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1 Introduction

Understanding the causal effect of a treatment or policy or intervention, such as par-

ticipating into a training program, is a basic goal of many empirical studies in economics

and many other applied fields. This interest has led to a surge in theoretical and applied

work focusing on estimating average treatment effects (ATE) or average treatment effects

on the treated (ATT) group under various environments. Influential surveys include, but

not limited to, the papers by Angrist and Krueger (1999), Heckman, Lalonde and Smith

(1999), Blundell and Dias (2002), and among others. Moreover, Imbens (2004) and Imbens

and Wooldridge (2009) provided comprehensive reviews on the recent developments in the

treatment effect literature.

The average treatment effect, although vital, sometimes reveals only a partial picture for

the outcome distribution of interest. For example, the mean effect can not measure how

the dispersion of the outcome distribution has altered after a treatment, and furthermore,

it is usually uninformative on whether the effects are stronger in some quantiles than in

others. However, such distributional information can be important in many applications,

particularly from policy-making of views. Here, there are some examples, evaluating the

effect of the unionization on wage inequality as in Freeman (1980) and Card (1996), the

effects of government training programs on lower quantiles of earning distributions studied

by LaLonde (1995) and Abadie, Angrist and Imbens (2002), the effect of the government-

subsidized saving program on lower tails of savings distributions, and among many others

applications. From a policy perspective, a policy treatment that helps to raise the lower tail

of an income distribution is often more appreciated than one that shifts the median, even

though the average treatment effects of both are identical. To characterize the distributional

effects of policy variables, quantile treatment effects (QTE), as addressed in the papers by

Lehmann (1975) and Doksum (1974), can be an effective way which has emerged as an

important concept for measuring distributional impacts in the literature. Recent studies on

QTE include, but not limited to, the papers by Abadie et al. (2002), Chernozhukov and

Hansen (2005), Donald and Hsu (2014), Firpo (2007), Frölich and Melly (2013), and the

references therein.

Another challenge in the policy evaluation literature is how to characterize the hetero-

geneity of treatment effects across different individuals as in Heckman and Robb (1985) and

Heckman, Smith and Clements (1997). Researchers are of interest to estimate the effect

1



of a treatment or a policy on outcomes in various sub-populations defined by some char-

acterizations of components of pre-treatment variables X. For example, when estimating

the effect of maternal smoking during pregnancy on the birth weight, it is interesting to

catch heterogenous effects across mothers with different ages. To this end, Abrevaya, Hsu

and Lieli (2015) and Lee, Okui and Whang (2017) developed the concept of partially condi-

tional average treatment effect (PCATE) to measure the heterogeneity in mean effects across

sub-populations. To be more detailed, Abrevaya et al. (2015) proposed using a nonparamet-

ric method to estimate the PCATE, whereas Lee et al. (2017) suggested a doubly robust

estimation approach.

In this paper, our attempt is to capture heterogeneities for both across-distribution and

across-individuals simultaneously. To this end, we propose a partially conditional quantile

treatment effect (PCQTE) to characterize the heterogeneity along the outcome distribution

conditional on some continuous covariate Z, which is only a strict subset of covariates X, un-

der the condition that the unconfoundedness assumption holds (see Assumption 2.1(i) later).

It is worth noting that the unconfoundedness assumption does not hold in general when only

conditioning on the sub-vector Z, so new techniques are needed to identify the PCQTE pa-

rameter. We show that the PCQTE is nonparametrically identified and a semiparametric

estimation is provided. Furthermore, under some regularity conditions, the proposed semi-

parametric estimator is shown to be consistent and asymptotically normal, which allows us

to make point-wise statistical inference about PCQTE as a function of Z.

Our motivation of this paper comes actually from exploring an empirical study for es-

timating treatment effects of first-time mothers’ smoking status during pregnancy on birth

weight conditional on their ages. Indeed, Abrevaya et al. (2015) and Lee et al. (2017) consid-

ered the case by investigating the ATE of maternal smoking during pregnancy on infant birth

weights conditional on mothers’ ages, whereas Abrevaya et al. (2015) proposed nonparamet-

ric and semiparametric estimators of the conditional average treatment effect conditional

on some continuous covariates. A semiparametric estimator was proposed if the propensity

score function is estimated parametrically at the first stage, and also, a fully nonparametric

estimator is provided when the propensity score function is estimated nonparametrically.

To avoid the curse of dimensionality for nonparametric estimation, Lee et al. (2017) instead

proposed a doubly robust estimator based on parametric regression in the sense that the

estimator is consistent when either the regression model or the propensity score model is
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correctly specified. However, the aforementioned papers do not address the heterogeneity

issue. In other words, it is interesting to note that the distributions of infant birth weights

for both whites and blacks are actually asymmetric and fat-tailed in the left side; see Figure

1 and Table 2 in Section 3 for details. Therefore, in this paper, we re-analyze this real

example by using the proposed PCQTE model and its modeling approach, which might

be more suitable for analyzing this dataset. Also, we investigate the conditional quantile

treatment effect on treated group conditional on the mother’s age, termed as PCQTT. As

a result, our findings look very interesting, appealing, and novel in the literature, and fur-

ther, different interpretations are provided to this real application. In a sum, our empirical

results show substantial heterogeneity across different mothers’ ages and there is a signifi-

cant negative effect of smoking on infant birth weight across all mothers’ ages and quantiles

considered. More specifically, the smoking quantile effects become stronger, more negative

on birth weights, at higher ages, and particularly, for whites, the estimated values at lower

quantiles are bigger than those at the median or higher quantiles, conditional on mothers’

ages. The detailed analysis of this real example is presented in Section 4.

The rest of this paper is organized as follows. Section 2 introduces the partially condi-

tional quantile treatment effect model and discusses its identification conditions as well as

estimation procedures, together with the presentation of the asymptotic properties of the

proposed estimator. Also, Section 2 extends the proposed method to estimate the analogous

parameter for the partially conditional quantile treatment effects on the treated group (PC-

QTT). Monte Carlo simulations are conducted in Section 3 to illustrate the finite sample

performance of the proposed estimator, and Section 4 is devoted to them aforementioned

empirical example to investigate how the distributional effect of maternal smoking on birth

weights varies across different groups of mothers. Section 5 concludes. The proofs of the

main results are delegated to Appendix.

2 Partially Conditional Quantile Treatment Effect Model

2.1 Model Setup

Let Di be the binary treatment variable of individual i, where Di = 1 if individual

i receives the treatment of interest and otherwise, Di = 0. Using the potential outcome

framework initialized by Rubin (1974), let Yi(0) and Yi(1) be the potential outcomes of

individual i if it is in the control group or in the treated group, respectively. Note that
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for each individual i, we can only observe Yi(Di) but Yi(1 − Di) is missing. The observed

outcome variable Yi can be written as

Yi = (1−Di) · Yi(0) +Di · Yi(1).

In addition, we observe a L-dimensional vector of pre-treatment variables, denoted by Xi.

Throughout this paper, it is assumed that

Yi(0), Yi(1), Xi, Di


, i = 1, · · · , n, are independent

and identically distributed. Since only one of Yi(0) and Yi(1) is observable for each individual

i, the following assumptions are needed to identify the treatment effect.

Assumption 2.1. (i) (Unconfounded Treatment Assignment) Given pre-treatment variables

Xi, the potential outcomes are jointly independent from the treatment variable Di, namely,


Yi(0), Yi(1)



|= Di | Xi,

where |= indicates statistical independence.

(ii) (Common Support) For almost all x in the support of Xi,

0 < p ≤ p(x) = P (Di = 1|Xi = x) ≤ p < 1,

for some 0 < p < p < 1, where p(x) is called propensity score function.

Assumption 2.1(i) is also known as the (strongly) “ignorable treatment assignment”, or

“conditional independence assumption” or “selection on observables” in the econometrics

and/or statistics literature; see Rosenbaum and Rubin (1983) and Lechner (1999, 2002). It

rules out the existence of unobserved factors that affect the treatment choice and are also

correlated with the potential outcomes. Assumption 2.1(ii) states that in the population

for almost all values of Xi, both treatment assignment levels have a positive probability

of occurrence. However, lack of common support is one of main concerns in practice. A

common approach to address this problem is to drop observations with the propensity score

close to zero or one, and focus on the treatment effect in the subpopulation with propensity

score bounded away from zero and one. These two assumptions have been widely used

in literature on treatment effect evaluation, such as Heckman, Ichimura, Smith and Todd

(1998), Dehejia and Wahba (1999), Hirano, Imbens and Ridder (2003), Firpo (2007), and

among others.

In this paper, our purpose is on the quantile treatment effect conditional on a subset of
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the pre-treatment variables. Specifically, let Zi be a k-dimensional sub-vector of Xi, where

1 ≤ k ≪ L, and then, the τ -th partially conditional quantile treatment effect is defined as

∆τ (z) = q1,τ (z)− q0,τ (z), (2.1)

where for j = 0, 1 and τ ∈ (0, 1), qj,τ (z) is the τ -th conditional quantile of Yi(j) conditional

on Zi = z. Note that the unconfounded treatment assignment assumption may not hold if

one only controls the sub-vector Zi instead of Xi. Also, note that if there is no Zi in (2.1),

it becomes to the unconditional quantile treatment effect model in Firpo (2007).

2.2 Estimation Procedures

Since the potential outcomes Yi(0) and Yi(1) are not observable for each individual,

Y1(j), · · · , Yn(j) can not be used directly to estimate qj,τ (z) in (2.1) for j = 0 and 1. Now,

by defining W0(Xi, Di) = (1−Di)/[1−p(Xi)] and W1(Xi, Di) = Di/p(Xi), it is easy to show

by Assumption 2.1 that

E

Wj(Xi, Di) g(Yi)

Zi


= E


Wj(Xi, Di) g(Yi(j))

Zi


= E


g(Yi(j))

Zi



for j = 0 and 1 and any function g(·) with finite expectation, which implies that qj,τ (z),

j = 0 and 1, can be easily expressed as

qj,τ (z) = argmin
q

E

ρτ (Yi(j); q)

Zi = z

= argmin

q
E

Wj(Xi, Di)ρτ (Yi; q)

Zi = z

, (2.2)

where ρτ (Y ; q) = (Y − q){τ − I(Y ≤ q)} is the check function as in Koenker and Bassett

(1978) and Koenker (2005). Here, I{·} is the indicator function. When the propensity

score function p(x) is known, observations (Yi, Xi, Di), i = 1, · · · , n, can be used directly

to estimate qj,τ (z) for j = 0 and 1 by running a weighted quantile regression model as in

Koenker and Bassett (1978) and Koenker (2005).

Because p(x) is unknown, in view of (2.2), a two-step estimation procedure is needed

for estimating ∆τ (z) at any given grid point z. Firstly, one needs to obtain the estimated

propensity score function pn(x) using (Xi, Di), i = 1, · · · , n, and then, at the second stage,

the kernel-based locally weighted method is used to estimate qj,τ (z) for j = 0 and 1 and

thus, ∆τ (z). Specifically,

∆τ (z) = q1,τ (z)− q0,τ (z), (2.3)
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where for j = 0 and 1,

qj,τ (z) = argmin
q

1

n

n

i=1

Kh


Zi − z

Wn,j(Xi, Di)ρτ (Yi; q) (2.4)

withWn,0(Xi, Di) = (1−Di)/[1−pn(Xi)], Wn,1(Xi, Di) = Di/pn(Xi), andKh(u) = K(u/h)/h.

Here, K(·) is a kernel function, h is the bandwidth parameter, and pn(x) is a consistent es-

timate of p(x). Of course, the estimation procedure in (2.4) can be extended to the local

linear estimation scheme as follows

(qllj,τ , q
′ll
j,τ ) = argmin

q0, q1

1

n

n

i=1

Kh


Zi − z

Wn,j(Xi, Di)ρτ

Yi; q0 + q1(Zi − z)


, j = 0, 1,

which gives the local linear estimate of ∆τ (z), ∆τ,ll(z) = qll1,τ − qll0,τ . The theoretical deriva-

tions for ∆τ,ll(z) should be the same as those for ∆τ (z) so that for simplicity, the asymptotic

theory for ∆τ (z) is only provided below. Indeed, the asymptotic properties for ∆τ,ll(z) are

available upon request.

Now, the question is how to obtain a consistent estimate of p(x). It is well documented

in the literature that there are two common approaches used for estimating the propensity

score function p(x). The first approach is to assume a parametric model as p(x) = p(x; θ),

for example, a logit model or a probit model so that the parameter θ can be easily estimated

through the maximum likelihood method. The second one is nonparametric. For a nonpara-

metric method, one can use the so-called series logit estimator as in Hirano et al. (2003) and

Firpo (2007) or other suitable consistent estimators of p(x) are also possible. For example,

Ichimura and Linton (2005) used local polynomial regression and Abrevaya et al. (2015) used

higher order kernel regression to estimate p(x). The first one, parametric form of p(x), is used

in this paper so that the estimation in (2.3) is called a semiparametric estimator. Indeed,

Tang (2020) considered using a nonparametric method and derived the first-order asymp-

totic results displayed in the following section, which do not depend critically on the choice

of pn(x) as long as the bandwidth used for estimating p(x) is under-smoothed. Therefore,

the similar conclusions as in Theorem 2.1 can be obtained under some regularity conditions

for a nonparametric estimation of p(x); see Tang (2020) for details.
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2.3 Asymptotic Theory

This subsection is devoted to investigating the asymptotic properties for the semipara-

metric estimator for ∆τ (z) in (2.3), in the sense that the propensity score function p(x) is

estimated parametrically, and ∆τ (z) is estimated nonparametrically using equations (2.3)

and (2.4). Although the asymptotic theory for ∆τ (z) can be obtained for any k-dimensional

Zi with k < L, the result is presented only for k = 1 to save notation throughout the rest of

this paper. As pointed out by Abrevaya et al. (2015), the case for k = 1 is the most relevant

case in practice, since ∆τ (z) can easily be displayed in a two-dimensional graph when Zi is a

scalar. Before studying the asymptotic properties of the proposed estimators, the following

technical assumptions are needed, list below.

Assumption 2.2. (Distributions of Xi and Zi) There exists a constant c > 0 such that

the density function of Xi, fX(x) satisfies infx∈X fX(x) ≥ c, where X is the support of Xi.

Furthermore, the density function of Zi, fZ(z) is twice continuously differentiable on the

support of Zi.

Assumption 2.3. (i) The conditional density function fY (j)|X(y|x) is continuous and

bounded on the support of Yi(j) and Xi for j = 0, 1. (ii) The conditional density func-

tion fY (j)|Z(y|z) is continuous and uniformly bounded away from zero in a neighborhood of

qj,τ (z) for j = 0 and 1. It is twice differentiable with respect to z, and its first derivative

with respect to y is continuous and bounded on the support of Yi(j) and Zi.

Assumption 2.4. (Kernel and bandwidth) (i) The kernel function K(u) is a symmetric

density function with compact support. It is also continuously differentiable on its support.

(ii) h → 0, nh1+ε → ∞ for some ε > 0 and nh5 is bounded as n → ∞.

Assumption 2.5. (Parametric propensity score function) Suppose the propensity score

function has a parametric form p(x) = p(x; θ0) with a fixed dimensional parameter θ0. Also

assume that the estimated propensity score function pn(x) = p(x; θn) satisfies supx∈X
p(x; θn)−

p(x; θ0)
 = Op(n

−1/2).

The restriction imposed on the distribution of Xi in Assumption 2.2 is commonly used

in the literature on treatment effect evaluation, see Hirano et al. (2003), Abadie and Imbens

(2006, 2016), Firpo (2007), Abrevaya et al. (2015), and among others. Assumption 2.3

guarantees the solution of (2.2) is unique and the smoothness conditions imposed are easily
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satisfied in practice. Assumption 2.4 on kernel function and bandwidth is frequently assumed

in the literature on nonparametric estimation. Many commonly used kernel functions, such

as the Epanechnikov kernel, satisfy the requirements. Assumption 2.5 typically holds for

standard parametric estimation methods under reasonably mild regularity conditions.

Next, we establish the asymptotic properties of ∆τ (z), which are stated in the following

theorem with the detailed proof given in Appendix. For easy presentation, define some

notations as follows. First, define Fj(y|z) = FY (j)|Z(y|z) to be the conditional CDF of Y (j)

given Z = z for j = 0 and 1, and its m-th order derivative F
(m)
j (y|z) = ∂mFj(y |z)/∂zm

for m ≥ 0. Also, let ψj(Yi, Xi, Di; z) = Wj(Xi, Di) (I{Yi ≤ qj,τ (z)} − τ) and δτ (z) =

δ1,τ (z)− δ0,τ (z), where for j = 0 and 1,

δj,τ (z) =
2f ′

Z(z)F
(1)
j (qj,τ (z)|z)

fZ(z)fY (j)|Z(qj,τ (z)|z)
+

F
(2)
j (qj,τ (z)|z))

fY (j)|Z(qj,τ (z)|z)
, (2.5)

which is in the asymptotic bias term in ∆τ (z), given in the following theorem.

Theorem 2.1. Suppose that Assumptions 2.1-2.5 hold. Then, for each z in the support of

Zi, one has

√
nh


∆τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)



= − 1√
nh

1

fZ(z)

n

i=1


hKh(Zi − z)ψ1(Yi, Xi, Di, z)− E


hKh(Zi − z)ψ1(Yi, Xi, Di, z)



fY (1)|Z(q1,τ (z)|z)

−
hKh(Zi − z)ψ0(Yi, Xi, Di, z)− E


hKh(Zi − z)ψ0(Yi, Xi, Di, z)



fY (0)|Z(q0,τ (z)|z)


+ op(1) (2.6)

D−→ N

0, ν0(K)σ2

τ (z)/fZ(z)


, (2.7)

where δτ (z) is defined in (2.5), µ2(K) =

u2K(u)du, ν0(K) =


K2(u)du, and

σ2
τ (z) = E


ψ1(Yi, Xi, Di, z)

fY (1)|Z(q1,τ (z)|z)
− ψ0(Yi, Xi, Di, z)

fY (0)|Z(q0,τ (z)|z)

2Zi = z


,

which is in the asymptotic variance term of ∆τ (z).

It can be seen from Theorem 2.1 that the first term in (2.6) is the first-order approxima-

tion for ∆τ (z), which is the so-called local Bahadur representation; see Cai and Xu (2008),

which makes the asymptotic analysis in (2.7) much easier. Another consequence of Theorem
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2.1 is to provide a formulation for constructing a confidence interval for making a statistical

inference. To construct a pointwise confidence interval for ∆τ (z) for each given z, by ignor-

ing the asymptotic bias term, one needs to obtain a consistent estimate for both fZ(z) and

σ2
τ (z). Clearly, the density function of Zi can be estimated by the kernel density estimator

as fZ(z) = 1
n

n
i=1

Kh(Zi − z). However, it is much more involved to estimating σ2
τ (z) because

it includes the unknown conditional density function fY (j)|Z(qj,τ (z)|z) for j = 0 and 1. As

pointed out by Koenker and Xiao (2004), Koenker (2005), and Cai and Xu (2008), it might

not be easy to estimate consistently the conditional density function fY (j)|Z(qj,τ (z)|z). Fol-

lowing Koenker (2005), we propose in this paper using the following estimator to estimate

the conditional density function of Yi(j) conditional on Zi = z for j = 0 and 1,

fY (j)|Z(qj,τ (z)|z) =
2h∗

qj,τ+h∗(z)− qj,τ−h∗(z)
,

where h∗ is a bandwidth parameter. Indeed, Koenker (2005) showed that fY (j)|Z(qj,τ (z)|z)
converges to fY (j)|Z(qj,τ (z)|z) in probability if h∗ → 0 and h∗

√
nh → ∞. Then, a consistent

estimate of σ2
τ (z) can be given by

σ2
τ (z) =

n

i=1

Kh(Zi − z)

 ψ1(Yi, Xi, Di; z)

fY (1)|Z(q1,τ (z)|z)
−

ψ0(Yi, Xi, Di; z)

fY (0)|Z(q0,τ (z)|z)

2 n

i=1

Kh(Zi − z),

where ψj(Yi, Xi, Di; z) = Wn,j(Xi, Di)

I{Yi ≤ qj,τ (z)} − τ


for j = 0 and 1. Therefore, one

can compute a pointwise confidence interval for ∆τ (z) by ignoring the asymptotic bias term.

2.4 Estimation of PCQTT

In general, policy-makers may be interested not only in the treatment effect for the

whole population, but also the treatment effect for the treated group as in Heckman and

Robb (1985) and Heckman et al. (1999). Of course, individual treatment effect might be

heterogeneous within the treated subpopulations as well. Therefore, this section is devoted

to the estimation of the PCQTT; that is,

∆τ |D=1(z) = q1,τ |D=1(z)− q0,τ |D=1(z),

where qj,τ |D=1(z) = inf

y : P (Yi(j) ≤ y | Zi = z,Di = 1) ≥ τ


is the τ -th quantile of Yi(j)

conditional on Zi = z and Di = 1 for j = 0 and 1.

To derive the nonparametric estimation of∆τ |D=1(z), define V1(Xi, Di) = Di and V0(Xi, Di)
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= (1−Di)p(Xi)/

1−p(Xi)


. Then, by the law of iterated expectations and the unconfounded

treatment assignment assumption, it is easy to verify that

E

Vj(Xi, Di)g(Yi)

Zi = z

= E


Vj(Xi, Di)g(Yi(j))

Zi = z

= E


Di · g(Yi(j))

Zi = z


for j = 0, 1 and for any function g(·) with finite expectation. Consequently, similar to (2.2),

the conditional quantile function qj,τ |D=1(z) can be identified by

qj,τ |D=1(z) = argmin
q

E

Vj(Xi, Di)ρτ (Yi; q)

Zi = z

,

from which, the following semiparametric estimator for the PCQTT is proposed

∆τ |D=1(z) = q1,τ |D=1(z)− q0,τ |D=1(z),

where

qj,τ |D=1(z) = argmin
q

1

n

n

i=1

Kh


Zi − z

Vn,j(Xi, Di)ρτ (Yi; q),

with Vn,0(Xi, Di) = (1 − Di)pn(Xi)/

1 − pn(Xi)


, Vn,1(Xi, Di) = Di, and pn(x) being a

parametric estimator of p(x). To establish the large sample properties for the proposed

PCQTT estimator ∆τ |D=1(z), Assumption 2.3 is needed a modification, given below.

Assumption 2.3∗. (i) The conditional density function fY (j)|X,D=1(y|x) is continuous and
bounded on the support of Yi(j) and Xi for j = 0 and 1. (ii) The conditional density function

fY (j)|Z,D=1(y|z) is continuous and uniformly bounded away from zero in a neighborhood of

qj,τ |D=1(z) for j = 0 and 1. It is twice differentiable with respect to z, and its first derivative

with respect to y is continuous and bounded on the support of Yi(j) and Zi. (iii) Finally,

pZ(z) = P (Di = 1|Zi = z) is twice continuously differentiable.

For simplicity of exposition, let ϕ1(Yi, Xi, Di; z) = V1(Xi, Di)

I{Yi ≤ q1,τ |D=1 − τ}


and

ϕ0(Yi, Xi, Di; z) = V0(Xi, Di)

I{Yi ≤ q1,τ |D=1 − τ}


. For j = 0 and 1, define Fj|D=1(y|z) =

FY (j)|Z,D=1(y|z) to be the conditional CDF of Y (j) conditional on Z = z and D = 1,

and its m-th order derivative F
(m)
j|D=1(y|z) = ∂mFj|D=1(y|z)/∂zm for m ≥ 0. Also, denote

ζτ (z) = ζ1,τ |D=1 − ζ0,τ |D=1, where for j = 0 and 1,

ζj,τ |D=1 =
1

pZ(z)fZ(z)fY (j)|Z,D=1(qj,τ |D=1(z)|z)


2pZ(z)f

′
Z(z)F

(1)
j|D=1(qj,τ |D=1(z)|z)

+pZ(z)fZ(z)F
(2)
j|D=1(qj,τ |D=1(z)|z) + 2p′Z(z)fZ(z)F

(1)
j|D=1(qj,τ |D=1(z)|z)


.
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The following theorem similar to Theorem 2.1 summarizes the asymptotic properties of the

estimator ∆τ |D=1 with the proof similar to that for Theorem 2.1 and omitted.

Theorem 2.2. Suppose Assumptions 2.1, 2.2, 2.3∗, 2.4 and 2.5 hold. Then, for each z in

the support of Z, we have

√
nh


∆τ |D=1(z)−∆τ |D=1(z) +

h2

2
µ2(K)ζτ (z) + op(h

2)


D−→ N


0, σ2

τ,T


,

where ζτ (z) is defined above, σ2
τ,T = ν0(K)σ2

τ |D=1(z)/

p2Z(z)fZ(z)


with

σ2
τ |D=1(z) = E


ϕ1(Yi, Xi, Di; z)

fY (1)|Z,D=1(q1,τ |D=1(z)|z)
− ϕ0(Yi, Xi, Di; z)

fY (0)|Z,D=1(q0,τ |D=1(z)|z)

2Zi = z


,

and other notations are the same as those in Theorem 2.1.

3 Monte Carlo Studies

In this section, Monte Carlo experiments are conducted to examine the finite sample

performance of the proposed estimation procedure. The goal is to assess the finite sample

accuracy in various scenarios.

Example 1. We consider a Skorohod representation1 for the potential outcomes Y (0) and

Y (1). Specifically, the data generating process is given by

Y (0) = λ0X1 + γ0


U0X2 and Y (1) = λ1X1 + γ1


U1X2,

where λ0 = 3.0, γ0 = 0.4, λ1 = 4.0, γ1 = 1.6, U0 and U1 independently follow the uniform

U [0, 1] distribution, X1 and X2 are independent with X1 ∼ U [0, 1] and X2 ∼ Beta(3, 1), and

the propensity score function is

P (D = 1|X1, X2) =
exp{−0.5 +X1 +X2}

1 + exp{−0.5 +X1 +X2}
.

Finally, the conditional variable Z is taken to be X1. Under this setting, the conditional

quantile function for Y (j) for j = 0 and 1, conditional on Z = z, is given by

qj,τ (z) = λjz + γjaτ , (3.1)

where aτ is the unique solution of equation −2a3 + 3a2 − τ = 0 within the interval (0, 1).

1For the definition of the Skorohod representation, the reader is referred to Durrett (1996).
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Therefore, the PCQTE is

∆τ (z) = (λ1 − λ0)z + (γ1 − γ0)aτ . (3.2)

To assess the finite sample performance of the estimator ∆τ (z), the mean absolute devi-

ation error (MADE) criterion is used, which is defined as

MADE
∆τ (·)


=

1

m

m

j=1

∆τ (zj)−∆τ (zj)
,

where {zj}mj=1 are the grid points taken from the support of z with equal increments. The

semiparametric estimator (2.3) with Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1)

is used to compute ∆τ (z). It is well known that the choice of bandwidth in kernel-based

estimation is important. By Assumption 2.4, the bandwidth h is set to be h = c · n−1/5 for

c ∈ {0.25, 0.5, 1.0} to illustrate how the choice of h affects the performance of the estimator.

In the treatment effect literature, the estimated propensity score is often trimmed to prevent

it from getting too close to 0 or 1. Therefore, following the convention in the literature, the

estimated propensity score pn(x) is truncated to be between [0.005, 0.995] in the following

simulation studies.

The simulation is replicated 1, 000 times to compute the median and standard deviation

(in parentheses) of the 1, 000 MADE values for each setting. Table 1 reports the simulation

results for the proposed semiparametric estimator. As seen in Table 1, the semiparametric

estimator performs well in terms of MADE and the choice of the bandwidth h should be

around 0.5n−1/5 based on the MADEs and their standard deviations. As expected, due to

the sparsity of sample observations in tail regions, the estimator performs better around

median regions than in tail regions. Finally, from the results presented in Table 1, one

can see clearly that there is a sharply decrease in MADEs and their standard deviations as

sample size goes from n = 500 to n = 2, 000 in all cases, which is in line with the asymptotic

theory.
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Table 1: Median and standard deviation (in parentheses) of 1000 MADE values for ∆τ (·).

τ

h = 0.25n−1/5 h = 0.5n−1/5 h = 1.0n−1/5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

MADE MADE MADE MADE MADE MADE MADE MADE MADE

0.1
0.090 0.068 0.060 0.089 0.072 0.058 0.101 0.093 0.084
(0.022) (0.014) (0.010) (0.020) (0.015) (0.011) (0.027) (0.020) (0.014)

0.25
0.084 0.064 0.047 0.080 0.062 0.048 0.094 0.083 0.080
(0.020) (0.013) (0.009) (0.017) (0.013) (0.010) (0.025) (0.017) (0.012)

0.5
0.080 0.058 0.044 0.066 0.049 0.036 0.080 0.059 0.045
(0.019) (0.012) (0.008) (0.015) (0.011) (0.008) (0.023) (0.015) (0.011)

0.75
0.082 0.062 0.046 0.078 0.060 0.045 0.093 0.085 0.075
(0.021) (0.013) (0.009) (0.018) (0.012) (0.009) (0.025) (0.018) (0.013)

0.9
0.091 0.069 0.061 0.090 0.075 0.060 0.098 0.092 0.086
(0.022) (0.013) (0.010) (0.020) (0.015) (0.011) (0.028) (0.021) (0.015)

Example 2. In this example, we investigate the finite sample performance of the proposed

semiparametric estimator ∆τ |D=1(z) with the same setting as that in Example 1. Again,

the conditional variable Z is taken to be X1 and the simulation is replicated 1, 000 times to

compute the median and standard deviation (in parentheses) of the 1, 000 MADE values for

each setting. Table 2 below displays the simulation results for the proposed semiparametric

estimator ∆τ |D=1(z).

Table 2: Median and standard deviation (in parentheses) of 1000 MADE values for ∆τ |D=1(·).

τ

h = 0.25n−1/5 h = 0.5n−1/5 h = 1.0n−1/5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

MADE MADE MADE MADE MADE MADE MADE MADE MADE

0.1
0.087 0.063 0.055 0.088 0.069 0.054 0.099 0.091 0.083
(0.023) (0.015) (0.010) (0.020) (0.014) (0.009) (0.027) (0.020) (0.014)

0.25
0.082 0.061 0.046 0.076 0.057 0.042 0.092 0.076 0.067
(0.021) (0.013) (0.008) (0.017) (0.012) (0.008) (0.023) (0.017) (0.012)

0.5
0.080 0.060 0.045 0.068 0.049 0.037 0.077 0.058 0.045
(0.019) (0.011) (0.008) (0.015) (0.010) (0.007) (0.021) (0.016) (0.011)

0.75
0.083 0.062 0.047 0.087 0.065 0.056 0.101 0.092 0.083
(0.021) (0.013) (0.010) (0.018) (0.012) (0.009) (0.024) (0.017) (0.012)

0.9
0.090 0.066 0.051 0.093 0.076 0.064 0.103 0.092 0.086
(0.023) (0.014) (0.011) (0.020) (0.013) (0.011) (0.028) (0.021) (0.015)

From Table 2, one can observe similar pattern as in Example 1. Specifically, similar to

the semiparametric estimator ∆τ (z), the semiparametric estimator ∆τ |D=1(z) also performs

well in terms of MADE. Moreover, the choice of the bandwidth h in a reasonable range

seems to have little influence on the MADEs and their standard deviations. Again, the

estimators perform better around median regions than in tail regions and the MADEs and
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their standard deviations sharply decrease as the sample size increases from n = 500 to

n = 2000 in all cases considered.

4 An Empirical Application

Many studies document that low infant birth weight is associated with prolonged negative

effects on health, educational and labor market outcomes throughout life, although there has

been a debate over its magnitude; see, for example, Abrevaya (2006), Almond, Chay and

Lee (2005) and Currie and Almond (2011) and among others. It is well known that there

are many risk factors which can cause low birth weight, and it is generally recognized that

maternal smoking is considered to be the most important preventable negative cause of low

birth weight; see Kramer (1987) for more discussions. Over the last decades, there have

been many studies that attempt to estimate the effect of maternal smoking on low birth

weight using various procedures. Recently, program evaluation approach is employed to

estimate this effect; see, for example, Almond et al. (2005), Abrevaya (2006), da Veiga and

Wilder (2008), Abrevaya and Dahl (2008) and Abrevaya et al. (2015) and the references

therein. In this paper, our interest is to see how the effect of maternal smoking changes

across different age groups of mothers along with the infant birth weight distribution. To

capture this heterogeneity, the proposed procedure is used to estimate the quantile effect

of maternal smoking on infant birth weight conditional on different mothers’ ages, which is

different from the studies by Abrevaya et al. (2015) and Lee et al. (2017) by considering the

average effect of maternal smoking on infant birth weight conditional on different mothers’

ages in their application. Because a large number of covariates is needed to make the

unconfoundedness assumption plausible in this example, our focus is on the parametric

estimator for the propensity score function p(x) as in Abrevaya et al. (2015) and Lee et al.

(2017).

To this end, the same data as Abrevaya et al. (2015) is used, which is based on the records

between 1988 and 2002 by the North Carolina State Center Health Services, accessible

through the Odum Institute at the University of North Carolina. As in Abrevaya et al.

(2015), our sample is limited to first-time mothers and as routine in the literature, the total

sample contains whites which consist of a sample of 433, 558 observations and blacks which

consist of a sample of 157, 989 observations as separate samples throughout. Note that some

aforementioned papers considered both samples for whites and blacks; say, da Veiga and
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Wilder (2008) and Abrevaya et al. (2015), but some only investigated the sample for whites;

say, Lee et al. (2017). Following Abrevaya et al. (2015), in our analysis below, we explore

both samples separately.

In this empirical example, the outcome of interest Y is the infant birth weight measured

in grams and the treatment variable D is a binary variable which takes value 1 if the mother

smokes and 0 otherwise. Y (0) denotes birth weights for the untreated (no-smoking) group

and Y (1) for the treated (smoking) group. Since our interest is to see how the quantile effect

of smoking varies across different values of the mother’s ages, hence the conditional variable

Z is the mother’s age in this application. The kernel density estimations of the infant birth

weights are displayed in Figures 1 for whites (the left panel) and blacks (the right panel),

respectively. For both whites and blacks, skewness and kurtosis of infant birth weights and

the results of the symmetry test for the distributions of Y (0) and Y (1) are all reported

in Table 3. Based on these results, one can observe that the distributions of infant birth

weights for both whites and blacks are fat-tailed in the left side. Therefore, this motivates

us to consider the distributional effect of maternal smoking on infant birth weight instead of

mean effect.
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Figure 1: The kernel density estimation of birth weight for whites (the left panel) and blacks (the right
panel).
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Table 3: Descriptive statistics and results for testing symmetry and kurtosis.

Variable

Whites Blacks

Y (0) Y (1) Y (0) Y (1)

Mean 3398.681 3346.848 3103.722 3082.726

Skewness -0.846 -0.840 -1.181 -1.204

Kurtosis 5.931 5.734 6.245 6.164

Symmetry test (p-value) 0.000 0.000 0.000 0.000

Number of observations 359172 74386 146399 11590

To estimate the PCQTE function ∆τ (z), the same set of covariates X is used as in Abre-

vaya et al. (2015). Specifically, the set of covariates X includes the mother’s age, education,

month of first prenatal visit, number of prenatal visits, and indicators for the baby’s gender,

the mother’s marital status, whether or not the father’s age is missing, gestational diabetes,

hypertension, amniocentesis, taking ultra sound exams, previous (terminated) pregnancies,

and alcohol use; see Abrevaya et al. (2015) for the detailed discussion. A logit model is used

to estimate the propensity score function p(x) with the explanatory variables consisting of

all the elements of X, the square of the mother’s age, and the interaction terms between the

mother’s age and all other elements of X. As in Crump et al. (2008) and Abrevaya et al.

(2015), the estimated propensity score pn(x) is truncated to be between [0.01, 0.99] (about

0.136% of the observations dropped for whites and 0.378% for blacks)2, which is different

from that in Abrevaya et al. (2015). The PCQTE function is estimated for mothers aged

between 20 and 30 for both whites and blacks.

First, Figure 2 presents the estimated curves of the conditional CDFs for infant birth

weights conditional on mother’s age (z = 26) for whites. Also, the estimated conditional

CDFs of infant birth weights under different mother’s ages can be obtained but the patterns

are quite similar. It can be seen from Figure 2 that the estimated conditional CDF curve for

Y (1) is all on the left of Y (0), which implies that the partially conditional quantile treatment

effects should be negative across all quantile levels.

2Note that in Abrevaya et al. (2015), the estimated propensity score pn(x) is truncated to be between
[0.03, 0.97] for blacks (about 20% of the observations dropped) and [0.08, 0.92] for whites (about 33% of
observations dropped). We believe that such truncation rate is slightly high, especially for whites. Indeed,
we used the same truncation as in Abrevaya et al. (2015) and the estimated PCQTEs for both whites and
blacks are similar to those for our truncation, which are available upon request.
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Figure 2: Estimated curves of conditional CDFs for infant birth weight conditional on mother’s age (z = 26)
for whites. F (0) and F (1) are for the non-smoking group and the smoking group, respectively.

Second, Figure 3 plots the estimated PCQTE curves across mothers’ ages for three quan-

tile levels τ = 0.10 (the dashed-dotted line), 0.25 (the long dashed line) and τ = 0.50 (the

short dashed line) for whites. For comparison, Figure 3 also depicts the estimated PCATE

curve by the the solid line, considered in Abrevaya et al. (2015) and Lee et al. (2017), across

mothers’ ages, and the estimated unconditional ATE as well (the dotted line). From Figure

3, first, one can see that ∆τ (z) for three τ values seem to change over age linearly and

in particular, ∆0.5(z) and the estimated PCATE curve as in Lee et al. (2017) are similar

but they are not exactly same. Indeed, ∆0.5(z) is slightly larger than its PCATE. More

importantly, one can observe that there is a significant negative effect of smoking on infant

birth weight across all ages and quantile levels considered. These results are in line with

the findings displayed by Figure 2. Moreover, the estimated results displayed in Figure 3

show substantially heterogeneity across different ages. Overall, the estimated quantile effects

become stronger (more negative) at higher ages. On the other hand, the estimated values at

lower quantiles are bigger than those at the median, conditional on the same mother’s age.

Furthermore, Figure 4 displays the estimated PCQTEs for blacks for three quantile levels

τ = 0.10 (the dashed-dotted line), 0.50 (the short dashed line) and 0.80 (the long dashed

line), respectively. The unconditional QTE for τ = 0.5 (the solid line) is also reported with

the value at −141.75, together with its 95% confidence interval indicated by the the dotted
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Figure 3: Estimation results for PCQTE for whites for three quantile levels 0.1, 0.25 and 0.50, together with
PCATE and the unconditional ATE.

lines, which is computed using the method in Firpo (2007). Clearly, it can be seen from

Figure 4 that the estimated PCQTEs for blacks all decrease slightly (however, statistically

insignificant) as z increases but three curves are almost same and lying in the 95%-confidence

interval of the unconditional QTE for τ = 0.5. In other words, ∆τ (z) may not depend

statistically on z for all quantiles considered.

Finally, in addition to estimating the PCQTE above, we also investigate the partially

conditional quantile treatment effect conditional on the mother’s age and the estimation

results of the PCQTT curves are displayed in Figure 5 for whites (the left panel) and blacks

(the right panel), respectively, with the estimated PCQTT curves across mothers’ ages for

two quantile levels τ = 0.25 (the long dashed line) and τ = 0.5 (the short dashed line). For

an easy comparison, in Figure 5, we plot the estimated PCATT3 (partially conditional aver-

age treatment effect on the treated) curve by the solid line, together with its 95% confidence

interval indicated by the the dotted lines, and the estimated unconditional average treatment

effect on the treated group (ATT) as well (the dashed-dotted line). One can observe from

Figure 5 that there exists substantially heterogeneity across different mothers’ ages for two

estimated PCQTT curves considered. To be specific, the numerical values of the estimated

∆τ |D=1(z) for two τ values considered increase as mothers’ ages increase; that is, the esti-

3The estimation of PCATT is computed based on the method in Abrevaya et al. (2015).
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Figure 4: Estimation results for PCQTE for blacks for three quantile levels τ = 0.10 (the dashed-dotted
line), τ = 0.50 (the short dashed line) and τ = 0.80 (the long dashed line), together with unconditional QTE
for τ = 0.5 (solid line) and its 95% confidence interval (dotted lines).

mated quantile effects become stronger (more negative) at higher mothers’ ages. Also, for a

given mothers’ age, the numerical values of the PCQTT point estimates at lower quantiles

are bigger than that at the median. More specifically, the estimated results displayed in

Figure 6 also show that the estimated quantile effects become stronger (more negative) at

higher mothers’ ages and for a given mothers’ age, the numerical values of the PCQTT point

estimates at lower quantiles are bigger than that at the median.

5 Conclusion

In this paper, we consider estimation for the partially conditional quantile treatment

effect, a functional parameter designed to capture the variation in the quantile treatment

effect conditional on some covariate(s). We propose a new estimation method and establish

the asymptotic theory for the proposed semiparametric estimator. Using the proposed semi-

parametric estimator, we estimate the quantile effect of the first-time mother’s smoking on

her baby’s birth weight conditional on the mother’s age. We find that smoking has a more

negative impact at higher ages or at lower quantile levels for whites. Meanwhile, we also

find that the partially conditional quantile treatment effects for whites change over mothers’

ages but not for blacks for some quantile levels considered.
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Figure 5: Estimation results for PCQTT for whites (the left panel) and blacks (the right panel) for two
quantile levels τ = 0.25 (the long dashed line) and τ = 0.50 (the short dashed line), together with the
unconditional ATT (the dashed-dotted line) and PCATT (the solid line) and its 95% confidence interval
(dotted lines).

Therefor, it needs to investigate whether there exists heterogeneity in quantile treatment

effects for covariate Z. To this end, one might consider the following hypothesis testing

problem:

H0 : ∆τ (z) = ∆τ for all z ∈ Z versus H1 : ∆τ (z) ∕= ∆τ for some z ∈ Z,

where ∆τ is the τ -th unconditional quantile treatment effect and Z is the domain of Z.

Under the null hypothesis, the conditional quantile effect of the treatment equals to the

unconditional QTE for all z, whereas, under the alternative, there is at least one value of z

under which the conditional quantile treatment effect ∆τ (z) differs from ∆τ . We leave this

as a future research topic.
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Appendix: Mathematical Proofs

Recall that W0(Xi, Di) = 1−Di

1−p(Xi)
, W1(Xi, Di) = Di

p(Xi)
and Wn,0(Xi, Di) = 1−Di

1−pn(Xi)
,

Wn,1(Xi, Di) = Di

pn(Xi)
, where pn(x) = p(x; θn) is the parametric estimator of the propen-

sity score function using (Xi, Di), i = 1, · · · , n. To prove Theorem 2.1, we need the following

lemma.

Lemma 1. For j = 0 and 1, consider random functions

Γn,j(q, z) =
n

i=1

hKh,i(z)Wn,j(Xi, Di)

ρτ (Yi; q)− ρτ


Yi; qj,τ (z)



and

Γn,j(q, z) =
n

i=1

hKh,i(z)Wj(Xi, Di)ϕτ


Yi; qj,τ (z)


q − qj,τ (z)



+
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh


q − qj,τ (z)

2
,

where Kh,i(z) = K

(Zi − z)/h


/h and ϕτ (y; q) = I(y ≤ q)− τ . Under Assumptions 2.1-2.5,

one has

sup
|q−qj,τ (z)|≤ε/

√
nh

Γn,j(q, z)− Γn,j(q, z)
 = op(1)

for any z ∈ Z and any ε > 0.

Proof of Lemma 1: By the definition of ρτ (y; q) and ϕτ (y; q), we can write

Γn,j(q, z) =
n

i=1

hKh,i(z)Wn,j(Xi, Di)

ϕτ


Yi; qj,τ (z)


q − qj,τ (z)



+(Yi − q)

I{Yi ≤ qj,τ (z)}− I{Yi ≤ q}


.

Therefore,

sup
|q−qj,τ (z)|≤ε/

√
nh

Γn,j(q, z)− Γn,j(q, z)


≤ sup
|q−qj,τ (z)|≤ε/

√
nh

q − qj,τ (z)
 ·

n

i=1

hKh,i(z) ·
Wn,j(Xi, Di)−Wj(Xi, Di)

 ·
ϕτ


Yi; qj,τ (z)
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+ sup
|q−qj,τ (z)|≤ε/

√
nh


n

i=1

hKh,i(z)Wn,j(Xi, Di)(Yi − q)

I{Yi ≤ qj,τ (z)}− I{Yi ≤ q}



−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh


q − qj,τ (z)

2


:= A1 +A2. (A.1)

First, we considerA1. Note that supx∈X

Wn,j(x,Di)−Wj(x,Di)
 = Op(n

−1/2) and
ϕτ


Yi; qj,τ (z)


is bounded, it is easy to show

A1 = sup
|q−qj,τ (z)|≤ε/

√
nh

q − qj,τ (z)
 ·

n

i=1

hKh,i(z) ·
Wn,j(Xi, Di)−Wj(Xi, Di)

 ·
ϕτ


Yi; qj,τ (z)




≤ ε√
nh

·
n

i=1

hKh,i(z) ·Op(n
−1/2) ·O(1) = Op(h

1/2) · 1
n

n

i=1

Kh,i(z).

Since 1
n

n
i=1

Kh,i = Op(1), it is easy to show that

A1 = Op(h
1/2) ·Op(1) = op(1). (A.2)

Now, we move to A2. Define Ψ(y; q1, q2) = (y − q1)

I{y ≤ q2}− I{y ≤ q1}


. Then,

A2 =

sup
|q−qj,τ (z)|≤ε/

√
nh


n

i=1

hKh,i(z)Wn,j(Xi, Di)Ψ(Yi; q, qj,τ (z))−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh


q − qj,τ (z)

2


≤ sup
|q−qj,τ (z)|≤ε/

√
nh


n

i=1

hKh,i(z)

Wn,j(Xi, Di)−Wj(Xi, Di)


Ψ(Yi; q, qj,τ (z))



+ sup
|q−qj,τ (z)|≤ε/

√
nh


n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh


q − qj,τ (z)

2


:= A21 +A22.

Note that

sup
|q−qj,τ (z)|≤ε/

√
nh

Ψ(Yi; q, qj,τ (z)
 = sup

|q−qj,τ (z)|≤ε/
√
nh

(Yi − q)

I{Yi ≤ qj,τ (z)}− I{Yi ≤ q}



≤ sup
|q−qj,τ (z)|≤ε/

√
nh

q − qj,τ (z)
 = ε/

√
nh.

By the similar argument to show A1 = op(1), we also have A21 = op(1). Next, we focus on
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the term
n

i=1 hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z)) in A22. Indeed,

E
 n

i=1

hKh,i(z)Wj(Xi, Di)Ψ

Yi; q, qj,τ (z)



= nE

hKh,i(z)Ψ(Yi(j); q, qj,τ (z))



= nh · E

Kh,i(z)E


(Yi(j)− q)


I{Yi(j) ≤ qj,τ (z)}− I{Yi(j) ≤ q}

Zi



= nh · E

Kh,i(z)

 qj,τ (z)

q

(y − q) fY (j)|Z(y|Zi) dy



= nh · E

Kh,i(z)

 qj,τ (z)

q

(y − q)

fY (j)|Z(qj,τ (z)|Zi) +O(|qj,τ (z)− q|)


dy



= nh · (qj,τ (z)− q)2

2
· E


Kh,i(z)


fY (j)|Z(qj,τ (z)|Zi) +O(|qj,τ (z)− q|)



= nh · (qj,τ (z)− q)2

2
·

fZ(z)fY (j)|Z(qj,τ (z)|z) +O(|qj,τ (z)− q|) + o(1)


.

and

Var
 n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))


= nVar

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))



≤ n · E

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

2

= nh2 · E

Kh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

2

= nh ·O(1) · E

hK2

h,i(z)E

(Yi(j)− q)2


I{Yi(j) ≤ qj,τ (z)}− I{Yi(j) ≤ q}

2Zi



= nh ·O(1) · E

hK2

h,i(z) ·

 qj,τ (z)

q

(y − q)2 fY (j)|Z(y|Zi) dy



= nh ·O(1) ·O(|qj,τ (z)− q|3).

Therefore, one can conclude that

n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

= E
 n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))


+Op


Var

 n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))
1/2
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= nh · (qj,τ (z)− q)2

2
·

fZ(z)fY (j)|Z(qj,τ (z)|z) +O(|qj,τ (z)− q|) + o(1)



+Op


nh · |qj,τ (z)− q|3

1/2

,

and

A22 = sup
|q−qj,τ (z)|≤ε/

√
nh


n

i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh ·


q − qj,τ (z)

2


= sup
|q−qj,τ (z)|≤ε/

√
nh

nh · (qj,τ (z)− q)2

2
·

O(|qj,τ (z)− q|) + o(1)


+ Op


nh · |qj,τ (z)− q|3

1/2


= op(1).

Thus, one has the following result:

A2 = A21 +A22 = op(1). (A.3)

It follows from (A.1), (A.2) and (A.3) that

sup
|q−qj,τ (z)|≤ε/

√
nh

Γn,j(q, z)− Γn,j(q, z)
 = op(1). □

Proof of Theorem 2.1: We first consider

qj,τ (z) = argmin
q

Γn,j(q, z)


= qj,τ (z)−
1

fZ(z)fY (j)|Z(qj,τ (z)|z)
· 1
n

n

i=1

Kh,i(z)Wj(Xi, Di)ϕτ


Yi; qj,τ (z)



= qj,τ (z)−
1

fZ(z)fY (j)|Z(qj,τ (z)|z)
· 1
n

n

i=1

Kh,i(z)ψj(Yi, Xi, Di; z)

for j = 0 and 1. By some calculations, one obtains

E

qj,τ (z)


= qj,τ (z)−

h2

2
µ2(K)δj,τ (z) + o(h2),
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where µ2(K) =

u2K(u)du and

δj,τ (z) =
2f ′

Z(z)
∂FY (j)|Z(qj,τ (z)|u)

∂u


u=z

+ fZ(z)
∂2FY (j)|Z(qj,τ (z)|u)

∂u2


u=z

fZ(z)fY (j)|Z(qj,τ (z)|z)
,

which leads to

√
nh


qj,τ (z)− E


qj,τ (z)


=

√
nh


qj,τ (z)− qj,τ +

h2

2
µ2(K)δj,τ (z) + o(h2)



= − 1√
nh

1

fZ(z)fY (j)|Z(qj,τ (z)|z)

×
n

i=1


hKh,i(z)ψj(Yi, Xi, Di; z)− E


hKh,i(z)ψj(Yi, Xi, Di; z)


. (A.4)

Next, we consider the difference between qj,τ (z) and qj,τ (z), where

qj,τ (z) = argmin
q

n

i=1

hKh,i(z)Wn,j(Xi, Di)ρτ (Yi; q)

= argmin
q

n

i=1

hKh,i(z)Wn,j(Xi, Di)

ρτ (Yi; q)− ρτ


Yi; qj,τ (z)



= argmin
q


Γn,j(q, z)


.

Since Γn,j(q, z) is convex in q, it is easy to show that


1− /

√
nh

|q − qj,τ (z)|


Γn,j


qj,τ (z), z


+

/
√
nh

|q − qj,τ (z)|
Γn,j(q, z) ≥ Γn,j


qj,τ (z) +

q − qj,τ (z)
|q − qj,τ (z)|

√
nh

, z


for any  > 0 and |q − qj,τ (z)| > /
√
nh. Hence,

/
√
nh

|q − qj,τ (z)|


Γn,j(q, z)− Γn,j


qj,τ (z), z



≥ Γn,j


qj,τ (z) +

q − qj,τ (z)
|q − qj,τ (z)|

√
nh

, z

− Γn,j(qj,τ (z), z)

≥ Γn,j


qj,τ (z) +

q − qj,τ (z)
|q − qj,τ (z)|

√
nh

, z

− Γn,j(qj,τ (z), z)

−2 sup
|u−qj,τ (z)|≤/

√
nh

Γn,j(u, z)− Γn,j(u, z)


for all |q − qj,τ (z)| > /
√
nh. Note that Γn,j(q, z) is a quadratic function of q and qj,τ (z) =
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argminq

Γn,j(q, z)

. Then,

/
√
nh

|q − qj,τ (z)|


Γn,j(q, z)− Γn,j


qj,τ (z), z



≥
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· 2 − 2 sup

|u−qj,τ (z)|≤/
√
nh

Γn,j(u, z)− Γn,j(u, z)


≥
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· 2 − 2 sup

|u−qj,τ (z)|≤/
√
nh+|qj,τ (z)−qj,τ (z)|

Γn,j(u, z)− Γn,j(u, z)


for all |q−qj,τ (z)| > /
√
nh. Since |qj,τ (z)−qj,τ (z)| = Op(1/

√
nh) from (A.4) and Assumption

2.4, together with Lemma 1,

/
√
nh

|q − qj,τ (z)|


Γn,j(q, z)− Γn,j


qj,τ (z), z


≥

fZ(z)fY (j)|Z(qj,τ (z)|z)
2

· 2 + op(1)

for all |q− qj,τ (z)| > /
√
nh. Since Γn,j


qj,τ (z), z


−Γn,j


qj,τ (z), z


≤ 0 by the definition that

qj,τ (z) = argminq


Γn,j


q, z


, one can show that

P
√

nh
qj,τ (z)− qj,τ (z)

 > 


≤ P


inf

|q−qj,τ (z)|>/
√
nh


Γn,j(q, z)− Γn,j


qj,τ (z), z


≤ 0



≤ P


fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· 2 + op(1) ≤ 0


→ 0,

which implies qj,τ (z) = qj,τ (z) + op(1/
√
nh). It follows by combining (A.4) and qj,τ (z) =

qj,τ (z) + op(1/
√
nh) that

√
nh


∆τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)



√
nh


∆τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2) + ∆τ (z)− ∆τ (z)



= − 1√
nh

1

fZ(z)

n

i=1


hKh,i(z)ψ1(Yi, Xi, Di, z)− E


hKh,i(z)ψ1(Yi, Xi, Di, z)



fY (1)|Z(q1,τ (z)|z)

−
hKh,i(z)ψ0(Yi, Xi, Di, z)− E


hKh,i(z)ψ0(Yi, Xi, Di, z)



fY (0)|Z(q0,τ (z)|z)


+ op(1),

where ∆τ (z) = q1,τ (z)− q0,τ (z). By the fact that

E

hKh,i(z)ψj(Yi, Xi, Di; z)− E


hKh,i(z)ψj(Yi, Xi, Di; z)


= 0,
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and the Lyapunov’s central limit theorem, we can easily show that

√
nh


∆τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)


D−→ N


0, ||K||22σ2

τ (z)/fZ(z)


.

This completes the proof. □
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