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HIGHLIGHTS

• Testing heteroskedasticity in predictive regression.
• Specification test for testing constancy of conditional variance when regressor is nonstationary.
• Heteroskedasticity exists for predictive regression of stock return with dividend-price ratio

and earning price ratio as the predictors.

Abstract: In this paper, we propose the Cramér-von Mises type test statistic for testing het-
eroskedasticity in predictive regression when regressors are nonstationary. A Monte Carlo simulation
study is conducted to illustrate the finite sample performance of the proposed test statistic and a
real empirical example is examined.
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1 Introduction

In the recent three decades, testing predictability of asset returns has not only attracted vast

amounts of attention from financial practitioners due to its key component to evaluate mutual fund

managers’ performance, examine the validity of asset pricing models, and improve asset allocation

efficiency, but also has been an important research topic in financial economics in academia. A large

literature has been devoted to testing whether asset returns are predictable or not. The typical

econometric method used in literature is an ordinary least squares (OLS) regression of returns versus

the lag of the financial variables, and conventional t-statistics are used to check the significance of

coefficients.
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For easy exposition, a structural simple predictive regression model is given by

yt = β0 + β1 xt−1 + ut, 1 ≤ t ≤ T, (1)

where xt−1 is a nonstationary time series. Here, Var(ut |xt−1) = σ2
t might not be a constant. Then,

ut can be written as ut = σtϵt, where {ϵt} is a sequence of iid random variable or a stationary time

series with E(ϵt) = 0 and Var(ϵt) = 1. Thus, (1) can be written as

yt = β0 + β1 xt−1 + σt ϵt, (2)

where it is commonly assumed that σt is a constant and xt−1 satisfies the following autoregressive

(AR) model

xt = ρ xt−1 + vt, (3)

where ρ = 1 + c/T for some unknown constant c, and vt is a weakly stationary time series, say,

an α-mixing process. Clearly, if c = 0, xt is a unit root process, denoted by I(1) and it is nearly

integrated process, denoted by NI(1), if c < 0. Under the assumption that σt is a constant and xt−1

satisfies (3), there is vast amounts of literature for testing the predictability as H0 : β1 = 0. The

reader is referred to the recent survey paper by Liao, Cai and Chen (2018) for details on the various

methods, from which, one can see that when xt is nonstationary, the assumption that σt is constant

is key to derive the asymptotic theory for testing H0 : β1 = 0. Recebtly, by extending the work by

Park (2002), Choi, Jacewitzb and Park (2016) reexamined stock return predictability by assuming

that σt = σ0(t/T ) or σt = σ0(zt/
√
T ) for some known function σ0(·) to satisfy some conditions.

Therefore, by assuming that σt is possibly nonstationary and a function of xt−1 as σt = σ(xt−1),

it is of great importance to consider the following test problem; that is to test heteroskedasticity,

H0 : σ(·) = σ0, (4)

where σ0 is an unknown or known parameter. Of course, it would be interesting to consider other

types of test.

The rest of the paper is organized as follows. The construction of the proposed test statistic is

presented in Section 2 and Section 3 is devoted to presenting studies on the Monte Carlo simulations

and real applications. Concluding remarks concludes Section 4.

2 Specification Test

Let δ =corr(ut, vt). As argued by Campbell and Yogo (2006), δ might not be zero in many

applications, so that the so-called embedded endogeneity causes the estimation bias for estimating
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β0 and β1 by running directly the model in (1). To overcome this difficulty, following Cai and Wang

(2014), one can use a projection approach of ut onto vt as ut = γ vt + ηt and run the following

regression with estimated regressor

yt = β0 + β1xt−1 + γ v̂t + ηt, 1 ≤ t ≤ T, (5)

to estimate β0 and β1, where v̂t = xt − ρ̂ xt−1 from (3), so that one can obtain the residual ût, from

which ût = ut+Op(T
−1/2) based on Theorem 1 in Cai and Wang (2014) under some mild conditions.

Therefore, by letting rt = u2t and r̂t = û2t , we have

r̂t − rt = 2
[
(β0 − β̂0) + (β1 − β̂1)xt−1

]
σ(xt−1)ϵt +Op(T

−1). (6)

It is intuitively clear that the biases of the squared residuals are of order Op(T
−1), and this is the

effect of estimated β0 and β1 in (5) on the estimated variance function σ2(x). This result also paves

the way for employing a fully data-driven bandwidth procedure in the estimation given in (7) below.

Since σ2(xt−1) = E(rt |xt−1), then, rt can be written as a mean regression form as follows

rt = σ2(xt−1) + ξt,

where E(ξt |xt−1) = 0. Thus, under H0 in (4), a consistent estimate of σ2
0 is

σ̃2
0 =

1

T − 1

T∑
t=2

rt

if rt would be known. But, rt is unknown in practice, it should be replaced by r̂t according to (6).

Clearly, in view of (6),

1

T − 1

T∑
t=2

r̂t − σ̃2
0 = 2σ0(β0 − β̂0)ϵ̄+ 2σ0(β1 − β̂1)xϵ+Op(T

−1),

where ϵ̄ =
∑T

t=2 ϵt/(T − 1) and xϵ =
∑T

t=2 xt−1ϵt/(T − 1), which can be easily shown that ϵ̄ = op(1)

and xϵ = Op(1). Therefore,

σ̃2
0 =

1

T − 1

T∑
t=2

r̂t + op(1) ≈
1

T − 1

T∑
t=2

r̂t ≡ σ̂2
0,

so that 1
T−1

∑T
t=2 r̂t is used to estimate σ2

0 consistently.

Under the alternative, σ2(xt−1) = E(rt |xt−1) is a nonparametric function of xt−1, so that based

on nonparametric estimation procedure, one can estimate σ2(x) for a given x by the following kernel
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method (local constant approach) as in Han and Zhang (2012),

σ̃2(x) =
T∑
t=2

rtKh(xt−1 − x)/DT (x), (7)

where DT (x) =
∑T

t=2Kh(xt−1 − x),Kh(x) = K(x/h)/h, K(x) is a kernel function, and h is the

bandwidth satisfying h → 0 and T h → ∞. Note that different from the local linear estimation of

σ2(x) for stationary case in Fan and Yao (1998), a local constant estimation is employed here since

both have the exact same asymptotic behaviors for nonstationary regressors as argued in Cai (2011).

Similar to Theorem 3 in Cai (2011) and Han and Zhang (2012), one can show easily that

σ̃2(x) = σ2(x) +BT (x) +Op(T
−1/5) (8)

whereBT (x) = h2 µ2(K)σ̈2(x)/2 with σ̈2(x) being the second derivative of σ2(x) and µ2 =
∫
x2K(x)dx.

Based on the above discussions in (6) and (8), rt can be replaced by r̂t, so that

σ̂2(x) =

T∑
t=2

r̂tKh(xt−1 − x)/DT (x). (9)

Similarly, one can show that (8) holds true for σ̂2(x), which implies that σ̂2(x) is a consistent estimate

of σ2(x).

To test H0, similar to the test in Cai, Wang and Wang (2015), we make use of the following

weighted Cramér-von Mises test statistic (L2-type) test statistic

JT =

∫ [
(σ̂2(x)− σ̂2

0

)
DT (x)]

2dx,

which can be simplified, by removing by the global center, i.e., the sum where t = s in the above

equation, as follows

ST =
∑
t,s=2

∑
t̸=s

ξ̂tξ̂sW ((xt−1 − xs−1)/h), (10)

where ξ̂t = r̂t − σ̂2
0 and W (u) =

∫
K(v)K(u− v)dv is the convolution kernel. Note that the reason

of employing the weighted L2-type test statistic is to get ride of the random denominator, which has

been commonly used in the literature.

Note that the test statistic in (10) is similar to the kernel smoothed test statistic, which has

commonly been applied to test parametric specifications in the econometrics literature, see, for

example, Zheng (1996), Fan and Li (1996), and Li (1999) for stationary time series mean regression

and in Wang and Phillips (2012) for nonstationary regressor. Under some regularity assumptions,

which are similar to Assumptions 1-5 in Wang and Phillips (2012), by following the proof in Wang
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and Phillips (2012), it is difficult to show that

ST /

√
2 Σ̂T −→D N(0, 1), (11)

which is similar to (3.10) in Zheng (1996) for iid case, and (3.1) in Wang and Phillips (2012) for

nonstationary situations, where

Σ̂T =
∑
s,t=2

∑
s ̸=t

ξ̂2t ξ̂
2
sW

2(xt − xs)/h),

which is the exact same as that for the iid case in Zheng (1996) and for time series context in Fan

and Li (1996) and Li (1999) as well as for nonstationary time series in Wang and Phillips (2012).

Also, one can show that the test statistic ST is a consistent test.

3 Applications

To investigate the finite sample performance of the proposed test statistics, we conduct a Monte

Carlo simulation study with constant and time-varying σ2(·). For simplicity, in following computa-

tions, the Gaussian kernel is used so that the convolution kernel is an N(0, 2) density function.

3.1 Monte Carlo Simulations

The data generating process from predictive regression model is

yt = β0 + β1 xt−1 + σ(xt−1) ϵt, xt = ρ xt−1 + vt, (12)

where β0 = 0.5, β1 = 0.75 and ρ = 1 + c/T with c taking 0, −5, and −30. Clearly, the degree of

persistence of xt is controlled by nuisance parameter c and the three levels of persistence correspond

to the cases when predictor xt is a unit root process, a nearly unit root process and a stationary

process, respectively. The innovations ϵt and vt are jointly generated by standard bivariate normal

distribution with correlation coefficient δ taking −0.95 and −0.25.

To study the finite sample performance of proposed testing method, we consider the following

case:

σ2(xt−1) = σ2
0 + τ x2t−1, (13)

with σ2
0 = 1. When τ = 0, it collapses to the null hypothesis so that the empirical test size can be

computed. When τ ̸= 0, it reduces to a series of alternatives, which delivers the empirical power

indexed by τ .

The Monte Carlo simulation is considered with T = 500 and 1000, δ = −0.95 and −0.25, and

three values for nuisance parameter c, and it is repeated 1000 times for each setting. In order to
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demonstrate the finite sample behavior of the proposed test statistic, we examine the sizes and the

powers under three choices of bandwidth (h1, h2, h3) = (h, 0.5h, 1.5h) with h = T−1/10 for c = 0 and

−5, and h = T−1/5 for c = −30. The test sizes are reported in Table 1, from which one can observe

that the test sizes are close to the nominal size under all settings. Therefore, one can conclude that

the test is not very sensitive to the choice of bandwidth as long as the bandwidth is in the reasonable

range and performs very well. Now, we evaluate the power of the proposed test by two typical

Table 1: Size performance with nominal size 5%.

δ = −0.95 δ = −0.25

T=500 T=1000 T=500 T=1000

h1 0.046 0.050 0.040 0.042
c=0 h2 0.049 0.046 0.044 0.048

h3 0.033 0.041 0.040 0.040

h1 0.036 0.041 0.032 0.044
c=-5 h2 0.046 0.049 0.043 0.047

h3 0.026 0.037 0.022 0.033

h1 0.036 0.044 0.034 0.040
c=-30 h2 0.041 0.045 0.049 0.045

h3 0.027 0.034 0.024 0.032

examples. Indeed, the power is computed by τ in (13) in the range [0, 0.01] with an increment 0.001

when c = 0 and τ ∈ [0, 0.1] with an increment 0.01 when c = −30. The powers vary slightly with

bandwidth but they are quite close in general, given such small increment in alternatives. Meanwhile,

with smaller choice of τ in the series of alternatives when c = 0, the performance of proposed test

statistic is better for nonstationary scenario than for stationary case in terms of test power. Figure

2 also demonstrates this property. In Figure 2, we fix the bandwidth h = T−1/5 for all scenarios

and compute powers by τ ∈ [0, 0.1] with an increment 0.01 when T = 500 and τ ∈ [0, 0.03] with an

increment 0.003 when T = 1000. We also compute powers with δ = −0.25, the results are almost

the same and thus omitted for saving space.

3.2 An Empirical Example

As an illustration of our methodology, we test heteroskedasticity for predictive regression of stock

return with dividend-price ratio and earning price ratio as the predictors. Two different series of

stock returns are employed, the returns on NYSE/AMEX value-weighted index and S&P 500 index

from the Center for Research in Security Prices (CRSP). We use monthly data from November 1926

to December 2019.

The dividend price (d-p) ratio is constructed as the ratio of average dividends during the last
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Figure 1: Powers of the alternatives (13) with c = 0, δ = −0.95 and T = 500 in the left figure and c = −30,
δ = −0.95 and T = 500 in the right figure.

Figure 2: Powers of alternatives (13) with δ = −0.95 and T = 500 in the left figures and δ = −0.95 and
T = 1000 in the right figure.
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year over the current price level, we take the natural log on it in actual predictive regression. For

both indexes, the log d-p ratios have been identified as an I(1) process by ADF test and we first

consider the following predictive regression

rt = α+ βxt−1 + ut, (14)

where rt is the excess return and xt represents the associated log d-p ratio. Denoted by v̂t the

OLS residuals from the AR(1) model, xt = ρxt−1 + vt, and ût the OLS residuals from model (14).

The sample correlation coefficients between ût and v̂t are reported in Table 2, these nonzero values

imply the existence of embedded endogeneity (xt−1 and ut may be correlated) problem which leads

to biased estimates. Following Cai and Wang (2014), we employ the projection approach to deal

with endogeneity problem and the regression model is

rt = β0 + β1xt−1 + γ v̂t + σ(xt−1) ϵt. (15)

Our interest is to test heteroskedasticity; that is, test H0 : σ
2(xt−1) = σ2

0, where σ
2
0 is unknown. The

test statistics and p-values of the test are reported in Table 2. With 5% significance level, both null

hypotheses are rejected. This means that σ(xt−1) depends on xt−1.

In addition, we also consider the earning price (e-p) ratio as the predictor of stock return. The log

e-p ratio is computed base on the cyclically adjusted price earnings ratio (CAPE), which is proposed

by Shiller (Irrational Exuberance, 2016), to be specific, we take the natural log on the inverse of

CAPE. We apply the same testing methodology and the results are also reported in Table 2, from

which one can conclude that σ(xt−1) depends on xt−1 in this application example as well.

Table 2: Empirical results

log d-p ratio log e-p ratio

δ̂ Test Statistics p-value δ̂ Test Statistics p-value
S&P 500 -0.8409 5.3865 < 0.0001 -0.6589 2.6143 0.0089

NYSE/AMEX -0.9473 5.6063 < 0.0001 -0.6708 2.8815 0.0040
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