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Abstract

The degree of interdependences among holdings of financial sectors and its varying

patterns play important roles in forming systemic risks within a financial system.

In this article, we propose a VAR model of conditional quantiles with functional

coefficients to construct a novel class of dynamic network system, of which the

interdependences among tail risks such as Value-at-Risk are allowed to vary with

a variable of general economy. Methodologically, we develop an easy-to-implement

two-stage procedure to estimate functionals in the dynamic network system by the

local linear smoothing technique. We establish the consistency and the asymptotic

normality of the proposed estimator under time series settings. The simulation

studies are conducted to show that our new methods work fairly well. The potential

of the proposed estimation procedures is demonstrated by an empirical study of

constructing and estimating a new type of dynamic financial network.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression, also called

conditional quantile or regression quantile or dynamic quantile, has become an increas-

ingly popular tool for risk analysis in many economics fields such as labor economics,

macroeconomics and financial risk management; see, for instance, White, Kim and Man-

ganelli (2015), Abrian and Brunnermeier (2016), Härdle, Wang and Yu (2016), Zhu,

Wang, Wang and Härdle (2019) and the references therein. It is well known that when

the distribution of the dependent variable has heavy-tails, heteroscedasticity, and/or out-

liers, the quantile regression is more reliable than mean regression models. The reader

is referred to the review papers by Koenker (2005) and Koenker, Chernozhukov, He and

Peng (2017) for more applications of quantile regression.

Among developments of quantile methods in the econometrics literature, dynamic

quantile models have attracted intensively attentions in the recent years. The previous

researches in this area were mainly motivated by estimating Value-at-Risk (VaR), which

is essentially a procedure of estimating lower-tail conditional quantile of financial return

distribution. The early work includes the autoregressive models for conditional quan-

tiles (CaViaR) as in Engle and Manganelli (2004), the dynamic additive quantile models

proposed in Gourieroux and Jasiak (2008), and conditional quantile estimation for gen-

eralized autoregressive conditional heteroscedasticity (GARCH)-type models studied by

Xiao and Koenker (2009), and among others. In addition, dynamic quantile models

are naturally suitable for capturing the dependence between the lower-tail conditional

quantile of the distribution of financial returns and its lag or other covariates (also called

tail dependence). For example, White et al. (2015) proposed an innovative method to

estimate directly the sensitivity of VaR of a given financial institution to shocks to the

whole financial system by constructing a vector autoregressive (VAR) model for dynam-

ics of quantiles, while Härdle et al. (2016) developed a model to describe the network
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relationship among VaRs of financial institutions by a flexible nonparametric quantile

model with L1-penalty. Finally, Zhu et al. (2019) constructed a quantile autoregressive

model that embeds the observed dependency structure in a dynamic network. The tail

dependence is in particular important in reflecting the risk interdependence and con-

tains network information in a financial system. To the best of our knowledge, much of

existing literature assumed constant tail dependence in their models or focused on the

response of conditional quantile to endogenous variables or shocks. However, numerous

studies have documented temporal changes of risk interdependence in financial time se-

ries and discussed their possible origins and relation to spillover effects; see, for example,

Billio, Getmansky, Lo and Pelizzon (2012), Diebold and Yı́lmaz (2014), Härdle et al.

(2016), Yang and Zhou (2017), Liu, Ji and Fan (2017), Ando and Bai (2020) and the

references therein. The driving force for the variations of risk interdependence may be

the institutional changes or the policy interventions, such as the changes of exchange

rate systems and the U.S. quantitative easing policy. With these backgrounds, it is de-

sirable to consider modeling the interaction between varying patterns of tail dependence

and macroeconomic circumstances. These theoretical and empirical studies inspire us

to build a more general framework to capture the time-varying interdependences among

conditional quantiles.

In this article, we propose a nonparametric approach involving multivariate dynamic

quantile models with nonlinear structures. Different from previous studies, we capture

nonlinearities in data by using a functional coefficient setting, which allows coefficients

of the multivariate dynamic quantile models to vary with a smoothing variable. Since

coefficients of dynamic quantile models play an important role in reflecting interdepen-

dences among conditional quantiles, under our model setup, one can easily illustrate

the variation of tail dependence and its relation with the variable which is of interest.

To interpret features of varying interdependences within various conditional quantiles,

we form a vector autoregressive (VAR) model with functional coefficients where the
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quantiles of several random variables depend on lagged quantiles and other lagged co-

variates. For this reason, this model is termed as a functional-coefficient VAR model

for dynamic quantiles (FCVAR-DQ) and is presented in (1) later. In an effort to study

nonlinear relationship between the quantile of response variable and its covariates, var-

ious smoothing techniques (e.g., kernel methods, splines, and their variants) have been

used to estimate the nonparametric quantile regression for both independent and time

series data, to name just a few, He and Ng (1999), Honda (2000, 2004), Wei and He

(2006), Kim (2007), Cai and Xu (2008), Kong, Linton and Xia (2010), Qu and Yoon

(2015), and Li, Li and Li (2020). Among many kinds of methods, we adapt one of mod-

eling methods to analyze dynamic quantiles, termed the functional coefficient modeling

approach. Compared with existing literature, our approach is different mainly in three

parts. First, we provide a kernel-based estimation framework for a new type of dynamic

quantile models, which impose relatively less restriction on model’s structures. Second,

our model admits nonlinearities of tail dependence, which can be ignored by dynamic

quantile models with fixed coefficients. Third, the proposed model allows for studying

interaction between tail dependence and the variable which is of interest.

One of our motivations for this study comes from analyzing the dynamic mechanism

of financial network in international equity markets. It is well documented in the lit-

erature that financial systems contain enormous numbers of institutions that interplay

with each other. These interactions form a financial network in which a node represents

each institution and a linkage between two nodes acts as an observable or unobservable

interaction of some forms between two institutions. Also, it is well-established that the

possibility of major financial distress is closely related to the degree of correlation among

the assets of institutions and how sensitive they are to the changes in economic condi-

tions. Based on these intuitions, provided that the node of a network is represented

by the VaR of returns of institutions’ assets or of market indexes, one may construct a

financial network that can capture interdependences among VaRs within the financial
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system. Since VaRs and interdependences among them appear to be unobservable in

practice, as addressed in Sewell and Chen (2015), Zhu et al. (2019), and Bräuning and

Koopman (2020), it is unnecessarily feasible to apply commonly known technologies that

have access to the binary data with observed network structures for estimating the risk

network formed by VaRs. An influential precedent of analyzing the network topology of

unobservable connectedness of risk attributes to Diebold and Yı́lmaz (2014), who con-

structed a risk network based on forecast error variance decompositions of classical VAR

models and studied the volatility connectedness by methods of network analysis. Com-

pared to the literature thus far, we consider capturing unobserved interconnectedness

of tail risk among institutions in the dynamic network, which can not be achieved by

models with observed network data and by measuring conditional correlation in Diebold

and Yı́lmaz (2014). Moreover, in order to illustrate overall patterns of time-varying

network of risk across institutions, the main interest in this paper lies in modeling the

relationship between the general states of economy and a financial network formed by

VaRs of world major market index’s return series. More specifically, we allow interde-

pendences among VaRs of market index’s return series to vary with a smoothing variable

of economic status to capture the dynamic changes. Recent studies found increasingly

numbers of evidences to show that the variation of risk interdependence not only re-

veals the behavior of spillover effects of risk but also contains the information about the

stability of financial systems; see, e.g., Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).

Both practitioners and policymakers may be interested in knowing how a financial net-

work changes with the macroeconomic climate or financial market circumstances, and

the way to evaluate the influences of economic policies to the whole network within the

financial market. Extensive reviews about financial network can be found in Diebold

and Yı́lmaz (2014) and Härdle et al. (2016). The empirical study in this paper shows

that FCVAR-DQ models are suitable for estimating a novel class of dynamic financial

network. A detailed analysis of this class of financial network is reported in Section 4.
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Lastly, our contributions to the literature can be summarized as follows. First, the

model setting in this paper (see (1) later) is general enough to nest many well-known

dynamic quantile models in the literature; see, for example, CaViaR models proposed

by Engle and Manganelli (2004) and Xiao and Koenker (2009), threshold CaViaR in

Gerlach, Chen and Chan (2011), and static vector autoregressive (VAR) for VaR models

constructed by White et al. (2015). Second, by allowing coefficients to vary with a

smoothing variable, FCVAR-DQ models provide a new tool to estimate the relationship

between the interdependence of risk and the state variable of economy or time. Third,

a large sample theory for the proposed estimators is established to construct confidence

intervals for functional coefficients in the empirical study.

The rest of this paper is organized as follows. In Section 2, the model setup, prop-

erties and two-stage estimation procedures are presented for the FCVAR-DQ model. In

addition, a large sample theory for the proposed estimators and a consistent estima-

tor of the asymptotic covariance matrix are also investigated in this section. A Monte

Carlo simulation for the proposed estimation procedures is discussed in Section 3 and

corresponding results are reported in Appendix. In Section 4, our models are applied to

constructing a novel class of financial networks based on the real example. Finally, the

conclusion is given in Section 5 and all the technical proofs are gathered in Appendix,

Supplements B and C.

Throughout this article, T represents transpose of a vector or a matrix; 0a×b stands

for a a × b matrix of zeros and Ia is a a × a identity matrix; ‖ · ‖ is denoted as the

Euclidean norm (L2-norm) and ‖B‖F is the Frobenius norm of a matrix B.
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2 Functional-Coefficient VAR Model for Dynamic Quan-

tiles

2.1 Model Setup

Let uit, a scalar dependent variable, be the ith observation at time t for 1 ≤ i ≤ κ

and 1 ≤ t ≤ n, Fi,t−1 represent information set up to time t − 1 for 1 ≤ i ≤ κ, and let

qτ,t,i be the τth conditional quantile of uit given Fi,t−1. Then, we study the following

functional-coefficient VAR model for dynamic quantiles, termed as FCVAR-DQ model,

given by

qτ,t,i = γi0,τ (Zit) +

q∑
s=1

γTi,s,τ (Zit)qτ,t−s +

p∑
l=1

βTi,l,τ (Zit)Ut−l (1)

for some p and q, where qτ,t = (qτ,t,1, . . . , qτ,t,κ)T and Ut is a κ1× 1 vector of covariates,

including possibly some or all of {uit}κi=1 and/or some exogenous information {vit}. In

addition, γi0,τ (·) is a scalar function and is allowed to depend on τ , both γi,s,τ (·) =

(γsi1,τ (·), . . . , γsiκ,τ (·))T and βi,l,τ (·) = (βli1,τ (·), . . . , βliκ1,τ (·))T are κ × 1 and κ1 × 1

vectors of functional coefficients, respectively, and they are allowed to depend on τ

too. Here, Zit is an observable scalar smoothing variable, which might be one part

of Ut−l and/or time or other exogenous variables {vit} or their lagged variables. Of

course, Zit can be an economic index to characterize economic activities. Also, note

that Zit can be set as a multivariate variable. In such a case, the estimation procedures

and the related theory for the univariate case still hold for multivariate case, but more

complicated notations are involved and models with Zit in very high dimension are often

not practically useful due to the “curse of dimensionality”. In addition, note that similar

to the setting of the multi-quantile CaViaR (MQ-CaViaR) model as in White, Kim and

Manganelli (2008), one may further generalize model (1) by allowing τ in qτ,t,i to vary

across different equations, only with mild changes on asymptotic theory in this paper.

Thus, in order to meet our empirical motivation, all of τ ′s in model (1) are the same
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throughout this article.

Importantly, in the case of estimating dynamic financial network in our empirical

studies, by following White et al. (2015), we consider only the tail dependence between

current state and the state of one-period lagged, and take Ut to be Ut = (|u1t|, . . . , |uκt|)T

with | · | representing absolute value. Furthermore, the smoothing variable Zit varies

only across different time periods but keeps constant over individual units. Therefore,

in this paper, for easy exposition, our focus is on the simple case that q = p = 1,

Ut = (|u1t|, . . . , |uκt|)T , and Zit = Zt for all 1 ≤ i ≤ κ. Then, model (1) can be rewritten

as

qτ,t,i = gTi,τ (Zt)Xt, (2)

where gi,τ (·) = (γi0,τ (·), γi1,τ (·), . . . , γiκ,τ (·), βi1,τ (·), . . . , βiκ,τ (·))T is a (2κ+1)×1 vector

of functional coefficients and Xt = (1, qτ,t−1,1, . . . , qτ,t−1,κ, |u1(t−1)|, . . . , |uκ(t−1)|)T .

It is worthwhile to note that if qτ,t,i in model (2) is defined as VaR of return uit,

then {γij,τ (Zt)}κi=1,j=1 in model (2) becomes the sensitivity of VaR of returns for one

portfolio at time t to that of another at time t − 1. With these functional coefficients

{γij,τ (Zt)}κi=1,j=1, define the following κ× κ matrix

Γτ (Zt) =


γ11,τ (Zt) γ12,τ (Zt) . . . γ1κ,τ (Zt)

γ21,τ (Zt) γ22,τ (Zt) . . . γ2κ,τ (Zt)
...

...
. . .

...

γκ1,τ (Zt) γκ2,τ (Zt) . . . γκκ,τ (Zt)

 . (3)

Then, (2) can be expressed as a matrix form, which, indeed, is a functional coefficient

vector autoregressive (FCVAR) model for qτ,t with exogenous variables,

qτ,t = γ0,τ (Zt) + Γτ (Zt) qτ,t−1 + Γβ,τ (Zt)Ut−1,

where γ0,τ (Zt) and Γβ,τ (Zt) are defined obviously. Therefore, Γτ (Zt) in (3) can serve as a
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dynamic network system changing with both τ and some information variable Zt. Notice

that the general setting in the dynamic network system (3) covers some famous network

models for characterizing financial risk system, including the one formed by VAR for

VaR model in White et al. (2015), which assumes the tail dependence {γij,τ (Zt)}κi=1,j=1

to be constant and the static financial network in Abrian and Brunnermeier (2016) and

Härdle et al. (2016) as special cases.

Remark 2.1. (Special Cases) The proposed FCVAR-DQ model (1) is related to the

papers by Engle and Manganelli (2004) and Xiao and Koenker (2009), which discussed

the relation between modeling dynamic structures of conditional quantiles and conditional

volatility of returns. Indeed, if uit in (1) takes a simple form as uit = σit εit, where σ2
it

is the conditional variance of uit and εit is an independent and identically distributed

(i.i.d.) sequence of random variables with mean zero and unit variance, then, qτ,t,i =

σitF
−1
ε (τ), where Fε(·) is the distribution function of εit. Furthermore, if uit = σit εit

is generated from a functional coefficient multivariate GARCH (p, q)-type process for κ

(κ ≥ 1) returns extended from the setting in Taylor (1986) as follows

σit = γi0(Zit) +

q∑
s=1

γTi,s(Zit)Σt−s +

p∑
l=1

βTi,l(Zit)Ut−l, (4)

where Σt = (σit, . . . , σκt)
T and Ut = (|u1t|, . . . , |uκt|)T , then, (1) reduces to following

dynamic quantile model:

qτ,t,i = γi0,τ (Zit) +

q∑
s=1

γTi,s(Zit)qτ,t−s +

p∑
l=1

βTi,l,τ (Zit)Ut−l, (5)

where γi0,τ (·) = γi0(·)F−1
ε (τ), γi,s(·) = (γsi1(·), . . . , γsiκ(·))T and βi,l,τ (·) = (βli1,τ (·), . . . ,

βliκ,τ (·))T with βlij,τ (·) = βlij(·)F−1
ε (τ). Notice that if γ′s and β′s in (5) are constant,

model (5) becomes to those in Engle and Manganelli (2004) and Xiao and Koenker

(2009). For details, the reader is referred to the aforementioned papers.
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Remark 2.2. (Monotonicity). The issue of monotonicity has been frequently discussed

for the quantile autoregression model. A specific case for the monotonicity of (1) to hold

is that {γi,s,τ (Zt)}κ,qi=1,s=1 are all monotone increasing functions with respect to τ , and

Ut is a positive random vector. In other cases, the assumption of monotonicity can be

satisfied by conducting certain data transformation techniques; see Koenker and Xiao

(2006) and Fan and Fan (2006) for detailed discussions.

Remark 2.3. (Selection of Zt). Of importance is to choose an appropriate smoothing

variable Zt in applying functional-coefficient VAR model for dynamic quantiles in (2).

Knowledge on physical background or economic theory of the data may be very helpful,

as we have witnessed in modeling the real data in Section 4 by choosing Zt to be the first

difference of daily log series of the U.S. dollar index. Without any prior information,

it is pertinent to choose Zt in terms of some data-driven methods such as the Akaike

information criterion, cross-validation, and other criteria. Ideally, we would choose Zt

as a linear function of given explanatory variables according to some optimal criterion

or an economic index based on economic theory or background. Nevertheless, here we

would recommend using a simple and practical approach proposed by Cai, Fan and Yao

(2000) in practice.

2.2 Properties of the FCVAR-DQ Model

In order to apply our estimation procedures, one has to show that the model given

in (1) can be approximated by functional-coefficient moving average (MA(∞)) repre-

sentation. To this end, for convenience of presentation, we first let κ = κ1, Ut =

(|u1t|, . . . , |uκt|)T and Zit = Zt for all 1 ≤ i ≤ κ in model (1). Then, we can rewrite (1)

into a autoregression process of order 1 as follows

Xt = µ(Zt) +Aet(Zt)Xt−1 +Det(Zt), (6)
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where Xt = (UTt , . . . ,UTt−p+1, q
T
τ,t, . . . , q

T
τ,t−q+1)T . In addition, let {eit} be a sequence of

mutually i.i.d. standard uniform random variables on the set of [0, 1] for i = 1, . . . , κ,

denote Aet(Zt) as a κ(p+ q)× κ(p+ q) matrix as follows:



A1,et(Zt) A2,et(Zt) . . . Ap−1,et(Zt) Ap,et(Zt) B1,et(Zt) B2,et(Zt) . . . Bq−1,et(Zt) Bq,et(Zt)

Iκ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ Iκ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ
...

...
. . .

...
...

...
...

. . .
...

...

0κ×κ 0κ×κ . . . Iκ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

A1,τ (Zt) A2,τ (Zt) . . . Ap−1,τ (Zt) Ap,τ (Zt) B1,τ (Zt) B2,τ (Zt) . . . Bq−1,τ (Zt) Bq,τ (Zt)

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ Iκ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ Iκ . . . 0κ×κ 0κ×κ
...

...
. . .

...
...

...
...

. . .
...

...

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . Iκ 0κ×κ



.

Here, for i, j = 1, . . . , κ, l = 1, . . . , p and s = 1, . . . , q, Al,et(Zt) is a matrix with en-

tries βlij,eit(Zt) and Bs,et(Zt) is a matrix with entries γsij,eit(Zt), where βlij,eit(Zt) and

γsij,eit(Zt) are unknown functions of Zt and eit (from R2 to R). Similarly, Al,τ (Zt)

is a matrix with entries βlij,τ (Zt) and Bs,τ (Zt) is a matrix with entries γsij,τ (Zt) for

given τ . Furthermore, µ(Zt) = (Ee(Ω
T
et(Zt)), 0, . . . , 0,Ω

T
τ (Zt), 0, . . . , 0)T , Ee(Ωet(Zt)) =

(Ee(γ10,e1t(Zt)), . . . , Ee(γκ0,eκt(Zt)))
T and Ωτ (Zt) = (γ10,τ (Zt), . . . , γκ0,τ (Zt))

T , where

Ee(·) is denoted as taking expectation on eit for any fixed Zt, and γi0,eit(Zt) and

γi0,τ (Zt) are defined in a similar way as foregoing functional coefficients, respectively.

In addition, for 1 ≤ i ≤ κ, Det(Zt) = (γ̌10,e1t(Zt), . . . , γ̌κ0,eκt(Zt), 01×κ(p+q−1))
T , where

γ̌i0,eit(Zt) = γi0,eit(Zt) − Ee(γi0,eit(Zt)). We assume that Det(Zt) can be written as

Det(Zt) = γ̌(Zt)Det , where Det = (γ̌10,e1t , . . . , γ̌κ0,eκt , 01×κ(p+q−1))
T with γ̌i0,eit being

defined in Assumption A1 later. Finally, γ̌(Zt) is a matrix of unknown coefficient func-

tions of Zt.

10



Remark 2.4. Notice that when setting Zt as a smoothing variable, the equations cor-

responding to (κp + 1)-th, . . . , (κp + κ)-th rows of (6) are exactly the model (1) with

Ut = (|u1t|, . . . , |uκt|)T , while the ith row of (6) with i = 1, . . . , κ is written as

uit = γi0,eit(Zt) +

q∑
s=1

γTi,s,eit(Zt)qτ,t−s +

p∑
l=1

βTi,l,eit(Zt)Ut−l, (7)

where Ut = (|u1t|, . . . , |uκt|)T , elements of γi,s,eit(·) = (γsi1,eit(·), . . . , γsiκ,eit(·))T and

βi,l,eit(·) = (βli1,eit(·), . . . , βliκ,eit(·))T have the same definitions as that in matrices

Bs,et(Zt) and Al,et(Zt), respectively. Note that equation (7) is similar to the random

coefficient autoregressive (RCA) model discussed in Koenker and Xiao (2006), it can be

shown that the conditional quantile function of uit in (7) given Zt, qτ,t−s and Ut−l is

model (1) with Ut = (|u1t|, . . . , |uκt|)T . Given these relations, one can conclude that Ut

and qτ,t jointly follow a VAR process of order 1 in (6), which is similar to the nonpara-

metric additive models in Cai and Masry (2000) and the generalized polynomial RCA

vector models in Carrasco and Chen (2002). Also note that if γ̌i0,eit in Det is F−1(eit),

where F (·) is a distribution function, then, γ̌i0,eit is an innovation random variable with

distribution function being F (·). Thus, the heteroscedasticity can be imposed in model (6)

by the assumption of Det(Zt) = γ̌(Zt)Det, which is a common setting among literature.

In addition, similar to the notation in Dahlhaus and Polonik (2009), let

V (α(x)) = sup

{
d∑

k=1

|α(xk)− α(xk−1)| : a ≤ x0 < · · · < xd ≤ c, d ∈N

}

be the total variation of a function α(·) on a closed interval [a, c]. Subsequently, for

all Zt ∈ [a, c] and all eit ∈ [0, 1], define Bτ (L) = Iκ −
∑q

s=1Bs,τ (Zt)Ls and Aet(L) =∑p
l=1Al,et(Zt)L

l as matrices, where each entry is a lag polynomial and L denotes the

lag operator.

Assumption A.
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A1: Each entry of γ̌(Zt) is second order continuously differentiable on [a, c]. γ̌(Zt)γ̌
T (Zt)

is a positive-definite matrix uniformly on [a, c]. Moreover, {γ̌i0,eit} are i.i.d. random

variables with mean 0 and finite variance. Finally, E‖Det‖2 <∞ and E‖µ(Zt)‖ <∞.

A2: For i, j = 1, . . . , κ and for each fixed Zt ∈ [a, c], βlij,eit(Zt) and γsij,eit(Zt) are

functions of eit and are continuous in a neighborhood of τ ∈ (0, 1), respectively. The

total variations of each element of γ̌(·), V (γsij,τ (·)) and V (βlij,τ (·)), are bounded for

l = 1, . . . , p, s = 1, . . . , q and for given τ .

A3: For all Zt ∈ [a, c] and all eit ∈ [0, 1], Bτ (L) 6= Aet(L) 6= 0 for all 0 < |L| ≤ 1 + δ

and for some δ > 0.

Remark 2.5. The first part of Assumption A1 is usually imposed in literature on het-

eroscedasticity, while the second part is similar to the condition given by Koenker and

Xiao (2006) for parametric RCA models and the boundedness condition in Carrasco and

Chen (2002). The boundedness of total variation in Assumption A2 guarantees a certain

smoothness of coefficients in the direction of Zt, see Dahlhaus and Polonik (2009) for

more discussions. Assumption A3 is an invertibility condition, which ensures that all

eigenvalue of matrix Aet(Zt) have modulus less than 1 for all Zt and all eit. Undoubt-

edly, Assumption A1-A3 could be weakened, but this attempt goes beyond the scope of

this paper.

From the following proposition with its proof given in Appendix, it guarantees that

(6) can be approximated by a functional-coefficient MA(∞) representation.

Proposition 2.1. Under Assumption A1-A3, there exists a functional-coefficient MA(∞)

representation for (6) as follows

Xt = V t(l) +

∞∑
l=0

Ce,t(l)Det−l , (8)
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where V t(l) = µ(Zt) +
∑∞

l=1

(∏l−1
=0Aet−(Zt−)

)
µ(Zt−l), Ce,t(0) = γ̌(Zt) and

Ce,t(l) =
l−1∏
=0

Aet−(Zt−)γ̌(Zt−l)

for l > 0, with αijt(l) being each entry of matrix Ce,t(l) and satisfying the following

condition:

max
t≥1
|αijt(l)| ≤ Cρl (9)

for some positive constant ρ < 1 and for l > 0. Moreover, there exists a functional-

coefficient MA(∞) representation

X̃t = V (Zt) +

∞∑
l=0

C l,et(Zt)Det−l (10)

with V (Zt) = µ(Zt) +
∑∞

l=1(Aet(Zt))
lµ(Zt) and C l,et(Zt) = (Aet(Zt))

lγ̌(Zt), such that

max
t≥1

E‖Xt − X̃t‖ = O(n−1).

2.3 Two-stage Estimation Procedure

Since the estimation procedures for (1) and (2) are the same, we aim at estimating

functional coefficients gi,τ (·) in the model defined in (2) for simplicity. Because qτ,t−1,i

in Xt depends on unknown functional coefficients gi,τ (·), model (2) is more complicated

than functional coefficient models with observed data. Our procedures consist of two

steps, the first is to estimate latent qτ,t−1,i, and then we perform locally weighted es-

timation for functional coefficients using the estimated qτ,t−1,i from the first step. In

this paper, we only focus on estimating functional coefficients in (2), rather than jointly

forecasting qτ,t,i or doing impulse response analysis. So, it is sufficient to estimate gi,τ (·)

in an equation-by-equation way for different i. Thus, by abuse of notation, i will be
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dropped in what follows.

Given (1), (2) and (6), Assumption A3 ensures the invertibility of Bτ (L). Let

Aτ (L) =
∑p

l=1Al,τ (Zt)Ll. Then, by Proposition 2.1, Bτ (L)−1(Ωτ (Zt) + Aτ (L)) can

be represented by a matrix series C0,τ (Zt)Ωτ (Zt) +
∑∞

l=1Cl,τ (Zt)Ll for all Zt. Now, let

α0,τ (·) be the ith row of matrix C0,τ (Zt)Ωτ (Zt) and αl,τ (·) = (αl1,τ (·), . . . , αlκ,τ (·))T be

the ith row of matrix Cl,τ (Zt). Therefore, with the definitions of α0,τ (·) and αl,τ (·), we

can first approximate the latent qτ,t by using a functional-coefficient quantile function:

qτ,t = α0,τ (Zt) +
∞∑
l=1

αTl,τ (Zt)Ut−l, (11)

where Ut = (|u1t|, . . . , |uκt|)T and each element of αl,τ (·) decreases at a geometric rate;

that is, there exist positive constants b < 1 and c, such that maxt≥1 |αlij,τ (Zt)| ≤ cbl for

i, j = 1, . . . , κ. Denote ατ (·) = (α0,τ (·),αT1,τ (·), . . . ,αTm,τ (·))T . Since αlij,τ (·) decreases

geometrically, by choosing an appropriate mn = m(n) = m, we study following truncated

equation (12) with increasing dimension of covariates:

qτ,t = α0,τ (Zt) +

mn∑
l=1

αTl,τ (Zt)Ut−l ≡W T
t ατ (Zt) = qτ (Zt,W t), (12)

where W t = (1,UTt−1, . . . ,UTt−m)T are covariates. Note that (12) can be regarded as

an approximation of (11) and is similar to the model in Cai and Xu (2008). Under

smoothness condition of coefficient functions ατ (·) presented later in Assumption B1 in

Section 2.4, for any given grid point z0 ∈ R, when Zt is in a neighborhood of z0, ατ (Zt)

can be approximated by a polynomial function as

ατ (Zt) ≈
w∑
r=0

α(r)
τ (z0)(Zt − z0)r/r!,

where ≈ denotes the approximation by ignoring the higher orders and α
(r)
τ (·) is the rth
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derivative of ατ (·). Thus,

qτ,t ≈
w∑
r=0

W T
t δr,τ (Zt − z0)r,

where δr,τ = α
(r)
τ (z0)/r!. Hence, δ̂ = argminδQ(δ), where Q(δ) is the locally weighted

loss function for fixed κ, given by

Q(δ) =

n∑
t=m+1

ρτ{ut −
w∑
r=0

W T
t δr(Zt − z0)r}Kh1(Zt − z0), (13)

where ρτ (y) = y[τ − I (y < 0)] is called the “check” (loss) function, I (A) is the indicator

function of any set A, K(·) is a kernel function, Kh1(u) = K(u/h1)/h1, and h1 = h1(n)

is a sequence of positive numbers tending to zero and controls the amount of smoothing

used in estimation. In practice, if we smooth locally around Zt and consider a local

linear estimation, the loss function (13) becomes

G(δ) =

n∑
s 6=t

ρτ{us −
1∑
r=0

W T
s δr(Zs − Zt)r}Kh1(Zs − Zt). (14)

After yielding δ̂0,τ at τ by minimizing (14), qτ,t can be estimated by

q̂τ,t = W T
t δ̂0,τ .

Remark 2.6. (Truncation parameter m(n)). Welsh (1989) and He and Shao (2000)

studied nonlinear M-estimation with increasing parametric dimension and discussed the

possible expansion rate for the number of parameters m(n). As for the quantile esti-

mation for functional coefficient models with increasing dimension of covariates, Tang

et al. (2013) considered estimation and variable selection for high-dimensional quantile

varying coefficient models based on B-spline approach. They showed that the oracle prop-

erty for varying coefficients can be preserved when m2
n log(pnmn)/n → 0, where pn is
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the dimension of covariates and mn is a parameter associated with degree of polynomial

and internal knots. In this step, we are interested in studying varying interdependences

among conditional quantiles, rather than determining the optimal number for m. In ad-

dition, we focus on estimating (12) using kernel-based approaches, which is necessary in

order to obtain asymptotic properties for functional coefficients. Under Assumption B9

in Section 2.4, it will suffice to consider a truncation m as a sufficiently large constant

multiple of n1/7.

To summarize, we propose the following two-step procedures for estimating gτ (·):

Step One: Choosing the truncation parameter m = cn1/7 for some c > 0 and estimating

δ̂0,τ at each Zt by minimizing (14). Then, approximating latent qτ,t by q̂τ,t = W T
t δ̂0,τ .

Step Two: Having obtained q̂τ,t and given

X̂t = (1, q̂τ,t−1,1, . . . , q̂τ,t−1,κ, |u1(t−1)|, . . . , |uκ(t−1)|)T ,

we can estimate gτ (·) by a local linear estimation method; see Cai and Xu (2008) for

details. In particular, let ς = 1, minimize the following loss function G(Θ) at any given

grid point z0 ∈ R to obtain Θ̂, where

G(Θ) =

n∑
t=1

ρτ{ut −
ς∑

r=0

X̂
T
t Θr,τ (Zt − z0)r}Kh2(Zt − z0) (15)

and Θr,τ = g
(r)
τ (·)/r!. Similar to (14), Kh2(u) = K(u/h2)/h2 and h2 is the bandwidth

used for this step, which is different from the bandwidth h1 used in (14); see Remark

2.7 later in Section 2.4 for more discussions. Further improvement can be achieved by

applying iteration to the foregoing two-stage procedures.

2.4 Large Sample Theory

To study the asymptotic distribution of the nonparametric quantile estimator, we

impose some technical conditions as follows.
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Assumption B.

B1: Each entry in the vector ατ (·) is (w + 1)th order continuously differentiable in a

neighborhood of z0 for any z0; Similarly, each entry in the vector gτ (·) is (ς + 1)th order

continuously differentiable in a neighborhood of z0 for any z0.

B2: fz(z) is a continuously marginal density of Z and fz(z0) > 0.

B3: The distribution of u given Z and W has an everywhere positive conditional density

fu|Z,W (·), which is bounded and satisfies the Lipschitz continuity condition. The kernel

function K(·) is a bounded, symmetric density with a bounded support region. Let µ2 =∫
ν2K(ν)dν and ν0 =

∫
K2(ν)dν.

B4: {(ut, Zt)} is a strictly stationary sequence with α-mixing coefficient α(t) which

satisfies
∑∞

t=1 t
ια(δ−2)/δ(t) <∞ for some positive real number δ > 2 and ι > (δ − 2)/δ.

B5: There exist (small) positive constants $1 > 0 and $2 > 0 such that

P{max
1≤t≤n

u2
t > n$1} ≤ exp(−n$2).

B6: Let Bn = 1
n

∑n
t=m+1W tW

T
t and denote the maximum and minimum eigenvalues of

Bn as λmax(Bn) and λmin(Bn). Then, lim infn→∞ λmin(Bn) > 0, lim supn→∞ λmax(Bn)

<∞. It is assumed that max1≤t≤n ‖W t‖2 ≤ Cm.

B7: D(z0) ≡ E[W tW
T
t |Zt = z0] is positive-definite and continuous in a neighborhood

of z0 and D∗(z0) ≡ E[W tW
T
t fu|Z,W (qτ (z0,W t))|Zt = z0] is positive-definite and con-

tinuous in a neighborhood of z0.

B8: Let Xt1 = (1,UTt−1)T . Then, E‖Xt1‖2δ
∗
<∞ with δ∗ > δ.

B9: The bandwidth h1 satisfies h1 → 0, nh1 → ∞; The bandwidth h2 satisfies h2 ∝

n−1/5, h2 → 0, nh2 →∞. In addition, h1 = o(h2) and mh1 → 0.

B10: f(w,ω|u0,u`; `) ≤ H < ∞ for ` ≥ 1, where f(w,ω|u0,u`; `) is the conditional

density of (Z0, Z`) given (U0 = u0,U` = u`).
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B11: n1/2−δ/4h
δ/δ∗−1/2−δ/4
2 = O(1).

Remark 2.7. Assumptions B1-B3 are common in nonparametric literature. Assump-

tion B4 is a standard assumption for α-mixing. Assumption B5 can be implied when

the maximum of u2
t follows a generalized extreme value distribution, which is generally

satisfied for weakly dependent data; see also Xiao and Koenker (2009). Assumption B6

guarantees the asymptotic behavior of regression estimators with increasing dimension

of covariates, which is similar to Welsh (1989). Assumptions B7 and B8 are commonly

required for the model identification and to ensure the convergence of Bn to E[W tW
T
t ]

when W t is α-mixing, respectively. The assumption h1 = o(h2) in Assumption B9 is

about the under-smoothing at the step one, which is common for the two-stage nonpara-

metric estimation approaches; see also Cai (2002) and Cai and Xiao (2012) for more

discussions. The assumption mh1 → 0 in B9 is necessary for the proof of stochastic

equi-continuity. Assumption B10 is very standard and used for the proof under mixing

conditions. Assumption B11 allows one to verify standard Lindeberg-Feller conditions

for asymptotic normality of the proposed estimators in the proof of Theorems 2.1; see

Cai and Xu (2008) for details on nonparametric quantile regressions models for time

series.

It is necessary to discuss more about the strictly stationarity and α-mixing con-

ditions in Assumption B4. By Pham (1986), a geometrically ergodic time series is a

α-mixing sequence. Meanwhile, it is well-known that an ergodic Markov process initi-

ated from its invariant distribution is (strictly) stationary. Thus, geometrical ergodicity

plays an important role in establishing strictly stationarity and α-mixing properties. In-

deed, sufficient conditions for the ergodicity of nonlinear time series have been studied

extensively in literature. For example, Chen and Tsay (1993) provided sufficient con-

ditions of geometrical ergodicity for functional-coefficient autoregressive (FAR) models.

In addition, An and Chen (1997) and An and Huang (1996) surveyed various sufficient
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conditions for the ergodicity of nonlinear autoregressive models. In Supplement C, we

show that under some regularity conditions, model (1) can generate a strictly stationary

and α-mixing process. The derivation of these two properties is of independent interest,

since the strictly stationarity and α-mixing assumptions are only imposed for proving

the asymptotic theory and the main contribution of this article lies in estimating a new

class of dynamic network. Therefore, we give conditions that imply these important

probabilistic properties and corresponding proofs in Supplement C for space saving.

Theorem 2.1. (Asymptotic Normality) Under Assumptions B1-B11, we have

√
nh2

(
ĝτ (z0)−gτ (z0)−h

2
2µ2

2
g(2)
τ (z0)+op(h

2
2)

)
d→ N (0, (Ω∗(z0))−1Ξ(z0)(Ω∗(z0))−1/fz(z0)).

Here, Ω(z0) ≡ E[XtX
T
t |Zt = z0], Ω∗(z0) ≡ E[XtX

T
t fu|Z,X(qτ (z0,Xt))|Zt = z0] with

qτ (z0,Xt) = gTτ (z0)Xt and fu|Z,X(·) satisfying Assumption B3. In addition, Ξ(z0) ≡

τ(1− τ)ν0[Ω(z0) + Γ20D
∗(z0)−1ΓT20], where

Γ20 ≡ E


(fu|Z,W (qτ (z0,W t))X

T
t gτ (z0))



01×(κm+1)

W T
t

...

W T
t

0κ×(κm+1)


∣∣∣∣Zt = z0


is a (2κ+ 1)× (κm+ 1) matrix.

Remark 2.8. Notice that in Theorem 2.1, the asymptotic bias does not depend on h1.

Indeed, since the estimation in the step one is under-smoothed by Assumption B9, the

part that relies on h1 in the asymptotic bias term disappears. However, different from the

conventional nonparametric estimation, Ξ(z0) in Theorem 2.1 contains D∗(z0). This

formation of asymptotic variance appears because of the fact that X̂t contains q̂τ,t−1,

which is estimated in the step one of our two-stage approaches and therefore includes
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information of W t. Similar results of asymptotic variance were also obtained by Xiao

and Koenker (2009), which can be seen as a nature of any two-stage approach; see, for

example, Cai, Das, Xiong and Wu (2006) for details.

Remark 2.9. (Bandwidth Selection) Finally, we would like to address how to select the

bandwidth h2 at the second step. It is well known that the bandwidth plays an essential

role in the trade-off between reducing bias and variance. In view of (15), it is about

selecting the bandwidth in the context of estimating the coefficient functions in the quan-

tile regression. Therefore, we recommend the method proposed in Cai and Xu (2008) for

selecting h2 in (15).

2.5 Inferences

For the purpose of constructing pointwise confidence intervals, we turn to discussing

how to obtain consistent estimator of the asymptotic covariance matrix. Toward this

end, we need to estimate Ω(z0), Ω∗(z0), D∗(z0) and Γ20 consistently. For this purpose,

define

Γ̂20 =



01×(κm+1)

1
n

∑n
t=1(w1tX̂

T
t ĝτ (z0))W T

t Kh2(Zt − z0)
...

1
n

∑n
t=1(w1tX̂

T
t ĝτ (z0))W T

t Kh2(Zt − z0)

0κ×(κm+1)


,

where w1t = I(W T
t α̂τ (z0) − δ1n < ut ≤ W T

t α̂τ (z0) + δ1n)/(2δ1n) for any δ1n → 0. In

Appendix, it shows that

Γ̂20 = fz(z0)Γ20 + op(1). (16)

As for Ω(z0), Ω∗(z0) and D∗(z0), define

Ω̂(z0) =
1

n

n∑
t=1

X̂tX̂
T
t Kh2(Zt − z0),
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Ω̂∗(z0) =
1

n

n∑
t=1

w2tX̂tX̂
T
t Kh2(Zt − z0)

and

D̂
∗
(z0) =

1

n

n∑
t=1

w1tW tW
T
t Kh1(Zt − z0),

where w2t = I(ĝTτ (z0)X̂t − δ2n < ut ≤ ĝTτ (z0)X̂t + δ2n)/(2δ2n) for any δ2n → 0 as

n → ∞. Similar to the proof in Cai and Xu (2008), one can show that Ω̂(z0) =

fz(z0)Ω(z0) + op(1), Ω̂∗(z0) = fz(z0)Ω∗(z0) + op(1) and D̂
∗
(z0) = fz(z0)D∗(z0) + op(1).

Therefore, a consistent estimate of (Ω∗(z0))−1Ξ(z0)(Ω∗(z0))−1/fz(z0) can be given by

(Ω̂∗(z0))−1Ξ̂(z0)(Ω̂∗(z0))−1, where Ξ̂ = τ(1− τ)ν0[Ω̂(z0) + Γ̂20D̂
∗
(z0)−1Γ̂T20].

3 A Monte Carlo Study

In this section, we provide a simulation example to exam the performance of our two-

stage estimations for functional coefficients. In this example, the bandwidth is selected

based on a rule-of-thumb idea similar to the procedure in Cai and Xiao (2012) as follows.

First, we use a data-driven bandwidth selector as suggested in Cai and Xu (2008) to

obtain an initial bandwidth denoted by ĥ0 which should be O(n−1/5). At step one, the

bandwidth should be under-smoothed. Therefore, by following the idea in Cai (2002)

and Cai and Xiao (2012) for two-step approaches, we take the bandwidth as ĥ1 = A0×ĥ0

with A0 = n−1/10 so that ĥ1 satisfies Assumption B9. At step two, we choose optimal

bandwidth ĥ2 by the nonparametric AIC criterion as in Cai and Xu (2008). Finally, the

Epanechnikov kernel K(x) = 0.75(1− x2)I(|x| ≤ 1) is used.

In this example, the data are generated from the following process:


u1t

u2t

u3t

u4t

 =


σ1t 0 0 0

0 σ2t 0 0

0 0 σ3t 0

0 0 0 σ4t




ε1t

ε2t

ε3t

ε4t

 ,
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and
σ1t

σ2t

σ3t

σ4t

 =


γ10(Zt)

γ20(Zt)

γ30(Zt)

γ40(Zt)

+


γ11,ε1t(Zt) γ12,χ1t(Zt) γ13,ε1t(Zt) γ14,χ1t(Zt)

γ21,ε2t(Zt) γ22,χ2t(Zt) γ23,ε2t(Zt) γ24,χ2t(Zt)

γ31,ε3t(Zt) γ32,χ3t(Zt) γ33,ε3t(Zt) γ34,χ3t(Zt)

γ41,ε4t(Zt) γ42,χ4t(Zt) γ43,ε4t(Zt) γ44,χ4t(Zt)




σ1(t−1)

σ2(t−1)

σ3(t−1)

σ4(t−1)



+


β11(Zt) β12(Zt) β13(Zt) β14(Zt)

β21(Zt) β22(Zt) β23(Zt) β24(Zt)

β31(Zt) β32(Zt) β33(Zt) β34(Zt)

β41(Zt) β42(Zt) β43(Zt) β44(Zt)




|u1(t−1)|

|u2(t−1)|

|u3(t−1)|

|u4(t−1)|

 .

Here, γ10(z) = γ30(z) = 1.5 exp(−3(z + 1)2) + exp(−8(z − 1)2), γ20(z) = γ40(z) =

1.5 exp(−3(z − 1)2) + exp(−8(z + 1)2). In addition, when j = 1 and 3:

γ1j,ε1t(z) =

(
0.15 exp(2z)

1 + exp(2z)

)
ε1t,

γ2j,ε2t(z) = (0.1 sin(0.8πz) + 0.1)ε2t,

γ3j,ε3t(z) = (0.1 sin(0.8πz) + 0.1)ε3t,

γ4j,ε4t(z) = (0.1 cos(0.8πz) + 0.1)ε4t,

β1j(z) =
0.15 exp(2z)

1 + exp(2z)
,

β2j(z) = 0.1 sin(0.8πz) + 0.1,

β3j(z) = 0.1 sin(0.8πz) + 0.1,

β4j(z) = 0.1 cos(0.8πz) + 0.1,

where εit = 0.2U2
it + 0.8 with Uit ∼ i.i.d. Uniform [0, 1] for i = 1, 2, 3, 4. Moreover, when
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j = 2 and 4:

γ1j,χ1t(z) = (0.1 sin(0.8πz) + 0.1)χ1t,

γ2j,χ2t(z) =

(
0.15 exp(2z)

1 + exp(2z)

)
χ2t,

γ3j,χ3t(z) = (0.1 cos(0.8πz) + 0.1)χ3t,

γ4j,χ4t(z) = (0.1 sin(0.8πz) + 0.1)χ4t,

β1j(z) = 0.1 sin(0.8πz) + 0.1,

β2j(z) =
0.15 exp(2z)

1 + exp(2z)
,

β3j(z) = 0.1 cos(0.8πz) + 0.1,

β4j(z) = 0.1 sin(0.8πz) + 0.1,

where χit = 0.2 exp(Uit) + 0.8 with Uit ∼ i.i.d. Uniform [0, 1] for i = 1, 2, 3, 4. Finally,

εit are mutually i.i.d. from N (0, 1) for i = 1, 2, 3, 4. Thus, our working model is:


qτ,t,1

qτ,t,2

qτ,t,3

qτ,t,4

 =


γ10,τ (Zt)

γ20,τ (Zt)

γ30,τ (Zt)

γ40,τ (Zt)

+


γ11,τ (Zt) γ12,τ (Zt) γ13,τ (Zt) γ14,τ (Zt)

γ21,τ (Zt) γ22,τ (Zt) γ23,τ (Zt) γ24,τ (Zt)

γ31,τ (Zt) γ32,τ (Zt) γ33,τ (Zt) γ34,τ (Zt)

γ41,τ (Zt) γ42,τ (Zt) γ43,τ (Zt) γ44,τ (Zt)




qτ,t−1,1

qτ,t−1,2

qτ,t−1,3

qτ,t−1,4



+


β11,τ (Zt) β12,τ (Zt) β13,τ (Zt) β14,τ (Zt)

β21,τ (Zt) β22,τ (Zt) β23,τ (Zt) β24,τ (Zt)

β31,τ (Zt) β32,τ (Zt) β33,τ (Zt) β34,τ (Zt)

β41,τ (Zt) β42,τ (Zt) β43,τ (Zt) β44,τ (Zt)




|u1(t−1)|

|u2(t−1)|

|u3(t−1)|

|u4(t−1)|

 ,

where Zt is generated from Uniform [−2, 2] independently. Notice that our working

model corresponds to model (1) with κ = 4, Ut = (|u1t|, |u2t|, |u3t|, |u4t|)T , q = p = 1 and

Zit = Zt. Also, note that γi0,τ (·) = γi0(·)Φ−1(τ), γi1,τ (·) = γi1(·)(0.2τ2 + 0.8), γi3,τ (·) =
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γi3(·)(0.2τ2 + 0.8), while γi2,τ (·) = γi2(·)(0.2 exp(τ) + 0.8), γi4,τ (·) = γi4(·)(0.2 exp(τ) +

0.8) and βij,τ (·) = βij(·)Φ−1(τ) for i, j = 1, 2, 3, 4, with Φ(·) being the distribution

function of the standard normal. Therefore, γi0,τ (·), γij,τ (·) and βij,τ (·) are functions of

τ , suggesting different covariate effects at different levels of τ .

To assess the finite sample performance of the proposed nonparametric estimators,

we compute the mean absolute deviation error (MADE) for γ̂i0,τ (·), γ̂ij,τ (·) and β̂ij,τ (·),

defined as

MADE(γ) =
1

n0

n0∑
k

|γ̂τ (zk)− γτ (zk)|, and MADE(βij,τ ) =
1

n0

n0∑
k

|β̂ij,τ (zk)−βij,τ (zk)|,

where γτ (·) can be either γij,τ (·) or γi0,τ (·), both γ̂τ (·) and β̂ij,τ (·) are local linear quantile

estimates of γτ (·) and βij,τ (·), respectively, and {zk = 0.1(k−1)−1.75 : 1 ≤ k ≤ n0 = 36}

are the grid points. Also note that in this example, qτ,t,i = σitF
−1
ε (τ) = 0 when τ = 0.5,

which leads the quantile regression problem to be ill-posed so that the results for τ = 0.5

are omitted. Therefore, we only consider τ ’s level to be 0.05, 0.15, 0.85 and 0.95 and the

sample sizes are n = 500, 1500 and 4000. For each setting, we replicate simulation 500

times and compute the median and standard deviation (in parentheses) of 500 MADE

values. The results are summarized in Tables 1-4 in Appendix.

One can see from Tables 1-4 that both median and standard deviation of 500 MADE

values steadily decrease as the sample size increases for all four values of τ . Moreover,

the performances for γi0,τ (·) and βij,τ (·) at τ = 0.15 and 0.85 are slightly better than

those for τ = 0.05 and 0.95. This observation is because of the sparsity of data in the

tailed regions, which is similar to that in Cai and Xu (2008). Nevertheless, since the

data that are used to estimate γij,τ (·) at τ = 0.05 and 0.95 are conditional quantiles, the

distributional information at tailed regions is preserved, which may reduce the problem

of data sparsity. For this reason, the performances for γij,τ (·) at τ = 0.15 and 0.85 are

not necessarily superior to that for τ = 0.05 and 0.95. In general, the results of this
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simulated experiment demonstrate that the proposed procedure is reliable and works

fairly well.

4 A Real Example

4.1 Empirical Models

In this section, the proposed model and estimation methods are applied to construct-

ing and estimating a new class of dynamic financial network in international equity mar-

kets. Different from existing literatures, the interdependences of this class of network

vary with a smoothing variable of general economy. To capture the intertemporal tran-

sition of risk and avoid endogeneity, we consider the interaction between current and

one-day lagged VaR. In particular, we define each linkage between a pair of VaRs in

our network as the sensitivity of VaR of returns of one market index at time t to that

of another at time t − 1. Therefore, our network can be written as following equation

system:

VaRit = γTi,τ (Zt−1)VaRt−1, i = 1, 2, . . . , κ, (17)

where VaRt−1 = (VaR1(t−1), . . . ,VaRκ(t−1))
T is a vector of VaRs for all market index

returns at time t − 1 and VaRit is the VaR of the ith market index return at time t,

which is described as follows

VaRit = − inf{u ∈ R : P (uit > u|Fi,t−1) ≤ 1− τ} = − inf{u ∈ R : F (u|Fi,t−1) > τ}

for i = 1, 2, · · · , κ at a given τ ∈ (0, 1). Here, Fi,t−1 is the information set to present

all information of the ith return available at time t − 1 and F (·|Fi,t−1) represents the

conditional distribution function of uit given Fi,t−1. In addition, Zt−1 is a smoothing

variable of general economy and γi,τ (·) = (γi1,τ (·), . . . , γiκ,τ (·))T is a κ × 1 vector of

functional coefficients. Then, we extract the quantile estimation of functional coefficients
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from equation system (17) and construct a weighted matrix |Γ̂τ (Zt−1)| as our financial

network as follows:

|Γ̂τ (Zt−1)| =


|γ̂11,τ (Zt−1)| |γ̂12,τ (Zt−1)| . . . |γ̂1κ,τ (Zt−1)|

|γ̂21,τ (Zt−1)| |γ̂22,τ (Zt−1)| . . . |γ̂2κ,τ (Zt−1)|
...

...
. . .

...

|γ̂κ1,τ (Zt−1)| |γ̂κ2,τ (Zt−1)| . . . |γ̂κκ,τ (Zt−1)|

 .

In this matrix |Γ̂τ (Zt−1)|, |γ̂ij,τ (Zt−1)| represents the absolute value of the sensitivity of

VaR of return for the market index j at time t to that of return for the index i at time

t − 1, under τ -th quantile level, and is driven by the smoothing variable Zt−1. Here,

taking absolute value on each γ̂ij,τ (Zt−1) enables us to calculate and analyze indicators of

connectedness, and details will be reported in Section 4.3 later. Thus, matrix |Γ̂τ (Zt−1)|

is useful to capture risk interdependence and how it changes with a smoothing variable

Zt−1. Notice that entries of weighted matrix |Γ̂τ (Zt−1)| correspond to the absolute

value of the estimated γij,τ (·) in the network model (3), so our two-stage procedures

can be applied here for direct estimation of the interdependence among VaRs of returns

for the market indexes. In general, the proposed framework is particularly suitable

to investigate the dynamic characteristics of risk spillover across world market indexes

under the changes of economic circumstance.

It is necessary to mention that our interest here is in studying how an observable

and time-dependent circumstance of general economy affects risk interdependence among

financial network, rather than exploring unobservable common factors that determine

the quantile co-movement in financial markets as in Ando and Bai (2020). In addition,

Yang and Zhou (2017) leaded an empirical study of the interaction between quantitative

easing in the U.S. and patterns in volatility spillover using network-based spillover indices

extended from Diebold and Yı́lmaz (2014). Their work provided an insight in the relation

between macroeconomic variables and risk network, though the econometric model that
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can describe this relation is far from being revealed. Meanwhile, Chen, Härdle and

Okhrin (2019) studied the risk propagation and dynamics in the network by developing

a panel quantile autoregression involving network effects that are quantified through

a time-varying adjacency matrix. Their model is effective for network analysis and

geographic comparison, yet difficult to model the interplay between the network variation

and states of general economy.

4.2 Data

Our dataset includes the daily series between January 5, 2006 and February 10, 2021

for four major world equity market indexes: the U.K. FTSE 100 Index, the Japanese

Nikkei 225 Index, the U.S. S&P 500 Composite Index and the Chinese Shanghai Com-

posite Index. We model the ith index’s return series uit = 10 log(Πit/Πi(t−1)), where

i = 1, 2, 3, 4 correspond to the four aforementioned market indexes in turn and Πit is

ith index level on the tth day. The studies of world market indexes help to explore the

dynamic of risk dependences in the global financial market, and the time range of data

includes the financial crisis in the U.S. in 2008, the European sovereign debt crisis of

2011-2012 and the COVID-19 pandemic starting from 2019. The daily series of four

market indexes are downloaded in Yahoo Finance and the estimation sample sizes are

3254. Although it is feasible to introduce more kinds of market index into the equation

system (17), due to the computational burdens, we only consider risk co-dependences

among four major markets’ indexes.

As for the smoothing variable Zt, we choose Zt = 10 log(Υt/Υt−1), where Υt is the

U.S. dollar index on the tth day and can be downloaded from the Federal Reserve Bank of

St. Louis. The U.S. dollar index measures value of U.S. dollar against the currencies of a

broad group of major U.S. trading partners, higher values of the index indicate a stronger

U.S. dollar. This choice of smoothing variable is reasonable, because the exchange rate

has been regarded as an important factor associated with international transmission of
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risk in many empirical studies. For instance, Menkhoff, Sarno, Schmelling and Schrimpf

(2012) discussed the relation between innovations in global foreign exchange volatility

and excess returns arising from strategies of carry trade, through which the risk spillover

transmits from one country to others. In addition, Yang and Zhou (2017) showed that

volatility spillover intensity increases with U.S. dollar depreciation. We do not claim

that the U.S. dollar index is the only choice for smoothing variable, but we choose the

U.S. dollar index because it contains more information about risk transmission among

international equity markets. It is desirable to consider other variables of economic

status as the smoothing variable and this may be left in a future study.

4.3 Estimation Results

The empirical analysis in this section includes two steps: First, we estimate γij,τ (Zt−1)

for each market index in the equation system (17) under τ = 0.05. Second, we use the

estimated value of γij,τ (Zt−1) to construct the weighted matrix |Γ̂τ (Zt−1)|, and do net-

work analysis on this matrix. Before exploring the weighted matrix |Γ̂τ (Zt−1)|, it is

important to exam whether each γij,τ (Zt−1) in (17) varies significantly with Zt−1 or not.

To this end, we estimate each γij,τ (Zt−1) and corresponding 95% pointwise confidence

intervals. Figure 1 in Appendix depicts the corresponding estimation results, in which

ij-th panel represents the result for γij,τ (·), respectively. The black solid line in each

panel of Figure 1 represents the estimates of the γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4

in (17) along various values of Zt−1 under τ = 0.05, and the red dashed lines are 95%

pointwise confidence intervals for each estimate without bias correction. From Figure 1,

we clearly see that these coefficient functions vary significantly over the interval [-0.075,

0.075], which means that we can not use fixed-coefficient dynamic quantiles models to

fit the data.

Next, we consider analyzing weighted matrix |Γ̂τ (Zt−1)|, in which each entry is

|γij,τ (Zt−1)|. By studying the dynamic of this weighted matrix |Γ̂τ (Zt−1)| driven by Zt−1,
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one can find how the risk interdependence behaves among the four major markets under

conditions of U.S. dollar depreciation or appreciation. To simplify the notation, Zt−1

and τ are dropped from |γ̂ij,τ (Zt−1)| and |γ̂ji,τ (Zt−1)| in the weighted matrix |Γ̂τ (Zt−1)|

in what follows. So, |γ̂ji| in the weighted matrix |Γ̂τ (Zt−1)| represents the intensity of

influence from the risk of market index i at time t− 1 to that of market index j at time

t. For the purpose of visualization, by following Härdle et al. (2016), we first define the

levels of connectedness. The connectedness with respect to incoming links is defined as∑4
i=1 |γ̂ji|, which is the strength of the influence of all indexes’ VaR at time t − 1 to

the VaR of market index j at time t. Analogously, the connectedness with respect to

outgoing links is defined as
∑4

i=1 |γ̂ij |, which is the strength of the influence of index j’s

VaR at time t− 1 to the VaRs of all indexes at time t. Here, i, j = 1, 2, 3, 4 correspond

to the four aforementioned market indexes in turn. The connectedness with respect to

incoming links measures the risk spillover that was emitted from all four market indexes

one day ago and is received currently by a certain market index; the connectedness with

respect to outgoing links measures the risk spillover emitted from a certain market index

one day ago and is received currently by all market indexes. Intuitively, the connected-

ness with respect to incoming links measures exposures of individual indexes to systemic

shocks from the financial network, while the connectedness with respect to outgoing

links measures contributions of individual indexes for risk events in the network. Other

than connectedness with respect to incoming links and outgoing links, we also analyze

the total connectedness in the global market, which is equal to
∑4

j=1

∑4
i=1 |γ̂ij | and in-

dicates the total risk spillover in the global market, see Härdle et al. (2016) for more

applications about these types of connectedness.

Figures 2 and 3 in Appendix present corresponding results along the same values of

Zt−1, under τ = 0.05. In Figure 2, each panel displays the connectedness with respect

to both incoming and outgoing links subject to U.S. dollar change. The solid line in

each panel represents values of connectedness with respect to outgoing links and the
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dashed line indicates values of connectedness with respect to incoming links. For Figure

3, the vertical axis measures the total connectedness appeared in international equity

markets. The horizontal axises in both figures are the same as that in each panel of

Figure 1. Figure 2 shows that the curves of all four major market indexes vary greatly

over the interval [-0.075, 0.075] and exhibit U-shaped. In particular, when the U.S. dollar

experiences appreciation and during the “bad times” of the market (when Zt−1 is large

and τ = 0.05), domestic prices of commodity in Europe, Japan and China may increase,

which pose risks on domestic companies. Then, all investors who invested corporations in

European, Japanese and Chinese markets suffer from loss of returns, causing both curves

of incoming and outgoing links to go up in all three markets. For the U.S. market, U.S.

assets may become favorable among global investors during the U.S. dollar appreciation,

while investors in the U.S. market who invested corporations in the rest of the world

face loss of returns. These two forces lead the U.S. market to be both more influential

to the global market and to be influenced by global market more easily, respectively.

Thus, both curves in the panel of S&P 500 index increase. As for the case when U.S.

dollar depreciated, profits of investment on domestic corporations in European, Japanese

and Chinese markets may increase, which lead the total amount of investment in these

three markets to grow. As a result, both types of curves in all three markets, as well as

the curve of incoming links in the U.S. market increase. Nevertheless, global investors

who invested assets in the U.S. market subject to adverse situation, which results in an

upward movement of curve of outgoing links of S&P 500 index.

It is interesting that in the European and Japanese markets, during the U.S. dollar

appreciation (Zt−1 is large), the curve of outgoing links dominates that of incoming

links. These dynamic patterns in the European and Japanese markets may be explained

by the so called “carry trade”. The carry trade refers to borrowing a low-yielding asset

and buying a higher-yielding foreign asset to earn the interest rate differential plus the

expected foreign currency appreciation. Due to the relatively lower interest rate in
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the European and Japanese markets within our time span of study, as Zt−1 is large,

carry traders who borrowed low-yielding assets from Japanese or European markets and

bought assets from the U.S. market enjoy the increase of excess returns to carry trade.

This increase of excess returns may attract more carry traders to borrow Japanese or

European assets and thus, make these two markets more influential to the global market.

For this reason, the curve of outgoing links become larger than that of incoming links in

these two markets. While in the U.S. market, since the price of risky assets rely heavily

on the demand of carry trade during U.S. dollar appreciation, it becomes much easier for

the U.S. market to be affected by the global market. Therefore, the curve of incoming

links dominates that of outgoing links in the U.S. market.

On the other hand, during U.S. dollar depreciation, carry traders who borrowed

Japanese or European assets may be unable to repay due to the significant loss of

returns, which cause the Japanese or European markets to become more vulnerable.

Consequently, the curve of incoming links in both Japan and Europe increases drasti-

cally relative to the curve of outgoing links. Yet in the U.S. market, the price of risky

assets affect the solvency of carry traders in the world, which let the U.S. market be-

come more influential to the world. Thus, the curve of outgoing links rises compared to

that of incoming links of S&P 500 index. As for the Chinese market, when U.S. dollar

depreciated, corporations associated with export subject to harmful impact. Under this

unfavorable environment, investors in China may be more willing to invest assets from

outside of Chinese market. This trend magnifies the influence of global risk events on the

Chinese market, causing the curve of incoming links dominates that of outgoing links.

Figure 3 sheds light on the variation of risk spillover in the global financial market.

Observed that in Figure 3, the total connectedness of all four market indexes demon-

strates an U-shaped and asymmetric pattern. It means that total risk spillover in the four

major markets decrease when Zt−1 becomes larger within the interval [-0.075, -0.025].

As Zt−1 exceeds -0.025, the risk spillover intensity is magnified. In general, Figure 3
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shows that the response of total risk spillover to the U.S. dollar change switches its pat-

tern at a certain threshold of the U.S. dollar change, which is a relatively new result in

literature.

5 Conclusion

In this paper, we investigate a functional coefficient vector autoregressive model for

conditional quantiles. A two-stage kernel method is proposed to estimate coefficients

functionals and the properties of asymptotic normality for the proposed estimators are

established. The simulation results show that our new methods of estimation work

fairly well. In addition, there is little literatures regarding the relationship between the

variation of financial network and the general state of economy. Based on our two-stage

estimation approaches, the proposed framework allows to study how specific state of

economy influences the network characteristics of risk spillover in a financial system.

There are several issues still worth of further studies. First, it is interesting to visual-

ize the topological change of our financial network and to measure the transition of risk

spillover among different market indexes when the general economy is shifting. Techni-

cally, these studies can be realized by our econometric model. Second, the asymptotic

properties of functional coefficients in our model provide solid theory to test the abnor-

mal variation of financial network. Third, it is meaningful to allow for cross-sectional

dependence in the current model. Although some methods have been developed to deal

with cross-sectional dependence in the literature of conditional mean models, due to

the nature of conditional quantile model, it is not obvious to extend these under the

quantile setting. Finally, if Zt in (2) is time, then the model in (2) provides a good

start for studying conditional quantile estimation of ARCH- and GARCH-type models

with time-varying parameters; see, for example, the papers by Dahlhaus and Subba Rao

(2006) and Chen and Hong (2016) for the time-varying GARCH type models. We leave
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these important issues as future research topics.
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Appendix: Mathematical Proofs, Tables and Figures

In this appendix, we give certain lemmas, with their detailed proofs given in Supple-

ment B, that are useful for proving and presenting mathematical proofs for the proposi-

tion and theorems in the paper. In addition, in Supplement C, it shows that under some

regularity conditions, the model in (1) can generate a strictly stationary and α-mixing

process. Finally, all tables and figures are also gathered in this appendix.

Proof of Proposition 2.1:

Proof. By recursively substituting in (6), we have

Xt = V t(l) +
∞∑
l=1

l−1∏
=0

Aet−(Zt−)γ̌(Zt−l)

Det−l + γ̌(Zt)Det ,

where V t(l) = µ(Zt) +
∑∞

l=1

(∏l−1
=0Aet−(Zt−)

)
µ(Zt−l). Denote λmax(Aet(Zt)) as the

largest eigenvalue in absolute value of matrix Aet(Zt). By simple algebra, we have

det(Aet(Zt) − λIκ(p+q)) = λp+q
{
Iκ −

∑q
s=1 λ

−sBs,τ (Zt) −
∑p

l=1 λ
−lAl,et(Zt)

}
. Then,

similar to the proof of Proposition 2.4 of Dahlhaus and Polonik (2009), under Assumption

A3, it follows that λmax(Aet(Zt)) < 1/(1 + δ) for all Zt and all eit, and for some δ > 0.

Following the techniques in Dahlhaus and Polonik (2009), for every ε > 0, for every

Zt ∈ [a, c] and for every eit ∈ [0, 1], we have

‖Aet(Zt)‖F ≤ λmax(Aet(Zt)) + ε.

Since βlij,τ (·) and γsij,τ (·) are functions of bounded variation, there exists for all ε1 > 0

and ε2 > 0 a finite partition of intervals K1∪, . . . ,∪Kd = [a, c] such that |βlij,τ (u) −

βlij,τ (v)| < ε1 and |γsij,τ (u)− γsij,τ (v)| < ε2, for all l and all s whenever u and v are in

the same Kk. Thus, k (and the partition) can be chosen such that

‖Aet(v)‖F ≤ ρ ≡
(

1 +
δ

2

)−1

< 1
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for all v ∈ Kk. We now define Lk ≡ { ≥ 0 : Zt− ∈ Kk} and Lk,l ≡ Lk ∩ {0, . . . , l − 1}.

Then,

|αijt(l)| ≤

∥∥∥∥∥
l−1∏
=0

Aet−(Zt−)γ̌(Zt−l)

∥∥∥∥∥
F

≤
d∏

k=1

∥∥∥∥∥ ∏
∈Lk,l

Aet−(Zt−)

∥∥∥∥∥
F

∥∥∥∥∥γ̌(Zt−l)

∥∥∥∥∥
F

≤ Ccd0

(
d∏

k=1

ρ|Lk,l|

)
≤ Cρl.

Thus, we have proven (9).

Before going further, we first need to check whether the functional-coefficient MA(∞)

representations (8) and (10) are valid or not. Indeed, since maxt≥1 ‖
∏l−1
=0Aet−(Zt−)‖F ≤

Cρl, under Assumption A1 and by choosing sufficiently large C > 0, we have

‖E(Xt)‖ ≤ ‖E(V t(l))‖+

∞∑
l=1

max
t≥1

∥∥∥∥∥
l−1∏
=0

Aet−(Zt−)

∥∥∥∥∥
F

E(γ̌(Zt−l)Det−l)

+ ‖E(γ̌(Zt)Det)‖

≤ C
∞∑
l=1

max
t≥1

∥∥∥∥∥
l−1∏
=0

Aet−(Zt−)

∥∥∥∥∥
F

≤ C
∞∑
l=1

ρl <∞

and

‖V ar(Xt)‖F ≤ C

∥∥∥∥∥
∞∑
l=1

E

l−1∏
=0

Aet−(Zt−)

Det−l(Zt−l)D
T
et−l

(Zt−l)

l−1∏
=0

Aet−(Zt−)

T ∥∥∥∥∥
F

≤ C

∥∥∥∥∥
∞∑
l=1

max
t≥1

l−1∏
=0

Aet−(Zt−)

E(Det−lD
T
et−l

) max
t≥1

l−1∏
=0

Aet−(Zt−)

T ∥∥∥∥∥
F

≤ C
∞∑
l=1

max
t≥1

∥∥∥∥∥
l−1∏
=0

Aet−(Zt−)

∥∥∥∥∥
2

F

≤ C
∞∑
l=1

ρ2l <∞.

By similar derivations, one can also show that ‖E(X̃t)‖ <∞ and ‖V ar(X̃t)‖F <∞.
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Next, we begin to show that maxt≥1E‖Xt− X̃t‖ = O(n−1). Notice that by Assump-

tion A2, for every ε > 0, |βlij,eit(Zt) − βlij,τ (Zt)| < ε in a neighborhood of τ . Then, for

sufficiently large C1,

|βlij,ei(t−k)(Zt−k)− βlij,eit(Zt)|

≤|βlij,ei(t−k)(Zt−k)− βlij,τ (Zt−k)|+ |βlij,τ (Zt−k)− βlij,τ (Zt)|+ |βlij,eit(Zt)− βlij,τ (Zt)|

≤C1|βlij,τ (Zt−k)− βlij,τ (Zt)|.

Similarly, for sufficiently large C2, we have |γsij,ei(t−k)(Zt−k)−γsij,eit(Zt)| ≤ C2|γsij,τ (Zt−k)−

γsij,τ (Zt)|. Then,

max
t≥1
‖Ce,t(l)−C l,et(Zt)‖F

≤max
t≥1

l−1∑
k=1

∥∥∥∥∥
(

(Aet(Zt))
k

(
Aet−k(Zt−k)−Aet(Zt)

)
l−1∏

=k+1

Aet−(Zt−)

)∥∥∥∥∥
F

∥∥∥∥∥γ̌(Zt−l)

∥∥∥∥∥
F

+ max
t≥1

∥∥∥∥∥(Aet(Zt))
l

∥∥∥∥∥
F

∥∥∥∥∥γ̌(Zt−l)− γ̌(Zt)

∥∥∥∥∥
F

≤C
l−1∑
k=1

k

n
ρl−1 + C

l

n
ρl,

which implies that

max
t≥1

E‖Xt − X̃t‖ ≤max
t≥1

E

∥∥∥∥∥
∞∑
l=1

l−1∏
=0

Aet−(Zt−)

µ(Zt−l)− (Aet(Zt))
lµ(Zt)

∥∥∥∥∥
+ max

t≥1

∥∥∥∥∥
∞∑
l=1

(Ce,t(l)−C l,et(Zt))

∥∥∥∥∥
F

· E‖Det‖

≤C
∞∑
l=1

(
2

l−1∑
k=1

k

n
ρl−1 + C

l

n
ρl

)
= O(n−1).

Therefore, Proposition 2.1 is proved.

Lemma A.1. Let β̂ be the minimizer of the function
∑n

t=1 ωtρτ (ut − XT
t β), where

ωt > 0. Then, ‖
∑n

t=1 ωtXtψτ (ut −XT
t β̂)‖ ≤ dim(X) maxt≤n ‖ωtXt‖.
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Proof. The proof follows from Ruppert and Carroll (1980).

Now, some notations are introduced here to make a convenient presentation of

our Bahadur results given in Theorem A.6 (below). In Lemmas A.2 - A.5 as well

as Theorem A.6, τ is dropped from ατ (z0) and write h1 as h for simplicity. Let

an = (nh)−1/2, ϑ0 = a−1
n (δ0 − α(z0)), ϑ1 = ha−1

n (δ1 − α(1)(z0)). H = diag{I, hI},

ϑ = a−1
n H

 δ0 −α(z0)

δ1 −α(1)(z0)

. Let W ∗
t =

 W t

zthW t

, where zth = (Zt − z0)/h. Also,

define u∗t = ut −W T
t [α(z0) +α(1)(z0)(Zt − z0)]. Therefore,

ϑ̂ = arg min
ϑ

n∑
t=m+1

ρτ (u∗t − anϑTW ∗
t )K(zth) ≡ arg min

ϑ
G(ϑ). (18)

The derivative of G(ϑ) with respect to ϑ (except at point u∗t = anϑ
TW ∗

t ) is given by

Tn(ϑ) = an

n∑
t=m+1

ψτ (u∗t − anϑTW ∗
t )W

∗
tK(zth). (19)

For notational convenience, set ζ = anϑ. Then, (19) becomes

Tn(ζ) = an

n∑
t=m+1

ψτ (u∗t − ζTW ∗
t )W

∗
tK(zth). (20)

Lemma A.2. Under Assumptions B1 – B11, one has ‖ζ̂‖2 = Op(m/nh).

Proof. The proof can be found in Supplement B.

In the next two lemmas, we need to show stochastic equicontinuity corresponding to

Tn(ζ)−Tn(0)−E[Tn(ζ)−Tn(0)], so that we can derive the local Bahadur representation

for
√
nhζ̂. In particular, define Dm = {ζ : ‖ζ‖ ≤ C(m/nh)1/2} for each fixed 0 < C <

∞.

Lemma A.3. Under Assumptions B1 – B11, for any a ∈ R2(κm+1) satisfying ‖a‖ =
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O(1), one has

sup
ζ∈Dm

|aT {Tn(ζ)− Tn(0)− E[Tn(ζ)− Tn(0)]}| = op(1). (21)

Proof. The proof can be found in Supplement B.

Lemma A.4. Under Assumptions B1 – B11, for any a ∈ R2(κm+1) satisfying ‖a‖ =

O(1), one has

sup
ζ∈Dm

‖aT {E[Tn(ζ)− Tn(0)] + fz(z0)D∗1(z0)
√
nhζ}‖ = o(1), (22)

where D∗1(z0) = diag{D∗(z0), µ2D
∗(z0)}.

Proof. The proof can be found in Supplement B.

Lemma A.5. Let St = ψτ (u∗t )W
∗
tK(zth). Under Assumptions B1 – B11, one has

E[S1] =
h3fz(z0)

2

µ2D
∗(z0)α(2)(z0)

0

+ o(h3),

and

V ar[S1] = hτ(1− τ)fz(z0)D1(z0) + o(h), (23)

where D1(z0) = diag{ν0D(z0), ν2D(z0)} with ν2 =
∫
ν2K2(ν)dν. Further,

V ar[Tn(0)]→ τ(1− τ)fz(z0)D1(z0). (24)

Therefore, ‖Tn(0)‖ = Op(1).

Proof. The proof can be found in Supplement B.

Theorem A.6. (Bahadur representation) Under Assumptions B1 – B11, one has,

√
nh1ζ̂ =

1√
nh1fz(z0)

(D∗1(z0)−1)

n∑
t=m+1

ψτ (u∗t )W
∗
tK(zth1) + op(1),
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where D∗1(z0) =

1 0

0 µ2

⊗D∗(z0).

Proof. By Lemma A.2, ‖ζ̂‖ = Op((m/nh)1/2). On the other hand, by Lemmas A.3, A.4

and A.5, Tn(ζ) satisfies ‖Tn(0)‖ = Op(1) and sup‖ζ‖≤C(m/nh)1/2 |aT {Tn(ζ) + D
√
nhζ −

Tn(0)}| = op(1) with D = fz(z0)D∗1(z0). In order to show ‖Tn(ζ̂)‖ = op(1), it follows

from Assumption B9 and Lemma A.1 that

‖Tn(ζ̂)‖ = an

∥∥∥∥∥
n∑

t=m+1

ψτ (u∗t − ζ̂
T
W ∗

t )W
∗
tK(zth)

∥∥∥∥∥ = man max
t≤n
‖W ∗

tK(zth)‖ = O(m3/2(nh)−1/2) = o(1).

Then, replacing a by D−1a, the theorem is proved.

Lemma A.7. Define KnL = {(∆, ξ) : ‖ξ‖ ≤ L, ‖∆‖ ≤ M} for some 0 < M < ∞, and

let Vn(∆, ξ) be a vector that satisfies (i) −∆TVn(λ∆, ξ) ≥ −∆TVn(∆, ξ) for λ ≥ 1 and

‖ξ‖ ≤ L, 0 < L <∞, and (ii)

sup
(∆,ξ)∈KnL

‖Vn(∆, ξ) +D∆−An‖ = op(1),

where ‖An‖ = Op(1) and D is a positive-definite matrix. Suppose that ∆n is a vector

such that ‖Vn(∆n, ξn)‖ = op(1). Then, one has ‖∆n‖ = Op(1) and ∆n = D−1An+op(1).

Proof. The proof follows from Koenker and Zhao (1996) and Conditions (i) and (ii) that

Vn(∆n, ξn) +D∆n −An = op(1). This completes the proof.

To show Lemmas A.8 and A.9 later, τ is dropped from gτ (z0) and h2 is written as h

for simplicity. For the notational convenience again, let θ0 = a−1
n (Θ0 − g(z0)) and θ1 =

ha−1
n (Θ1 − g(1)(z0)). Then, θ = a−1

n H

 Θ0 − g(z0)

Θ1 − g(1)(z0)

. Now, let δr(Zt) = α(r)(Zt)/r!

and denote ξ =
√
nh(δ0(Zt)−α(Zt)). Then, ξ̂ =

√
nh(δ̂0(Zt)−α(Zt)) is the estimation of

ξ. Thus, it is obvious that ξ = ϑ0 given Zt = z0 by recalling that ϑ0 =
√
nh(δ0−α(z0)).

For convenience of analysis, we rewrite X̂t ≡Xt(ξ̂) ≡Xt(α(Zt)+(nh)−1/2ξ̂) because it

contains q̂τ,t = W T
t δ̂0. Similarly, Xt(ξ) ≡Xt(α(Zt)+(nh)−1/2ξ), X∗t (ξ) ≡X∗t (α(Zt)+
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(nh)−1/2ξ) and X̂
∗
t ≡ X∗t (ξ̂) ≡ X∗t (α(Zt) + (nh)−1/2ξ̂), where X∗t (ξ) =

 Xt(ξ)

zthXt(ξ)


and X∗t (ξ̂) =

 Xt(ξ̂)

zthXt(ξ̂)

. Hence,

(
∂Xt(ξ)

∂ξ

)
= an



01×(κm+1)

W T
t

...

W T
t

0κ×(κm+1)


= anU .

Denote v∗t = ut−XT
t (ξ)[g(z0)+g(1)(z0)(Zt−z0)] and v∗∗t = ut−XT

t [g(z0)+g(1)(z0)(Zt−

z0)]. Similar to Xiao and Koenker (2009), it can be easily shown that v∗∗t = ut −

qτ (z0,Xt) = ut − qτ (z0,W t) = u∗t . Again, define Am = {θ : ‖θ‖ ≤ M} and Bm = {ξ :

‖ξ‖ ≤ L} for some 0 < M <∞ and for some 0 < L <∞, Therefore,

θ̂ = arg min
θ

n∑
t=1

ρτ (v∗t − anθTX∗t (ξ̂))K(zth) ≡ arg min
θ
J(θ). (25)

Now, define vector functions of θ and ξ

Vn(θ, ξ) = an

n∑
t=1

ψτ (v∗t − anθTX∗t (ξ))X∗t (ξ)K(zth), (26)

where ψτ (x) = τ − I(x < 0). In the next three lemmas, we show that Vn(θ, ξ) satisfies

Lemma A.7, so that we can derive the local Bahadur representation for θ̂.

Lemma A.8. Under the assumptions in Theorem 2.1, one has

sup
ξ∈Bm,θ∈Am

‖Vn(θ, ξ)− Vn(0, 0)− E[Vn(θ, ξ)− Vn(0, 0)]‖ = op(1). (27)

Proof. The proof can be found in Supplement B.
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Lemma A.9. Under the assumptions in Theorem 2.1, one has

sup
ξ∈Bm,θ∈Am

‖E[Vn(θ, ξ)− Vn(0, 0)] + fz(z0)Ω∗1(z0)θ − fz(z0)Γ∗20ϑ0‖ = o(1), (28)

where Ω∗1(z0) = diag{Ω∗(z0), µ2Ω∗(z0)} and Γ∗20 =

 1

0

⊗ Γ20.

Proof. The proof can be found in Supplement B.

Lemma A.10. Let Dm/K = (I(κm+1)

... 0(κm+1)×(κm+1)) and

Bt = ψτ (u∗t )[X
∗
tK(zth2) + Γ∗20Dm/K(D∗1(z0))−1W ∗∗

t K(zth1)],

where W ∗∗
t = (h2/h1)1/2W ∗

t . In addition, denote H∗t = Γ∗20Dm/K(D∗1(z0))−1W ∗
t . Un-

der the assumptions in Theorem 2.1, one has

E[B1] =
h3

2fz(z0)

2

µ2Ω∗(z0)g
(2)
τ (z0)

0

+
h

5/2
1 h

1/2
2 fz(z0)

2
Γ∗20Dm/K

µ2α
(2)
τ (z0)

0


+ o(h3

2) + o(h
5/2
1 h

1/2
2 ),

(29)

and

V ar[B1] = h2τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗ Ω(z0) +H

}
+ o(h2), (30)

where H =

ν0 0

0 0

⊗ Γ20D
∗(z0)−1ΓT20. Further,

V ar[Vn(0, 0)] = τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗ Ω(z0) +H

}
+ o(1). (31)

Therefore, ‖Vn(0, 0)‖ = Op(1).

Proof. This proof is similar to the proof of Lemma A.4 in Cai and Xu (2008). First, we
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calculate E[B1] to obtain

E[B1] = E[ψτ (u∗1)X∗1K(z1h2)] + Γ∗20Dm/KE[ψτ (u∗1)(D∗1(z0))−1W ∗∗
1 K(z1h1)] ≡ Q1 +Q2.

Similar to the proof of Lemma A.5, one can easily obtain that

Q1 =
h3

2

2
fz(z0){

µ2

0

⊗ Ω∗(z0)}g(2)
τ (z0) + o(h3

2)

with the detail omitted. For Q2, similarly,

Q2 ≡Γ∗20Dm/KE[ψτ (u∗1)(D∗1(z0))−1W ∗∗
1 K(z1h1)]

=
h2

1

2

(
h

1/2
2

h
1/2
1

Γ∗20Dm/KE[fu|Z,W (qτ (z0,W 1) + h1z1h1α
(1)(z0)TW 1 + ξΛ(h1, z0, Z1,W 1)|Z1,W 1)]

×D∗1(z0)−1

 1

z1h1

D(Z1)α(2)(z0 + ςh1z1h1)z2
1h1K(z1h1)

)

=
h

5/2
1 h

1/2
2

2
fz(z0)Γ∗20Dm/K

µ2α
(2)
τ (z0)

0

 (1 + o(1)).

(32)

As for E[B1B
T
1 ], similar to the derivation in Lemma A.5,

E[B1B
T
1 ]

=E

(
ψ2
τ (u∗1)[X∗1X

∗T
1 K2(z1h2) + (H∗1X

∗T
1 +X∗1H

∗T
1 )K(z1h1)K(z1h2) +H∗1H

∗T
1 K2(z1h1)]

)
=(2τ − 1)E

(
[τ − I{u∗1<0}]{X∗1X∗T1 K2(z1h2) + (H∗1X

∗T
1 +X∗1H

∗T
1 )K(z1h1)K(z1h2) +H∗1H

∗T
1 K2(z1h1)}

)
+ τ(1− τ)E

(
X∗1X

∗T
1 K2(z1h2) + (H∗1X

∗T
1 +X∗1H

∗T
1 )K(z1h1)K(z1h2) +H∗1H

∗T
1 K2(z1h1)

)
≡P (1) + P (2).
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It is not difficult to show that P (1) = o(h2
2). As for P (2),

P (2) ≡τ(1− τ)E[X∗1X
∗T
1 K2(z1h2)] + τ(1− τ)E[(H∗1X

∗T
1 +X∗1H

∗T
1 )

×K(z1h1)K(z1h2)] + τ(1− τ)E[H∗1H
∗T
1 K2(z1h1)]

≡P (21) + P (22) + P (23).

We first focus on P (22). A simple algebra gives that

P (22) ≡τ(1− τ)E[(H∗1X
∗T
1 +X∗1H

∗T
1 )K(z1h1)K(z1h2)]

=(h2/h1)1/2τ(1− τ)E

{ν−1
0 Γ20D

∗(z0)−1 0

0 0

 (W ∗
1X
∗T
1 )K(z1h1)K(z1h2)

}

+ (h2/h1)1/2τ(1− τ)E

{
(X∗1W

∗T
1 )

ν−1
0 (Γ20D

∗(z0)−1)T 0

0 0T

K(z1h1)K(z1h2)

}

=(h2/h1)1/2τ(1− τ)E

{ν−1
0 Γ20D

∗(z0)−1W 1X
T
1 ν−1

0 z1h2Γ20D
∗(z0)−1W 1X

T
1

0 0


×K(z1h1)K(z1h2)

}
+ (h2/h1)1/2τ(1− τ)E

{ ν−1
0 X1W

T
1 (Γ20D

∗(z0)−1)T 0

ν−1
0 z1h2X1W

T
1 (Γ20D

∗(z0)−1)T 0T


×K(z1h1)K(z1h2)

}

=ν−1
0 (h2/h1)1/2τ(1− τ)E

{1 z1h2

0 0

⊗ (Γ20D
∗(z0)−1W 1)XT

1 K(z1h1)K(z1h2)

}

+ ν−1
0 (h2/h1)1/2τ(1− τ)E

{ 1 0

z1h2 0

⊗X1(Γ20D
∗(z0)−1W 1)TK(z1h1)K(z1h2)

}

=O(h
1/2
1 h

3/2
2 ) = o(h2).

Similarly,

P (21) ≡ τ(1−τ)E[X∗1X
∗T
1 K2(z1h2)] = h2τ(1−τ)fz(z0)

ν0 0

0 ν2

⊗Ω(z0)(1+o(1)) (33)
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and

P (23) ≡(h2/h1)τ(1− τ)E[H∗1H
∗T
1 K2(z1h1)]

=(h2/h1)τ(1− τ)E

{Γ20D
∗(z0)−1 0

0 0

 1 z1h1

z1h1 z2
1h1

⊗D∗(z0)

×

(Γ20D
∗(z0)−1)T 0

0 0T

K2(z1h1)

}

=h2τ(1− τ)fz(z0)

ν0 0

0 0

⊗ (Γ20D
∗(z0)−1ΓT20).

(34)

Next, it is shown that the last part of lemma holds true,

V ar[Vn(0, 0)] =
1

nh
V ar(

n∑
t=1

Bt) =
1

h
[V ar(B1) + 2

n−1∑
`=1

(1− `

n
)Cov(B1, B`+1)]

≤1

h
V ar(B1) +

2

h

en−1∑
`=1

|Cov(B1, B`+1)|+ 2

h

∞∑
`=en

|Cov(B1, B`+1)|

≡G1 +G2 +G3.

By (32), (33) and (34),

G1 → τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗ Ω(z0) +H

}
.

Now it remains to show that |G2| = o(1) and |G3| = o(1). First, we consider G3. To this

end, by using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980))

and the boundedness of ψτ (·), one has

|Cov(B1, B`+1)| ≤ Cα1−2/δ(`)[E|B1|δ]2/δ ≤ Ch2/δα1−2/δ(`),
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which gives

G3 ≤ Ch2/δ−1
∞∑
`=en

α1−2/δ(`) ≤ Ch2/δ−1e−wn

∞∑
`=en

`wα1−2/δ(`) = o(h2/δ−1e−wn ) = o(1),

by choosing en to satisfy ewnh
1−2/δ = c. As for G2, following the proof of Lemma 3.5 in

Xu (2005), one has |G2| = o(1). These prove Lemma A.10.

Proof of Theorem 2.1:

Proof. By Lemmas A.8, A.9 and A.10, Vn(θ, ξ) satisfies Condition (ii) in Lemma A.7;

that is, ‖An‖ = Op(1) and sup‖∆‖≤M,‖ξ‖≤L ‖Vn(∆, ξ) + D∆ − An‖ = op(1) with D =

fz(z0)Ω∗1(z0) and An = Vn(0, 0) + fz(z0)Γ∗20ϑ0. To show ‖Vn(θ̂, ξ̂)‖ = op(1), it follows

from Lemma A.1 and mean value theorem that

‖Vn(θ̂, ξ̂)‖ =an

∥∥∥∥∥
n∑
t=1

[ψτ (v∗t − anθ̂
T
X∗t (ξ̂))]X

∗
t (ξ̂)K(zth2)

∥∥∥∥∥ ≤ an max
1≤t≤n

‖X∗t (ξ̂)K(zth2)‖

≤an max
1≤t≤n

‖X∗tK(zth2)‖+ Ca2
n max

1≤t≤n

∥∥∥∥∥
(
∂X∗t (ξ̂)

∂ξ̂

∣∣∣∣
ξ̂=ξ̂′

)
LK(zth2)

∥∥∥∥∥ = o(1),

where θ̂ is the minimizer of J(θ, ξ̂). Finally, because ψτ (x) is an increasing function

of x; then −θTVn(λθ) = an
∑n

t=1 ψτ [v∗t + λan(−θTX∗t (ξ))](−θTX∗t (ξ))K(zth2) is an

increasing function of λ. Thus, Condition (i) in Lemma A.7 is satisfied. Then, it follows

from Theorem A.6, Lemmas A.8 and A.9 that

θ̂ =
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

ψτ (u∗t )[X
∗
tK(zth2)] + (Ω∗1(z0))−1Γ∗20ϑ0 + op(1)

=
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

ψτ (u∗t )[X
∗
tK(zth2) + Γ∗20Dm/K(D∗1(z0))−1W ∗∗

t K(zth1)] + op(1).

Following the proof of Theorem 1 in Cai and Xu (2008), the theorem is proved.

Proof of (16):
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Proof. We only focus on Γ̂T20, which can be written as

Γ̂T20 =
1

n

n∑
t=1

{
(w1tX̂

T
t ĝτ (z0))

(
0(κm+1)×1 W tKh2(Zt − z0) . . . W tKh2(Zt − z0) 0(κm+1)×κ

)}

≡
(

0(κm+1)×1 Γ̂10 . . . Γ̂10 0(κm+1)×κ

)
,

where Γ̂10 ≡ 1
n

∑n
t=1(w1tX̂

T
t ĝτ (z0))W tKh2(Zt − z0). Define

Γ1(z0) ≡ E[fu|Z,W (qτ (z0,W t))(X
T
t gτ (z0))W t|Zt = z0].

Clearly,

ΓT20 ≡
(

0(κm+1)×1 Γ1(z0) . . . Γ1(z0) 0(κm+1)×κ

)
.

Thus, we only need to show that Γ̂10 = fz(z0)Γ1(z0) + op(1). By Taylor’s expansion, we

have

E[w1t|Zt,W t] = (Fu|Z,W (W T
t α̂τ (z0) + δ1n)− Fu|Z,W (W T

t α̂τ (z0)− δ1n))/(2δ1n)

= fu|Z,W (W T
t α̂τ (z0)) + op(1).

In addition, notice that by applying mean value theorem, there exists ξ̂′ ∈ (0, ξ̂) such

that

X̂t ≡Xt(ξ̂) =

(
Xt + (nh2)−1/2

(
∂Xt(ξ̂)

∂ξ̂

∣∣∣∣
ξ̂=ξ̂′

)
ξ̂

)
.

Therefore,

E[Γ̂10] = E[fu|Z,W (W T
t α̂τ (z0))(XT

t gτ (z0))W tKh2(Zt − z0)] + o(1)

=

∫
fu|Z,W (W T

t α̂τ (z0))Γ1(z0 + h2z)K(z)fz(z0 + h2z)dz + o(1)→ fz(z0)Γ1(z0).

Similar to the proof of V ar[Tn(0)] in Lemma A.5, we can show that V ar(Γ̂10)→ 0. This

gives us Γ̂10 = fz(z0)Γ1(z0) + op(1), which proves (16). The consistency of Ω̂(z0), Ω̂∗(z0)
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and D̂
∗
(z0) can be derived in a similar way.
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Table 1: Simulation results for γ10,τ (·), γ20,τ (·), γ30,τ (·), γ40,τ (·), and γij,τ (·) for i = 1, 2 and for
j = 1, 2, 3, 4.

τ n = 500 n = 1500 n = 4000

MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20)

0.05 0.888 (0.241) 0.839 (0.245) 0.636 (0.101) 0.644 (0.110) 0.438 (0.056) 0.362 (0.066)

0.15 0.505 (0.127) 0.511 (0.167) 0.375 (0.050) 0.337 (0.056) 0.292 (0.031) 0.259 (0.036)

0.85 0.486 (0.121) 0.487 (0.138) 0.378 (0.051) 0.351 (0.050) 0.278 (0.036) 0.252 (0.039)

0.95 0.836 (0.228) 0.750 (0.200) 0.560 (0.100) 0.437 (0.106) 0.415 (0.054) 0.341 (0.063)

MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40)

0.05 0.722 (0.180) 0.901 (0.195) 0.593 (0.080) 0.547 (0.092) 0.501 (0.042) 0.499 (0.051)

0.15 0.476 (0.117) 0.490 (0.124) 0.378 (0.043) 0.363 (0.049) 0.307 (0.032) 0.283 (0.032)

0.85 0.452 (0.092) 0.472 (0.147) 0.372 (0.042) 0.379 (0.047) 0.284 (0.035) 0.241 (0.040)

0.95 0.700 (0.205) 0.807 (0.212) 0.548 (0.088) 0.606 (0.089) 0.476 (0.049) 0.502 (0.059)

MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12)

0.05 0.166 (0.079) 0.170 (0.072) 0.131 (0.053) 0.126 (0.047) 0.087 (0.030) 0.084 (0.035)

0.15 0.134 (0.068) 0.128 (0.049) 0.107 (0.045) 0.113 (0.041) 0.095 (0.038) 0.082 (0.030)

0.85 0.147 (0.071) 0.145 (0.055) 0.116 (0.048) 0.126 (0.044) 0.083 (0.034) 0.100 (0.032)

0.95 0.176 (0.070) 0.177 (0.065) 0.129 (0.047) 0.137 (0.048) 0.102 (0.034) 0.107 (0.037)

MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14)

0.05 0.171 (0.088) 0.159 (0.074) 0.129 (0.053) 0.136 (0.048) 0.087 (0.037) 0.108 (0.036)

0.15 0.148 (0.067) 0.188 (0.083) 0.109 (0.051) 0.124 (0.048) 0.083 (0.035) 0.097 (0.030)

0.85 0.151 (0.070) 0.179 (0.076) 0.104 (0.041) 0.138 (0.055) 0.081 (0.031) 0.104 (0.033)

0.95 0.148 (0.064) 0.186 (0.077) 0.132 (0.051) 0.154 (0.052) 0.097 (0.034) 0.110 (0.036)

MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22)

0.05 0.172 (0.082) 0.166 (0.071) 0.141 (0.056) 0.121 (0.050) 0.094 (0.041) 0.082 (0.032)

0.15 0.145 (0.068) 0.109 (0.058) 0.120 (0.047) 0.098 (0.040) 0.103 (0.042) 0.074 (0.030)

0.85 0.153 (0.084) 0.116 (0.065) 0.128 (0.046) 0.097 (0.045) 0.090 (0.037) 0.082 (0.033)

0.95 0.257 (0.072) 0.219 (0.054) 0.146 (0.050) 0.130 (0.044) 0.110 (0.039) 0.084 (0.030)

MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24)

0.05 0.181 (0.083) 0.139 (0.064) 0.139 (0.058) 0.131 (0.056) 0.091 (0.031) 0.101 (0.031)

0.15 0.156 (0.075) 0.188 (0.106) 0.114 (0.045) 0.116 (0.047) 0.094 (0.036) 0.089 (0.033)

0.85 0.167 (0.081) 0.163 (0.088) 0.114 (0.046) 0.124 (0.056) 0.090 (0.034) 0.102 (0.039)

0.95 0.216 (0.052) 0.259 (0.068) 0.145 (0.047) 0.149 (0.050) 0.105 (0.034) 0.102 (0.038)
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Table 2: Simulation results for γij,τ (·) for i = 3, 4 and for j = 1, 2, 3, 4.

τ n = 500 n = 1500 n = 4000

MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32)

0.05 0.151 (0.060) 0.147 (0.061) 0.119 (0.047) 0.108 (0.039) 0.090 (0.034) 0.079 (0.029)

0.15 0.128 (0.061) 0.117 (0.043) 0.110 (0.046) 0.098 (0.040) 0.095 (0.033) 0.077 (0.026)

0.85 0.150 (0.068) 0.128 (0.046) 0.115 (0.048) 0.112 (0.040) 0.087 (0.033) 0.091 (0.032)

0.95 0.176 (0.067) 0.163 (0.056) 0.123 (0.050) 0.122 (0.045) 0.102 (0.038) 0.094 (0.030)

MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34)

0.05 0.159 (0.065) 0.133 (0.055) 0.115 (0.047) 0.118 (0.047) 0.080 (0.034) 0.099 (0.033)

0.15 0.132 (0.064) 0.171 (0.070) 0.105 (0.044) 0.112 (0.044) 0.086 (0.033) 0.090 (0.038)

0.85 0.149 (0.064) 0.158 (0.067) 0.104 (0.038) 0.122 (0.046) 0.087 (0.031) 0.112 (0.034)

0.95 0.158 (0.055) 0.180 (0.066) 0.122 (0.049) 0.141 (0.049) 0.095 (0.036) 0.104 (0.037)

MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42)

0.05 0.311 (0.072) 0.300 (0.064) 0.132 (0.048) 0.115 (0.045) 0.088 (0.031) 0.087 (0.030)

0.15 0.135 (0.060) 0.123 (0.053) 0.109 (0.045) 0.104 (0.038) 0.097 (0.039) 0.082 (0.027)

0.85 0.212 (0.068) 0.171 (0.054) 0.119 (0.045) 0.119 (0.045) 0.097 (0.034) 0.096 (0.032)

0.95 0.173 (0.076) 0.171 (0.070) 0.128 (0.048) 0.123 (0.042) 0.097 (0.034) 0.098 (0.034)

MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44)

0.05 0.307 (0.064) 0.255 (0.053) 0.120 (0.050) 0.129 (0.047) 0.088 (0.034) 0.096 (0.034)

0.15 0.142 (0.066) 0.187 (0.080) 0.106 (0.041) 0.117 (0.045) 0.090 (0.032) 0.090 (0.034)

0.85 0.201 (0.062) 0.226 (0.074) 0.104 (0.040) 0.131 (0.052) 0.091 (0.033) 0.113 (0.035)

0.95 0.149 (0.066) 0.180 (0.074) 0.133 (0.048) 0.140 (0.050) 0.100 (0.033) 0.106 (0.037)
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Table 3: Simulation results for βij,τ (·) for i = 1, 2 and for j = 1, 2, 3, 4.

τ n = 500 n = 1500 n = 4000

MADE(β11) MADE(β12) MADE(β11) MADE(β12) MADE(β11) MADE(β12)

0.05 0.252 (0.116) 0.252 (0.120) 0.146 (0.061) 0.165 (0.066) 0.090 (0.036) 0.107 (0.032)

0.15 0.167 (0.082) 0.167 (0.075) 0.097 (0.040) 0.105 (0.042) 0.065 (0.024) 0.069 (0.026)

0.85 0.160 (0.086) 0.174 (0.076) 0.096 (0.045) 0.108 (0.041) 0.066 (0.025) 0.069 (0.030)

0.95 0.246 (0.100) 0.251 (0.103) 0.152 (0.057) 0.158 (0.064) 0.096 (0.033) 0.112 (0.036)

MADE(β13) MADE(β14) MADE(β13) MADE(β14) MADE(β13) MADE(β14)

0.05 0.240 (0.111) 0.255 (0.121) 0.146 (0.060) 0.167 (0.066) 0.091 (0.035) 0.109 (0.037)

0.15 0.153 (0.077) 0.172 (0.088) 0.106 (0.038) 0.094 (0.036) 0.062 (0.023) 0.072 (0.028)

0.85 0.164 (0.074) 0.182 (0.082) 0.095 (0.040) 0.106 (0.040) 0.059 (0.023) 0.070 (0.023)

0.95 0.222 (0.100) 0.249 (0.105) 0.147 (0.052) 0.162 (0.053) 0.093 (0.034) 0.107 (0.035)

MADE(β21) MADE(β22) MADE(β21) MADE(β22) MADE(β21) MADE(β22)

0.05 0.270 (0.116) 0.241 (0.117) 0.183 (0.067) 0.153 (0.068) 0.112 (0.035) 0.098 (0.033)

0.15 0.179 (0.090) 0.154 (0.081) 0.106 (0.038) 0.099 (0.039) 0.071 (0.024) 0.065 (0.028)

0.85 0.178 (0.086) 0.163 (0.084) 0.111 (0.044) 0.096 (0.044) 0.072 (0.027) 0.064 (0.024)

0.95 0.362 (0.090) 0.338 (0.083) 0.168 (0.053) 0.161 (0.050) 0.104 (0.035) 0.100 (0.034)

MADE(β23) MADE(β24) MADE(β23) MADE(β24) MADE(β23) MADE(β24)

0.05 0.261 (0.115) 0.243 (0.106) 0.166 (0.067) 0.156 (0.067) 0.103 (0.034) 0.099 (0.036)

0.15 0.176 (0.088) 0.164 (0.090) 0.102 (0.040) 0.102 (0.041) 0.068 (0.021) 0.066 (0.026)

0.85 0.173 (0.081) 0.169 (0.093) 0.107 (0.038) 0.098 (0.044) 0.069 (0.025) 0.070 (0.024)

0.95 0.359 (0.086) 0.354 (0.090) 0.160 (0.052) 0.161 (0.053) 0.102 (0.033) 0.103 (0.031)
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Table 4: Simulation results for βij,τ (·) for i = 3, 4 and for j = 1, 2, 3, 4.

τ n = 500 n = 1500 n = 4000

MADE(β31) MADE(β32) MADE(β31) MADE(β32) MADE(β31) MADE(β32)

0.05 0.230 (0.096) 0.211 (0.083) 0.148 (0.055) 0.134 (0.050) 0.096 (0.038) 0.094 (0.034)

0.15 0.154 (0.063) 0.138 (0.055) 0.103 (0.039) 0.089 (0.036) 0.071 (0.025) 0.061 (0.023)

0.85 0.149 (0.065) 0.139 (0.063) 0.098 (0.039) 0.089 (0.035) 0.066 (0.023) 0.064 (0.024)

0.95 0.245 (0.085) 0.222 (0.078) 0.145 (0.057) 0.137 (0.055) 0.098 (0.036) 0.094 (0.032)

MADE(β33) MADE(β34) MADE(β33) MADE(β34) MADE(β33) MADE(β34)

0.05 0.220 (0.088) 0.208 (0.089) 0.143 (0.055) 0.133 (0.053) 0.103 (0.030) 0.097 (0.027)

0.15 0.154 (0.066) 0.142 (0.061) 0.093 (0.036) 0.091 (0.040) 0.065 (0.025) 0.064 (0.025)

0.85 0.149 (0.061) 0.151 (0.067) 0.095 (0.037) 0.093 (0.036) 0.066 (0.025) 0.066 (0.024)

0.95 0.225 (0.078) 0.242 (0.087) 0.138 (0.053) 0.133 (0.052) 0.100 (0.034) 0.094 (0.032)

MADE(β41) MADE(β42) MADE(β41) MADE(β42) MADE(β41) MADE(β42)

0.05 0.425 (0.085) 0.427 (0.091) 0.141 (0.055) 0.155 (0.056) 0.099 (0.030) 0.111 (0.036)

0.15 0.161 (0.067) 0.163 (0.076) 0.096 (0.038) 0.100 (0.041) 0.068 (0.024) 0.071 (0.023)

0.85 0.219 (0.066) 0.214 (0.071) 0.096 (0.037) 0.101 (0.039) 0.070 (0.024) 0.068 (0.027)

0.95 0.240 (0.107) 0.248 (0.099) 0.147 (0.052) 0.164 (0.056) 0.096 (0.032) 0.111 (0.039)

MADE(β43) MADE(β44) MADE(β43) MADE(β44) MADE(β43) MADE(β44)

0.05 0.411 (0.086) 0.436 (0.085) 0.137 (0.050) 0.152 (0.054) 0.094 (0.027) 0.104 (0.034)

0.15 0.151 (0.064) 0.164 (0.066) 0.089 (0.034) 0.101 (0.039) 0.060 (0.022) 0.074 (0.026)

0.85 0.211 (0.066) 0.226 (0.065) 0.090 (0.033) 0.106 (0.039) 0.069 (0.020) 0.069 (0.025)

0.95 0.220 (0.089) 0.257 (0.107) 0.141 (0.052) 0.164 (0.057) 0.101 (0.032) 0.115 (0.035)
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Figure 1: Plots of the estimated coefficient functions γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 in (17) under
τ = 0.05 (black solid lines), in which ij-th panel represents the result for γij,τ (·), respectively. The red
dashed lines in each panel indicate the 95% pointwise confidence interval for the estimate with the bias
ignored.
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Figure 2: Connectedness with respect to outgoing links and connectedness with respect to incoming
links for four market indexes. The solid line in each panel represents values of connectedness with respect
to outgoing links and the dashed line in each panel indicates values of connectedness is for incoming link,
with τ = 0.05.
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Figure 3: Total connectedness in international equity markets. τ = 0.05.
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