have been established. Meanwhile, we study and discuss a semiparametric EM algorithm,

the bandwidth selection, and the construction of pointwise confidence intervals. Monte Carlo

simulations demonstrate the good performance of the proposed method in copula selection

and estimation for time-varying mixture copulas. The proposed methodology has been ap-

plied to study the evolution of the dependence among four international stock markets. All

pairs of markets present strong dependence at the lower tail that fluctuates significantly over

time. Furthermore, all pairs exhibit the highest levels of both the lower tail and overall

dependence during the financial crisis of 2008.

Future researches include employing the proposed model and method to other fields in

finance and economics, such as exchange rate, bond, and crude oil. Moreover, studying

higher dimensional dependence structures among financial markets by using the proposed
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model and method is another interesting research topic.

Supplementary Materials

The supplement provides the stationary bootstrap resampling scheme, the regularity con-

ditions and asymptotic properties for unpenalized estimators, the mathematical proofs, the

procedures of doing the goodness-of-fit, and some additional figures.
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[33] Wollschläger, M. and Schäfer, R. (2016). Impact of non-stationarity on estimating and

modeling empirical copulas of daily stock returns. Journal of Risk, 19, 1-23.

[34] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Ser.B, 68, 49-67.

[35] Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American

Statistical Association, 101, 1418-1429.

Bingduo Yang, Lingnan (University) College, Sun Yat-sen University, Guangzhou, China.

E-mail: bdyang2006@sina.com

Zongwu Cai, Department of Economics, University of Kansas, Lawrence, KS, USA.

E-mail: caiz@ku.edu

Christian M. Hafner, Louvain Institute of Data Analysis and Modeling, Université catholique

de Louvain, Louvain-la-Neuve, Belgium.

E-mail: christian.hafner@uclouvain.be

Guannan Liu (corresponding author), School of Economics and Wang Yanan Institute for

Studies in Economics, Xiamen University, Xiamen, China.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES40

E-mail: gliuecon@gmail.com

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)




