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Abstract: This paper proposes a semiparametric functional data model to estimate

the impact of demographic age distribution on interest rate term structure through

an innovative functional affine term structure, which fully exploits the information

efficiency in both structures. The framework consistently explains the age distribu-

tion impact on the persistence in yields via both channels of real rate and inflation,

supporting the long run Fisher relationship and the life cycle hypothesis. Struc-

tural information in yields also helps to strongly identify the demographic impact

function, which results in remarkable fit of the yield curve with counter-cyclical risk

premia and more accurate out-of-sample forecast than alternative models.
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1 Introduction

High persistence (trend) is a well-known stylized fact in charactering interest rates dy-

namics and imposes theoretical and empirical challenges in yield curve modeling. Techni-
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cally, modeling the trend characteristic in the interest rate term structure is essential for

predicting yields and understanding risk premia. Theoretically, understanding the funda-

mental mechanism behind the trend is of great importance for macroeconomic research,

investment strategies and economic policy making.

Changing demographic factor has been proposed as a candidate to explain the trend in

yields with economic underpinnings and some empirical validity, but its explanatory power

may be sensitive to the age cohort composition in constructing demographic factor and its

empirical performance varies with samples. Moreover, in terms of influencing channels of

demographic impact on yields, the existing literature made more extensive studies on the

channel of real rate than on inflation, though both of which are underlying the dynamics

of the nominal yields. A thorough examination on the demographic influence on both

channels with structural consistence is still lacking.

This paper proposes a unified framework to address the above issues with a functional

perspective to link the demographic age structure with interest rate term structure. The

functional approach provides a full-range view on the life-cycle impact of demographic

age structure on real rate, inflation, and short-term nominal rate in line with a long run

Fisher relationship and the life cycle hypothesis. Meanwhile, utilizing the cross-maturity

information in the term structure improves the efficiency to infer a highly significant de-

mographic impact function on nominal yields with robustness. The resulting functional

affine arbitrage-free term structure model (FATSM) decomposes yields into a slow-moving

trend driven by demographic age structure and a business cycle autoregressive compo-

nent. Applying the model to U.S. Treasury yield curve with age distribution produces

remarkable in-sample fit with countercyclical risk premia and accurate out-of-sample pre-

diction. It implies a persistently low level of yield trend driven by the demographic age

structure in the forthcoming decade.

1.1 Term Structure of Interest Rates: Trend Beyond the Busi-

ness Cycle

The trending behavior of yields beyond the business cycle fluctuation can be visualized

from a life-long span of interest rate term structure as shown in Figure 1, which presents

a three-dimensional plot of the U.S. Treasury yield curve from 1952:Q2 to 2018:Q1. The

data are the 3-month Treasury T-bill rates from the Federal Reserve, and 1-year to 5-year

Fama-Bliss zero-coupon equivalent Treasury yields from the CRSP database. These data

provide a relatively long span of sample compared to other choices. During this period

of nearly seven decades, fluctuations in the business cycle, which usually last between
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a few years and about a decade, seem doomed by the large swing starting from a low

percentage in the 1950s, rising to a double-digit high in the 1970s and 1980s, then sliding

down for more than three decades until the recent era of “zero lower bound” (ZLB). In

addition, this persistence in the interval of a few decades is difficult to be justified by a

mean-reverting process with a constant long-term mean. To characterize a non-constant

long-term mean, for example, Balduzzi et al. (1998) explore the idea of a stochastic central

tendency of short-term interest rate and its expected information in long term yield to

better forecast short rate, whereas based on the relationship between yields and forward

spreads over a long period starting from 1952, Fama (2006) also provides strong evidence

to suggest a non-stationary long-term mean and local mean-reverting process throughout

the business cycle.

[Figure 1: U.S. Treasury yield curve from 1952:Q2 to 2018:Q1]

In the vast literature on interest rates and yield curve modeling, however, most stud-

ies have relied on the assumption of a constant long-term mean, since the pioneering

work on no-arbitrage dynamic term structure models initiated by Vasicek (1977) and Cox

et al. (1985), in particular, the reduced form popularized by Diebold and Li (2006) or

the macro-finance models developed by Ang and Piazzesi (2003). By recognizing the

persistent feature of yields and the related small-sample bias of parameter estimation

under constant long-term mean, Bauer et al. (2012) propose a method for bias-corrected

estimates. However, bias correction under constant mean is insufficient to avoid misspec-

ification problems under time-varying long-term mean, and the resulting forecast tends

to under-predict when the yields in the chosen sample are trending upward, or to over-

predict with a downward trend. As long-term yields are the risk-adjusted average of

future short-term rates, under-predicting (over-predicting) future short-term rates results

in overpricing (underpricing) risk premia. In macro-finance research, misspecification of

the long-term mean of short-rates may lead to estimation bias for the economic mechanism

behind the determination of interest rates.

These drawbacks of trend misspecification have called for research on the introduction

of time-varying means in state dynamics of yield modeling. One approach is to use long-

memory processes to describe state dynamics, such as cointegrated vector autoregression

in reduced form as in Bowsher and Meeks (2008) or with no-arbitrage restrictions as

proposed by Goliński and Zaffaroni (2016) and Bauer and Rudebusch (2020), which out-

perform random walk models for short horizons or alternative short-memory models. An

alternative approach is to introduce regime switching as in Ang and Bekaert (2002) and

Bansal and Zhou (2002), although it is not flexible enough to accommodate a sequence
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of permanent shocks as shown in Fama (2006). Using adaptive autoregressive models is

another approach to reflect the global time-varying mean with a local stationary process

with flexibility, parsimony, and desirable forecasting property as studied by Zantedeschi

et al. (2011) and Chen and Niu (2014). Introducing external persistent measures beyond

yield information also provides a way to proxy the trend behavior of yields as in Cieslak

and Povala (2015).

In the literature on the macro-finance term structure, efforts have been made to in-

vestigate the fundamental sources of stochastic trends in yields. According to the Fisher

equation, trends in inflation and real interest rates are natural candidates underlying the

trends in nominal interest rates. For example, Cieslak and Povala (2015) take the dis-

counted moving average of past inflation to proxy the adaptive expectation of inflation as

the major source of yield trends and find that the resulting cyclical component of yields

can predict changes in short-rates and excess bond returns. Also, Duffee (2018) points

out the relative importance of shocks to real rates and term premia in explaining yield

variances. Finally, Bauer and Rudebusch (2020) find that the two “falling stars,” the

falling inflation trend during the 1980s and 1990s and the falling real rate trend over the

last two decades, can explain the persistent decline in nominal yields over the last 40

years. Yet the drivers of these falling stars remain to be investigated further.

1.2 Demographic Age Structure: Mechanism and Measurement

1.2.1 Impact Channels of Demographic Age Structure on Nominal Yields

Theoretically, the trend of nominal yields is composed of trends in real interest rate

and inflation according to a long run Fisher relationship. The relationships between a

population’s demographic age structure, real rates and inflation have been studied in the

literature both analytically and empirically.

Thorough study on the demographic mechanism affecting real rate goes back to

Modigliani (1966), which provides an analytical foundation for the life cycle impact of

the age structure of the population on real rates through aggregate savings. The life cycle

theory predicts that when population growth exceeds the stationary level for successive

years, the high proportion of baby boomers in the population will lead to a higher ra-

tio of working-age households in their wealth accumulation phase, thus causing excessive

aggregate saving; later in their de-saving phase, the same cohorts will lead to a higher

ratio of older households, thus reducing aggregate saving. Excess savings tend to lower

interest rates and asset returns, and a savings shortage tends to increase returns. More-

over, an aging population and longevity risk tend to further increase savings or to prolong
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the saving phase before retirement and decrease labor supply with falling productivity

growth(Bloom et al., 2003; Zhang et al., 2003; Cocco and Gomes, 2012; Carvalho et al.,

2016; Cooley and Henriksen, 2018; Gagnon et al., 2021). Both population growth and the

higher life expectancy of baby boomers can translate into lower real rates during their

working age. Various studies have demonstrated that the U.S. baby boom from the end

of World War II to the 1960s and the increase in life expectancy had a significant impact

on the macro economy and real returns1 .International studies confirm a similar pattern

(Ang and Maddaloni, 2005; Aksoy et al., 2019; Papetti, 2021) globally.

In terms of demographic influence on inflation, although less studied than the demo-

graphic link to real rates via savings, there is an empirical evidence on the correlation

between changing demographic structure and inflation in the U.S. (McMillan and Baesel,

1990) and in OECD countries (Lindh and Malmberg, 2000; Juselius and Takáts, 2021).

Possible mechanisms of fiscal redistribution across generations have been proposed to

explain this phenomenon (Bullard et al., 2012; Katagiri et al., 2020). Moreover, Good-

hart and Pradhan (2020) builds a between the global demographic structural change,

including the drastic demographic change in China, and trends of inflation and inequal-

ity. Therefore, to the best of our knowledge, there has not been a consistent explanation

on demographic age impact on interest rates through real rate and inflation at the same

time.

1.2.2 Measurement on Demographic Age Structure

In analytical studies on demographic impact on interest rate, inflation, or asset returns,

tractability calls for simple measures of demographic structure. Thus, population is often

divided roughly into two or three generations such as young, middle aged and retirees,

out of which simple measures of the demographic structure can be characterized by the

proportion of a generation or a ratio between them. For example, Geanakoplos et al.

(2004) propose a single index, termed as the MY ratio between the middle-aged population

(40-49) and the young population (20-29) as a proxy for the demographic structure to

study its impact on the long-run pattern of U.S. asset returns based on an overlapping

generation (OLG) model. The MY ratio has been conveniently used in a sequence of

studies on the demographic impact on stock returns, inflation, and interest rates (Favero

et al., 2011, 2016; Gozluklu and Morin, 2019). In particular, Favero et al. (2016) derive

a no-arbitrage term structure model based on the argument that the short-rate follows a

Taylor rule based on the time-varying demographic factor of MY and present supporting

1See, for example, Bakshi and Chen (1994), Abel (2003), Goyal (2004), Krueger and Ludwig (2007),
DellaVigna and Pollet (2007), Favero et al. (2011),Lunsford and West (2019), and among others.
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evidence of its significant impact on the whole yield curve.

However, the single index approach to characterize the demographic age structure has

empirical drawbacks. In the simple index, a generation usually consists of a range of age

cohorts defined by rule-of-thumb. The corresponding empirical results are not robust to

different age cohort compositions in a generation (Poterba, 2001) and fails to explain the

persistently low interest rate over the last two decades (Del Negro et al., 2019). It is also

inefficient to characterize the entire age distribution by excluding the very young and the

very old population. Like many life cycle analyses, data on younger age cohorts before

entering the labor force are missing from the MY ratio. As the younger cohorts consume

the accumulated savings of the dependent family, they may have an important impact on

a household’s economic and portfolio decisions (Browning and Ejrnæs, 2009; Love, 2010;

Hubener et al., 2016). Thus, an unusually high or low proportion of younger cohorts will

affect aggregate savings and asset returns, which can not be captured by the MY ratio.

To further examine the impact of the age distribution of the population on the macro

economy, Fair and Dominguez (1991) propose a linear parametric model allowing non-

linear effect with second order degree polynomial to estimate the age effects of 55 age-

groups in U.S. macroeconomic equations of consumption, investment, money-demand,

and employment. Using similar approach with international panel data, Higgins (1998)

examines the relationship between age distribution, national savings and the current ac-

count balance, and Juselius and Takáts (2021) study the demographic effect on inflation

and monetary policy. But the inference of the parametric method suffers from poten-

tial nonstationarity problem of the time series and possible misspecification of functional

form. Moreover, the employed polynomial form of age coefficients may not be fully flexi-

ble to capture the intrinsically complex relationship between variables, and the choice of

polynomial form is arbitrary without a formal selection criteria.

To overcome the aforementioned problems for a parametric model, Park et al. (2010)

proposes a semiparametric cointegration regression model with an efficient estimator

which contains a nonparametric component of age distribution with a functional form

of impact coefficient based on Fourier flexible form (FFF) approximation. This model is

parsimonious with a few parameters in the FFF approximation to capture the nonlinear

impact of age along the life cycle, and the number of parameters can be properly chosen

with a specification test. Applying the model to U.S. data, Park et al. (2010) finds the

age distribution impact on consumption and savings rate takes a U-shape and an inverted

U-shape respectively, which is in line with the life-cycle hypothesis and performs better

than the parametric method.
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1.2.3 A Functional Perspective on the Dynamic Linkage Between the Two

Structures

Based on the review on interest rate trend modeling and analysis using demographic age

structure as explanatory variable, we find that it is promising to employ the functional

perspective of the age distribution as a building block for yield curve modeling.

By doing, we first make single equation analysis on the age distribution impact on

real interest rate, inflation, and nominal short rate, respectively. If the Fisher equation

holds in the long run in terms of the life-cycle horizon, the shape of the impact function

on nominal short rate should be consistent with the sum of age impacts in real rate and

inflation, thus explaining the demographic age structure impact on nominal yield through

both channels of real rate and inflation. Testing the stationarity of the residuals in the

single equation regression demonstrates whether the cointegration relationships between

age distribution and the related series can explain the long run trend and filter out business

cycle fluctuations.

Based on the short rate regression results, we then build a joint model of the interest

rate term structure with a trend driven by age distribution and local mean-reverting

processes in a unified functional affine arbitrage-free term structure model. We show that

the term structure information substantially improves the efficiency in the estimation of

the age impact function of nominal short rate, which in turn helps to fit and forecast the

yield curve remarkably well.

This paper contributes to the macro-finance literature in the following four ways.

First, the proposed model consistently explains the slow-moving trend of the yield curve

through a life cycle component that drives both real rate and inflation trends. It implies

a more intuitive spanning mechanism driving the “falling stars” for short- and long-term

horizons through expectations, compared to the latent unspanned mechanism proposed

in Bauer and Rudebusch (2020). The rich information provided by the yield curve offers

more robust inferences about the natural interest rate for policy recommendations than

results derived from dynamic stochastic general equilibrium models relying on limited

macroeconomic sample information (Eggertsson et al., 2019).

Second, the functional approach is more efficient and robust to utilizing the entire age

distribution to explain the trend in yields than the single index approach summarizing the

demographic structure with simple indicators such as the MY ratio (Favero et al., 2016).

Our model performs better both in- and out-of-sample when it is compared to a counter-

part affine arbitrage-free model with the MY ratio as explanatory variable. Although we

do not explicitly model the time-varying trend as a Taylor rule element to construct the

no-arbitrage term structure model, it is generally compatible and flexible to incorporate
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alternative macro-finance specifications, such as adapting to a Taylor rule setting for the

short rate targeting on a time-varying trend driven by demographic age distribution.

Third, methodologically, we show the mutual efficiency brought about by the cross-

equation restrictions in the term structure to improve the estimation accuracy of the life

cycle age impact function. In previous research, the impact function of the demographic

age distribution is generally estimated for various macroeconomic variables using a single

equation; see, for example, Fair and Dominguez (1991), Higgins (1998), Park et al. (2010),

and Park (2010) for details. However, due to limited data on typical macroeconomic time

series, parameter inference and the choice of specifications are subject to uncertainty

in a small sample. In the application of our functional affine term structure model, the

resulting life cycle age impact function are more reliable with higher statistical significance,

which then contributes to higher accuracy in out-of-sample yields prediction compared

with performance of alternative popular models.

Finally, technically, the model is set up in a semiparametric representation under

the functional affine arbitrage-free assumption. Compared with previous semiparametric

dynamic term structure models without macroeconomic foundation or theoretical restric-

tions, such as the models in Ghysels and Ng (1998) and Härdle and Majer (2016), our

proposed model demonstrates the possibility of introducing the nonparametric method

for structural macro-finance analysis. We show that the functional impact of the de-

mographic age distribution can be approximated nonparametrically by using the Fourier

flexible expansion (FFE) proposed by Park et al. (2010) not only in the single short rate

equation, but also in structural equations of the yield curve under the no-arbitrage as-

sumption. In this affine arbitrage-free framework, the nonlinearity of the factor loadings

in the measurement equations usually makes the estimation difficult both in terms of

determining the global optimum and parameter uncertainty. To overcome this difficulty,

the Bayesian approach of the Markov chain Monte Carlo (MCMC) method is used to

estimate the related parameters in the proposed model.

In summary, our novel functional affine approach addresses the theoretical and empir-

ical challenges of modeling the interest rate term structure with persistent trends driven

by the fundamental of demographic age structure.

The rest of this paper is organized as follows. Section 2 presents empirical evidence of

the impact of the age distribution on real rates, inflation, and short term nominal yield

consistent with the life-cycle hypothesis and a long-run Fisher relationship. Section 3

develops the functional affine arbitrage-free interest rate term structure model with a time-

varying mean driven by the age distribution of the population. Section 4 describes the

estimation strategy using the Bayesian method. Section 5 discusses the empirical results
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of the model and demonstrates its excellent properties of yield fitting, decomposition and

forecasting performance. Section 6 concludes the study.

2 Age Impact Analysis on Nominal Short Rate

After intuitively visualizing the most visible generations outweighing others in the

U.S. slow-moving age distribution, this section presents the single equation functional

regression to learn the life-cycle impact of age distribution by separately regressing the

real rate rt, inflation πt, and the nominal short-term yield it on the age distribution of

the population. The results support a long-run Fisher relationship between the trends.

2.1 A Bird’s Eye View on the Age Distribution: Waves of Gen-

erations

To visualize the bulky weight and possible impact of baby boomers in the population

and their slow movement over time, the age distribution of the U.S. population based on

annual data is plotted in Figure 2, which can be downloaded from the U.S. Census Bureau

and it covers each age bin (from under 1 to 85 and over) from 1940 to 2018. At each

time point, the weight of each age cohort is computed relative to the total population. As

shown in Figure 2, the weight of the baby boomer cohort is the most obvious feature in

both dimensions: over time, and baby boomers stand out as an increase in infant weight

at the lower end of the age distribution after World War II for about 20 years. Then, as

they move through different life stages, these cohorts form a persistent wave-like pattern

across the age distribution. An implication of this pattern is that the economic behavior of

baby boomers is more important at the aggregate level. In turn, their change in behavior

over the life cycle can slowly alter macroeconomic variables, including asset returns.

[Figure 2: Dynamics of the age distribution of the U.S. population]

Besides the baby boomers, small waves of other generations also exist, such as those

local peaks from echo boomers born during 1985-2004, mirroring the birth rate peaks of

the baby boomer generation 20 years later.

According to the life-cycle theory, individual generations exhibit life-cycle patterns of

economic decisions and activities such as an inverted U-shape savings along life. Should

the population consist of balanced generations with equal birth rate and survival rate, the

aggregate savings and other variables associated with life-cycle decisions become constant

because of social balance across generations. If some generations outweigh others due
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to higher birth rate, their decision pattern would affect the aggregate level accordingly.

Once we have a long span data of age distribution, the functional regression can help us

to learn the life-cycle impact of age distribution on various economic variables.

2.2 Trend Decomposition with a Demographic Factor of a Func-

tional Form

We are interested in the life-cycle impact of age distribution on short term interest rate

and on their components of real rate and inflation, respectively. It is assumed that each

economic variable, denoted by xt for the general elaboration, is composed of a time-varying

long-term trend x∗t and an autoregressive component x̃t, which reflects fluctuations at the

business cycles and higher frequencies and reverts to the long-term mean x∗t as follows:

xt = x∗t + x̃t,

and x∗t is driven by an aggregate life cycle component resulting from the age distribution

of the population multiplied by its impact g(s)x as follows

x∗t =

∫ S̄

S
¯

ft(s)g
x(s)ds, (2.1)

which is a functional data analysis model (see, for example, Ramsay and Silverman (1997)

and Park et al. (2010) for details), where the age range is s ∈ [S
¯
, S̄], ft(s) denotes the

density function of the demographic distribution at time t, and gx(s) represents the age

impact function related to xt. This function has two implications: each cohort has an

impact gx(s) at age s and the shape of gx(s) over the life span s ∈ [S
¯
, S̄] reflects a life cycle

pattern; at each period t, the aggregate impact of the population on xt is the integral

of the age density multiplied by the age impact gx(s) across all age cohorts over the life

span.

Then, based on the Fisher equation giving the short nominal rate as the sum of the

real rate and inflation,

it = rt + πt,

it is reasonable to assume that the Fisher equation relationship should hold for both the

time-varying long-term mean and the cyclical terms:

i∗t = r∗t + π∗t and ı̃t = r̃t + π̃t.
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Next, based on a common age factor ft(s) and the functional form of (2.1), the implication

of the impact function is decomposed as

gi(s) = gr(s) + gπ(s).

Therefore, the age impact functions of real rates and inflation add up to the impact

function of nominal yields.

To estimate the impact function g(s), there are many methods available in the litera-

ture, such as the series method as

g(s) =
∞∑
i=1

αiψi(s),

where {ψi(s)} is a sequence of (orthogonal) basis functions. For simplicity, motivated by

the idea developed in Park et al. (2010), we use a semiparametric method to approximate

g(s) with a Fourier flexible series as follows:

gκ(s) =
κ∑
i=1

αiψi(s) = α1 + α2s+ α3s
2 +

J∑
j=1

[α4,j cos(js) + α5,j sin(js)] , (2.2)

where κ = 3 + 2J → ∞, indicating the number of parameters in the approximating

function gκ(s), by assuming that ‖gκ(s)− g(s)‖ → 0 as κ→∞.

Remark 1. As the age impact function contains the trigonometric series, it is desirable to

scale the age range to the interval [0, 1]. That is, with a given common support s ∈ [S
¯
, S̄]

for ft(s), ft(s) becomes f ∗t (s∗) = ft[S
¯

+(S̄−S
¯

)s∗], with the common support s∗ ∈ [0, 1]. The

original impact function g with respect to ft can be retrieved from the impact function g∗

with respect to f ∗t by the following transformation g(s) = g∗[(s−S
¯

)/(S̄−S
¯

)]. Finally, note

that one might use a B-spline to approximate g(s) or a nonparametric (kernel estimation)

procedure or a Baysian spline; see Ramsay and Silverman (1997) and Kowala et al. (2017)

for details.

The reason for choosing the FFE method is that, as illustrated in Park et al. (2010),

this FFE approximation may be more parsimonious than other parametric methods, which

often suffer from the typical multicollinearity problem, and it has an intuitive interpreta-

tion for the selected Fourier series at different frequencies. It is also more efficient with

an asymptotic distribution, as shown in Andrews (1991), than other methods such as

the parametric polynomial approximation in Fair and Dominguez (1991). Thus, plugging
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(2.2) into (2.1) leads to the following result:

x∗t =

∫ S̄

0

ft(s)g(s)ds ≈
κ∑
i=1

αi

∫ S̄

0

ft(s)ψi(s)ds. (2.3)

Next, by dividing the age support [0, S̄] into M age sub-intervals, [0, s1), . . . , [sm−1, sm),

. . . , [sM−1, S̄], each with a weight

wt(sm) =

∫ sm

sm−1

ft(s)ds,

the integral in (2.3) can be simply approximated as

∫ S̄

0

ft(s)ψi(s)ds ≈
M∑
m=1

wt(sm)ψi(s̄m) (2.4)

with s̄m = (sm−1 + sm)/2.

2.3 Linear Estimator

Based on the approximation in (2.4), (2.3) can be written in the following simple linear

form

x∗t = α′zt, (2.5)

where α = (α1, · · · , ακ)′ and zt = (zt1, · · · , ztκ)′ with zti =
M∑
m=1wt(sm)ψi(s̄m) for 1 ≤ i ≤

κ. Given xt and zt, α can be estimated with an ordinary least squares (OLS) estimator

α̂, from which the age impact function can be inferred as

ĝκ(s̄m) = α̂′Ψ(s̄m), (2.6)

where Ψ(s̄m) = (ψ1(s̄m), · · · , ψκ(s̄m))′ at s̄m for 1 ≤ m ≤ M . The κ × κ variance-

covariance matrix of α̂, var(α̂), can be obtained from the regression residuals through

the heteroscedasticity and autoregressive consistent (HAC) procedure in Newey and West

(1987), and the M ×M variance-covariance matrix of the age impact function, var(ĝκ),

can be computed easily as follows:

var(ĝκ) = Ψ′κvar(α̂)Ψκ, (2.7)

where ĝκ = (ĝκ(s̄1), · · · , ĝκ(s̄M))′ = Ψ′κα̂ and Ψκ = (Ψ(s̄1), · · · ,Ψ(s̄M)) is a κ×M matrix.

To choose the optimal κ, following Park (2010), it is assumed that the dependent
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variable and the regressors have no stochastic trends and, use the h-block cross-validation

(HCV) and the modified h-block CV (MHCV) criteria as proposed by Burman et al.

(1994) and Racine (1997). For any given block size h, the HCV criterion is given by

HCV =
1

T

T−h∑
t=h

[xt − z′tα̂(t, h)]
2
,

where T is the number of original observations. The estimator α̂(t, h) is obtained by

removing the t-th observation and the h observations before and after the t-th observation

in the two sequences of {xt} and {zt}. As suggested by the simulation study of Burman

et al. (1994), h can be simply set to h = T/6. However, when the ratio κ/T is not trivial,

it is better to use the MHCV criterion, which can have the following form:

MHCV = HCV +
1

T 2

T−h∑
t=h

T∑
s=1

[xs − z′sα̂(t, h)]
2

+
1

T

T∑
t=1

(xt − z′tα̂)2.

Thus, the best κ can be chosen by minimizing the two CV criteria above.

2.4 Empirical Results of Single Equation Regressions

We use U.S. data to estimate the age impact functions for consumer price index (CPI)

inflation, the 3-month Treasury yield, and the ex post real rate, calculated using the

3-month nominal yield minus actual realized inflation. The annual age distribution of

population based on the U.S. Census Bureau is represented in Figure 2. To match the

quarterly frequency of the three macroeconomic series, we interpolate the annual distribu-

tion to obtain the quarterly distribution based on the assumption that the quarterly birth

rates and quarterly death rates have no seasonality in a year, so that we can compute

these quarterly rates from their corresponding annual rates. As a preliminary study, for

each economic variable, we run a regression on the age distribution to obtain a related

age impact function. With the MHCV criterion, κ is set to 5 for both inflation and the

nominal rate. Although the selected κ is set to 2 for the real rate in a single equation

study, we set it to 5 to incorporate the economic restrictions of the Fisher equation with-

out imposing cross-equation restrictions on parameter values in the regression. Figure 3

presents the resulting age impact functions.

[Figure 3: Age impact functions of single equation regressions]

In Figure 3, the left panel depicts the age impact functions for inflation as a dashed

line, for the real rate as a dotted line. The age impact function for the real rate exhibits a
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U-shaped curve, mirroring the inverted U-shaped curve of the impact function for savings

found in Park et al. (2010), consistent with the life cycle hypothesis. The age impact func-

tion for inflation has an inverted U-shaped curve, with different impacts for the young,

middle-aged, and older population. The negative impact of the older population on infla-

tion is consistent with the deflationary effect in a politico-economic equilibrium (Bullard

et al., 2012; Katagiri et al., 2020). Empirically, a U-shaped impact for consumption has

been found by Park et al. (2010), and a money demand equation with constant money

supply growth can lead to such an inverted-U shape age impact on inflation if output

growth coincides with consumption growth in equilibrium and the latter trend is driven

by the demographic age distribution.

Although the U-shaped function for the real rate and the inverted U-shaped function

for inflation face to opposite directions, they are not symmetrical with respect to the zero

line and their sum represents a S-shaped function for the nominal short rate, indicated by

circles on the right panel of Figure 3. The right panel also plots the age impact function

estimated directly for the nominal short rate in solid line which almost coincides with the

implied function marked with circles. The 95% confidence interval shows that the impact

function is significantly positive for the young population (aged 10 to 35) and significantly

negative for the middle-aged and older population (aged 45 to 73).

According to (2.1), the time-varying trend can be computed as the integral of the age

distribution multiplied by the impact function. With the results of the impact functions

above, this integral amounts to computing the sum of the products of the discretized

age density and its impact for each age group. Figure 4 plots the resulting trends for

each variable. The left panel plots the trends for inflation as a dashed line and for the

real rate as a dotted line, and their sum is depicted with circles in the right panel to

indicate the implied trend for the nominal rate. The right panel also plots the trend of

the nominal short rate computed directly from the regression results in solid line and

contrasts it with the actual nominal rate. Nonstationarity are rejected by ADF test for

all three residual processes after removing the trends driven by age distribution, which

validates the cointegration relationship between the demographic age distribution and the

original series.

[Figure 4: Demographic trends of single equation regressions]

The following three observations emerge from the above analysis:

1. The demographic trend of inflation is downward from the mid- 1970s and stabilizes

around the mid-1990s. The trend in the real rate declines continuously from the
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mid-1990s. These “falling stars” patterns are similar to those findings in Bauer and

Rudebusch (2020), which do not explain the mechanism behind.

2. It is strongly evident that the demographic trend of the nominal rate follows the

actual rate closely and smoothly.

3. The directly computed trend in the right panel is consistent with the indirectly

computed trend based on its components from the left panel, supporting the Fisher

equation under low frequency.

We also regress these series on the simple demographic factor of MY ratio (Geanakoplos

et al., 2004; Favero et al., 2016; Lunsford and West, 2019; Del Negro et al., 2019; Gozluklu

and Morin, 2019), and the resulting impact coefficients on inflation, real rate and nominal

short rate are −9.635, −2.028 and −11.662, respectively. The sum of the first two closely

matches the latter. The fitted trends of the three series are shown in Figure 5, where

discrepancies arise mainly for the last two decades that the MY ratio can not explain

the falling trend of real rate and flat trend in inflation. The resulting prediction for the

nominal rate is an upward trend after 2000, departing from the actual path persistently.

[Figure 5: Trends explained by the MY ratio]

The above single equation analysis demonstrates that the functional approach pro-

vides robust measures on the demographic age structure. The results from the functional

cointegration regressions strongly support the life cycle hypothesis on the demographic

trend of the nominal short rate, via the impact of aggregate age impact on the real rate

and inflation, respectively.

3 Functional Affine Arbitrage-free Term Structure

Model with Aggregate Life Cycle Determinants

Although the single-equation functional analysis provides a consistent view on the

trend driven mechanism of demographic age distribution on the nominal short rate, real

rate and inflation, these results suffer from substantial parameter uncertainty due to

limited data. For example, the S-shaped age impact function for the nominal short rate

is not significant for the very young and the older population, resulting in uncertainty

in the estimated trends, especially at the extreme levels of high and low yields. Similar

pattern of estimation uncertainty is reported in Takamizawa (2008) when the short rate

with nonlinear drift is inferred with single equation, and the paper shows usefulness of
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exploring cross-section relations in the short end of the yield curve and expects more

fundamental modeling utilizing the entire term structure.

In this section, a functional affine yield curve model is developed to fully explore the

entire term structure and improve inference from the age impact function on one hand

and use demographic trends to better explain yield curve dynamics on the other hand.

The unified FATSM starts with a short rate composed of a global trend driven by the

demographic age structure and local mean-reverting processes.

3.1 Short Rate Equation

First, denote the short rate yt,1 of the term structure by it, i.e., yt,1 = it, which is

composed of a long-term trend, i∗t , and a cyclical component, ı̃t, such as it = i∗t + ı̃t, and

then assume that the time-varying trend, i∗t , is driven by an aggregate determinant of the

age distribution of population multiplied by its impact g(s) for each age cohort s

i∗t =

∫ S̄

S
¯

ft(s)g(s)ds, (3.1)

where the age range is s ∈ [S
¯
, S̄], ft(s) denotes the density function of the demographic

distribution at time t, and g(s) represents the age impact function for the short rate. In

addition, the cyclical component is driven by short- and medium-term cyclical factors Xt

with a typical affine representation

ı̃t = δ0 + δ1Xt. (3.2)

Next, the short rate equation can be summarized as follows:

yt,1 =

∫ S̄

S
¯

ft(s)g(s)ds︸ ︷︷ ︸
i∗t

+ δ0 + δ1Xt︸ ︷︷ ︸
ı̃t

.

3.2 State Dynamics

We use ft and Xt to denote state factors, the former being a slow-moving or long-term

exogenous factor and the latter driving short- and medium-term fluctuations.

3.2.1 Slow-Moving Functional State of Age Density

The total population at time t is denoted by Lt, and the population of each age cohort on

the age support [sm−1, sm) is presented by Lsmt , born in the time interval (t−sm, t−sm+1].
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In practice, the age density can be approximated by the weight of the population of each

age cohort in the M age intervals, [0, s1), [s1, s2), . . ., [sm−1, sm), . . ., [sM−1, S̄]:

wt(sm) =

∫ sm

sm−1

ft(s)ds ≈ Lsmt /Lt. (3.3)

Suppose that the birth rate bt is exogenous, such that the newly born cohort in the

interval (t−1, t] is L1
t = btLt−1. Given a survival rate function P

sm,sm+1

t for the population

cohort Lsmt , the number of survivors of this cohort in the following period is L
sm+1

t+1 =

Lsmt P
sm,sm+1

t . It is assumed that the survival rate function is stable over a long period

under normal conditions without wars or natural disasters, which can be treated as a

roughly constant P sm,sm+1 . These assumptions have two implications in practice. First,

the survival rate can be approximated as a moving average over a past interval, say a few

years. Second, the future population prediction in the medium to long-term, say 1 to 10

years, can be computed as follows:

Et
(
L
sm+h

t+h

)
= Lsmt Πh

j=1P
sm+j−1,sm+j

t+j−1 ,

which should be relatively accurate, based on P sm+j−1,sm+j . Then, based on a reasonable

projection of the birth rate, the age density for the short- to medium-term horizons can

be predicted with little uncertainty using the projected population weights:

Et [wt+h(sm+h)] = Et

∫ sm+h

sm+h−1

ft+h(s)ds = Et
[
L
sm+h

t+h /Lt+h
]
, (3.4)

where EtLt+h = Et

(∑M
m=1 L

sm
t+h

)
.

3.2.2 Business Cycle Factors

As suggested by Diebold and Li (2006), the state dynamics of the cyclical mean-reverting

process under the physical measurement can be modeled by a vector autoregression (VAR)

of order 1, VAR(1), as follows:

Xt = µ+ ΦXt−1 + vt, (3.5)

where vt ∼ N(0,Ω), and state dynamics under the risk-neutral measure can also be

characterized by VAR(1) as, with vQt ∼ N(0,Ω),

Xt = µQ + ΦQXt−1 + vQt . (3.6)
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3.3 Interest Rate Term Structure

A general form of yields also contains the two types of components of an affine form:

yt,n = y∗t,n + ỹt,n =

∫ S̄

S
¯

ft,n(s)g(s)ds+ an + b′nXt,

where each yield to maturity is composed of a time-varying long-term trend driven by

the age distribution of the population, and a cyclical component ỹt,n. Next, we show that

the expectation hypothesis (EH) and the no-arbitrage assumption impose cross-equation

restrictions on the functional factors ft,n(s) and the factor loadings an and bn based on

the short rate setting and state dynamics.

First, for the EH on the demographic trend y∗t,n. As the population distribution is

slow-moving and can be well predicted with little uncertainty under normal conditions,

the EH is likely to suggest that y∗t,n is an expected average of the long-term component

of the future short-rate i∗t+h, which is driven by the future distribution ft+h; that is

i∗t+h =
∫ S̄

S
¯
ft+h(s)g(s)ds, with h = 0, . . . , n− 1.

y∗t,n =
1

n
Et

[
n−1∑
h=0

i∗t+h

]
︸ ︷︷ ︸

E.H.

=
1

n
Et

[
n−1∑
h=0

∫ S̄

S
¯

ft+h(s)g(s)ds

]
=

∫ S̄

S
¯

[
1

n

n−1∑
h=0

Et{ft+h(s)}

]
g(s)ds

=

∫ S̄

S
¯

ft,n(s)g(s)ds (3.7)

with

ft,n(s) =
1

n

n−1∑
h=0

Et [ft+h(s)] , (3.8)

where ft,1(s) ≡ ft(s) and ft+h(s) can be approximated by the projected population weights

as in (3.4). The implication is clear: the slow-moving age distribution of the population

in long-term yields, ft,n(s), is an average of the expected age distribution evolving across

the holding horizon.

Second, the cyclical component ỹt,n with the state dynamics given in (3.5) and (3.6)

is written as

ỹt,n = an + b′nXt,

where from a1 = δ0 and b1 = δ1 with short rate parameters as in (3.2), an = −An/n and

bn = −Bn/n can be derived from partial differential equations (PDEs) in the following
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form (Ang and Piazzesi, 2003),

B′n+1 = B′nΦQ +B′1, (3.9)

and

An+1 = An +B′nµ
Q +

1

2
B′nΩBn + A1. (3.10)

3.4 Statistical Representation

3.4.1 General Representation

In summary, the statistical representation of the FATSM is given by

yt,n =

∫ S̄

S
¯

ft,n(s)g(s)ds+ an + b′nXt + εt,n, εt,n ∼ N(0, σ2
ε ), (3.11)

which can also be regarded as a structural semiparametric model, where Xt follows a

VAR(1) model as follows:

Xt = µ+ ΦXt−1 + vt, vt ∼ N(0,Ω)

with ft,n(s) defined in (3.8), and an = −An/n and bn = −Bn/n defined in the PDEs in

(3.9) and (3.10), respectively. Therefore, it can be seen that the yield is an affine form of

the factors ft and Xt with cross-equation restrictions under the EH and the no-arbitrage

assumption. The slow-moving component is forward-looking, with current and future

demographic structures having an effect via the age impact function g(s).

3.4.2 Specific Representation of Cyclical Factors

The stationary no-arbitrage autoregressive part of the yields, ỹt,n, can be described by

any typical ATSM with specific factors Xt, such as latent factors or observed macroeco-

nomic factors. To keep the parsimony in our semiparametric setting, we choose a simple

affine arbitrage-free Nelson-Siegel (AFNS) model with the NS factor interpolation as fol-

lows:

Bn =

(
−n,−1− e−λn

λ
, ne−λn − 1− e−λn

λ

)′
,
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which corresponds to a risk-neutral transition matrix taking the following specific form

ΦQ =

 1 0 0

0 e−λ λe−λ

0 0 e−λ


as shown in Christensen et al. (2011) for a continuous-time setting and Hong et al. (2019)

for a discrete-time case. The restriction that a1 = −A1 = δ0 = 0 can then be imposed for

normalization. For parameter identification, we restrict µQ = (µQL , 0, 0)′ following Hong

et al. (2019). Conditional on this basic AFNS model, we can compare our functional

AFNS model(F-AFNS) with demographic trends in (3.11), the pure AFNS model, and an

extended AFNS augmented by the single demographic index of the MY ratio (MY-AFNS).

As has been discussed by Krippner (2015) and Christensen and Rudebusch (2019), the

AFNS model can be viewed as a restricted version of the canonical Gaussian ATSM model.

Therefore, our empirical framework can be easily generalized to the cases when choosing

other specific ATSM models to capture the cyclical factors in yields.

4 Statistical Methodology

In this section, we first show how the two components of trends and autoregressive

processes and their related parameters can be estimated in the classical framework, if

they can be observed separately. Then, we discuss the joint estimation strategy in a

Bayesian framework.

4.1 Nonparametric Trend Extraction Under the EH

In Section 2, we estimate the age impact function of the nominal short rate based on

the age distribution of the population using a linear estimator in a single equation. Also,

we exploit the rich information in the term structure for interest rates to robustly infer

the common age impact function g(s) under the EH from the structural equation of yields

in (3.7). Similar to single equation regressions, the aforementioned Fourier flexible series

approach is used to approximate the functional form as in (2.2). Then, the resulting

approximation is given by

y∗t,n =

∫ S̄

S
¯

ft,n(s)g(s)ds ≈
κ∑
i=1

αi

∫ S̄

S
¯

ft,n(s)ψi(s)ds, (4.1)
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which is similar to (2.3), except that we impose the EH restriction on the demographic

distribution, as shown in (3.8). Again, based on the discretized age support with the

weight of each cohort at time t and t+h, as shown in (3.3) and (3.4), the integral in (4.1)

can be denoted by zt,n,i and approximated as

zt,n,i ≡
∫ S̄

0

ft,n(s)ψi(s)ds ≈
1

n

n−1∑
h=0

Et

[
M∑
m=1

wt+h(sm)ψi(s̄m)

]
(4.2)

with s̄m = (sm−1 + sm)/2.

Given the above approximation, (4.1) can also be written in linear form as y∗t,n = α′zt,n,

where α is defined in (2.5), and similar to (2.5), zt,n = (zt,n,1 · · · , zt,n,κ)′ with zt,n,i defined

in (4.2). For different yields to maturity, we have the common parameter vector α, so

that a simultaneous equation regression is formed as Y ∗t = Z ′tα, where Y ∗t is an N × 1

vector of N observed yields and Zt =
(
z′t,n1

, · · · , z′t,nN

)
is a κ × N matrix. Then, with a

sample of T observations for each yield-to-maturity, a compact linear form can be written

as Y ∗ = Z α, where Y ∗ =
(
Y ∗
′

1 , · · · , Y ∗
′

T

)′
is an NT × 1 vector and Z = (Z1, Z2, · · · , ZT )′

is an NT × κ matrix. Then the OLS estimator of α is given by

α̂ = (Z ′Z)−1Z ′Y

with Y =
(
Y
′

1 , · · · , Y
′
T

)′
containing actual yield data.

Once α̂ is obtained, its variance-covariance matrix can be estimated with the HAC

procedure in Newey and West (1987) from the above simultaneous equation regression.

Thus, we can obtain the age impact function and its variance-covariance matrix, similar

to (2.6) and (2.7) as follows: for 1 ≤ m ≤M ,

ĝκ(s̄m) = α̂′Ψ(s̄m) and var(ĝκ) = Ψ′κvar(α̂)Ψκ,

where Ψκ is defined in (2.7).

Again, we use the HCV and MHCV criteria to choose the best κ, similar to the idea

described in Section 2.2. For any given block size h, the HCV criterion for structural

estimation is given by

HCV =
1

T

T−h∑
t=h

||Yt, Z ′tα̂(t, h)||,

where ||A,B|| denotes the Euclidean distance between the corresponding elements in the

vectors A and B, and the estimator α̂(t, h) is obtained by removing the t-th observation

and the h observations before and after the t-th observation in both Z and Y . Similarly,
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h = T/6 is set as in Section 2.2. The MHCV criterion has the following form

MHCV = HCV +
1

T

T−h∑
t=h

T∑
s=1

||Ys, Z ′sα̂(t, h)||+ 1

T

T∑
t=1

||Yt, Z ′tα̂||.

Then, the best κ can be chosen by minimizing the two CV criteria above.

4.2 Parametric Estimation of the Autoregressive Process

Given the observable ỹt,n, the ATSM model has the following state space representation

ỹt,n = an + b′nXt + εt,n, εt,n ∼ N(0, σ2
ε ) and Xt = µ+ ΦXt−1 + vt, vt ∼ N(0,Ω),

where an and bn are nonlinear functions of the underlying parameters, as shown in (3.9)

and (3.10). Based on the distributional assumption of the error terms, the Gaussian model

can be estimated using maximum likelihood estimation (MLE) with the Kalman filter

(Ang and Piazzesi, 2003; Christensen et al., 2011). The nonlinearity of the factor loadings

in the measurement equations makes MLE challenging both in terms of determining the

global optimum and parameter uncertainty. To overcome this difficulty, we use the MCMC

method, which has gained popularity in estimating such models, especially when hidden

states are involved (Ang et al., 2011).

4.3 Joint Semiparametric Estimation Using the Bayesian Method

A simple way to jointly estimate the model is to use an iterative method with the two

steps above until a certain threshold is reached. In the initial step, it is assumed that

the yields are dominated by the long-term component with a zero mean cyclical compo-

nent. Conditional on the extracted long-term part y∗t,n, the remainder is modeled as ỹt,n.

However, consistency is not guaranteed in this procedure, because the simultaneous zero

assumption of the cyclical components in the simultaneous equations is not compatible

with the no-arbitrage condition. Therefore, we choose to jointly estimate the model with

the MCMC approach described below.

The parameters to estimate are Θ =
{
α, σ2

ε , µ,Φ,Ω, µ
Q
L , λ

}
, and the latent variables to

estimate are X = {X1, · · · , XT}. For ease of illustration, the parameters are divided into

four blocks: Θ1 = {α, σ2
ε}, Θ2 = {µ,Φ}, Θ3 = {Ω}, and Θ4 =

{
µQL , λ

}
. The Metropolis-

Hastings (MH) algorithm for Gibbs sampling used for the Bayesian estimation is closely

related to that of Ang et al. (2007) and Hong et al. (2019). The detailed procedures for

drawing the latent states and parameter blocks are as follows.
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4.3.1 Drawing Xt

Based on the observed yield data Y = (Y1, · · · , YT ), the transformed linear regressors

Z = (Z1, · · · , ZT ), and the parameters derived from the last step, Θd−1, the forward

filtering and backward smoothing algorithm as in Carter and Kohn (1994) is used to

obtain the latent variables involved in X, denoted by Xd in the d-th draw.

4.3.2 Drawing µ and Φ

Given Xd, as Xt follows a VAR process in (3.5), µ and Φ can be obtained with standard

Gibbs sampling with normal conjugate priors and posteriors. Note that the posteriors of

µ and Φ conditional on Y , Z, Xd, and the other parameters are given by

P (µ,Φ|Θd−1
1

,Θd−1
3 ,Θd−1

4
, Y, Z,Xd)

∝ P (Y |Θd−1
1

,Θd−1
3 ,Θd−1

4
, Z,Xd)P (Xd|µ,Φ,Ωd−1)P (µ0,Φ0) ∝ P (Xd|µ,Φ,Ωd−1),

where P (Xd|µ,Φ,Ωd−1) is the likelihood function, which is normally distributed based on

(3.5), and P (µ0,Φ0) are the priors of µ and Φ. The validity of the passage from the first

line to the second line is ensured by the PDEs in (3.9) and (3.10). As Θ4 =
{
µQL , λ

}
,

the bond price is independent of µ and Φ. Here, we use the non-informative prior (the

so-called Jeffreys prior) on µ and Φ, so we only have to determine the likelihood functions

of µ and Φ, which can be derived from the normal distribution. They are denoted by µd

and Φd, respectively.

4.3.3 Drawing Ω

As Ω appears in the PDEs of (3.10) in a nonlinear fashion, there is no analytical

expression of the conditional posterior distribution for Ω. Note that the posterior of Ω

conditional on Y , Z, Xd, and the other parameters is given by

P (Ω|Θd−1
1 ,Θd

2,Θ
d−1
4 , Y, Z,Xd) ∝ P (Y |Θd−1

1 ,Θd
2,Θ

d−1
4 ,Ω, Z,Xd)P (Xd|µd,Φd,Ω)P (Ω0),

where P (Ω0) is the prior of Ω, which suggests an independent Metropolis draw. We draw

the candidate Ω from the proposed density q(Ω) = P (Xd|µd,Φd,Ω)P (Ω0), which is an

inverse Wishart (IW) distribution if P (Ω0) is specified as IW, so that q(Ω) is an IW

natural conjugate. The proposal draw of Ω for the d-th draw is then accepted with the
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probability β as follows:

β = min

{
P (Ωd|Θd−1

1 ,Θd
2,Θ

d−1
4 , Y, Z,Xd)

P (Ωd−1|Θd−1
1 ,Θd

2,Θ
d−1
4 , Y, Z,Xd)

q(Ωd−1)

q(Ωd)
, 1

}
= min

{
P (Y |Ωd,Θd−1

1 ,Θd
2,Θ

d−1
4 , Z,Xd)

P (Y |Ωd−1,Θd−1
1 ,Θd

2,Θ
d−1
4 , Z,Xd)

, 1

}
where the numerator and denominator of the last line are the likelihood functions, which

are normally distributed based on the normality assumption for the measurement error

εt,n. Therefore, β is the likelihood ratio of the d-th draw to that of the (d− 1)-th draw.

4.3.4 Drawing λ and µQL

Because both λ and µQL appear in the measurement equations in nonlinear form in the

PDEs of (3.9) and (3.10), there are no analytical expressions of the conditional posterior

distribution for these parameters. We draw λ and µQL one by one using a MH algorithm.

We illustrate the sampling for λ below, and the sampling for µQL is similar. The posterior

distribution of λ conditional on Y, Z,Xd, and the other parameters is given by

P (λ|Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , Y, Z,Xd)

∝ P (Y |Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , λ, Y, Z,Xd)P (λ0) ∝ P (Y |Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , λ, Y, Z,Xd),

where P (λ0) is the prior of λ. We use the non-informative prior, so that we only have the

likelihood function to determine. λ enters the likelihood in a nonlinear way and λ is drew

by using the random walk chain MH algorithm as λd = λd−1 + τλη, where η ∼ N(0, 1),

and τλ is the scale parameter to control the acceptance rate. The acceptance probability

of λd is given by

β = min

{
P (λd|Θd−1

1 ,Θd
2,Θ

d
3, µ

Qd−1

L , Y, Z,Xd)

P (λd−1|Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , Y, Z,Xd)

q(λd−1|λd)
q(λd|λd−1)

, 1

}

= min

{
P (λd|Θd−1

1 ,Θd
2,Θ

d
3, µ

Qd−1

L , Y, Z,Xd)

P (λd−1|Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , Y, Z,Xd)
, 1

}

= min

{
P (Y |Θd−1

1 ,Θd
2,Θ

d
3, µ

Qd−1

L , λd, Y, Z,Xd)

P (Y |Θd−1
1 ,Θd

2,Θ
d
3, µ

Qd−1

L , λd−1, Y, Z,Xd)
, 1

}
.

4.3.5 Drawing α and σ2
ε

Conditional on the d-th draw of the parameters in Θd
2, Θd

3, Θd
4, the latent variables

Xd, the observed yield data Y , and the transformed linear regressors Z, the measurement
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equation is reduced to a linear regression model. Thus, the conditional posterior of Θ1

can be obtained using the Gibbs sampling procedure with the normal prior distribution

and the inverse-Gamma prior distribution for α and σ2
ε , respectively; see, for example,

Chapter 8 of Koop (2003) for details. In practice, we set the variance-covariance matrix

of the normal prior distribution for α to be the variance-covariance of the coefficients of

the simultaneous equation regression, and let the prior mean be the OLS estimator for

this regression.

5 Empirical Results

We run the MCMC procedure explained above for 220, 000 draws and keep the last

200, 000 draws after the initial 20, 000 burn-ins. Both for the single equation and si-

multaneous equation analysis, we choose κ = 5 according to the selection criteria. In

the following, we report the estimation results and discuss their inference and forecast

comparisons.

5.1 Parameter Estimation

Table 1 reports the parameter estimation results. The upper part includes the param-

eters of the measurement equations. The α values of the demographic distribution trend

impact function are estimated significantly. The risk-neutral parameter λ implies that the

curvature factor peaks around the maturity of six quarters, which is shorter than that of

a traditional AFNS model with a higher value of λ. The lower part of Table 1 reports the

state dynamic parameters of the NS factors in the physical VAR process. The diagonal

elements in the autoregressive matrix are less persistent than the traditional estimates of

an AFNS model without controlling for the slow-moving trend.

[Table 1: Parameter estimates based on the MCMC method]

[Table 2: Inefficiency factors of parameter posterior draws]

The convergence diagnostics based on the trace plots reported in Figure 6 and the

inefficiency factors in Table 2 indicate convergence, although the inefficiency factors for the

parameters in the measurement equations tend to be larger. The risk-neutral parameter

µQL is the slowest to converge due to its nonlinearity when entering the measurement

equations. However, with a large number of posterior draws 200, 000, convergence is

achieved, as shown by the trace plots.

[Figure 6: Trace plots of the posterior draws]
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Based on the estimation results, the goodness of fit of this model is shown in Table 3,

which reports the descriptive statistics of the yield residuals. The standard deviations of

the errors are mostly within 7 basis points (bps, 1 bp=0.01%), and the root mean squared

errors (RMSE) or mean absolute errors (MAE) are on average only between 6 and 7 bps.

[Table 3: In-sample fit of the F-AFNS model: Residual statistics (bps)]

5.2 Impact Function, Trend, and Generation Impact Compo-

nents

Figure 7 plots the estimated age impact function and implied trends in the joint

model, where the solid lines are the median and the darker shaded area indicates the 95%

confidence band. We also plot the corresponding single equation results using dashed

lines with a lighter gray area indicating its 95% confidence interval. In comparison, when

cross-maturity information in the term structure is used with higher efficiency, the joint

estimation shrinks the confidence interval to a much smaller range. As a result, the

left panel clearly shows that the previously non-significant impacts for the very young

population before school years and the older population over 78 years of age become

significantly negative and positive, respectively, and uncertainty about the implied trends

is also reduced, especially between the mid-1970s and the mid-1980s around the turning

point at the peak.

[Figure 7: Age impact functions and trends in the joint model versus single equation

regressions]

To elaborate intuitively how the impact function works through each generation to

drive the trend level of the short term interest rate, we demonstrate with Figure 8 and

Figure 9 in two dimensions. In the time dimension, Figure 8 illustrates the life-long impact

of the 1945 cohort in our sample. The upper panel shows its percentage share (density) in

total population from 1952 to 2017 and projected share in dashed line from 2018 to 2027

with our calculation as explained in Section 3.2.1. The lower panel plots the estimated

age impact function based on the joint model, starting from 1945 and age 0 for the 1945

cohort, and the red solid line indicates its impact component starting from 1952 in short

term interest rate, as its share multiplied by the corresponding age impact along time

and corresponding age. It shows that the impact component exhibits the S-shape of the

impact function, but the amplitude tends to decrease as the share in the total population

decreases.
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[Figure 8: Population share of the 1945 cohort and its impact component in short rate]

In the age dimension at a particular time, Figure 9 shows how the trend level of the

short rate is determined by the cross product of the population age density and the impact

function, as defined by (3.1). Taking the situation in 2004 for example, Figure 9 plots the

age density in the upper panel together with the impact function in the lower panel. Their

cross product leads to a trend level of 3.83% for the short rate. To further demonstrates the

generation impacts, we divide the population in our sample according to birth years into

five major groups similar to Geanakoplos et al. (2004), with the three middle generations

each spanning 20 years of birth dates. The five generations are labeled as pre boomers

(born before 1945), baby boomers (1945-1964), generation X (1965-1984), echo boomers

(1985-2004), and new millennium (since 2005). At 2004:Q4, the interest rate trend can

be attributed to the aggregated impacts of the four generations born before 2005, which

are indicated by dashed line segments for corresponding generations, as -4.37%, -7.98%,

12.27%, and 3.81% for pre boomers, baby boomers, generation X, and echo boomers,

respectively. It can be seen that the baby boomers contribute a substantial negative

component as they entered into a life stage of yielding negative impact on the interest

rate, especially on real rate. The pre boomers are the most aged and also contribute

negatively. Although the impact function has a positive tale at the upper end, those aged

above 78 has a diminishing weight and thus a minor impact.

[Figure 9: Age distribution of the population at 2004:Q4 and age impact function]

From a perspective of generation impact, our results help understanding the large

swing of the yield trends in relation to demographic age structure. We compute the

impact components contributed by the five generations to the short rate trend in the

whole sample and plot them in Figure 10. It can be seen that each generation exerts

a similar S-shaped impact along their life time, but the impact of the baby boomers is

amplified by their bulky weight, thus resulting in a short rate trend mirroring much of the

boomer’s cycle. Figure 10 also plots the projected impact of each generation from 2018

to 2027 in dashed lines, which predict a persistently flattened short rate trend merely

above zero. Although the baby boomer’s age impact function turns upward during this

period, due to its diminishing weight as aged population, their aggregated impact no

longer dominates.

[Figure 10: The short rate trend and impact components of different generations]

Our results show that the joint model can fully utilize the cross-section information

within both the population density and the yield curve to make more in-depth analysis
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on the relationship between the full range of demographic structure and the trend in

interest rates. The results yield two insights: first, demographic shocks exert life-long

impacts on interest rates which only die out after decades, thus explaining the persistence

of yields; second, the impact of demographic shocks varies along the life cycle and the

aggregated impacts of historical demographic shocks determine aggregately the level of

trend in interest rates, thus explaining the pattern of yield trends.

5.3 Term Structure Decomposition

The trends in each yield of maturity form a demographic term structure, as plotted in

Figure 11. Figure 11 clearly shows how the expected movement in the age distribution of

the population actually shapes the slow-moving term structure at different stages: upward

sloping in the 1960s through the mid-1970s due to the high birth rate of baby boomers

and their increasing impact on interest rates when they were young, downward sloping

from the 1980s for more than three decades as baby boomers matured and aged, and flat

during transitional periods such as the second half of the 1970s and recent years. The

term spread determined by the expected demographic trend can reach up to 70 bps for

the upward trend with a positive slope and around 100 bps for the downward track with

a negative slope.

[Figure 11: Demographic trend term structure of interest rates]

Conditional on the slow-moving demographic-trend term structure, there is a sta-

tionary term structure in the yield curve driven by autoregressive process, as plotted in

Figure 12. Nonstationarity are rejected by ADF test for all these cyclical components

of different maturities, which again validates the cointegration relationship between the

functional factors of the demographic age distribution and the yield curve. From the

statistics in Table 4, which compares the actual term structure and its two components,

we can see that the average term spread of the 5-year yield minus the 3-month yield in this

cyclical term structure is 1.253%, 16.6 bps higher than the yield difference, and the vari-

ance of cyclical yields is about 50% less than that of all yields. The higher term spread in

the cyclical components implies that risk premia are more important for long-term yields

during the sample period, after controlling for the trend structure.

[Figure 12: Stationary term structure of interest rates]

[Table 4: Statistics of the decomposed term structure (%)]
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To see the model-implied dynamics of risk premia illustrated in Figure 13, the 5-year

yield is decomposed into expectation and risk premia, and the former contains demo-

graphic expectation (trend) and expectation of the cyclical component (expected average

of cyclical short-term yields in future horizons). It can be seen that now the expectation

term dominates in the 5-year yield. The expected yield almost always decreases during a

recession, and the risk premium fluctuates more than the expectation term. In compari-

son, if the 5-year risk premium is computed from an AFNS model without controlling for

the demographic trend, the risk premium contributes more in the upward trend period

before the late 1970s and matters less in the downward trend period, especially in the last

10 years of the sample.

[Figure 13: Decomposition of the 5-year yield]

Taking the model-implied risk premia and computing their correlation with real ac-

tivity indicators, such as the industrial production (IP) growth and real consumption

growth, Table 5 shows that the risk premia in our model are negatively correlated with

these macroeconomic variables with a counter cyclical feature as predicted by theory. The

risk premia in an AFNS model do not exhibit such a feature.

[Table 5: Correlation between risk premia and real activities]

5.4 Forecast Comparisons

We compare the out-of-sample forecasting performance of our model with a few alter-

natives, including a discrete-time AFNS as in Christensen et al. (2011) and Hong et al.

(2019), a dynamic Nelson-Siegel model (DNS) without the no-arbitrage assumption as

in Diebold and Li (2006), the single index demographic trend no-arbitrage model (MY-

AFNS) similar to that in Favero et al. (2016), and a random walk model without drift.

We use recursive window estimation, with the first window starting from 1952:Q2 to

1999:Q4 for 1-, 4-, 8-, 12-, 16-, and 20-quarter ahead forecasts, and move one quarter at a

time with an expanding window for the next set of 1- to 20-quarter ahead forecasts, until

we reach the end of the sample. The root mean squared forecast error (RMSFE) results

are reported in Figure 14, from which it can be seen that no alternative models perform

better than our F-AFNS model for 4- to 20-quarter ahead forecasts.

[Figure 14: Forecast comparisons based on the RMSFE]

Finally, the error terms in the alternative models increase with the forecast horizons,

but the errors in the F-AFNS model exhibit a slightly hump-shaped pattern, increasing up
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to the 12-quarter horizon and decreasing afterward, such that the errors in the 20-quarter

horizon stabilize within 120 bps across maturities. This non-diverging pattern of errors

along the forecast horizons demonstrates unbiased trend forecasts.

6 Conclusion

We propose a unified functional affine term structure modeling framework, called the

FATSM model, to incorporate a long-term trend driven by the age distribution of the

population through a life cycle impact function. The model explains the trend behavior of

interest rates with a theoretical basis and empirical power. First, our model links the time-

varying long-term trend of interest rates with fundamental and permanent demographic

shocks which exert a life cycle impact and take a life time to die out. Second, the

information in the term structure is used efficiently to infer the age impact function with

parameters tightening, and the resulting age impact function shows a life cycle pattern

consistent with the impact of real rate and inflation trends in a Fisher equation framework.

Third, the strong identification of a slow-moving trend as the integrated effect of the

evolution of the age distribution helps to decompose the interest rate term structure into

a persistent demographic-driven term structure and a stationary one featuring business

cycle fluctuation.

Applying the proposed model to U.S. data from 1950 to the recent period, we find

remarkable evidence of the consistency of our model with the yield data. After removing

the demographic-driven cointegrated trends, the remaining term structure is stationary

and the implied risk premia are counter cyclical. The out-of-sample performance of the

model is better than that of alternatives models for 4- to 20-quarter ahead yield forecasts

across maturities.

Finally, the extension of the proposed model to a joint framework with inflation-

protected bond yields may help to better understand the age impact functions for inflation

and real rate trends over the life cycle, and is left for future research.
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Figures and Tables

Figure 1. U.S. Treasury yield curve from 1952:Q2 to 2018:Q1

Figure 2. Dynamics of the age distribution of the U.S. population
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Note: 1) The left panel shows the age impact functions estimated from single equation regressions for
inflation (dashed line) and the real rate (dotted line); 2) The right panel shows the age impact function
for the nominal short rate, where the circle indicates the implied impact functions as a sum of impact
functions for real rate and inflation, and the solid line indicates the impact function estimated directly
from the regression with nominal short rate; 3) In both panels, the shaded areas indicate the 95%
confidence interval of the estimated impacts.

Figure 3. Age impact functions of single equation regressions

Note: 1) The left panel shows the trends estimated from single equation regressions for inflation (dashed
line) and the real rate (dotted line); 2) The right panel shows the trend for the nominal short rate, where
the circle indicates the implied trend as a sum of trends for real rate and inflation, and the solid line
indicates the trend estimated directly from the regression with nominal short rate; 3) In both panels, the
shaded areas indicate the 95% confidence interval of the estimated impact function.

Figure 4. Demographic trends of single equation regressions
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Note: 1) The left panel shows the trends estimated from inflation (dashed line) and the real rate (dotted
line) regression on a constant and MY ratio, respectively ; 2) The right panel shows the trend for the
nominal short rate, where the circle indicates the implied trend as a sum of trends for real rate and inflation
from the left panel, and the red solid line indicates the trend estimated directly from the regression with
nominal short rate, while the cyan solid line indicates the nominal short rate trend estimated from the
functional regression as shown in Figure 4; 3) In both panels, the shaded areas indicate the 95% confidence
interval of the estimated impact function.

Figure 5. Trends explained by the MY ratio
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Figure 6. Trace plots of the posterior draws
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Figure 7. Age impact functions and trends in the joint model versus single equation regressions

Note: The upper panel shows the percentage share (density) of the 1945 cohort in total population from
1952 to 2017 and its projected share in dashed line from 2018 to 2027; The lower panel plots the age
impact function starting from 1945 and age 0 for the 1945 cohort, and the red solid line indicates its
impact component starting from 1952 in short term interest rate.

Figure 8. Population share of the 1945 cohort and its impact component in short rate
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Note: This figure shows the age impact function (left axis of lower subplot) and the population age
distribution at 2004:Q4 labeled with four generations. The aggregated impact of each generation on the
trend level of short rate is indicated by a dashed line segment measured by percentage (right axis of lower
subplot).

Figure 9. Age distribution of the population at 2004:Q4 and age impact function
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Note: This figure shows the short rate trend in solid line and the impact components of five generations
in circled lines along time. The generation component is computed as the aggregated age impacts of
all cohorts within a generation. The dashed lines from 2018 to 2027 are projections based on the joint
model.

Figure 10. The short rate trend and impact components of different generations
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Note: This figure shows the slow-moving trends of interest rates of 1 quarter (1Q) to 20 quarters (20Q)
as explained by the integrated effect of the evolution of the US population of different age cohorts within
those related bond holding terms.

Figure 11. Demographic term structure of interest rates

Note: This figure shows the cyclical components of US interest rate term structure from 1 quarter (1Q)
to 20 quarters (20Q), after excluding demographic-driven trends.

Figure 12. Cyclical term structure of interest rates
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Note: This figure compares the decomposed 5-year yield into expectation component (left panel) and risk
premium (right panel) from the functional AFNS model with aggregate life cycle determinant (dashed
line) and the AFNS model (dotted line). The results of posterior median are reported for both models.
Shaded areas are NBER recessions.

Figure 13. Decomposition of the 5-year yield
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Note: This figure shows out-of-sample forecast comparison on the F-AFNS model with four alternative
models of MY-AFNS, AFNS, DNS, and random walk (RW); Each panel shows the 1- to 20-quarter ahead
root mean squared forecast errors (RMSFE) for a particular yield to maturity from the five models.

Figure 14. Forecast comparisons based on the RMSFE
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Table 1. Parameter estimates based on the MCMC method

Measurement Equations
Trend

α1 α2 α3 α4 α5

-6.726 38.134 -5.402 6.513 −34.858
(-32.294, 17.850) (26.146, 49.491) (-18.774, 8.521) (-18.084, 32.103) (-45.951, -23.144)

Cycle

λ µQl ∗ 104 σε ∗ 4 ∗ 104

0.283 2.998 8.276
(0.269, 0.295) (2.735, 3.326) (8.013, 8.557)

State Equations
Φ Lt−1 St−1 Ct−1 µ

Lt
0.964 0.087 −0.053 0.0002

(0.925, 1.003) (0.045, 0.129) (-0.078, -0.027) (-0.0000, 0.0004)

St
−0.084 0.845 0.024 −0.0003

(-0.143, -0.025) (0.783, 0.907) (-0.014, 0.061) (-0.0006, -0.0000)

Ct
0.031 0.423 0.591 0.0018

(-0.105, 0.169) (0.282, 0.566) (0.503, 0.677) (0.0012, 0.0025)

Ω ∗ 104 0.018
(0.015, 0.021)
−0.011 0.041

(-0.015, -0.008) (0.035, 0.048)
-0.007 0.009 0.211

(-0.015, 0.001) (-0.001, 0.021) (0.179, 0.251)

Note: This table shows the median of the drawn parameters, and the 90% confidence interval in
brackets includes the 5% and 95% quantiles of the drawn parameters.
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Table 2. Inefficiency factors of parameter posterior draws

Measurement Equations
Trend
α1 α2 α3 α4 α5

322.492 323.999 322.524 322.476 324.202

Cycle

λ µQl σε
299.639 443.211 1.162

State Equations
Φ Lt−1 St−1 Ct−1 µ
Lt 3.159 12.496 9.014 17.074
St 1.618 8.998 11.153 9.944
Ct 4.941 2.856 2.943 11.257

Ω 12.902
8.702 6.044
31.869 19.424 10.113

Note: The inefficiency factor is defined as in Chib and Ergashev (2009): 1 + 2
∑500

l=1(1 − l
500 )ρ(l),

where ρ(l) is the sample autocorrelation of lag l for each MCMC sequence.

Table 3. In-sample fit of the F-AFNS model: Residual statistics (bps)

Maturity Mean Median Max Min Std RMSE MAE
1Q -0.528 -0.692 20.336 -14.028 3.845 3.874 2.726
4Q 2.117 2.251 42.981 -29.173 9.313 9.533 7.013
8Q -3.109 -2.809 20.982 -28.902 6.260 6.979 5.256
12Q 0.546 0.026 22.313 -18.720 6.916 6.924 5.374
16Q 2.268 1.847 42.438 -24.265 6.379 6.759 4.688
20Q -1.299 -1.127 19.070 -31.525 6.938 7.046 5.339

Average -0.001 -0.084 28.020 -24.435 6.608 6.852 5.066

Note: This table shows the descriptive statistics of the median residuals of the yields.

Table 4. Statistics of the decomposed term structure (%)

Yields Trends Cycles
Maturity Mean Std Mean Std Mean Std

1Q 4.317 3.090 5.064 2.530 -0.741 1.719
4Q 4.757 3.201 5.011 2.547 -0.275 1.682
8Q 4.957 3.166 4.982 2.570 0.006 1.569
12Q 5.140 3.088 4.955 2.589 0.180 1.488
16Q 5.294 3.030 4.929 2.606 0.342 1.455
20Q 5.404 2.959 4.904 2.619 0.513 1.451

20Q − 1Q 1.087 1.000 -0.161 0.557 1.253 1.239

Note: This table shows the mean and standard deviation of actual yields as well as the median trends
and cycles of yields.
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Table 5. Correlation between risk premia and real activities

Real activity index Models 4Q 8Q 12Q 16Q 20Q

IP growth
F-AFNS

0.009 -0.057 −0.106 −0.136 −0.152
(-0.040,0.059) (-0.108,0.003) (-0.148,-0.049) (-0.170,-0.088) (-0.182,-0.113)

AFNS
0.051 0.012 -0.017 -0.034 -0.042

(0.011,0.093) (-0.034,0.060) (-0.063,0.033) (-0.079,0.014) (-0.088,0.001)

Real consumption growth
F-AFNS

0.078 -0.019 −0.096 −0.146 −0.176
(0.013,0.143) (-0.088,0.069) (-0.155,-0.006) (-0.192,-0.066) (-0.215,-0.109)

AFNS
0.159 0.124 0.093 0.072 0.059

(0.124,0.194) (0.080,0.168) (0.047,0.143) (0.027,0.122) (0.015,0.106)

Real GDP growth
F-AFNS

0.084 0.001 -0.065 −0.107 −0.133
(0.026,0.141) (-0.065,0.076) (-0.123,0.011) (-0.156,-0.041) (-0.175,-0.077)

AFNS
0.139 0.093 0.058 0.037 0.026

(0.093,0.182) (0.033,0.149) (-0.010,0.119) (-0.034,0.097) (-0.049,0.083)

Note: This table shows the median of the correlations between risk premia and real activity indices,
and the 95% confidence interval in brackets include the 2.5% and 97.5% quantile of correlation.

48


	Introduction
	Term Structure of Interest Rates: Trend Beyond the Business Cycle
	Demographic Age Structure: Mechanism and Measurement
	Impact Channels of Demographic Age Structure on Nominal Yields
	Measurement on Demographic Age Structure
	A Functional Perspective on the Dynamic Linkage Between the Two Structures


	Age Impact Analysis on Nominal Short Rate
	A Bird's Eye View on the Age Distribution: Waves of Generations
	Trend Decomposition with a Demographic Factor of a Functional Form
	Linear Estimator
	Empirical Results of Single Equation Regressions

	Functional Affine Arbitrage-free Term Structure Model with Aggregate Life Cycle Determinants
	Short Rate Equation
	State Dynamics
	Slow-Moving Functional State of Age Density
	Business Cycle Factors

	Interest Rate Term Structure
	Statistical Representation
	General Representation
	Specific Representation of Cyclical Factors


	Statistical Methodology
	Nonparametric Trend Extraction Under the EH
	Parametric Estimation of the Autoregressive Process
	Joint Semiparametric Estimation Using the Bayesian Method
	Drawing Xt
	Drawing  and 
	Drawing 
	Drawing  and LQ
	Drawing  and 2


	Empirical Results
	Parameter Estimation
	Impact Function, Trend, and Generation Impact Components 
	Term Structure Decomposition
	Forecast Comparisons

	Conclusion

