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Abstract

Conditional copula models allow the dependence structure among variables to vary with covariates,

and thus can describe the evolution of the dependence structure with those factors. This paper

proposes a conditional mixture copula which is a weighted average of several individual conditional

copulas. We allow both the weights and copula parameters to vary with a covariate so that the

conditional mixture copula offers additional flexibility and accuracy in describing the dependence

structure. We propose a two-step semiparametric estimation method and develop asymptotic prop-

erties of the estimators. Moreover, we introduce model selection procedures to select the component

copulas of the conditional mixture copula model. Simulation results suggest that the proposed pro-

cedures have a good performance in estimating and selecting conditional mixture copulas with

different model specifications. The proposed model is then applied to investigate how the depen-

dence structures among international equity markets evolve with the volatility in the exchange rate

markets.
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1 Introduction

The Sklar’s theorem by Sklar (1959) enables one to decompose a multivariate joint den-

sity into a product of univariate marginal densities and a copula density, so that the latter

contains all information about the dependence structure. A copula model has several desir-

able properties when applied to study dependence. For example, a copula model can catch

various types of dependence structures such as linear or nonlinear, symmetric or asymmet-

ric, tail or non-tail dependence. Moreover, unlike the conventional linear correlation, it is

invariant to strictly monotonic transformations. Patton (2012) and Fan and Patton (2014)

provide excellent summaries of the development in copula.

In many cases, researchers may need a conditional copula to better describe the effect

of a covariate on the degree of dependence. In a conditional copula model, the degree of

dependence, measured by the copula parameter, is no longer a constant but a function of a

covariate. Therefore, compared with copulas with constant parameters, a conditional copula

provides another channel to investigate the dependence structure among variables. In the

literature, Patton (2006) pioneers the conditional copula model by extending the Sklar’s

theorem for conditional distributions and sets the copula parameter to be a parametric

function of lagged terms. After that, there is a sequence of studies concentrating on the

dynamic in copula parameter (e.g., Giacomini et al., 2009, Garcia & Tsafack, 2011, Acar et

al., 2011, Hafner & Manner, 2012, Abegaz et al., 2012, and Fermanian & Lopez, 2018).

Another line of extension is to propose a mixture copula that is a linear combination

of several individual copulas. The key idea is that, by combining individual copulas with

different dependence patterns, a mixture copula can capture dependence structures which

do not belong to any individual copula, and thus exhibits greater flexibility to describe

dependence structures. Therefore, a mixture copula is more flexible than an individual

copula and can be used to specify various dependence structures in data (e.g., Chollete et

al., 2005, Hu, 2006, Cai & Wang, 2014, and Liu et al., 2019). However, even though a

mixture copula exhibits great flexibility in describing more general dependence structures,

the parameters in this model – weights and copula parameters – are usually assumed to be
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constants, so researchers still face difficulty in describing how the dependence evolves with

certain covariates.

In this paper, we contribute to the literature by proposing an innovative semiparametric

conditional mixture copula model which allows both the weights and copula parameters in

the mixture copula model to vary with a covariate in a nonparametric way. The superiority of

a conditional mixture copula is that it carries the advantages of both the conditional copula

and mixture copula discussed above, so empirical practitioners can flexibly describe the

dependence structure and effectively mitigate the potential model misspecification problem

simultaneously. For example, compared with an individual conditional copula, a conditional

mixture copula offers additional flexibility and accuracy by accommodating more copula

families whose weights and parameters are both varying with a covariate. To estimate the

unknown parameters, we maximize a local log-likelihood function by applying the local

polynomial framework (Fan & Gijbels, 1996). We then establish the large sample properties

of the nonparametric estimators under some regularity conditions.

When investigating the choice of an appropriate conditional mixture copula model, we

suggest two copula model selection methods. The first one follows Huang et al. (2013) who

propose an information criterion approach to select the components in the nonparametric

mixture of regression models. Specifically, for each candidate mixture model consisting of

different combinations of individual copulas, we calculate its maximum log-likelihood and

then construct an information criterion such as BIC. To implement such an information

criterion, we will need an extra step to consider the model complexity, which is measured

by the degree of freedom derived by Fan et al. (2001). Then, the model with the lowest

information criterion value will be selected from the candidate models. The second model

selection strategy is in spirit similar to the backward elimination or forward addition pro-

cedures in the context of linear regression settings. It involves a sequence of generalized

likelihood ratio tests through which component copulas with insignificant weights at the

conventional significance levels are filtered out. Using either method, we achieve the goal of

selecting an appropriate conditional mixture copula from all candidates to best describe the
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dependence structure, and then estimate the unknown parameters in the selected model.

Our simulation results show that the proposed estimation method and model selection

procedures exhibit a good performance when the true model is either an individual copula

or a mixture copula. On one hand, the estimation errors of copula parameters and weights

associated with each component copula decrease remarkably when the sample size increases.

On the other hand, the true component copulas are highly likely to be selected even when

the sample size is small, and the probability of inaccurate selection declines as the sample

size increases.

In an empirical illustration, we apply the proposed estimation and model selection proce-

dures to investigate the dependence structures and comovement patterns among the equity

returns in France, Germany, the United States and the United Kingdom along the volatility

in the exchange rate markets of the four countries. The empirical results show that, of the

Clayton, Gumbel and Frank copulas, the Clayton and Frank copulas are always selected

and the weight of the Clayton copula increases when the exchange rates become extremely

volatile, indicating a more salient lower tail dependence among the equity markets in the

four economies. When examining the magnitude of the dependence measured by Kendall’s

τ , we find that the lower tail dependence becomes strengthened as volatility in the exchange

rate markets increases. Both findings are in line with Garcia & Tsafack (2011): when a

sudden shock hits an economy with an active currency market, transmission through the

exchange rate market leads to a downside comovement of equity markets more likely than

in a tranquil period of the exchange rate market.

The rest of the paper is organized as follows. In Section 2, we propose the estimation

method, the asymptotic theory, and the model selection procedures for conditional mixture

copula models. We conduct Monte Carlo simulations and discuss the results in Section 3.

To highlight the practical usefulness of the proposed methods, in Section 4 we provide an

empirical illustration on how the dependence structures among international equity markets

evolve with the volatility in exchange rate markets. Section 5 draws the conclusion. In

the online appendices, Appendix A provides a stationary bootstrap technique, Appendix B
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discusses some practical issues including an EM algorithm, the selection of the bandwidth,

and the confidence intervals, Appendix C documents the proofs of the key results, and

Appendix D presents additional simulation results.

2 Model and Estimation

In this section, we present a semiparametric conditional mixture copula model and the

corresponding estimation and selection procedures.

2.1 A Semiparametric Conditional Mixture Copula Model

Let {Xt}Tt=1 be a series of p-dimensional vectors with Xt = (X1t, . . . , Xpt)
ᵀ and p being

a finite positive integer, and let {Zt}Tt=1 be a 1-dimensional vector of the covariate. Denote

F (xt|zt) and f(xt|zt) as the joint distribution and the density function of Xt evaluated at

xt ∈ Rp and conditional on Zt = zt, Fs(xst|zt) and fs(xst|zt) as the marginal distribution and

the density function of Xst evaluated at xst ∈ R and conditional on Zt = zt, respectively,

where s = 1, ..., p. Our target is to estimate the conditional joint distribution F (xt|zt) based

on a conditional mixture copula model. Theoretically, the conditional mixture copula model

can be formulated as a linear combination of infinite individual copulas:

C{u(zt);ω(zt), θ(zt)} =
∞∑
k=1

ωk(zt)Ck{u(zt); θk(zt)},

where {Ck(·; ·)}∞k=1 is a set of candidate copulas with unknown parameters {θk} and

a p-dimensional conditional marginal distribution u(zt) = (F1(x1t|zt), . . . , Fp(xpt|zt)).

{Ck(·; ·)}∞k=1 can be regarded as known basis copula functions so that C{u(zt);ω(zt), θ(zt)}

can be regarded as a series expansion based on the basis copula functions {Ck(·; ·)}∞k=1. In

real applications, we use finite number of d individual copulas to approximate the true model:

C{u(zt);ω(zt), θ(zt)} =
d∑

k=1

ωk(zt)Ck{u(zt); θk(zt)}, (1)
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where ω(zt) = (ω1(zt), ..., ωd(zt))
ᵀ, θ(zt) = (θ1(zt), ..., θd(zt))

ᵀ, and {C1(·; ·), ..., Cd(·; ·)} is a

set of candidate copulas. Let {ωk}dk=1 denote the weight parameters satisfying 0 ≤ ωk ≤ 1

and
∑d

k=1 ωk = 1, and d is the number of candidate copulas. The copula parameters {θk(zt)}

and the weight parameters {ωk(zt)} are set to be unknown functions of the covariate.

When using (1) to approximate the true model, we may encounter a misspecification

problem because some true individual copulas might not be included. To avoid this prob-

lem, we can first consider a large set of candidate copulas and then employ a copula model

selection procedure discussed in Section 2.4 to filter out the “insignificant” component cop-

ulas. Furthermore, even if some true individual copulas are excluded so that the model

becomes misspecified, we can still estimate and select the closest mixture copula model by

the model selection procedure described in Section 2.4. Therefore, the model in (1) is flexible

enough to capture a true copula in real applications.

For model identification, two conditional mixture copulas C{u(zt);ω(zt), θ(zt)} =∑d
k=1 ωk(zt)Ck{u(zt); θk(zt)} and C∗{u(zt);ω

∗(zt), θ
∗(zt)} =

∑d∗

k=1 ω
∗
k(zt)C

∗
k{u(zt); θ

∗
k(zt)}

are said to be identified, i.e., C{u(zt);ω(zt), θ(zt)} ≡ C∗{u(zt);ω
∗(zt), θ

∗(zt)}, if and only if

d = d∗ and we can order the summations such that ω(zt) = ω∗(zt) and Ck{u(zt); θk(zt)} =

C∗k{u(zt); θ
∗
k(zt)} for all possible values of zt, u(zt) with k = 1, ..., d. Without loss of gener-

ality, we follow Cai & Wang (2014) and assume that the conditional mixture copula model

under investigation is identified.

Our model setting here has three superiorities. First, instead of imposing assumptions

on the functional forms of the unknown weights and copula parameters, we conduct a data-

driven method (which will be specified below) to estimate them. Second, compared with

an individual conditional copula, our conditional mixture copula model allows not only

the copula parameters but also the weight parameters of the component copulas to vary

with the covariate. Third, when constructing the model in equation (1), we impose no

restrictions on the number of candidate copulas included in the model so that a large copula

candidate set can be taken to avoid the copula misspecification problem. We will filter out

the “insignificant” component copulas through the copula selection procedures discussed
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later in Section 2.4.

2.2 Estimation Procedures

We propose to estimate model (1) in two steps. First, we estimate the unknown marginal

distributions in the model by a rescaled empirical distribution function method. Second,

after replacing the unknown marginal distributions with the estimates obtained from the

first step, we adopt the local polynomial approximation (see Fan and Gijbels, 1996) in a

local log-likelihood setting to estimate the weights and copula parameters in model (1).

Each step is described specifically as follows:

Step One: We follow Chen & Fan (2006a) and use a rescaled empirical distribution

function to estimate the marginal distributions, i.e.

F̂s(xst) =
1

T + 1

T∑
t=1

I{Xst ≤ xst} for s = 1, ..., p.

Remark 1. Ideally, one should use conditional estimators to estimate the marginal distri-

butions, i.e., F̂s(xst|zt) :=
∑T

t=1 I{Xst ≤ xst}Kh(Zt − zt)/
∑T

t=1Kh(Zt − zt) (see Abegaz et

al., 2012). However, due to the fact that estimators for both the marginals and copula pa-

rameters have the same convergence rate of
√
Th, this setting would make the asymptotic

properties of copula parameters more complicated, especially with time series data. Because

the main focus of this paper is on the estimation of weights and copula parameters of a con-

ditional mixture copula model and selection of component copula families, we assume that

the marginal distributions do not depend on the covariate, which is similar to Acar et al.

(2011). Relaxing this assumption for marginal distributions would be an interesting topic for

future research.

Step Two: Given the estimators of the marginals ût =
(
F̂1(x1t), ..., F̂p(xpt)

)ᵀ
=

(û1t, ..., ûpt)
ᵀ, we next estimate the unknown weight and copula parameters locally by a

polynomial. The copula parameter space is restricted for many widely used copula families.

For example, for a Gaussian copula, θ ∈ (−1, 1), and for a Gumbel Copula, θ ∈ [1,∞).

6



Moreover, the weight parameters are restricted to take values between 0 and 1. In contrast,

the polynomial framework assumes that any points belong to R can be taken. For this

reason, we follow Acar et al. (2011) and Abegaz et al. (2012) and use some known inverse

transformation functions to ensure that the weight and copula parameter space is correct.

Specifically, we denote g−1ω,k : R −→ Ωk and g−1θ,k : R −→ Θk as the inverse link functions

respectively for the weight and copula parameters of the kth component copula. Therefore,

we have ωk(z) = g−1ω,k(wk(z)) ∈ Ωk and θk(z) = g−1θ,k(ϑk(z)) ∈ Θk for k = 1, ..., d. The choice

of the link functions is not important for theory development as long as they are monotone.

For example, we can choose the inverse link functions g−1(z) = exp(z) for the Clayton cop-

ula, g−1(z) = z for the Frank copula, and g−1(z) = exp(z) + 1 for the Gumbel copula, so

that the resulting copula parameter estimates are guaranteed to be in the correct range.

Then, for k = 1, ..., d, assuming that wk and ϑk have the (q + 1)th derivative at point

z, we can approximate wk(zt) and ϑk(zt) for data points zt in the neighborhood of z by the

following Taylor expansions:

wk(zt) ≈ wk(z) + w
(1)
k (z)(zt − z) + . . .+ w

(q)
k (z)(zt − z)q/q!

≡ αk0 + αk1(zt − z) + . . .+ αkq(zt − z)q, (2)

ϑk(zt) ≈ ϑk(z) + ϑ
(1)
k (z)(zt − z) + . . .+ ϑ

(q)
k (z)(zt − z)q/q!

≡ βk0 + βk1(zt − z) + . . .+ βkq(zt − z)q, (3)

where αkr = αkr(z) = w
(r)
k (z)/r! and βkr = βkr(z) = ϑ

(r)
k (z)/r! for each r ∈ {0, ..., q}. Then,

the local log-likelihood function can be approximated as follows:

1

T

T∑
t=1

ln

(
d∑

k=1

g−1ω,k
{
αk0 + . . .+ αkq(zt − z)q

}
ck
[
ût; g

−1
θ,k

{
βk0 + . . .+ βkq(zt − z)q

}])
×Kh(zt − z),

where ck(·) is the copula density function of the kth component copula in model (1), and

K(·) is a kernel function with Kh(·) = K(·/h)/h and h being the bandwidth.

For the choice of q, we take q = 1 throughout this paper. That is, we apply the commonly
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used local linear fitting (see Fan & Gijbels, 1996) in the paper. The local log-likelihood

function then reduces to

L(û, δ) =
1

T

T∑
t=1

ln

(
d∑

k=1

g−1ω,k
{
αk0 + αk1(zt − z)

}
ck
[
ût; g

−1
θ,k

{
βk0 + βk1(zt − z)

}])
×Kh(zt − z), (4)

where û = (ûᵀ1, ..., û
ᵀ
T )ᵀ and δ = (α10, ..., αd0, β10, ..., βd0, α11, ..., αd1, β11, ..., βd1)

ᵀ. Note that a

maximum likelihood estimator may not have a closed form, so an iterative algorithm should

be adopted to find the numerical solution (see Appendix B for details). Then we can obtain

the estimators of w
(r)
k (z) and ϑ

(r)
k (z) by defining ŵ

(r)
k (z) = r!α̂kr and ϑ̂

(r)
k (z) = r!β̂kr with

r ∈ {0, 1}. Finally, for any covariate z, the weight and copula parameters in model (1) can

be respectively estimated by

ω̂k(z) = g−1ω,k(ŵk(z)) = g−1ω,k(α̂k0), and

θ̂k(z) = g−1θ,k(ϑ̂k(z)) = g−1θ,k(β̂k0),

for k = 1, ..., d.

2.3 Large Sample Theory

To find the large sample properties of the nonparametric estimators, first, we rewrite the

kernel-based local log-likelihood function as

L(u, δ) =
1

T

T∑
t=1

`
(
ut, g

−1(Z̃ᵀt δ)
)
Kh(zt − z),

where `(ut, g
−1(Z̃ᵀt δ)) = ln

(∑d
k=1 g

−1
ω,k {αk0 + αk1(zt − z)} ck[ut; g−1θ,k {βk0 + βk1(zt − z)}]

)
,

g−1(·) =
(
g−1ω,1(·), · · · , g−1ω,d(·), g

−1
θ,1(·), · · · , g−1θ,d(·)

)ᵀ
is a vector of link functions, and Z̃t =

(I, (zt− z)I)ᵀ with I being a 2d× 2d identity matrix. Next, we define a vector of coefficients

ξ = (ωᵀ, θᵀ)ᵀ =
(
g−1ω,1(w1), · · · , g−1ω,d(wd), g

−1
θ,1(ϑ1), · · · , g−1θ,d(ϑd)

)ᵀ
and its corresponding estima-
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tor ξ̂. Similarly, we define η = (wᵀ, ϑᵀ)ᵀ = (w1, · · · , wd, ϑ1, · · · , ϑd)ᵀ and its corresponding

estimator η̂. In addition, let f(z) be the density function of z and ε be a small positive

constant. Define the domain of z as Φz = {z : f(z) ≥ ε; there exists a and b such that

z ∈ [a, b]}, i.e., Φz is the set of bounded z whose density is bounded away from 0.

Meanwhile, we introduce some regularity conditions as below:

C1. The vector of functions η is continuous, bounded and has third order continuous deriva-

tives on Φz;

C2. There exists two constants a and b such that for any z ∈ [a, b], the density function

f(z) is continuous and f(z) > ε for a small positive constant ε > 0;

C3. The copula log-likelihood function `(ut, ξ) has bounded third derivative with respect

to ξ and bounded second derivative with respect to ut. Further, ∂`(ut, ξ)/∂ξ and [g−1]′

are Lipschitz continuous;

C4. 0 ≤ ωk(z) ≤ 1 and
∑d

k=1 ωk(z) = 1 for all z ∈ Φz;

C5. The kernel function K(z) is twice continuously differentiable on the support (−1, 1),

and its second order derivative satisfies a Lipschitz condition. Let v0 =
∫
K2(z)dz,

v2 =
∫
z2K2(z)dz and µ2 =

∫
z2K(z)dz;

C6. The bandwidth h satisfies that h→ 0 and Th→∞, as T →∞;

C7. Assume that {Xt, Zt}Tt=1 is a strictly stationary α-mixing sequence. Furthermore,

assume that there exists some constant c > 0 such that E‖Xt‖2(2+c) < ∞ where ‖ · ‖

represents the Euclidean norm (L2-norm), E|Zt|2(2+c) <∞, and the mixing coefficient

α(m) satisfies α(m) = O(m−c0) with c0 = (2 + c)(1 + c)/c.

Remark 2. Conditions in C1 - C3 are for the derivation of the asymptotic properties. Condi-

tions in C4 are mild conditions for identification and conditions in C5 and C6 are commonly

employed in nonparametric estimation. Conditions in C7 are the common conditions with

weakly dependent data. Most financial models such as ARMA, ARCH and GARCH models

satisfy these conditions; see Cai (2002).
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Theorem 1: Let {Xt, Zt}Tt=1 be a strictly stationary and strong mixing sequence. Assume

that sup1≤t≤T |ûst − ust| = Op(1/
√
T ) for s = 1, · · · , p, h→ 0 and Th→∞ as T →∞. For

a fixed point z ∈ Φz, under conditions C1 - C7, we have

DT

(
δ̂ − δ − h2B(z)

)
d→ N

0,

 ν0
f(z)

ν2
µ22f(z)

⊗ {Ψ(z) ◦ {[(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}−1}

 ,

where DT = diag(
√
ThI,

√
ThhI) with I being an 2d × 2d identity matrix, B(z) =(

1
2
η′′(z)ᵀµ2, 0

ᵀ
)ᵀ

is the bias term, ⊗ is the Kronecker product, and ◦ is the Hadamard

product. Ψ(z) = Σ−1(z)Ω(z)Σ−1(z) with Σ(z) = −E{`′′(ut, g−1(η(zt)))|zt = z} and

Ω(z) = E{`′(ut, g−1(η(zt)))`
′ (ut, g

−1(η(zt)))
ᵀ |zt = z}.

Remark 3. The condition sup1≤t≤T |ûst − ust| = Op(1/
√
T ) for s = 1, ..., p can be obtained

from Lemma 4.1 in Chen & Fan (2006a). From Theorem 1, as expected, the marginal

estimator ût has little effect on δ̂ in a large sample, due to the fact that ût is estimated at a

faster convergence rate than the nonparametric estimator δ̂.

Corollary 1: It follows from Theorem 1 that, for a fixed point z ∈ Φz, as T →∞, we have

√
Th

(
η̂(z)− η(z)− h2

2
η′′(z)µ2

)
d→ N

(
0,

v0
f(z)

Ψ(z) ◦ {[(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}−1
)
.

Corollary 2: By the continuity of the inverse link function g−1(·), for a fixed point z ∈ Φz,

as T →∞, we have

√
Th
(
ξ̂(z)− ξ(z)− h2Bξ(z)

)
d→ N

(
0,

v0
f(z)

Ψ(z)

)
,

where Bξ(z) = 1
2
µ2

1
g′(ξ(z))

◦ η′′(z).
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2.4 Model Selection for Conditional Mixture Copula Models

When a mixture copula model contains too many component copulas, there is a risk of

overfitting and efficiency loss. To filter out component copulas with small weights and little

contribution to the dependence structure, we consider two model selection procedures.

The first method is to apply the information criterion such as AIC or BIC. However,

as argued in Section 1, they can not be directly used to the proposed conditional mixture

copula model which has varying coefficients. Huang et al. (2013) use the BIC-type selector

to identify the number of components in the nonparametric mixture of regression models

and find it performs well in numerical studies. This motivates us to select the components

in the conditional mixture copula model through the BIC-type selector.

Let |Φz| be the length of the support of z and K ∗K be the convolution of the kernel K.

Define ek = K(0)− 0.5
∫
K2(t)dt and mk =

∫
(K(t)− 0.5K ∗K(t))2dt. Following Huang et

al. (2013), we can calculate the value of the BIC by

−2L+ log(T )× df,

where

L =
1

T

T∑
t=1

ln

{
d∑

k=1

ω̂k(zt)ck
[
ût; θ̂k(zt)

]}
and

df = (2d− 1)rkek|Φz|/h with rk = ek/mk.

Both ût and ξ̂ =
(
ω̂1, ..., ω̂d, θ̂1, ..., θ̂d

)ᵀ
can be obtained by the estimation procedures dis-

cussed in Section 2.2. The degree of freedom, which is originally derived for the generalized

likelihood ratio test by Fan et al. (2001), can be understood as follows. Suppose that we

partition the range of z into |Φz|/h intervals with equispaced length h. Hence, the effective

number of each parameter is approximately proportional to |Φz|/h. rkek is an adjusting

factor that accounts for overlapping intervals due to the local linear fitting. 2d − 1 is the

number of nonparametric estimators in which we minus one to account for the constraint on

the weight parameters.
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An alternative method to decide which component copulas should be kept or filtered

out is to apply a sequence of hypothesis tests. In the classical linear regression models, a

sequence of F -tests with the backward elimination or forward addition procedures is used

to select the important regressors. We adopt a similar strategy and implement the following

test:

H0 : ωi1(z) = ... = ωil(z) = 0 versus H1 : not all ωis(z) = 0,

for some {i1, ..., il} ⊂ {1, ..., d}. The model selection is achieved by a sequence of testing

procedures above. To simplify the presentation, we only consider the following test:

H0 : ω1(z) = ... = ωJ(z) = 0 versus H1 : not all ωj(z) = 0,

and other cases can be implemented in the same manner. Using the local linear fitting with

a kernel K and a bandwidth h, we can obtain ξ̃(zt) and ξ̂(zt) under the null hypothesis H0

and the alternative hypothesis H1, respectively.

Define

L(H0) =
T∑
t=1

`(ût, ξ̃(zt)) and L(H1) =
T∑
t=1

`(ût, ξ̂(zt)),

where ût denotes the estimator of the marginal distribution. Fan et al. (2001) propose a

generalized likelihood ratio test (GLRT) statistic that can be used in many nonparametric

testing problems and present the Wilks type of results for various models including the

nonparametric regression, varying-coefficient models, generalized varying-coefficient models,

varying-coefficient partially linear models, additive models, and spectral density estimation.

In the same spirit, we propose a GLRT statistic for the conditional mixture copula models

as

λT = L(H1)− L(H0).

Remark 4. Acar et al. (2013) show the asymptotic property of the proposed GLRT statistic

in the i.i.d. scenario, i.e.,

rkλT
d→ χ2

µT
,
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where rk = ek/mk and µT = Jrkek|Φz|/h with J being the number of testing parameters.

However, to the best of our knowledge, the GLRT for copula models with time series data

has not been studied, and we leave it to future research.

Because the asymptotic properties of the test statistic require further research, we next

propose a bootstrap technology to obtain the p-value of the GLRT statistic as follows:

(i). Compute the estimators ξ̃(zt) and ξ̂(zt) by using the same bandwidth h under the null

hypothesis H0 and the alternative hypothesis H1, respectively. Then, we obtain the

GLRT statistic λT ;

(ii). Generate a sample sequence {x∗t , z∗t }Tt=1 from the original data {xt, zt}Tt=1 using a sta-

tionary bootstrap technique as described in Appendix A;

(iii). Obtain the marginal distributions estimates {û∗t}Tt=1 by Step 1 described in Section 2.2;

(iv). Use the above bootstrap sample to construct the GLRT statistic λ∗T ; and

(v). Repeat Steps (ii)-(iv) S times (say, S=1000) and obtain S values of the statistic λ∗T .

The p-value of the test is the relative frequency of the event {λ∗T > λT} in the S

replications of the bootstrap sampling.

3 Numerical Studies

In this section, we investigate the finite-sample performance of our estimation and model

selection procedures through a series of numerical studies. For simplicity, we assume the

mixture copula model consists of the Clayton, Gumbel, Frank, and Gaussian copulas. They

are widely used in empirical studies because they could describe different dependence struc-

tures. Specifically, the Clayton copula exhibits strong lower tail dependence, and can well

capture cases such as two markets are likely to crash simultaneously. The Gumbel copula

shows strong upper tail dependence and can be an appropriate model when two markets are

likely to boom together. The Gaussian copula and the Frank copula exhibit symmetric tail

dependence.
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The working mixture copula model is then formulated as

C(u1, u2;ω(z),θ(z)) = ωCl(z)CCl(u1, u2; θCl(z)) + ωGu(z)CGu(u1, u2; θGu(z))+

ωFr(z)CFr(u1, u2; θFr(z)) + ωGa(z)CGa(u1, u2; θGa(z)),

where CCl(·), CGu(·), CFr(·) and CGa(·) denote the Clayton, Gumbel, Frank, and Gaussian

copulas, respectively. Following Abegaz et al. (2012), we generate the covariate z from the

truncated normal distribution with mean 0 and variance 9, and then consider four different

types of copula parameter function θ(z) with z ∈ [−2, 2]:

• Model 1: θ(z) = 10− 1.5z2;

• Model 2: θ(z) = 10− 0.02z2 + 0.4z3;

• Model 3: θ(z) = 3 + z + 2e−2z
2
;

• Model 4: θ(z) = 5 + 2 sin (πz) + 2e−16z
2
.

For simplicity, we assume that the first marginal distribution u1 follows the normal distri-

bution N(1, 0.5) and the second marginal distribution u2 follows the student’s t-distribution

with 4 degrees of freedom. For each sample we calculate the estimates θ̂ at 101 equally-

spaced grid points zi = −1.95 + 0.039i for i ∈ {0, 1, ..., 100}. Similar to Acar et al. (2011)

and Abegaz et al. (2012), we use the local linear fitting with the regular normal kernel. Each

simulation is repeated M = 1000 times with the sample size T ∈ {200, 500, 1000}.

For comparing purposes, besides the proposed conditional mixture copula method (CM),

we additionally consider another popular estimation method for mixture copula. Cai &

Wang (2014, CW hereafter) propose a copula selection approach via penalized likelihood

plus a shrinkage operator, and establish the asymptotic properties of the proposed penalized

likelihood estimator. Similar to CM, this method can also select appropriate copula function

and estimate the related parameters simultaneously.The main difference is that CW is only

applicable to a mixture copula model with constant weights and copula parameters. In

this section, we mainly compare the performance of CM with CW when data are indeed
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generated from conditional mixture copulas. For completeness, we will also investigate CM’s

performance when the true model is a constant mixture copula.

We begin with a simple scenario that data are generated from an individual copula.

That is, the true model is an individual copula selected from the four candidates. For each

individual copula used to generate data, we assume the function of the parameter follows one

of Models 1-4 listed above. Then, we fit the four-component mixture model to the generated

data and investigate the performance of the proposed CM method. In Table 1, we conduct

both CM and CW, and report the percentage that each copula is correctly (incorrectly)

selected and the mean squared errors (MSEs) of the copula parameter estimates over the

101 grid points, which is defined as

MSE(θ̂) =
1

M

1

101

M∑
j=1

101∑
i=1

(
θ̂j(zi)− θ(zi)

)2
.

Table 1 shows that the MSEs of copula parameter estimates by both methods decrease for

all four functional forms of θ(z) as the sample size T increases from 200 to 1000. Here,

because the Gaussian copula’s parameter θ is ranged between -1 and 1, for Gaussian, we re-

calibrate the four models by dividing 10 for Model 1 and 15 for Models 2-4. As anticipated,

MSEs by CM are remarkably lower than those by CW, indicating larger estimation losses

produced by CW when parameters in a copula model are indeed conditioning on a covariate.

Besides the estimation accuracy measured by MSE, considering that the parameter functions

are assumed to follow Models 1-4 which exhibit different patterns, we additionally examine

the quality of the CM estimators by checking their estimated paths along the covariate z.

Specifically, we plot the estimated paths of Clayton, Gumbel, Frank, and Gaussian with

the sample size T = 1000 in Figure 1. The black solid curves in the four panels of each

row denote the true copula parameter paths θ(z), which respectively follow Models 1-4, and

the other two curves respectively denote the means (red dotted) and medians (blue dashed)

of the copula parameter estimates by CM at the 101 grid points from 1000 simulations.

The two black dotted-dashed curves connect the 5% and 95% percentiles of the copula
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parameter estimates at the 101 grid points. As a comparison, the mean of the estimated

copula parameters by CW from 1000 simulations is also plotted and denoted by the brown

solid line. For the four candidate copulas, Figure 1 shows that both the mean and median

curves by CM are close to the true paths in all four models. Even in Model 4 which contains

the complicated sinus function, the performance of the CM estimator is still quite good.

On the other hand, the copula parameter estimated by CW is a constant and therefore

cannot detect the dynamics in copula parameters conditioning on the covariate. We also

examine the results of model selection through the information criterion method and the CW

method. In Table 1, values without parentheses represent rates of correctly selected copulas

(accurate rates), while values with parentheses indicate rates that copulas are incorrectly

selected (inaccurate rates). One can easily observe that the proposed CM method performs

reasonably well in selecting the correct individual copula from the mixture model because

the true copula is always chosen with 100% chance, and the rates of incorrect selection

shrink when the sample size T increases. CW also exhibits good performance in selecting

the true candidate copula. In sum, in terms of parameter estimation accuracy exhibited by

MSE and model selection accuracy documented by accurate (inaccurate) rate, the proposed

CM method displays excellent performance when the true model is an individual copula.

Although CW also exhibits high accuracy in copula selection, it fails to capture the dynamic

copula parameters in a conditional copula setup. For completeness, we additionally check

the results by the proposed hypothesis test procedure with the 0.05 significance level and

find similar results. The detailed simulation results are displayed in Table D4 of Appendix

D.

[Insert Table 1 and Figure 1 About Here.]

Next, we investigate the performance of CM and CW when the true model is a mixture

of two copulas. In other words, for the four-component mixture copula, we assume two

candidate copulas’ weights uniformly equal to zero while the other two copulas’ weights

respectively equal to (1 + z)2/29 + 0.3 and 1− ((1 + z)2/29 + 0.3). For the two component

copulas with non-zero weights, we further assume their parameter functions follow different
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patterns determined by the four models discussed above. Tables 2 and 3 document the

MSEs of copula parameter estimates and the accurate and inaccurate (in parentheses) rates

of copula selection by CM and CW, respectively. For example, Panel 1 of Tables 2 and

3 concerns the case that the true mixture model is constructed by Clayton and Gumbel.

Comparing results in the two tables, one can observe that the MSEs of the two copulas’

parameter estimates by CM decline substantially when the sample size T increases from 200

to 1000, and the magnitudes are remarkably lower than those by CW. In addition, Table 2

indicates that the accurate and inaccurate rates by CM display promising improvement as

the sample size increases: in Panel 1, the rates that the Frank and Gaussian copulas are

incorrectly selected decrease while the accurate rate for Gumbel increases to about 99%

when T = 1000. There is a 100% probability that the Clayton copula is correctly selected.

CW displays similar patterns in copula selection, as can been seen in Table 3. We have

similar findings from the other five combinations in both tables. As in the prior individual

copula scenario, in Figure 2 we plot the paths of copula parameter estimates, and compare

the estimated paths by CM and CW with the true paths. To save space, here we only

demonstrate the six combinations of parameter functions in Panel 2 of Tables 2 and 3 when

T = 1000. In Figure 2, the two plots in each column represent a combination of two copulas

with different parameter functions. For example, in Figure 2(a), the upper plot demonstrates

the true path (Model 1), the mean and median of the estimated paths by CM, and the mean

of the estimated path by CW for Clayton, while the lower plot contains the corresponding

results for Frank. In general, Figure 2 shows that the copula parameters of the Clayton-

Frank mixture can be well estimated by the proposed CM method in all six combinations,

while the estimates by CW are constants and unable to detect how copula parameters varies

with the covariate.

[Insert Tables 2 and 3 and Figure 2 About Here.]

In addition to copula parameters, it is also worth examining the performance of the

proposed CM method in estimating weights of each candidate copula. Using the same 4-

component mixture model, without loss of generality, we assume the weight of the first
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copula in the true mixture model follows (1 + z)2/29 + 0.3, and that of the second copula

follows 1 − ((1 + z)2/29 + 0.3). We display the MSEs of the weight estimates by both CM

and CW for all six mixture models in Table 4. As can be seen therein, the MSEs of the

weight estimates by both methods decrease in all cases when sample size T increases, and

CM uniformly exhibits lower MSEs than CW. Similar to copula parameter estimates, we also

draw the true paths, the mean and median of the estimated paths by CM, and the mean of

the estimated paths by CW for weight parameters in Figure 3. It corresponds to the weights

for the Clayton-Frank combination in Panel 2 of Table 4 when T = 1000. Figure 3 shows

that both the mean and median paths of the weight estimates by CM track the true paths

closely, implying a good performance of the proposed CM method in estimating the weights

of the Clayton-Frank combination. Weight estimates by CW are constants and thus cannot

detect how weights vary with the covariate.

[Insert Table 4 and Figure 3 About Here.]

Finally, we compare the performance of CM and CW when the true mixture copula

model exhibits constant parameters. To save space, we only consider two scenarios. First, we

assume data are generated from an individual Clayton copula with the dependence parameter

equals either 5 or 7. Second, we generate data from a combination of the Clayton and Gumbel

copulas. For simplicity, we assume the two copulas are equally weighted with two pairs of

constant copula parameters, (θCl = 5, θGu = 4) and (θCl = 7, θGu = 6). Table 5 shows that,

when the true copula model exhibits constant parameters, the CW method exhibits better

performance than the proposed CM method because the MSEs produced by CW are slightly

lower than those by CM. This should be expected because CW exhibits higher estimation

efficiency when parameters in a mixture copula are indeed constant. In terms of picking up

the correct copula functions, both methods exhibit similar performance.

[Insert Table 5 About Here.]

We additionally conduct simulations to investigate the performance of our method when:

(i) the conditional mixture model contains 3- and 4-dimensional copulas, and (ii) data are
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generated from copulas not included in the candidate set (i.e., the mixture copula is mis-

specified). These additional simulation results, displayed in Appendix D, provide further

evidence that the proposed CM method still displays good performance in the two scenarios.

4 An Empirical Illustration

In this section we apply the proposed methods to investigate how the dependence struc-

tures among the international equity markets evolve with the volatility in exchange rate

markets. Equity price and exchange rate are two important financial variables that are

closely linked to each other. Shocks in the exchange rate market cause fluctuations in the

value of a domestic currency, impacting trade flows, capital movements and equity prices.

Therefore, understanding the relation between exchange rate markets and equity markets

and the spillover effect of exchange rate markets on equity prices has substantive implications

in terms of risk management.

From CRSP, we collect the weekly MSCI equity prices in four developed economies

(France, Germany, the United States and the United Kingdom) and the weekly exchange

rates among the U.S. dollar (USD), the British pound (GBP) and the euro (EUR). The ob-

servations are between 01/07/1999 and 11/07/2018. We transform the weekly equity prices

and exchange rates into log returns by taking the first order differences on their logarithmic

levels. The first panel in Table 6 documents some summary statistics of the weekly log

returns of the equity prices and exchange rates. One can observe that the European stock

markets exhibit larger fluctuations than the United States market during the sample period,

while the latter gives relatively higher average returns. Compared with the equity markets,

both returns and fluctuations are lower in these exchange rate markets. The Jarque-Bera

test results show that the null hypothesis of normality is rejected for all six return series.

The second panel in Table 6 displays that the linear (Pearson) correlation coefficients across

the four equity markets are very high, which is expected considering the economic synchro-

nization of the four developed economies.
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[Insert Table 6 About Here.]

Preliminary examinations suggest that the autocorrelation and conditional heteroscedas-

ticity exist in these log return series. Thus, we follow Chen & Fan (2006b) and use an

AR-GARCH process to model the conditional mean and conditional variance. Specifically,

we fit the series of returns to an AR(1)-GARCH(1,1) process written as

xit = γi0 + γi1xi,t−1 + eit, eit = σitεit,

where xit denotes the return at time t for country i. The innovations εit are assumed to be

i.i.d. The conditional variance is defined as

σ2
it = αi0 + αi1σ

2
i,t−1 + αi2e

2
i,t−1,

where αi0, αi1 and αi2 are parameters of GARCH(1,1) for country i with αi0 > 0, αi1 ≥ 0,

αi2 ≥ 0 and αi1 + αi2 < 1. Table 7 summarizes the coefficients of the AR(1)-GARCH(1,1)

filtering and shows that most estimates are statistically significant. For all cases, the Ljung-

Box test statistics are not significant at any conventional levels, implying the effectiveness

of the AR-GARCH procedure in filtering out the linear dependence in the series of returns.

[Insert Table 7 About Here.]

Because our target is to investigate the dynamic pattern of the dependence among the in-

ternational equity markets along the path of the exchange rate volatility, we first respectively

estimate the volatility of USD-EUR and USD-GBP by the AR(1)-GARCH(1,1) model dis-

cussed above. Figure 4 demonstrates the time series plots of the four countries’ weekly equity

prices along the estimated volatility of the exchange rates (black dashed) for USD-GBP and

USD-EUR. Unlike the equity prices which substantially fluctuate during the sample period,

the volatility paths of exchange rates are relatively stable. As a matter of fact, the exchange

rate markets witnessed a tranquil period during 1999-2007 with the estimated volatility of

USD-EUR and USD-GBP ranged between 0.007 and 0.02, whereas the equity markets in
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these countries were shocked by a sequence of events such as the recession induced by the

burst of the dotcom bubbles, the 9/11 terrorism attack, and two military operations against

Afghanistan and Iraq, etc. However, sometimes the tranquility in the exchange rate markets

could also be interrupted by a domestic or international event. As can be seen in the first

two panels in Figure 4, there is a remarkable peak on the volatility path of USD-EUR in

2008 when the global financial crisis caused severe recession and stock markets crashed in

all developed economies. For example, Figure 4(a) shows that just in 2008 the stock price

dropped by 46% in France (blue solid) and 40% in the United States (red solid), while the

volatility of the USD-EUR exchange rate is nearly tripled at the end of 2008, jumping from

0.012 to 0.034. One could observe similar patterns from the other two pairs. One distinctive

feature of the USD-GBP volatility path is that, besides the spike in 2008, there is another

remarkable peak in June of 2017 due to panics among investors induced by the passage of

the Brexit referendum.

[Insert Figure 4 About Here.]

Next, we fit the filtered equity returns (i.e., the residuals) to the conditional mixture

copula model that contains the Clayton, Gumbel, and Frank copulas. In the first step, we

apply the two proposed model selection procedures to determine which candidate copula(s)

should be included in the mixture model. We firstly consider the information criterion

method. Because the mixture copula model contains three components, for each pair of

markets, we need to respectively estimate 23 − 1 = 7 copula models and calculate their

corresponding BIC values. Then, as discussed in Section 2.4, we make a comparison and

choose the model with the lowest BIC value among the seven BICs. Table 8 documents

the BIC values of the seven models for the three pairs of equity markets. It shows that

the mixture model with the Clayton and Frank copulas are selected for all three pairs as

it exhibits the lowest BIC among the seven BIC values. In other words, based on the

comparison among the BICs associated with the seven candidate models, the final mixture

copula should be constructed as ωClCCl + ωFrCFr.

[Insert Table 8 About Here.]
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For comparing purposes, we alternatively apply the hypothesis test method to check

which component copulas should be kept. Similar to the procedures of the backward elim-

ination, we start with a mixture model with all three component copulas. Then we test

whether the three weight parameters ωCl, ωGu and ωFr respectively equal to zero, and re-

move the copula whose weight parameter’s p-value is the highest among those greater than

0.05, the significance level. We then refit the model until the p-values of the weight pa-

rameters of the remaining component copulas are all lower than 0.05. The sequence of the

hypothesis tests and the results are displayed in Table 9. In Panel 1, the hypothesis test

results show that the p-values for the Gumbel copula’s weight parameters are remarkably

greater than 0.05 in all three market pairs, indicating that the weight parameters of the

Gumbel copula are insignificantly different from zero and the Gumbel copula should be fil-

tered out from the mixture models in the first step. Next, we refit the mixture model which

only contains the Clayton and Frank copulas. Panel 2 of Table 9 suggests that both compo-

nent copulas should be kept as the p-values of their weight parameters are lower than 0.05

in all three market pairs. That is, the final mixture copula selected by the hypothesis test

method is consistent with the one selected by the information criterion method.

[Insert Table 9 About Here.]

When a mixture copula contains many component copulas, it would be efficient if we

can simultaneously filter out several candidate copulas in one step. To this end, in this

example we also apply the hypothesis test by firstly examining the joint hypothesis tests.

Specifically, in the first step, we respectively test whether each two of the three copulas’

weight parameters are simultaneously equal to zero. Failing to reject the null hypothesis of

any of these joint tests indicates that the mixture copula only contains an individual copula.

In our example, we reject the null hypotheses of all the joint tests for the three market pairs

at the 0.05 significance level, suggesting that the mixture model should include more than

one component copula. Next, we implement hypothesis tests to examine whether the three

weight parameters are respectively equal to zero. The test results show that, for all three

pairs, we cannot reject ωGu = 0 at any conventional levels. Therefore, the final choice of
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the mixture model should be constructed by the Clayton and Frank copulas. The detailed

results for this sequence of hypothesis tests are available upon request.

Our finding is in line with Garcia & Tsafack (2011) who argue that a combination of the

Gaussian and rotated Gumbel copulas outperforms the other models in examining comove-

ments among stock returns along the exchange rate volatility. Given the observed downward

comovements among the equity markets when the exchange rates become extremely volatile,

it is expected that the Clayton copula should be kept in the mixture model to capture the

lower tail dependence. The inclusion of the Frank copula is also intuitive because, as Fig-

ure 4 shows, except for the extreme scenario in 2008, in general we do not observe obvious

tail dependence of equity returns along the exchange rate volatility over the sample period.

Subsequently, we fit the data to the selected conditional mixture copula model and ob-

tain the estimated weight and copula parameters through the proposed method. Since

parameters from different copulas are not directly comparable, here we transform the cop-

ulas’ parameter estimates into Kendall’s τs. As a measure of concordance between ran-

dom variables, Kendall’s τ is invariant to nonlinear transformations and thus can cap-

ture nonlinear dependence which is unable to be measured by the linear correlation co-

efficient. For example, for X1 and X2 with their respective CDFs u1 and u2, it is possible

to express Kenadall’s τ in terms of a copula which connects the two random variables as

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2; θ)dC(u1, u2; θ) − 1. For Clayton, Kendall’s τCl = θ

θ+2
. For Gumbel,

τGu = 1− 1
θ
. For Frank, τFr = 1− 4

θ

(
1−

∫ θ
0

t
et−1dt

)
.

Figure 5 demonstrates the estimates (solid curves) of Kendall’s τs and the weights of

the Clayton and Frank copulas for the U.S.-Germany equity returns along the volatility of

USD-EUR, and the 5% and 95% percentiles (dashed curves) obtained through the proposed

block bootstrap method. Figure 5(a) shows that the magnitude of the lower tail depen-

dence, measured by Kendall’s τ of Clayton, doubles from 0.15 to about 0.3 as the volatility

of USD-EUR is more than tripled from about 0.01 to 0.035. Such strengthened asymmetric

dependence is further amplified by the increasing weight associated with the Clayton cop-

ula, as displayed by Figure 5(b): as the exchange rate between the U.S. dollar and the euro
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becomes increasingly volatile, the effect of the lower tail dependence turns to be more domi-

nant. On the contrary, both the estimates of Kendall’s τ and the weight of the Frank copula

decrease as the volatility of USD-EUR increases. Even though the magnitude of the decline

in Kendall’s τ for the Frank copula is relatively small, its dominance in the dependence

structure is remarkably weakened due to the decreased weight in the mixture model. For the

pairs of U.S.-France and U.S.-UK, Figures 6 and 7 show quite similar patterns: when the

exchange rate becomes increasingly volatile, the lower tail dependence is strengthened as the

estimates of Kendall’s τ and the weight associated with the Clayton copula simultaneously

increase, while both Kendall’s τ and the weight of the Frank copula shrink. Given the close

economic and political connections of the three countries to the United States, the similar

patterns of Kendall’s τs along the exchange rate volatility should be expected. When the

exchange rate becomes extremely volatile (e.g., during the global economic recession), the

weight of the Clayton copula exceeds that of the Frank copula, indicating that the lower

tail dependence dominates the mixture dependence structure so that the two equity mar-

kets exhibit a higher probability to crash simultaneously. The fact that higher volatility

in exchange rate markets is associated with more extreme asymmetric dependence among

equity markets is not only in line with our observations in Figures 5-7, but also consistent

with the findings in the literature such as Longin & Solnik (2001) and Garcia & Tsafack

(2011). An extreme jump in the exchange rate usually leads to an extreme comovement in

equity markets. As Garcia & Tsafack (2011) argue, when a sudden and unexpected shock

hits an economy with a very active currency market, transmission through the latter makes

a downside comovement of equity markets more likely than in a calm period of the exchange

rate market. This may partially explain why the Clayton copula’s weight and Kendall’s τ

both increase as the exchange rate market becomes more volatile.

[Insert Figure 5-7 About Here.]
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5 Conclusion

This paper proposes a semiparametric conditional mixture copula model in which both

weight and copula parameters can vary with a covariate in a nonparametric way. The

conditional mixture copula exploits the advantages of both the conditional copula which can

capture a covariates impact on the degree of dependence (see Acar et al., 2011, Patton, 2012,

and Fermanian & Lopez, 2018), and the mixture copula which can combine copula families

with different dependence patterns (see Hu, 2006, and Cai & Wang, 2014). Therefore, it

provides extra flexibility and an unified way for practitioners to measure the dependence

pattern and the degree of dependence.

In the theoretical part, we provide a two-step estimation procedure to separately esti-

mate the marginal distributions and the weight and copula parameters in the model, and the

large sample properties of these estimators are derived. Moreover, we introduce two model

selection approaches to choose an appropriate conditional mixture copula model from a large

copula candidate set. Monte Carlo simulation results confirm that the proposed estimation

and model selection procedures perform reasonably well in estimating unknown parameters

and selecting component copulas. The only exception is when weights and copula parame-

ters in a mixture copula are constants: simulation results show that although the proposed

conditional mixture copula estimation method still provides accurate copula selection, its

estimation accuracy, measured by MSE, becomes slightly lower than the constant mixture

copula estimation method proposed by Cai & Wang (2014). In an empirical illustration, we

apply the proposed methods to examine how the dependence structures among the interna-

tional equity markets evolve with the volatility in the exchange rate markets and find that

both the weight of the Clayton copula and the degree of the lower tail dependence among the

equity markets remarkably increase when the exchange rate markets become more volatile.

In practice, because whether weights and copula parameters are constants or not is

unknown ex ante, the conditional mixture copula is an ideal model if practitioners have

strong belief that both the pattern of dependence (summarized by weights of component

copulas) and degree of dependence (measured by copula parameters) are affected by certain
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covariate. For example, applying the proposed conditional mixture copula, practitioners can

extend Zimmer (2012) and investigate how strength and direction of comovement among

housing markets in the United States evolved with certain economic indicator such as per

capita disposable income in the past four decades. In this analysis, as in the empirical

illustration in Section 4, we need the conditional mixture copula to detect effects of the

covariate on dependence structure. Alternatively, if practitioners need a quick examination

on tail dependence and degree of dependence, the CW method would be an useful model with

fewer parameters to estimate. In this study, we skip testing the irrelevance of the covariate

and refer interested readers to Acar et al. (2013), Gijbels et al. (2017), and Derumigny &

Fermanian (2017) for discussions and empirical illustrations in the i.i.d. scenario. Testing

the simplifying assumption with weakly dependent data deserves a separate study in the

future.

Some interesting future research topics related to this article should be mentioned. First,

the proposed method can be extended to a higher dimension of Z because the dependence

structure could be potentially affected by several economic variables simultaneously. In

other words, the copula parameter θk(·) in equation (1) can be written as θk(γ
ᵀZt), where

θk(γ
ᵀZt) now is a flexible function of the so-called single-index γᵀZt, i.e., a linear combination

of pz-dimensional economics variable Zt with γ being a pz-dimensional vector loading, and

Zt = (Z1t, ..., Zpzt)
ᵀ. Second, our model can be applied by empirical practitioners to study

how dependence structures among the international stock markets abruptly changed amid

the outbreak of the COVID-19 pandemic when equity prices crashed in global markets.
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Figure 1: Estimated paths for copula parameters (θ) when the true model is an individual copula.

(a) θCl,Model 1 (b) θCl,Model 2 (c) θCl,Model 3 (d) θCl,Model 4

(e) θGu,Model 1 (f) θGu,Model 2 (g) θGu,Model 3 (h) θGu,Model 4

(i) θFr,Model 1 (j) θFr,Model 2 (k) θFr,Model 3 (l) θFr,Model 4

(m) θGa,Model 1 (n) θGa,Model 2 (o) θGa,Model 3 (p) θGa,Model 4

Notes. Panels (a)-(d) denote the estimates of the Clayton parameters which respectively follow Models
1-4. Panels (e)-(h) denote the estimates of the Gumbel parameters which respectively follow Models 1-4.
Panels (i)-(l) denote the estimates of the Frank parameters which respectively follow Models 1-4. Panels
(m)-(p) denote the estimates of the Gaussian parameters which respectively follow Models 1-4. Model 1:

θ(z) = 10 − 1.5z2. Model 2: θ(z) = 10 − 0.02z2 + 0.4z3. Model 3: θ(z) = 3 + z + 2e−2z2

. Model 4:

θ(z) = 5 + 2 sin (πz) + 2e−16z2

. In each panel, the black solid line denotes the true path of θ(z). The
red dotted line and the blue dashed line respectively denote the mean and median of the copula parameter
function estimates at the grid points with 1000 simulations. The brown solid line denotes the mean of the
estimates with 1000 simulations by Cai & Wang (2014). The black dotted-dashed lines denote the 5% and
95% percentiles of the copula parameter estimates at the grid points. The sample size T = 1000 in all panels.
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Figure 4: Time series plots for weekly equity prices and estimated volatility of exchange rates.

(a) U.S. - France

(b) U.S. - Germany

(c) U.S. - UK

Notes. This figure displays four developed economies’ weekly MSCI stock prices (01/07/1999 = 100) and the
volatility of exchange rates estimated by the AR(1)-GARCH(1,1) during 01/07/1999 – 11/07/2018. Panel(a)
plots the volatility of the exchange rate between the US dollar and the euro (black dashed) and the MSCI
stock prices in France (blue solid) and the United States (red solid). Panel(b) plots the volatility of the
exchange rate between the US dollar and the euro (black dashed) and the MSCI stock prices in Germany
(blue solid) and the United States (red solid). Panel(c) plots the volatility of the exchange rate between the
US dollar and the British pound (black dashed) and the MSCI stock prices in the United Kingdom (blue
solid) and the United States (red solid).
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Figure 5: U.S.-Germany: The estimated paths for Kenall’s τ s and weights.

(a) Clayton: Kendall’s τ (b) Clayton: Weight

(c) Frank: Kendall’s τ (d) Frank: Weight

Notes. This figure displays the estimates of Kendall’s τs and the weights of the Clayton and Frank copulas
for equity returns between U.S. and Germany, along the estimated volatility of USD-EUR. Panel(a) shows
the Kendall’s τ estimate of Clayton along the estimated volatility of USD-EUR. Panel(b) shows the weight
estimate of Clayton along the estimated volatility of USD-EUR. Panel(c) shows the Kendall’s τ estimate of
Frank along the estimated volatility of USD-EUR. Panel(d) shows the weight estimate of Frank along the
estimated volatility of USD-EUR. The two dashed lines in all four panels denote the 5% and 95% percentiles.
The data are at weekly frequency and span from 01/07/1999 to 11/07/2018.
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Figure 6: U.S.-France: The estimated paths for Kenall’s τ s and weights.

(a) Clayton: Kendall’s τ (b) Clayton: Weight

(c) Frank: Kendall’s τ (d) Frank: Weight

Notes. This figure displays the estimates of Kendall’s τs and the weights of the Clayton and Frank copulas
for equity returns between U.S. and France, along the estimated volatility of USD-EUR. Panel(a) shows
the Kendall’s τ estimate of Clayton along the estimated volatility of USD-EUR. Panel(b) shows the weight
estimate of Clayton along the estimated volatility of USD-EUR. Panel(c) shows the Kendall’s τ estimate of
Frank along the estimated volatility of USD-EUR. Panel(d) shows the weight estimate of Frank along the
estimated volatility of USD-EUR. The two dashed lines in all four panels denote the 5% and 95% percentiles.
The data are at weekly frequency and span from 01/07/1999 to 11/07/2018.
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Figure 7: U.S.-UK: The estimated paths for Kenall’s τ s and weights.

(a) Clayton: Kendall’s τ (b) Clayton: Weight

(c) Frank: Kendall’s τ (d) Frank: Weight

Notes. This figure displays the estimates of Kendall’s τs and the weights of the Clayton and Frank copulas
for equity returns between U.S. and UK, along the estimated volatility of USD-GBP. Panel(a) shows the
Kendall’s τ estimate of Clayton along the estimated volatility of USD-GBP. Panel(b) shows the weight es-
timate of Clayton along the estimated volatility of USD-GBP. Panel(c) shows the Kendall’s τ estimate of
Frank along the estimated volatility of USD-GBP. Panel(d) shows the weight estimate of Frank along the
estimated volatility of USD-GBP. The two dashed lines in all four panels denote the 5% and 95% percentiles.
The data are at weekly frequency and span from 01/07/1999 to 11/07/2018.
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Table 2: MSEs of copula parameter estimates and accurate (inaccurate) rates of selection by the proposed
conditional mixture copula (CM) when the true model is a conditional mixture copula.

Panel 1 Combination: Clayton + Gumbel
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE 0.903 0.850 – – 0.633 0.521 – – 0.303 0.287 – –

Rate 1.000 0.859 (0.151) (0.234) 1.000 0.936 (0.064) (0.125) 1.000 0.986 (0.012) (0.053)
Model 1 + Model 3 MSE 0.893 0.775 – – 0.472 0.405 – – 0.288 0.197 – –

Rate 1.000 0.901 (0.078) (0.212) 1.000 0.927 (0.022) (0.101) 1.000 0.973 (0.007) (0.061)
Model 1 + Model 4 MSE 0.941 0.901 – – 0.507 0.476 – – 0.273 0.286 – –

Rate 1.000 0.925 (0.039) (0.277) 1.000 0.941 (0.011) (0.121) 1.000 0.991 (0.003) (0.067)
Model 2 + Model 3 MSE 1.032 0.957 – – 0.688 0.530 – – 0.301 0.251 – –

Rate 1.000 0.863 (0.136) (0.209) 1.000 0.923 (0.034) (0.091) 1.000 0.985 (0.016) (0.044)
Model 2 + Model 4 MSE 1.005 0.833 – – 0.605 0.497 – – 0.331 0.244 – –

Rate 1.000 0.874 (0.130) (0.291) 1.000 0.945 (0.031) (0.139) 1.000 0.987 (0.005) (0.078)
Model 3 + Model 4 MSE 0.843 0.860 – – 0.512 0.490 – – 0.346 0.268 – –

Rate 1.000 0.869 (0.142) (0.226) 1.000 0.954 (0.047) (0.116) 1.000 0.994 (0.008) (0.047)
Panel 2 Combnation: Clayton + Frank

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE 1.036 – 0.925 – 0.633 – 0.447 – 0.380 – 0.251 –
Rate 1.000 (0.015) 0.874 (0.183) 1.000 (0.003) 0.908 (0.098) 1.000 (0.000) 0.993 (0.043)

Model 1 + Model 3 MSE 1.047 – 0.859 – 0.629 – 0.517 – 0.291 – 0.266 –
Rate 1.000 (0.022) 0.891 (0.194) 1.000 (0.006) 0.939 (0.090) 1.000 (0.000) 0.997 (0.036)

Model 1 + Model 4 MSE 0.931 – 0.906 – 0.424 – 0.601 – 0.230 – 0.325 –
Rate 1.000 (0.017) 0.923 (0.207) 1.000 (0.000) 0.971 (0.107) 1.000 (0.000) 1.000 (0.029)

Model 2 + Model 3 MSE 0.935 – 0.923 – 0.591 – 0.459 – 0.372 – 0.245 –
Rate 1.000 (0.021) 0.856 (0.251) 1.000 (0.000) 0.911 (0.137) 1.000 (0.000) 0.984 (0.061)

Model 2 + Model 4 MSE 0.817 – 0.852 – 0.456 – 0.427 – 0.296 – 0.289 –
Rate 1.000 (0.014) 0.904 (0.191) 1.000 (0.003) 0.975 (0.112) 1.000 (0.000) 0.994 (0.054)

Model 3 + Model 4 MSE 0.831 – 0.874 – 0.533 – 0.512 – 0.230 – 0.222 –
Rate 1.000 (0.009) 0.899 (0.233) 1.000 (0.000) 0.964 (0.128) 1.000 (0.000) 1.000 (0.072)

Panel 3 Combination: Gumbel + Frank
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE – 0.814 0.933 – – 0.513 0.481 – – 0.289 0.227 –

Rate (0.003) 0.975 0.874 (0.151) (0.001) 0.987 0.957 (0.078) (0.000) 0.998 0.983 (0.023)
Model 1 + Model 3 MSE – 0.853 0.891 – – 0.503 0.465 – – 0.275 0.201 –

Rate (0.000) 0.982 0.901 (0.187) (0.000) 0.986 0.989 (0.084) (0.000) 0.993 0.981 (0.051)
Model 1 + Model 4 MSE – 0.930 0.942 – – 0.535 0.526 – – 0.208 0.267 –

Rate (0.004) 0.974 0.887 (0.174) (0.000) 0.983 0.946 (0.081) (0.000) 1.000 0.992 (0.038)
Model 2 + Model 3 MSE – 0.727 0.865 – – 0.517 0.574 – – 0.305 0.264 –

Rate (0.002) 0.986 0.939 (0.152) (0.000) 0.977 0.951 (0.073) (0.000) 0.997 0.998 (0.047)
Model 2 + Model 4 MSE – 0.958 0.771 – – 0.466 0.397 – – 0.268 0.203 –

Rate (0.001) 0.967 0.853 (0.131) (0.000) 0.981 0.976 (0.062) (0.000) 1.000 0.993 (0.013)
Model 3 + Model 4 MSE – 0.783 0.732 – – 0.463 0.402 – – 0.326 0.340 –

Rate (0.000) 0.958 0.944 (0.147) (0.001) 0.967 0.983 (0.064) (0.000) 0.987 0.987 (0.022)
Panel 4 True Copula: Clayton + Gaussian

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE 0.707 – – 0.005 0.411 – – 0.003 0.231 – – 0.001
Rate 1.000 (0.011) (0.193) 0.961 1.000 (0.004) (0.081) 0.998 1.000 (0.000) (0.042) 1.000

Model 1 + Model 3 MSE 0.735 – – 0.007 0.398 – – 0.004 0.250 – – 0.003
Rate 1.000 (0.005) (0.152) 0.954 1.000 (0.001) (0.078) 0.972 1.000 (0.000) (0.039) 0.995

Model 1 + Model 4 MSE 0.852 – – 0.008 0.501 – – 0.004 0.222 – – 0.001
Rate 1.000 (0.011) (0.183) 0.957 1.000 (0.000) (0.075) 0.984 1.000 (0.000) (0.037) 1.000

Model 2 + Model 3 MSE 0.753 – – 0.006 0.443 – – 0.004 0.205 – – 0.002
Rate 1.000 (0.016) (0.179) 0.947 1.000 (0.001) (0.083) 0.988 1.000 (0.000) (0.041) 1.000

Model 2 + Model 4 MSE 0.849 – – 0.005 0.529 – – 0.003 0.230 – – 0.001
Rate 1.000 (0.021) (0.182) 0.957 1.000 (0.003) (0.086) 0.997 1.000 (0.000) (0.047) 1.000

Model 3 + Model 4 MSE 0.831 – – 0.006 0.477 – – 0.003 0.209 – – 0.001
Rate 1.000 (0.008) (0.176) 0.944 1.000 (0.000) (0.081) 0.989 1.000 (0.000) (0.039) 1.000

Panel 5 Combination: Gumbel + Gaussian
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE – 0.883 – 0.008 – 0.474 – 0.005 – 0.208 – 0.002

Rate (0.000) 0.931 (0.245) 0.964 (0.000) 0.974 (0.121) 1.000 (0.000) 0.998 (0.052) 1.000
Model 1 + Model 3 MSE – 0.920 – 0.007 – 0.448 – 0.005 – 0.233 – 0.002

Rate (0.000) 0.945 (0.196) 0.947 (0.000) 0.961 (0.089) 0.995 (0.000) 0.994 (0.037) 1.000
Model 1 + Model 4 MSE – 0.844 – 0.008 – 0.503 – 0.006 – 0.220 – 0.003

Rate (0.000) 0.927 (0.203) 0.953 (0.000) 0.979 (0.117) 0.989 (0.000) 0.987 (0.066) 0.994
Model 2 + Model 3 MSE – 0.797 – 0.008 – 0.427 – 0.005 – 0.269 – 0.002

Rate (0.000) 0.958 (0.192) 0.961 (0.000) 0.978 (0.102) 0.993 (0.000) 0.993 (0.051) 1.000
Model 2 + Model 4 MSE – 0.835 – 0.006 – 0.474 – 0.004 – 0.283 – 0.002

Rate (0.000) 0.944 (0.235) 0.955 (0.000) 0.980 (0.115) 0.987 (0.000) 0.998 (0.064) 1.000
Model 3 + Model 4 MSE – 0.937 – 0.007 – 0.539 – 0.004 – 0.317 – 0.002

Rate (0.000) 0.936 (0.197) 0.941 (0.000) 0.979 (0.099) 0.979 (0.000) 0.987 (0.033) 0.998
Panel 6 Combination: Frank + Gaussian

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE – – 0.879 0.011 – – 0.512 0.008 – – 0.274 0.003
Rate (0.000) (0.011) 0.875 0.983 (0.000) (0.000) 0.913 1.000 (0.000) (0.000) 0.983 1.000

Model 1 + Model 3 MSE – – 0.742 0.009 – – 0.442 0.006 – – 0.260 0.002
Rate (0.000) (0.013) 0.854 0.987 (0.000) (0.000) 0.907 1.000 (0.000) (0.000) 0.992 1.000

Model 1 + Model 4 MSE – – 0.833 0.013 – – 0.435 0.009 – – 0.279 0.005
Rate (0.000) (0.015) 0.886 0.991 (0.000) (0.000) 0.914 1.000 (0.000) (0.000) 0.985 1.000

Model 2 + Model 3 MSE – – 0.858 0.008 – – 0.408 0.005 – – 0.251 0.003
Rate (0.000) (0.012) 0.873 0.989 (0.000) (0.000) 0.905 0.993 (0.000) (0.000) 0.990 1.000

Model 2 + Model 4 MSE – – 0.903 0.011 – – 0.511 0.006 – – 0.281 0.003
Rate (0.000) (0.011) 0.862 0.991 (0.000) (0.000) 0.916 1.000 (0.000) (0.000) 0.989 1.000

Model 3 + Model 4 MSE – – 0.944 0.013 – – 0.553 0.007 – – 0.302 0.003
Rate (0.000) (0.015) 0.887 0.983 (0.000) (0.000) 0.920 1.000 (0.000) (0.000) 0.983 1.000
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Table 3: MSEs of copula parameter estimates and accurate (inaccurate) rates of selection by Cai & Wangs
(2014) constant mixture copula (CW) when the true model is a conditional mixture copula.

Panel 1 Combination: Clayton + Gumbel
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE 4.836 3.129 – – 3.166 2.646 – – 2.401 1.480 – –

Rate 1.000 0.931 (0.174) (0.254) 1.000 0.955 (0.106) (0.183) 1.000 0.993 (0.033) (0.104)
Model 1 + Model 3 MSE 3.991 3.528 – – 2.597 2.445 – – 1.931 1.558 – –

Rate 1.000 0.921 (0.112) (0.287) 1.000 0.948 (0.054) (0.113) 1.000 0.984 (0.013) (0.065)
Model 1 + Model 4 MSE 3.821 3.681 – – 2.638 2.353 – – 1.514 1.231 – –

Rate 1.000 0.930 (0.104) (0.296) 1.000 0.964 (0.035) (0.152) 1.000 1.000 (0.007) (0.077)
Model 2 + Model 3 MSE 4.658 4.436 – – 2.701 2.411 – – 1.512 1.382 – –

Rate 1.000 0.916 (0.158) (0.253) 1.000 0.958 (0.049) (0.093) 1.000 0.989 (0.014) (0.039)
Model 2 + Model 4 MSE 4.819 4.627 – – 2.706 2.568 – – 1.705 1.588 – –

Rate 1.000 0.948 (0.129) (0.301) 1.000 0.962 (0.034) (0.154) 1.000 1.000 (0.015) (0.088)
Model 3 + Model 4 MSE 3.158 3.687 – – 2.546 2.610 – – 1.447 1.658 – –

Rate 1.000 0.905 (0.157) (0.258) 1.000 0.932 (0.079) (0.128) 1.000 1.000 (0.019) (0.041)
Panel 2 Combination: Clayton + Frank

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE 3.769 – 3.197 – 2.477 – 2.653 – 1.296 – 1.424 –
Rate 1.000 (0.023) 0.931 (0.205) 1.000 (0.005) 0.923 (0.134) 1.000 (0.000) 1.000 (0.072)

Model 1 + Model 3 MSE 3.825 – 3.003 – 2.402 – 1.847 – 1.838 – 1.097 –
Rate 1.000 (0.025) 0.925 (0.237) 1.000 (0.000) 0.944 (0.118) 1.000 (0.000) 1.000 (0.063)

Model 1 + Model 4 MSE 3.770 – 3.568 – 2.581 – 2.419 – 1.403 – 1.370 –
Rate 1.000 (0.020) 0.895 (0.262) 1.000 (0.003) 0.946 (0.120) 1.000 (0.000) 1.000 (0.055)

Model 2 + Model 3 MSE 3.704 – 3.239 – 2.688 – 2.172 – 1.522 – 1.165 –
Rate 1.000 (0.018) 0.907 (0.289) 1.000 (0.001) 0.957 (0.154) 1.000 (0.000) 1.000 (0.069)

Model 2 + Model 4 MSE 2.911 – 2.941 – 2.249 – 2.447 – 1.239 – 1.384 –
Rate 1.000 (0.015) 0.922 (0.264) 1.000 (0.003) 0.955 (0.116) 1.000 (0.000) 1.000 (0.048)

Model 3 + Model 4 MSE 3.335 – 3.569 – 2.137 – 2.398 – 1.393 – 1.371 –
Rate 1.000 (0.013) 0.873 (0.262) 1.000 (0.000) 0.931 (0.173) 1.000 (0.000) 0.998 (0.087)

Panel 3 Combination: Gumbel + Frank
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE – 3.584 3.276 – – 2.473 2.443 – – 1.397 1.266 –

Rate (0.005) 0.985 0.903 (0.187) (0.001) 1.000 0.992 (0.085) (0.000) 1.000 0.995 (0.031)
Model 1 + Model 3 MSE – 3.747 3.255 – – 2.465 2.677 – – 1.378 1.523 –

Rate (0.000) 0.957 0.942 (0.195) (0.000) 0.994 1.000 (0.082) (0.000) 1.000 1.000 (0.050)
Model 1 + Model 4 MSE – 3.726 3.580 – – 2.461 2.062 – – 1.385 1.037 –

Rate (0.005) 0.989 0.896 (0.193) (0.000) 0.990 0.977 (0.088) (0.000) 1.000 1.000 (0.045)
Model 2 + Model 3 MSE – 3.105 3.175 – – 2.562 2.403 – – 1.502 1.143 –

Rate (0.001) 0.971 0.944 (0.188) (0.000) 0.991 0.984 (0.073) (0.000) 1.000 1.000 (0.017)
Model 2 + Model 4 MSE – 3.716 3.528 – – 2.527 2.508 – – 1.468 1.395 –

Rate (0.000) 0.963 0.907 (0.172) (0.000) 1.000 0.997 (0.089) (0.000) 1.000 1.000 (0.013)
Model 3 + Model 4 MSE – 3.454 3.721 – – 2.409 2.116 – – 1.443 1.222 –

Rate (0.002) 0.970 0.905 (0.133) (0.001) 0.987 1.000 (0.061) (0.000) 0.998 1.000 (0.024)
Panel 4 Combination: Clayton + Gaussian

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE 3.894 – – 0.027 2.502 – – 0.016 1.299 – – 0.005
Rate 1.000 (0.017) (0.227) 0.957 1.000 (0.008) (0.103) 1.000 1.000 (0.000) (0.034) 1.000

Model 1 + Model 3 MSE 3.780 – – 0.032 3.495 – – 0.019 3.306 – – 0.009
Rate 1.000 (0.004) (0.204) 0.974 1.000 (0.000) (0.094) 0.986 1.000 (0.000) (0.062) 1.000

Model 1 + Model 4 MSE 3.827 – – 0.044 3.553 – – 0.022 3.269 – – 0.008
Rate 1.000 (0.016) (0.176) 0.977 1.000 (0.000) (0.068) 0.982 1.000 (0.000) (0.049) 1.000

Model 2 + Model 3 MSE 2.820 – – 0.023 1.849 – – 0.013 1.031 – – 0.006
Rate 1.000 (0.015) (0.213) 0.965 1.000 (0.000) (0.091) 0.975 1.000 (0.000) (0.063) 1.000

Model 2 + Model 4 MSE 2.917 – – 0.023 2.041 – – 0.011 1.665 – – 0.005
Rate 1.000 (0.029) (0.204) 0.973 1.000 (0.005) (0.085) 0.984 1.000 (0.000) (0.059) 0.997

Model 3 + Model 4 MSE 3.606 – – 0.035 2.563 – – 0.012 1.717 – – 0.004
Rate 1.000 (0.005) (0.198) 0.968 1.000 (0.002) (0.094) 0.970 1.000 (0.000) (0.045) 1.000

Panel 5 Combination: Gumbel + Gaussian
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE – 3.548 – 0.048 – 2.517 – 0.027 – 1.422 – 0.008

Rate (0.000) 0.944 (0.278) 0.974 (0.000) 0.988 (0.133) 1.000 (0.000) 1.000 (0.048) 1.000
Model 1 + Model 3 MSE – 3.569 – 0.033 – 2.562 – 0.020 – 1.835 – 0.006

Rate (0.000) 0.941 (0.212) 0.931 (0.000) 0.955 (0.120) 1.000 (0.000) 1.000 (0.046) 1.000
Model 1 + Model 4 MSE – 3.730 – 0.044 – 2.377 – 0.032 – 1.348 – 0.009

Rate (0.000) 0.908 (0.174) 0.948 (0.000) 0.976 (0.119) 1.000 (0.000) 0.997 (0.057) 1.000
Model 2 + Model 3 MSE – 3.026 – 0.042 – 2.220 – 0.019 – 1.534 – 0.009

Rate (0.000) 0.923 (0.228) 0.977 (0.000) 0.983 (0.125) 1.000 (0.000) 1.000 (0.061) 1.000
Model 2 + Model 4 MSE – 4.082 – 0.024 – 2.626 – 0.011 – 1.488 – 0.007

Rate (0.000) 0.911 (0.293) 0.934 (0.000) 0.987 (0.127) 0.998 (0.000) 1.000 (0.073) 1.000
Model 3 + Model 4 MSE – 3.430 – 0.035 – 2.435 – 0.017 – 1.415 – 0.010

Rate (0.000) 0.950 (0.204) 0.950 (0.000) 0.959 (0.110) 1.000 (0.000) 1.000 (0.041) 1.000
Panel 6 Combination: Frank + Gaussian

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE – – 3.625 0.059 – – 2.382 0.036 – – 1.217 0.015
Rate (0.000) (0.016) 0.891 0.974 (0.000) (0.000) 0.932 1.000 (0.000) (0.000) 0.998 1.000

Model 1 + Model 3 MSE – – 3.770 0.043 – – 2.587 0.030 – – 1.226 0.008
Rate (0.000) (0.014) 0.863 0.954 (0.000) (0.000) 0.894 1.000 (0.000) (0.000) 1.000 1.000

Model 1 + Model 4 MSE – – 3.445 0.065 – – 2.282 0.042 – – 1.102 0.020
Rate (0.000) (0.010) 0.895 0.987 (0.000) (0.000) 0.907 1.000 (0.000) (0.000) 0.991 1.000

Model 2 + Model 3 MSE – – 4.311 0.043 – – 2.730 0.029 – – 1.755 0.008
Rate (0.000) (0.017) 0.914 0.980 (0.000) (0.000) 0.913 1.000 (0.000) (0.000) 0.986 1.000

Model 2 + Model 4 MSE – – 4.430 0.054 – – 2.993 0.030 – – 1.944 0.010
Rate (0.000) (0.014) 0.882 0.976 (0.000) (0.000) 0.896 1.000 (0.000) (0.000) 0.993 1.000

Model 3 + Model 4 MSE – – 3.709 0.064 – – 2.443 0.031 – – 1.675 0.009
Rate (0.000) (0.012) 0.854 0.963 (0.000) (0.000) 0.919 1.000 (0.000) (0.000) 0.980 1.000
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Table 5: MSEs of copula parameter estimates and accurate (inaccurate) rates of selection by the proposed
conditional mixture copula (CM) and Cai & Wang’s (2014) constant mixture copula (CW) when the true
model is an individual constant copula (Panel 1) and a constant mixture copula (Panel 2).

Panel 1 True Copula: Clayton
T = 200

Clayton Gumbel Frank Gaussian
CM CW CM CW CM CW CM CW

θCl = 5 MSE 0.173 0.121 – – – – – –
Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.013) (0.000)

θCl = 7 MSE 0.135 0.119 – – – – – –
Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.004) (0.000)

T = 500
Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW
θCl = 5 MSE 0.104 0.075 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.002) (0.000)
θCl = 7 MSE 0.071 0.062 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
T = 1000

Clayton Gumbel Frank Gaussian
CM CW CM CW CM CW CM CW

θCl = 5 MSE 0.047 0.033 – – – – – –
Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

θCl = 7 MSE 0.034 0.029 – – – – – –
Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel 2 True Copula: Clayton + Gumbel (equally weighted)
T = 200

Clayton Gumbel Frank Gaussian
CM CW CM CW CM CW CM CW

θCl = 5, θGu = 4 MSE 0.253 0.194 0.367 0.231 – – – –
Rate 1.000 1.000 0.859 0.831 (0.118) (0.125) (0.236) (0.221)

θCl = 7, θGu = 6 MSE 0.385 0.253 0.513 0.277 – – – –
Rate 1.000 1.000 0.893 0.865 (0.127) (0.167) (0.262) (0.258)

T = 500
Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW
θCl = 5, θGu = 4 MSE 0.172 0.110 0.218 0.138 – – – –

Rate 1.000 1.000 0.941 0.922 (0.053) (0.051) (0.115) (0.107)
θCl = 7, θGu = 6 MSE 0.243 0.183 0.324 0.206 – – – –

Rate 1.000 1.000 0.949 0.958 (0.044) (0.049) (0.127) (0.139)
T = 1000

Clayton Gumbel Frank Gaussian
CM CW CM CW CM CW CM CW

θCl = 5, θGu = 4 MSE 0.106 0.071 0.133 0.079 – – – –
Rate 1.000 1.000 0.981 0.991 (0.009) (0.006) (0.035) (0.022)

θCl = 7, θGu = 6 MSE 0.166 0.105 0.218 0.133 – – – –
Rate 1.000 1.000 0.983 0.977 (0.005) (0.002) (0.030) (0.031)
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Table 6: Summary Statistics

FR DE US UK USD-EUR USD-GBP
Panel 1: Summary statistics

Mean (%) 0.037 0.031 0.078 -0.007 0.003 0.023
Median (%) 0.266 0.282 0.244 0.155 0.039 -0.038
Min (%) -17.581 -17.504 -16.748 -15.220 -9.010 -5.547
Max (%) 12.829 13.977 10.344 10.915 6.085 10.222
Std. Dev 0.033 0.035 0.023 0.028 0.013 0.013
Skewness -0.514 -0.698 -0.678 -0.521 -0.256 0.704
Kurtosis 2.916 3.081 5.043 3.079 2.788 5.377
JB 415∗∗∗ 497∗∗∗ 1184∗∗∗ 459∗∗∗ 349∗∗∗ 1341∗∗∗

Panel 2: Linear correlation coefficients

DE US UK
FR 0.932 0.740 0.878
DE – 0.740 0.830
US – – 0.735

Notes. Panel 1 documents the summary statistics of the weekly log returns of the MSCI equity prices in
France, Germany, the United States and the United Kindom, and the weekly log returns of the U.S. dollar -
euro and U.S. dollar - British pound exchange rates. JB denotes the statistic of the Jarque-Bera test with
the null hypothesis of normality. ∗∗∗ indicates rejection of the null at 1%. Panel 2 documents the linear
correlation coefficients among the four international equity markets’ weekly log returns. The sample period
are between 01/07/1999 and 11/07/2018.

Table 7: The estimates of AR(1)-GARCH(1,1)

AR(1) Part GARCH(1,1) Part
γ1 α0 α1 α2 LB

(p-value) (p-value) (p-value) (p-value) (p-value)
Panel 1: Equity Return

France -0.119∗∗∗ 0.000∗∗∗ 0.805∗∗∗ 0.161∗∗∗ 0.755
(0.000) (0.000) (0.000) (0.000) (0.385)

Germany -0.079∗∗ 0.000∗∗∗ 0.836∗∗∗ 0.129∗∗∗ 0.127
(0.018) (0.006) (0.000) (0.000) (0.722)

U.S. -0.122∗∗∗ 0.000∗∗∗ 0.795∗∗∗ 0.169∗∗∗ 1.763
(0.000) (0.002) (0.000) (0.000) (0.184)

UK -0.088∗∗∗ 0.000∗∗∗ 0.755∗∗∗ 0.181∗∗∗ 1.716
(0.009) (0.000) (0.000) (0.000) (0.190)

Panel 2: Exchange Rate

USD-EUR 0.043 0.000∗∗ 0.898∗∗∗ 0.086∗∗∗ 0.029
(0.176) (0.039) (0.000) (0.000) (0.864)

USD-GBP 0.013 0.000∗∗∗ 0.799∗∗∗ 0.126∗∗∗ 2.160
(0.706) (0.008) (0.000) (0.000) (0.142)

Notes. This table summarizes the results of the AR(1)-GARCH(1,1) filtering. LB denotes the statistic of
the Ljung-Box test with the null of zero autocorrelation for the residuals filtered by AR(1)-GARCH(1,1).
Values in parentheses are corresponding p-values. ∗∗ and ∗∗∗ respectively indicates rejection of the null at
5% and 1%.
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Table 8: BIC values for different copula models

U.S.-Germany U.S.-France U.S.-UK
Clayton -11800.282 -11508.044 -11789.353
Gumbel -11043.538 -10738.931 -11056.510
Frank -10747.739 -10763.693 -10789.578

Clayton+Gumbel -12692.052 -12448.875 -12705.331
Clayton+Frank -12940.750 -12685.836 -12965.381
Gumbel+Frank -12579.391 -12356.165 -12590.426

Clayton+Gumbel+Frank -11743.994 -11542.665 -11701.498

Notes. This table reports the BIC values of seven individual and mixture copula models for the pairs of
U.S.-Germany, U.S.-France and U.S.-UK. The best models are in bold.

Table 9: p-values of the hypothesis tests

U.S. - France U.S. - Germany U.S. - UK
p-value p-value p-value

Panel 1: Mixture model = ωClCCl + ωGuCGu + ωFrCFr

H0 : ωCl = 0 v.s. H1 : ωCl 6= 0 0.000 0.000 0.000
H0 : ωGu = 0 v.s. H1 : ωGu 6= 0 0.217 0.335 0.241
H0 : ωFr = 0 v.s. H1 : ωFr 6= 0 0.000 0.000 0.000
Panel 2: Mixture model = ωClCCl + ωFrCFr

H0 : ωCl = 0 v.s. H1 : ωCl 6= 0 0.000 0.000 0.000
H0 : ωFr = 0 v.s. H1 : ωFr 6= 0 0.000 0.000 0.000

Notes. This table displays the p-values for the estimates of the weight parameters in a sequence of hypothesis
tests with the 0.05 significance level. In Panel 1, the mixture model is assumed to contain all three component
copulas and three hypothesis tests are respectively implemented. The component copula with the highest
p-value among those greater than 0.05 is filtered out. In Panel 2, we refit the mixture model with two
component copulas and implement two hypothesis tests. We will exclude the copula whose weight estimate’s
p-value is greater than 0.05. Otherwise we will keep both component copulas.
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Appendix

Appendix A describes a stationary bootstrap technique which is adopted in Sections 2.4

of the main text, Appendix B discusses some practical issues including an EM algorithm,

the selection of the bandwidth, and confidence intervals, Appendix C shows the proofs of

the key results, and Appendix D presents additional simulation results.

F The Stationary Bootstrap Resampling Scheme

Define yt ≡ (xᵀt , zt), suppose {yt}Tt=1 is a strictly stationary and weakly dependent time

series. Let

Bt,b = {yt, yt+1, . . . , yt+b−1}

be the block consisting of b observations starting from yt to yt+b−1. When j > T , yj is

defined to be yt, where t = j (mod T ) and y0 = yT . Let p be a constant such that p ∈ [0, 1].

Independent of {yt}Tt=1, let L1, L2, . . . be a sequence of i.i.d random variables which have the

geometric distribution, i.e.,

P{Lk = m} = (1− p)m−1p, m = 1, 2, . . .,

where p = T−1/3. Independent of {yt}Tt=1 and Lk, let I1, I2, . . . be a sequence of i.i.d random

variables which have the discrete uniform distribution on {1, . . . , T}.
A pseudo time series {y∗t }Tt=1 is generated in the following way. Sampling a sequence of

blocks of random length by the prescription BI1,L1 , BI2,L2 , . . ., where Ik is generated from

a uniform distribution on {1, . . . , T} and Lk is generated from the distribution as defined

earlier. The first L1 observations in the pseudo time series {y∗t }Tt=1 are determined by the first

block BI1,L1 of observations yI1 , . . . , yI1+L1−1, the next L2 observations in the pseudo time

series are the observations in the second sampled block BI2,L2 , namely yI2 , . . . , yI2+L2−1. This

process is not stopped until T observations in the pseudo time series have been generated.

By randomly varying the block length, Politis and Romano (1994) show that the pseudo

time series {y∗t }Tt=1, conditional on the original data {yt}Tt=1, is actually stationary. Hence,

this resampling method is applicable for stationary and weakly dependent time series.
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G Practical Issues

G.1 An EM Algorithm

An important computational issue in practice is that the maximum likelihood estimator of

the local log-likelihood function (4) in the main text may not have an explicit expression,

especially when d, the number of candidate copulas, is large. Therefore, we propose to

use the expectation maximization (EM) algorithm (see Dempster et al., 1977) to find the

numerical solution of the maximum likelihood estimation. The EM algorithm decomposes

the optimization process into two steps: for each k ∈ {1, ..., d}, the E-step computes and

updates αk0, with given αk1 and βk = (βk0, βk1)
ᵀ, and the M-step maximizes the local log-

likelihood function to estimate αk1 and βk.

Specifically, we define

cc(ût, δ) =
d∑

k=1

g−1ω,k
(
zᵀt,zαk

)
ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
and the objective function

Q(û, δ) =
T∑
t=1

ln cc(ût, δ)Kh(zt − z) + ρ

(
1−

d∑
k=1

g−1ω,k(αk0)

)
, (5)

where zt,z = (1, zt − z)ᵀ, αk = (αk0, αk1)
ᵀ, and the last term in equation (5) is for the

constraint on the weight parameters.

To maximize the objective function Q(û, δ), we take the first derivative of Q(û, δ) with

respect to αk0 and set it equal to zero:

T∑
t=1

ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
cc(ût, δ)

(
g−1ω,k
)′

(zᵀt,zαk)Kh(zt − z)− ρ
(
g−1ω,k
)′

(αk0) = 0.

Therefore, we have

T∑
t=1

ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
cc(ût, δ)(g

−1
ω,k)

′(αk0)

(
g−1ω,k
)′ (

zᵀt,zαk
)
Kh(zt − z) = ρ. (6)
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By multiplying g−1ω,k(αk0) on both sides of equation (6), we obtain

T∑
t=1

ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
cc(ût, δ)

(
g−1ω,k
)′

(αk0)
g−1ω,k(αk0)

(
g−1ω,k
)′

(zᵀt,zαk)Kh(zt − z) = ρg−1ω,k(αk0). (7)

Taking sums on both sides of the above equation over all k leads to

ρ =
d∑

k=1

T∑
t=1

ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
cc(ût, δ)(g

−1
ω,k)

′(αk0)
g−1ω,k(αk0)

(
g−1ω,k
)′

(zᵀt,zαk)Kh(zt − z). (8)

We plug ρ back to equation (7) and then obtain

αk0 = gω,k

{
ρ−1

T∑
t=1

ck
[
ût; g

−1
θ,k

(
zᵀt,zβk

)]
cc(ût, δ)(g

−1
ω,k)

′(αk0)
g−1ω,k(αk0)(g

−1
ω,k)

′(zᵀt,zαk)Kh(zt − z)

}
. (9)

Expectation Step

Let δ(0)(z) =
(
α
(0)
10 , ..., α

(0)
d0 , β

(0)
10 , ..., β

(0)
d0 , α

(0)
11 , ..., α

(0)
d1 , β

(0)
11 , ..., β

(0)
d1

)ᵀ
be the initial estimators

at each iterative. For a given grid point z, we can iteratively update αk0 by

α
(1)
k0 = gω,k

{
1

ρ(0)

T∑
t=1

ck

[
ût; g

−1
θ,k

(
zᵀt,zβ

(0)
k

)]
cc(ût, δ(0)(z))(g−1ω,k)

′(α
(0)
k0 )

g−1ω,k(α
(0)
k0 )(g−1ω,k)

′
(
zᵀt,zα

(0)
k

)
Kh(zt − z)

}
,

for k = 1, ..., d, where

ρ(0) =
d∑

k=1

T∑
t=1

ck

[
ût; g

−1
θ,k

(
zᵀt,zβ

(0)
k

)]
cc(ût, δ(0)(z))(g−1ω,k)

′(α
(0)
k0 )

g−1ω,k(α
(0)
k0 )(g−1ω,k)

′
(
zᵀt,zα

(0)
k

)
Kh(zt − z).

Maximization Step

Let α0 = (α10, ..., αd0)
ᵀ, α1 = (α11, ..., αd1)

ᵀ, and β = (β10, ..., βd0, β11, ..., βd1)
ᵀ. Given

{
α
(1)
k0

}
updated from the E-step, we respectively maximize the objective function Q(û, δ) with re-

spect to α1 and β. Following Acar et al. (2011), we find the numerical solutions through

the Newton-Raphson iteration method

α
(1)
1 = α

(0)
1 −

Q′α1

(
û, α

(1)
0 , α

(0)
1 , β(0)

)
Q′′α1

(
û, α

(1)
0 , α

(0)
1 , β(0)

) ,
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β(1) = β(0) −
Q′β

(
û, α

(1)
0 , α

(1)
1 , β(0)

)
Q′′β

(
û, α

(1)
0 , α

(1)
1 , β(0)

) , (10)

where Q′α1
and Q′′α1

are the first and second derivatives of Q(û, δ) with respect to α1, and

Q′β and Q′′β are the first and second derivatives of Q(û, δ) with respect to β, respectively.

G.2 Bandwidth Selection

When doing the nonparametric estimation, one needs to choose an appropriate bandwidth

parameter h to balance the trade-off between the bias and variance of the estimator. In lit-

erature, researchers have proposed various approaches such as the cross-validation technique

and the plug-in methods. Because we assume the sequence {xt, zt}Tt=1 is serially dependent

(see Conditions in C7 of the main text), the forward leave-one-out cross-validation method

can be used to select the bandwidth parameter.

Specifically, let ξ̂h(·) =
(
ω̂h(·)ᵀ, θ̂h(·)ᵀ

)ᵀ
denote the estimates of the weight and cop-

ula parameter functions with a known bandwidth parameter h. We obtain ξ̂h,t∗ =(
ω̂h,1,t∗ , ..., ω̂h,d,t∗ , θ̂h,1,t∗ , ..., θ̂h,d,t∗

)ᵀ
at the sample point {xt∗ , zt∗} using the data {xt, zt, t <

t∗} for each t0 + 1 ≤ t∗ ≤ T , where t0 is the minimum window size used to estimate

ξ̂h,t0+1. The sequential estimators {ξ̂h,t∗}Tt∗=t0+1 are constructed through this forward re-

cursive scheme, and the optimal h∗ can be achieved by maximizing the following objective

function

h∗ = arg max
h

T∑
t∗=t0+1

ln

{
d∑

k=1

ω̂h,k,t∗(zt∗)ck[ût∗ ; θ̂h,k,t∗(zt∗)]

}
.

The obtained h∗ is the forward leave-one-out cross-validation estimator in terms of the

log-likelihood. In practice, to ensure that the obtained forward leave-one-out cross-validation

estimator h∗ satisfies condition C6 of the main text, we can first pick an initial range [h1, h2]

with h1 = c1T
−1/5 and h2 = c2T

−1/5 for some constants c1 and c2. Then the optimal h∗ is

selected within the range [h1, h2] by maximizing the aforementioned objective function. See

Hansen (2009) for details.

G.3 Confidence Intervals

Because most economic and financial data are serially dependent, the i.i.d bootstrap proce-

dures may not be applicable here. Therefore, we follow the block bootstrap method proposed

by Patton (2012) to calculate the pointwise confidence intervals on weight and copula param-

eters for serially dependent data. By dividing the data into several blocks, we can preserve
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the original time series structure within a block. To construct the confidence intervals, the

block bootstrap can be implemented as follows:

(i). Generate a sample sequence {x∗t , z∗t }Tt=1 from the original data {xt, zt}Tt=1 using a sta-

tionary bootstrap technique described in Appendix A;

(ii). Obtain the estimate of the marginal distribution {û∗t}Tt=1 by Step One described in

Section 2.2;

(iii). Calculate new estimator ξ̂∗(z) at the grid point z by equation (4) in the main text

with {û∗t}Tt=1;

(iv). Repeat Steps (i)-(iii) B times (say, B = 1000), and get B values of the estimator ξ̂∗(z)

as an empirical sample at each grid point z. Let the α/2-th and (1−α/2)-th percentiles

of the sample sequence {ξ̂∗(z)} be qα/2 and q1−α/2, respectively; and

(v). The empirical 100(1− α)% confidence interval for ξ̂(z) is [qα/2, q1−α/2].

H Proofs of the Key Results

In this section, we prove the main results in Section 2.3 of the main text.

Lemma 1: Define

Z̃ᵀt δ =



α10 + α11(zt − z)

...

αd0 + αd1(zt − z)

β10 + β11(zt − z)

...

βd0 + βd1(zt − z)


and g−1(Z̃ᵀt δ) =



g−1ω,1(α10 + α11(zt − z))

...

g−1ω,d(αd0 + αd1(zt − z))

g−1θ,1(β10 + β11(zt − z))

...

g−1θ,d(βd0 + βd1(zt − z))


.

Let

AT = h

T∑
t=1

D−1T Z̃t[`g
−1]′(ût, g

−1(Z̃ᵀt δ))Kh(zt − z),

A∗T = h

T∑
t=1

D−1T Z̃t[`g
−1]′(ut, g

−1(Z̃ᵀt δ))Kh(zt − z),

BT = h
T∑
t=1

D−1T Z̃t[`g
−1]′′(ût, g

−1(Z̃ᵀt δ))(D
−1
T Z̃t)

ᵀKh(zt − z), and
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B∗T = h
T∑
t=1

D−1T Z̃t[`g
−1]′′(ut, g

−1(Z̃ᵀt δ))(D
−1
T Z̃t)

ᵀKh(zt − z),

where [`g−1]′(·) = `′(ut, g
−1(·)) ◦ (g−1)′(·) is the first derivative of `(ut, g

−1(η)) with re-

spect to η. [`g−1]′′(·) = [`′(ut, g
−1(·)) ◦ (g−1)′(·)]′ = `′′(ut, g

−1(·)) ◦ {[(g−1)′(·)][(g−1)′(·)]ᵀ} +

diag{`′(ut, g−1(·))} ◦ (g−1)′′(·) and A ◦ B is the Hadamard product between A and B. The

marginal distribution estimator ût is obtained from the two-step procedures described in

Section 2.2. Lemma 4.1 in Chen & Fan (2006) shows that sup1≤t≤T |ûst − ust| = Op(1/
√
T )

for s = 1, · · · , p. Under the conditions C1 - C7, we have

AT = A∗T + op(1) and BT = B∗T + op(1).

Lemma 1 suggests that we can derive the asymptotic distribution of δ̂ without considering

errors from the marginal distribution estimation. The estimator ût of the marginal part has

little effect on the estimation of δ̂ if the sample size T is large.

Proof of Lemma 1:

The Lipschitz continuity of `′ and [g−1]′, and the condition sup1≤t≤T |ûst − ust| = Op(1/
√
T )

for s = 1, · · · , p imply that

(|AT − A∗T |)r ≤

(
h

T∑
t=1

|D−1T Z̃t([`g
−1]′(ût, g

−1(Z̃ᵀt δ))− [`g−1]′(ut, g
−1(Z̃ᵀt δ)))|Kh(zt − z)

)
r

≤ C1 sup
1≤t≤T,1≤s≤p

|ûst − ust|

(
h

T∑
t=1

|D−1T Z̃t1Kh(zt − z)|

)
r

= C1Op(1/
√
T ))Op(

√
Th) = Op(

√
h) = op(1),

where (·)r denotes rth element of a vector, C1 is a constant and 1 is a 2d-dimensional vector

with each element equals to one. h
∑T

t=1 |D
−1
T Z̃t1Kh(zt−z)| is of order Op(

√
Th) because the

first 2d elements are (h/
√
Th)

∑T
t=1Kh(zt − z) = (Th/

√
Th) 1

T

∑T
t=1Kh(zt − z) = Op(

√
Th)

and the last 2d elements are (Th)−1/2h−1h
∑T

t=1 |zt − z|Kh(zt − z) =
√
Th 1

Th

∑T
t=1 |zt −

z|Kh(zt − z) =
√
Thf(z)

∫
|u|k(u)du = Op(

√
Th).

In the same vein, we can show |BT −B∗T | = op(1).

This completes the proof. �

Proof of Theorem 1:

To minimize the objective function L(û, δ̂) given û, it is equivalent to minimize Th{L(û, δ̂)−
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L(û, δ)}. And Th{L(û, δ̂)− L(û, δ)} can be written as

Th{L(û, δ̂)− L(û, δ)}

= h
T∑
t=1

{
`(ût, g

−1(Z̃ᵀt δ̂))− `(ût, g−1(Z̃
ᵀ
t δ))

}
Kh(zt − z)

= h
T∑
t=1

(δ̂ − δ)ᵀZ̃t[`g−1]′(ût, g−1(Z̃ᵀt δ))Kh(zt − z)

+
1

2
h

T∑
t=1

(δ̂ − δ)ᵀZ̃t[`g−1]′′(ût, g−1(Z̃ᵀt δ))Z̃
ᵀ
t (δ̂ − δ)Kh(zt − z) + op(1)

= (DT (δ̂ − δ))ᵀAT +
1

2
(DT (δ̂ − δ))ᵀBT (DT (δ̂ − δ)) + op(1)

= (DT (δ̂ − δ))ᵀA∗T +
1

2
(DT (δ̂ − δ))ᵀB∗T (DT (δ̂ − δ)) + op(1),

where AT and BT are defined in Lemma 1, and the last equation follows Lemma 1. After

taking the first derivative with respect to DT (δ̂ − δ), we obtain

DT (δ̂ − δ) = −B∗−1T A∗T + op(1).

Note that E(−B∗T ) can be written as

E(−B∗T ) = E
(
−ThD−1T Z̃t[`g

−1]′′(ut, g
−1(Z̃ᵀt δ))(D

−1
T Z̃t)

ᵀKh(zt − z)
)

=

 G1 G2

G2 G3

 .

Here,

G1 = E
(
−[`g−1]′′(ut, g

−1(Z̃ᵀt δ))Kh(zt − z)
)

= E
(
−[`g−1]′′(ut, g

−1(δ0 + δ1(zt − z)))Kh(zt − z)
)

= E
(
−[`g−1]′′(ut, g

−1(δ0))Kh(zt − z)
)

+ E
(
[`g−1]′′′(ut, g

−1(δ0∗))δ1(zt − z)Kh(zt − z)
)

= f(z)Σ(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀ + op(1),

where δ = (δ0ᵀ, δ1ᵀ)ᵀ with δ0 = η(z), and δ0∗ is a point between δ0 and Z̃ᵀt δ. Σ(z) =

−E{`′′(ut, g−1(η(zt)))|zt = z} with η(zt) = (w(zt)
ᵀ, ϑ(zt)

ᵀ)ᵀ. The third equation follows the

Taylor expansion and the equation [`g−1]′′(·) = [`′(ut, g
−1(·)) ◦ (g−1)′(·)]′ = `′′(ut, g

−1(·)) ◦
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{[(g−1)′(·)][(g−1)′(·)]ᵀ}+ diag{`′(ut, g−1(·))} ◦ (g−1)′′(·).

G2 = E
(
−[`g−1]′′(ut, g

−1(Z̃ᵀt δ))((zt − z)/h)Kh(zt − z)
)

= E
(
−[`g−1]′′(ut, g

−1(δ0 + δ1(zt − z)))((zt − z)/h)Kh(zt − z)
)

= E
(
−[`g−1]′′(ut, g

−1(δ0))((zt − z)/h)Kh(zt − z)
)

+ op(1)

= Σ(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀE{((zt − z)/h)Kh(zt − z)}+ op(1)

= op(1),

and

G3 = E
(
−[`g−1]′′(ut, g

−1(Z̃ᵀt δ))((zt − z)2/h2)Kh(zt − z)
)

= E
(
−[`g−1]′′(ut, g

−1(δ0))((zt − z)2/h2)Kh(zt − z)
)

+ op(1)

= µ2f(z)Σ(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀ + op(1).

It follows that

E(−B∗T ) = diag(1, µ2)⊗ {f(z)Σ(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}+ op(1).

Similarly, we can show that V ar(−B∗T ) = op(1). Hence, −B∗T = diag(1, µ2) ⊗ {f(z)Σ(z) ◦
[(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}+ op(1).

In the same way, we can calculate

E(A∗T ) = hE
T∑
t=1

D−1T Z̃t[`g
−1]′(ut, g

−1(Z̃ᵀt δ))Kh(zt − z)

= DT

 h2

2
µ2f(z)Σ(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀη′′(z)

0

+ op(DTh
2),

where 0 is a 2d-dimensional vector with all elements equal 0.

Further, following the same technology on pages 251-252 of Fan & Gijbels (1996), we

have

E(A∗TA
∗ᵀ
T ) = h2E

T∑
t=1

D−1T Z̃t[`g
−1]′(ut, g

−1(Z̃ᵀt δ))[`g
−1]′(ut, g

−1(Z̃ᵀt δ))
ᵀZ̃ᵀtD

−1
T K2

h(zt − z)

= diag(ν0, ν2)⊗ {f(z)Ω(z) ◦ [(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}+ op(1),
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where Ω(z) = E{`′(ut, g−1(η(zt)))`
′(ut, g

−1(η(zt)))
ᵀ|zt = z}.

It follows that

V ar(DT (δ̂ − δ)) = B∗−1T E(A∗TA
∗ᵀ
T )(B∗−1T )ᵀ

=

 ν0
f(z)

ν2
µ22f(z)

⊗ {Σ−1(z)Ω(z)Σ−1(z) ◦ {[(g−1)′(η(z))][(g−1)′(η(z))]ᵀ}−1}.

To establish the asymptotic normality for δ̂, we use Doob’s small-block and large-block

method, whose proof is similar to the counterparts on pages 252-255 of Fan & Gijbels (1996).

Details are omitted here. This completes the proof.

�

I Additional Simulation Results

I.1 High Dimensional Conditional Mixture Copula

We extend the bivariate mixture model to the 3- and 4-dimensional cases. For the

former, we assume one marginal distribution follows N(1, 0.5) while the other two follow the

student’s t-distributions with the degrees of freedom respectively equal to 4 and 5. For the

latter, we assume two marginal distributions respectively follow N(1, 0.5) and N(0, 2) while

the other two follow the student’s t-distributions with the degrees of freedom respectively

equal to 4 and 5. For simplicity, we only examine the scenario that data are generated from

the mixture of Clayton and Gumbel.

Table D1 documents the MSEs of the copula parameter estimates and the selection rates

of the four candidate copulas in the mixture model by the propose conditional mixture copula

method. We consider the 3-dimensional copula (Panel 1) and 4-dimensional copula (Panel

2) respectively. Table D2 displays the MSEs of the weight estimates for the four candidate

copulas under the 3-dimensional (Panel 1) and 4-dimensional (Panel 2) cases.
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Table D1: MSEs of copula parameter estimates and accurate (inaccurate) rates of selection when the true
model is a mixture of 3- and 4-dimensional Clayton and Gumbel copulas.

Panel 1 Combination: Clayton + Gumbel (3-dimension)
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 MSE 0.928 0.901 – – 0.693 0.612 – – 0.305 0.291 – –

Rate 1.000 0.827 (0.156) (0.268) 1.000 0.952 (0.041) (0.145) 1.000 0.973 (0.017) (0.041)
Model 1 + Model 3 MSE 0.945 0.917 – – 0.536 0.506 – – 0.323 0.221 – –

Rate 1.000 0.919 (0.069) (0.258) 1.000 0.929 (0.034) (0.131) 1.000 0.962 (0.008) (0.077)
Model 1 + Model 4 MSE 0.991 0.929 – – 0.518 0.503 – – 0.293 0.324 – –

Rate 1.000 0.938 (0.041) (0.271) 1.000 0.935 (0.013) (0.133) 1.000 0.993 (0.004) (0.085)
Model 2 + Model 3 MSE 1.022 1.014 – – 0.757 0.618 – – 0.368 0.270 – –

Rate 1.000 0.873 (0.145) (0.227) 1.000 0.943 (0.031) (0.132) 1.000 0.982 (0.013) (0.056)
Model 2 + Model 4 MSE 1.106 0.886 – – 0.682 0.539 – – 0.377 0.286 – –

Rate 1.000 0.891 (0.133) (0.318) 1.000 0.962 (0.029) (0.146) 1.000 0.992 (0.005) (0.067)
Model 3 + Model 4 MSE 0.883 0.920 – – 0.571 0.555 – – 0.340 0.275 – –

Rate 1.000 0.857 (0.154) (0.249) 1.000 0.944 (0.042) (0.121) 1.000 0.991 (0.010) (0.054)
Panel 2 Combnation: Clayton + Gumbel (4-dimension)

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 MSE 0.945 0.922 – – 0.714 0.631 – – 0.320 0.303 – –
Rate 1.000 0.876 (0.132) (0.276) 1.000 0.966 (0.059) (0.143) 1.000 0.992 (0.010) (0.074)

Model 1 + Model 3 MSE 1.027 0.933 – – 0.624 0.517 – – 0.377 0.284 – –
Rate 1.000 0.933 (0.069) (0.231) 1.000 0.915 (0.023) (0.132) 1.000 0.977 (0.008) (0.067)

Model 1 + Model 4 MSE 0.983 0.996 – – 0.603 0.683 – – 0.313 0.342 – –
Rate 1.000 0.926 (0.043) (0.264) 1.000 0.933 (0.014) (0.154) 1.000 0.989 (0.005) (0.088)

Model 2 + Model 3 MSE 1.054 1.136 – – 0.840 0.702 – – 0.432 0.368 – –
Rate 1.000 0.882 (0.127) (0.221) 1.000 0.925 (0.030) (0.128) 1.000 0.990 (0.013) (0.053)

Model 2 + Model 4 MSE 1.127 0.872 – – 0.753 0.628 – – 0.386 0.340 – –
Rate 1.000 0.869 (0.118) (0.305) 1.000 0.937 (0.035) (0.160) 1.000 0.988 (0.008) (0.076)

Model 3 + Model 4 MSE 0.909 0.955 – – 0.631 0.657 – – 0.379 0.354 – –
Rate 1.000 0.903 (0.166) (0.256) 1.000 0.951 (0.041) (0.127) 1.000 0.990 (0.009) (0.068)

Notes. This table documents the mean square errors (MSEs) of the copula parameter estimates and the
rates of selection for each copula in the mixture model when the true model includes two copulas. The
sample size T ∈ {200, 500, 1000} and each simulation is repeated 1000 times.
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Table D2: MSEs of copula weight estimates when the true model is a mixture of 3- and 4-dimensional
Clayton and Gumbel copulas.

Panel 1 Combination: Clayton + Gumbel (3-dimension)
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 + Model 2 0.013 0.012 – – 0.006 0.010 – – 0.002 0.003 – –
Model 1 + Model 3 0.011 0.017 – – 0.007 0.010 – – 0.003 0.002 – –
Model 1 + Model 4 0.014 0.014 – – 0.005 0.009 – – 0.003 0.003 – –
Model 2 + Model 3 0.011 0.009 – – 0.004 0.004 – – 0.002 0.002 – –
Model 2 + Model 4 0.015 0.018 – – 0.007 0.009 – – 0.002 0.002 – –
Model 3 + Model 4 0.014 0.016 – – 0.008 0.008 – – 0.002 0.003 – –
Panel 2 Combination: Clayton + Gumbel (4-dimension)

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 0.019 0.020 – – 0.010 0.012 – – 0.002 0.003 – –
Model 1 + Model 3 0.015 0.022 – – 0.008 0.012 – – 0.003 0.004 – –
Model 1 + Model 4 0.016 0.015 – – 0.007 0.010 – – 0.003 0.003 – –
Model 2 + Model 3 0.012 0.011 – – 0.005 0.005 – – 0.002 0.003 – –
Model 2 + Model 4 0.017 0.021 – – 0.009 0.011 – – 0.003 0.002 – –
Model 3 + Model 4 0.017 0.017 – – 0.010 0.009 – – 0.003 0.004 – –

Notes. The table documents the mean square errors (MSEs) of the mixture copula weight estimates. The
sample size T ∈ {200, 500, 1000} and each simulation is repeated 1000 times.

I.2 Misspecified Conditional Mixture Model

We still hold the working mixture copulas model as a combination the Clayton, Gumbel,

Frank and Gaussian copulas, but consider two cases in which the working model is misspeci-

fied: (1). data are generated from the survival Gumbel copula; (2). data are generated from

the mixture of Gumbel and survival Gumbel copulas. Table D3 displays the results of CM

in the two misspecified scenarios.

Table D3: Percentage of selected copula(s) when the working model is misspecified.

Panel A True Copula: Survival Gumbel
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 (0.996) (0.000) (0.021) (0.093) (1.000) (0.000) (0.016) (0.039) (1.000) (0.000) (0.010) (0.025)
Model 2 (0.983) (0.000) (0.023) (0.108) (0.995) (0.000) (0.011) (0.050) (1.000) (0.000) (0.013) (0.031)
Model 3 (0.996) (0.000) (0.027) (0.079) (0.994) (0.000) (0.014) (0.042) (0.998) (0.000) (0.008) (0.023)
Model 4 (0.995) (0.000) (0.012) (0.085) (0.996) (0.000) (0.015) (0.041) (0.997) (0.000) (0.010) (0.027)
Panel B True Copula: Survival Gumbel + Gumbel

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 + Model 2 (0.901) 0.871 (0.100) (0.231) (0.947) 0.927 (0.050) (0.139) (0.951) 0.993 (0.030) (0.061)
Model 1 + Model 3 (0.915) 0.845 (0.084) (0.226) (0.911) 0.932 (0.041) (0.115) (0.963) 0.968 (0.031) (0.071)
Model 1 + Model 4 (0.915) 0.903 (0.055) (0.315) (0.903) 0.946 (0.048) (0.162) (0.974) 0.983 (0.022) (0.088)
Model 2 + Model 3 (0.891) 0.918 (0.168) (0.247) (0.955) 0.937 (0.078) (0.138) (0.928) 0.990 (0.047) (0.063)
Model 2 + Model 4 (0.947) 0.892 (0.143) (0.281) (0.948) 0.959 (0.077) (0.149) (0.990) 0.961 (0.038) (0.059)
Model 3 + Model 4 (0.960) 0.934 (0.132) (0.262) (0.986) 0.971 (0.081) (0.155) (0.982) 0.984 (0.044) (0.067)

Notes. This table documents the rates of selection for each copula in the mixture model when the working
mixture model is misspecified. In Panel 1, data are generated from the Survival Gumbel copula. In Panel 2,
data are generated from the mixture of Survival Gumbel and Gumbel copulas. Values with parentheses are
the rates that copulas in the mixture copula are incorrectly selected. The sample size T ∈ {200, 500, 1000}
and each simulation is repeated 1000 times.
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I.3 Model Selection by Hypothesis Test

Table D4 displays the accurate (inaccurate) rate of selection by the proposed hypothesis

test procedure with the 0.05 significance level when the true model is an individual copula.

The simulation setup here is the same with that of Table 1 in the main text.

Table D4: Accurate (inaccurate) rates of selection by the proposed hypothesis test procedure with the 0.05
significance level when the true model is an individual copula.

Panel 1 True Copula: Clayton
T = 200 T = 500 T = 1000

Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian
Model 1 1.000 (0.000) (0.071) (0.055) 1.000 (0.000) (0.051) (0.043) 1.000 (0.000) (0.027) (0.029)
Model 2 1.000 (0.000) (0.091) (0.115) 1.000 (0.000) (0.037) (0.061) 1.000 (0.000) (0.014) (0.019)
Model 3 1.000 (0.000) (0.060) (0.071) 1.000 (0.000) (0.003) (0.031) 1.000 (0.000) (0.000) (0.013)
Model 4 1.000 (0.000) (0.066) (0.075) 1.000 (0.000) (0.031) (0.033) 1.000 (0.000) (0.024) (0.024)
Panel 2 True Copula: Gumbel

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 (0.000) 1.000 (0.065) (0.044) (0.000) 1.000 (0.054) (0.031) (0.000) 1.000 (0.021) (0.030)
Model 2 (0.000) 1.000 (0.094) (0.081) (0.000) 1.000 (0.063) (0.049) (0.000) 1.000 (0.010) (0.044)
Model 3 (0.000) 1.000 (0.069) (0.071) (0.000) 1.000 (0.002) (0.039) (0.000) 1.000 (0.000) (0.014)
Model 4 (0.000) 1.000 (0.061) (0.039) (0.000) 1.000 (0.022) (0.039) (0.000) 1.000 (0.022) (0.015)
Panel 3 True Copula: Frank

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 (0.000) (0.012) 1.000 (0.193) (0.000) (0.000) 1.000 (0.079) (0.000) (0.000) 1.000 (0.027)
Model 2 (0.000) (0.005) 1.000 (0.232) (0.000) (0.000) 1.000 (0.047) (0.000) (0.000) 1.000 (0.060)
Model 3 (0.000) (0.001) 1.000 (0.243) (0.000) (0.000) 1.000 (0.132) (0.000) (0.000) 1.000 (0.073)
Model 4 (0.000) (0.002) 1.000 (0.194) (0.000) (0.000) 1.000 (0.155) (0.000) (0.000) 1.000 (0.087)
Panel 4 True Copula: Gaussian

T = 200 T = 500 T = 1000
Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian Clayton Gumbel Frank Gaussian

Model 1 (0.000) (0.009) (0.087) 1.000 (0.000) (0.000) (0.055) 1.000 (0.000) (0.000) (0.031) 1.000
Model 2 (0.000) (0.000) (0.094) 1.000 (0.000) (0.000) (0.037) 1.000 (0.000) (0.000) (0.020) 1.000
Model 3 (0.000) (0.001) (0.069) 1.000 (0.000) (0.000) (0.051) 1.000 (0.000) (0.000) (0.028) 1.000
Model 4 (0.000) (0.000) (0.057) 1.000 (0.000) (0.000) (0.036) 1.000 (0.000) (0.000) (0.029) 1.000

Notes. This table documents the rates of selection for each copula in the mixture model when the true
model is an individual copula. In each panel, values without parentheses are the rates that the true copula
is correctly selected, while values with parentheses are the rates that copulas in the mixture copula are
incorrectly selected.
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