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HIGHLIGHTS

• The pros and cons of four methodologies for covariate balance weighting are explored.

• Simulation shows that four covariate balance weighting method dominates MLE.

• There is no a clear domination among four covariate balance weighting methods.

Abstract: We conduct a series of simulations to compare the finite sample performance
of the average treatment effect estimators based on four recently proposed methodologies
— the covariate balancing propensity score method, the stable balance weighting approach,
the calibration balance weighting procedure, and the integrated propensity score method.
Simulation results show that the performance of the four covariate balance weighting methods
are generally better than that for the conventional method, maximum likelihood estimation
method without covariate balance, and among the four covariate balance weighting methods,
it is difficult to tell which covariate balance weighting method can dominate the others.
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1 Introduction

During the recent years, different covariate balance weighting methods for estimating treat-

ment effect have been proposed by researchers from different perspectives. A natural question

one may ask is that what is the difference among these covariate balance weighting meth-

ods and is there any particular method that can outperform the others? In this paper, we

explore the pros and cons of four methodologies proposed recently: the covariate balancing

propensity score method (CBPS) by Imai and Ratkovic (2014), the stable balance weighting

(SBW) approach by Zubizarreta (2015), the calibration balance weighting (CBW) procedure

by Chan et al. (2016), and the integrated propensity score (IPS) method by Sant’Anna et al.

(2020). Among them, the CBPS and IPS methods achieve covariate balance via modeling the

propensity score while the SBW and CBW methods circumvent the propensity score model

and directly obtain the covariate balance weights through optimization designs. To answer

the second part of the previous question, similar to the paper by Wan, Xie and Hsiao (2018),

we conduct a series of simulations to study the performance of these four covariate balance

weighting methods as well as the maximum likelihood estimation (MLE) weighting method

without covariate balance in estimating the average treatment effect (ATE). Through sim-

ulation studies, we find that generally speaking, the covariate balance weighting methods

can outperform the MLE weighting method and the performance of the covariate balance

weighting methods in estimating ATE seems to be comparable to some extent.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the four

covariate balance weighting methods to explore their pros and cons. We conduct a series of

simulations and summarize the main findings in Section 3. Section 4 concludes the paper.

2 Covariate Balance Weighting Methods

2.1 Background and MLE

Let T be a binary treatment variable, X be p-dimensional vector of observed pre-treatment

covariates, and Y be the observed outcome variable given by Y = TY (1) + (1 − T )Y (0),

where Y (1) and Y (0) are potential outcomes under treated and untreated status, respectively.
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Suppose we have a random sample {Ti, Yi, Xi}ni=1 from (T, Y,X). The propensity score is

defined as π(X) = P (T = 1|X) and the ATE is defined as ∆ = E[Y (1)−Y (0)]. It is common

to assume that the strong ignorability assumption:

(Y (0), Y (1)) |= T | X and  < π(X) < 1− ,

for some  > 0 holds, where |= denotes the statistical independence, under which and by the

law of iterated expectations, the ATE can be expressed as

∆ = E


TY

π(X)
− (1− T )Y

1− π(X)


. (1)

If the propensity score is known, then using the sample mean of (1), one can obtain a

consistent estimator of the ATE

∆̂ =
1

n

n

i=1


TiYi

π(Xi)
− (1− Ti)Yi

1− π(Xi)


. (2)

In practice, it is preferred to using the stabilized version of (2) as

∆̂s =

1
n

n
i=1


Ti

π̂(Xi)
Yi



1
n

n
i=1

Ti

π̂(Xi)

−
1
n

n
i=1


(1−Ti)
1−π̂(Xi)

Yi



1
n

n
i=1

1−Ti

1−π̂(Xi)

. (3)

Generally speaking, the propensity score is unknown in observational study and needs to

be estimated. A popular method is to parameterize the propensity score by a particular

parametric model such as logistic regression model

πβ(X) =
exp(β⊤X)

1 + exp(β⊤X)
, (4)

where β ∈ Θ ⊆ Rp is a p-dimensional vector of parameters. Then, by the MLE method, one

can obtain an estimator of the unknown parameter β, denoted as β̂mle. Plugging β̂mle into

(4), one can obtain the estimated propensity score function π̂mle. By (3), the ATE estimator

based on the MLE method is given by

∆̂mle =

1
n

n
i=1


Ti

π̂mle(Xi)
Yi



1
n

n
i=1

Ti

π̂mle(Xi)

−
1
n

n
i=1


(1−Ti)

1−π̂mle(Xi)
Yi



1
n

n
i=1

1−Ti

1−π̂mle(Xi)

.

Clearly, one can see that the MLE method quite sensitive to the misspecification of the

propensity score as addressed in Kang and Schafer (2007). To address this issue, Imai and

Ratkovic (2014) introduced the following covariate balancing propensity score method.
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2.2 Covariate Balancing Propensity Score

By the definition of propensity score and the law of iterated expectations, for any continuous

function f(·) : Rp → Rm, it holds that

E


Tf(X)

π(X)


= E


(1− T )f(X)

1− π(X)


= E[f(X)]. (5)

Indeed, the idea in (5) can balance finite order moments of the covariates by taking f(X) =

Xk for k ≥ 1. To be specific, the CBPS method first assumes the logistic model as in

(4) for propensity score, then plugging the propensity score function into the framework of

generalized method of moments to obtain the estimator of β, denoted as β̂cbps. Substituting

β̂cbps into (4), one can obtain the estimated propensity score function π̂cbps. Finally, the ATE

estimator based on the CBPS method is given by

∆̂cbps =

1
n

n
i=1


Ti

π̂cbps(Xi)
Yi



1
n

n
i=1

Ti

π̂cbps(Xi)

−
1
n

n
i=1


(1−Ti)

1−π̂cbps(Xi)
Yi



1
n

n
i=1

1−Ti

1−π̂cbps(Xi)

.

2.3 Integrated Propensity Score

Clearly, the CBPS method is only limited to finite order moments. In fact, the covariate

balance indicates that the propensity score can balance the entire distribution of the covari-

ates among different groups. To this end, Sant’Anna et al. (2020) proposed the integrated

propensity score method. Similar to the CBPS method, the IPS approach assumes the

propensity score as the logistic model and then tries to balance the entire distribution of the

covariates among different groups. The basic idea is to replace f(·) in (5) with parametric

functions such as the indicator functions I(X ≤ u), u ∈ (−∞,∞)p or the projection func-

tions I(αTX ≤ u),α ∈ {α ∈ Rp : ||α|| = 1}, u ∈ (−∞,∞), and then integrate over u to

obtain a loss function with respect to β. By solving the minimization problem of the sample

analogue of the loss function, one can obtain the estimator of β, denoted as β̂ips. Plugging

β̂ips into (4), one can obtain the estimated propensity score function π̂ips. Finally, the ATE

estimator based on the IPS method is given by

∆̂ips =

1
n

n
i=1


Ti

π̂ips(Xi)
Yi



1
n

n
i=1

Ti

π̂ips(Xi)

−
1
n

n
i=1


(1−Ti)

1−π̂ips(Xi)
Yi



1
n

n
i=1

1−Ti

1−π̂ips(Xi)

.
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2.4 Stable Balance Weighting

Recently, Zubizarreta (2015) proposed a weighting procedure, which directly constrains co-

variate imbalances and minimizes the the variance of the weights, termed as stable balance

weighting method. Unlike the CBPS and IPS method, the SBW method is model-free.

Specifically, the stable balance weights are constructed by restricting the distance of the

sample moments of the covariates between the treated group and combined group or be-

tween the control and combined groups. The optimization goal is to minimize the variance

of the required weights. By solving the constrained optimization problem, one obtains the

weights with minimum variance and balancing covariates as well. Denote the weights that

balance covariates between the treated and combined groups as w1 and the weights that

balance covariates between the control and combined group as w0. Then, the weighted

estimator of the ATE based on the SBW method is given by

∆̂sbw =
n

i=1

w1iYi −
n

i=1

w0iYi.

2.5 Calibration Balance Weighting

Another covariate balance weighting procedure that circumvents the modeling of propensity

score is the so-called calibration balance weighting method proposed by Chan et al. (2016).

The CBW method includes a wide class of calibration weights, such as exponential tilting,

empirical likelihood and continuous updating estimator of GMM, and attains an exact three-

way balance of the moments of observed covariates among the treated, control and the

combined groups. Specifically, the calibration balance weights are constructed through two

restriction equations. The first one achieves the covariate balance between the treated and

combined groups and the other one achieves the covariate balance between the control and

combined groups. The optimization goal is to minimize the calibration distance between

the required weights and the uniform design weights. Denote the weights that balance

covariates between the treated and combined groups as σ1 and the weights that balance

covariates between the control and combined groups as σ0. Then, the weighted estimator of
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the ATE based on the CBW method is given by

∆̂cbw =
n

i=1

σ1iYi −
n

i=1

σ0iYi.

3 Monte Carlo Simulations

Let Xi = (Xi1, Xi2, Xi3)
⊤ be independently distributed as N(0, I3), where I3 is 3×3 identity

matrix, εi(1) and εi(0) be independently distributed as N(0, 1) and independent with Xi and

let ϕ(x) be the density distribution of the standard normal. The data generating processes

of the potential outcomes and the propensity score are set up as follows.

Design 1:

Yi(1) = 100 + 5Xi1 + 7Xi2 + 9Xi3 + εi(1), and Yi(0) = Xi1 +Xi2 +Xi3 + εi(0), (6)

where π(Xi) is the logist regression as in (4) with β = (0.5, 0.3,−0.7).

Design 2: Yi(1) and Yi(0) are generated by (6) with π(Xi) set as below

π(Xi) =
exp[1.7 exp(X2

i1) + 2.5Xi2Xi3]

1 + exp[1.7 exp(X2
i1) + 2.5Xi2Xi3]

. (7)

Design 3: Yi(1) and Yi(0) are generated by (6) with π(Xi) = ϕ(Xi1Xi2 + 2Xi3).

Design 4: With π(Xi) set as same as in Design 1,

Yi(1) = 100 + 5Xi1 + 7Xi2 + 9Xi3 + 11Xi1Xi2 +X2
i3 + εi(1),

Yi(0) = Xi1 +Xi2 +Xi3 +Xi1Xi2 +X2
i3 + εi(0), (8)

Design 5: Yi(1) and Yi(0) are generated by (8) with π(Xi) set as as same as in (7).

In all simulation designs, the treatment variable Ti ∼ B(1, π(Xi)), where B(1, π(Xi))

is the Bernoulli distribution with probability π(Xi), the observed outcome variable is Yi =

TiYi(1) + (1 − Ti)Yi(0) and the final data set we observed is {(Ti, Yi, Xi) : i = 1, · · · , n}.

It can be easily calculated that the true ATE is equal to 100 (∆ = 100) in all simulation

designs. For simplicity, the parameter function family used in the IPS method is the family

of projection functions and the weights used in the CBW method correspond to the implied

weights of the exponential tilting. For each design, we conduct 1000 Monte Carlo simulations
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with sample size n = 200, 400 and 800. Next, we calculate the median of the 1000 absolute

deviation errors (ADE) (|∆̂ − ∆|) and its standard deviation (SD) in parentheses and the

results are displayed in Table 1.

Table 1: Mdedian and SD of 1000 ADE values for different weighting estimators

MLE CBPS IPS SBW CBW

Design 1
n = 200 0.642 (0.599) 0.617 (0.533) 0.626 (0.541) 0.532 (0.477) 0.538 (0.473)
n = 400 0.465 (0.435) 0.441 (0.388) 0.455 (0.396) 0.385 (0.331) 0.393 (0.333)
n = 800 0.294 (0.273) 0.278 (0.254) 0.296 (0.263) 0.258 (0.233) 0.243 (0.220)

Design 2
n = 200 0.901 (1.052) 0.529 (0.470) 0.613 (0.545) 0.559 (0.514) 0.537 (0.464)
n = 400 0.577 (0.617) 0.379 (0.327) 0.401 (0.366) 0.436 (0.363) 0.397 (0.346)
n = 800 0.400 (0.383) 0.240 (0.219) 0.319 (0.264) 0.269 (0.278) 0.253 (0.228)

Design 3
n = 200 0.615 (0.589) 0.512 (0.472) 0.650 (0.584) 0.547 (0.493) 0.512 (0.479)
n = 400 0.423 (0.361) 0.355 (0.325) 0.477 (0.433) 0.398 (0.360) 0.399 (0.336)
n = 800 0.284 (0.251) 0.228 (0.208) 0.332 (0.291) 0.263 (0.240) 0.257 (0.221)

Design 4
n = 200 1.115 (1.148) 1.093 (1.021) 1.174 (0.987) 1.059 (0.902) 1.039 (0.869)
n = 400 0.866 (0.868) 0.826 (0.730) 0.792 (0.797) 0.777 (0.709) 0.703 (0.669)
n = 800 0.575 (0.566) 0.541 (0.520) 0.577 (0.578) 0.635 (0.531) 0.523 (0.485)

Design 5
n = 200 1.590 (1.771) 1.302 (1.143) 1.304 (1.146) 1.379 (1.186) 1.331 (1.164)
n = 400 1.077 (1.035) 0.913 (0.815) 0.982 (0.826) 0.958 (0.844) 0.916 (0.836)
n = 800 0.830 (0.699) 0.724 (0.627) 0.760 (0.619) 0.769 (0.641) 0.729 (0.635)

In terms of the median of the ADE, we can draw the following conclusions. First, the

performance of the estimators based on the covariate balance weighting methods is better

than that based on the MLE method without covariate balance expect the estimators based

on the SBW method in Design 4 (n = 800) and the estimators based on the IPS method in

Design 3, Design 1 (n = 800) and Design 4 (n = 200). Second, among the four covariate

balance weighting methods, it is difficult to tell which covariate balance weighting method

can outperform the others and they seem to be comparable to some extent. Third, based on

Designs 1 and 4, it can be seen that the performance of the weighting methods is affected by

the data generating process of the potential outcomes and this is consistent with Proposition

4.1 in Zubizarreta (2015) which provides a theoretical insight for this fact. Finally, based

on Design 3, we find that if the propensity score seriously deviates from the logistic model,
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balancing the whole covariate distribution may result in the worse performance. In terms of

the SD, the estimators based on the covariate balance weighting approaches can outperform

that based on the MLE method without covariate balance expect the estimators based on

the IPS method in Design 3 (n = 400 and n = 800) and Design 4 (n = 800), suggesting that

the covariate balance weighting methods are generally more stable than the MLE weighting

method. However, among the four covariate weighting methods, it is still not easy to tell

which covariate balance weighting method can outperform the others while they seem to be

comparable to some extent.

4 Conclusion

The CBPS method and IPS methods exploit the covariate balance of propensity score while

the SBW and CBW procedures aim at obtaining the covariate balance weights directly.

Through various simulation studies, we find that the performance of the covariate balance

weighting methods is generally better than that of the MLE weighting method without

covariate balance in terms of the median and standard deviation of the ADE. Another finding

is that the performance of the four covariate balance weighting methods varies with the data

generating processes of the potential outcomes and the propensity score and none of them

can dominate the others in all simulation designs. Finally, although the performance of the

estimators based on different covariate balance weighting methods has their own advantages

and disadvantages, generally speaking, their performance does not differ too much from each

other. This is because although these methods are proposed from different perspectives,

they are all based on the idea of balancing the covariates among different groups as much as

possible.
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