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1 Introduction

Accurately acquiring the dynamics of volatility is crucial for many applications in finance.

Nevertheless, this task is not trivial due to the established empirical and well-known stylized

facts of asymmetry, heavy tails, skewness, discontinuities and long memory, which pose

considerable challenges to econometric modeling. In the past two decades, the use of intraday

high-frequency data to measure and model volatility has been studied extensively. The

so-called realized volatility (RV), which is a model-free nonparametric measurement, first

studied by Andersen and Bollerslev (1998), is the most basic and popular measurement. Since

then, a burst of academic research has been conducted on modeling RV; see, for example,

to name just a few, Barndorff-Nielsen and Shephard (2002), Zhang et al. (2005), Zhang

(2006), Christensen et al. (2014), Wang et al. (2016), and Hounyo et al. (2017). Despite

these efforts in the literature, at least two interesting factors should be addressed. First, the

quantile dynamics of RV are worthy of further study. As a risk measurement, capturing the

quantile dynamics of RV is very important in risk management. In fact, to the best of our

knowledge, the only work focusing on the quantiles of RV is the paper by Žikeš and Baruńık

(2016), which applied quantile regression to RV and built a heterogeneous autoregressive

quantile model (HARQ). Second, it is important to consider the risks of model uncertainty

or/and measuring uncertainty. Although many alternatives for realized measures have been

developed, it is still unclear which one is the best under a dynamic changing environment;

see, for example, Hendry and Clements (2004) and Aiolfi and Timmermann (2006). In

an attempt to address the aforementioned issues, this paper proposes five novel dynamic

combination schemes for quantile functions. In the empirical analysis, eleven HARQ models

are adopted with more than 35 realized measures of high-frequency data of the S&P 500

Index to comprehensively evaluate their forecasting performances. Our empirical results

show clearly that dynamic quantile model averaging (DQMA) can not only reduce the risks

of model uncertainty but also generate more accurate and robust out-of-sample quantile

forecasts than those of individual HARQ models and other mean models such as dynamic

model averaging with time-varying parameter (DMA-TVP) and ARFIMA model.

The main contributions of this paper can be summarized in the following three aspects.
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First, in contrast to the existing literature, which focus on modeling the mean of RV, our

focus is on forecasting conditional quantiles (distribution), which surely broadens researches

of RV. As claimed by Corsi et al. (2008), the distributional assumption for residuals plays a

crucial role in density forecasting of RV. Unlike mean regression models, quantile regression

has no restrictive assumptions on the conditional distribution, which is efficient and powerful;

see, e.g., Fan et al. (1996) and Koenker and Xiao (2004). However, even though quantile

regression has been widely used in finance, its applications in RV and other related realized

measures are few.

Second, facing risks of model uncertainty, five strategies are proposed for dynamically

combining quantile forecasts to model RV under the framework of dynamic model averaging

(DMA) and information-theoretic averaging strategies. Though a large quantity of literature

on strategies for combining forecasts has been published, which can be dated back to the early

work by Bates and Granger (1969) and Granger and Ramanathan (1984), the combinations

are usually derived under the framework of the mean squared error (MSE) loss or Bayesian

designed mainly for mean regression models, see, e.g., Raftery et al. (2010), Wallis (2011),

and the survey papers by Chan and Pauwels (2018), and Steel (2020). Combination strategies

designed specifically for quantile estimators are rare, which will be summarized later.

Third, compared to Žikeš and Baruńık (2016) by using three HARQ models in their

study, eleven HARQ models are adopted, including different realized measures and different

components of RV, capturing different RV features, and containing almost all mainstream

extensions of the heterogeneous autoregressive RV models in the previous literature. In total,

more than 35 realized measures are calculated and used. Therefore, this paper conducts a

comprehensive study to provide a framework to accommodate as many realized measures

and HARQ models as possible.

Actually, the paper is related to the literature on the stylized features of RV and com-

bination forecasts. On the one hand, it is well documented that the stylized features of RV

are extensively studied by the heterogeneous autoregressive RV (HAR-RV) model and its

extensions since the paper by Corsi (2009); see, for example, including but not limited to

the papers by Corsi et al. (2010), Corsi and Renò (2012), Caporin et al. (2014), Patton and

Sheppard (2015), and Audrino and Knaus (2016). However, these previous studies are all
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under restrictive distributional (normal) assumptions, which loses sights of its distributional

characteristics, see Andersen et al. (2001) for details. To avoid this problem and character-

ize more features, directly modeling the conditional quantiles of RV via quantile regression

seems to be appealing. Quantile regression is more explicable and robust than mean regres-

sion when the distribution is skewed or the data contain outliers, see, Koenker and Xiao

(2002) and Yu et al. (2003). More details about its good properties and applications can be

found in the papers by, to name just a few, Engle and Manganelli (2004), Taylor (2005), and

Cai and Xu (2008).

On the other hand, it is well known in empirical applications that using forecasts from

a single model inevitably faces risks of model uncertainty so that combination forecasts can

outperform individual forecasts; see, for example, Granger and Ramanathan (1984), Hendry

and Clements (2004), Stock and Watson (2004), Aiolfi and Timmermann (2006), Liu and

Maheu (2009). In fact, Steel (2020) made a full explanation about model uncertainty and

stated that “As it is unlikely that reality (certainly in the social sciences) can be adequately

captured by any single model, it is often quite risky to rely on a single selected model for

inference, forecasts, and conclusion”, and Hsiao and Wan (2014) made a detailed description

about the reasons and advantages of combination. In fact, this is particularly true for quantile

models because a single model is more unlikely to serve all simultaneously when multiple

quantile forecasts are of interest, which, however, is put much less attention than mean

models. Granger (1989) was the first to consider linearly combining quantile estimators

by quantile regression, which was studied extensively by Taylor and Bunn (1998). Also,

Giacomini and Komunjer (2005) constructed an encompassing test for comparing conditional

quantile forecasts and used the GMMmethod to obtain the combination weights based on the

check loss function. Furthermore, they stated that the combination for value-at-risk (VaR)

is beneficial. However, these two papers were not for dynamic combinations. Recently,

Bernardi et al. (2017) proposed a dynamic combination technique for VaR predictions using

the exponential smoothing moving average process under the framework of GARCH-type

models.

To demonstrate on how to capture the above characteristics, this paper conducts com-

prehensively an empirical study, by employing the quantile dynamics of RV and proposing
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five dynamic combination strategies for quantile regressions, intraday high-frequency data

of the S&P 500 index price, eleven popular and influential HAR-RV type models, and seven

evaluation criteria. Some interesting and new insights are found and summarized as follows.

First, the forecasting performances of DQMA methods are more responsive to the chang-

ing dynamic environment and more robust than those of individual models in terms of the

risk of model uncertainty. In the empirical study, the results indicate that the performances

of DQMA methods are better than or at least equivalent to those of the best individual

models. Based on robustness checks, the performance remains almost same if the two best

individuals are discarded. Similarly, if the worst model is drooped, the performances of the

combination strategies can even be improved. Furthermore, the dynamic evolution of com-

bining weights may also provide a guide for analyzing structural changes by observing the

dramatic changes among combining weights.

Second, the stylized facts of RV are different among low-level quantiles and high-level

quantiles. For examples, the volatility persistences of high quantiles are stronger than those

of low quantiles since lags of RV have larger positive effects on higher quantiles. Similarly,

bad volatility and leverage effects are also more impact and stronger on higher conditional

quantiles. However, the effects of jumps on the future quantiles of RV are more complex and

mixed with no linear trend for different quantiles of RV, though its impacts are almost sig-

nificant on different quantiles. But the interesting thing is that bad jumps have positive and

larger impacts in forecasting high-level quantiles of RV, while good jumps do the opposite.

As results, these characteristics also directly lead to stronger predictabilities for high-level

quantiles than for low-level quantiles. Also, one can inference from these evidences that the

asymmetric effects of volatility persistence, bad volatility, bad jumps and leverage effects be-

tween high and low quantiles are powerful factors to produce asymmetric and heavier right

tails of RV.

Finally, our empirical studies conclude that quantile models perform much better in

modeling the quantile dynamics of RV than mean models such as ARFIMA and DMA-

TVP. Indeed, DMA-TVP and ARFIMA can under-forecast the low-level quantiles of RV

while over-forecast the high-level quantiles. By comparing the performance of DMA-TVP in

Wang et al. (2016), where DMA-TVP outperformed eighteen combining strategies, and the
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benchmark status of ARFIMA in modeling volatility, our methods perform very well.

The remainder of this paper is organized as follows. In Section 2, we first introduce

the framework of combination quantile regression and then propose our dynamic combina-

tion methods designed for quantile functions. Section 3 presents an empirical analysis in

detail. In this section, we briefly introduce realized measures and our eleven individual em-

pirical models. Then, seven evaluation criteria are considered. This section also reports the

main empirical findings. Robustness checks are performed in Section 4. Finally, Section 5

concludes the paper.

2 Econometric Methodologies

In this section, our dynamic combining approaches are proposed for quantile forecasting

models. First, conditional quantile models are briefly introduced together with their linear

combinations. Then, the combining strategies of DMA are laid out along with information-

theoretic averaging. Finally, our dynamic combining strategies are proposed for quantile

forecasting models.

2.1 Conditional Quantile Models and Their Combinations

Let Xt be a vector of predictors and Yt+1 be the variable of our interest. Here, Xt may

contain some lags of Yt+1. Again, let F (Yt+1|Xt) denote the conditional distribution of Yt+1

given Xt. Then, for 0 < τ < 1, the τ -th conditional quantile of Yt+1 is defined as:

qτ (Xt) = inf{yt+1 ∈ ℜ : F (yt+1|Xt) > τ} = F−1(τ |Xt),

which may be assumed to have a parametric form as a linear quantile regression qτ (Xt) =

β⊤
τ Xt as in Koenker and Bassett (1978), where βτ is the model parameter vector depending

on τ . For ease of notation, in what follows, let qt+1,τ denote qτ (Xt). By assuming that

several quantile forecasting models, qt+1,τ,k for k = 1, 2, · · · , K, are available, where Xt,k is

a vector of predictive variables in the kth model at time t, a linear weighted averaging of
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these individual quantile forecasts can be used as a combinational quantile forecast,

qt+1,τ =
K∑
k=1

wt+1|t,τ,k qt+1,τ,k, (2.1)

where wt+1|t,τ,k is the dynamic averaging weight given to quantile forecast qt+1,τ,k at time

t. Model (2.1) is based on the simple fact that a linear combination of quantile estimators

is still the same quantile estimator if 0 ≤ wt+1|t,τ,k ≤ 1 and
∑
k

wt+1|t,τ,k = 1. This is in

fact a monotone increasing functional transition of quantiles; see Koenker and Xiao (2006)

for details. For the detailed benefits and advantages for a combinational quantile estimator

in (2.1), the reader is referred to the related literature such as Yang (2004), Elliott and

Timmermann (2004), Hsiao and Wan (2014), and the references therein. Note that the

subscript (t+1) in wt+1|t,τ,k means that weights are given dynamically to qt+1,τ,k for combining

forecast.

Now, the question is how to choose weights in model (2.1). In fact, Granger (1989)

proposed to obtaining the combining weights by quantile regression with tick function and

constraining the weights to sum to unity, which was applied to empirical investigation by

Granger et al. (1989) and studied extensively by Taylor and Bunn (1998). Furthermore,

Giacomini and Komunjer (2005) used the GMM method to obtain the combination weights

based on the tick loss function (see (2.10) later) after constructing an encompassing test

for comparing conditional quantile forecasts. Clearly, these two methods are not dynamic

weighting. To do so, Bernardi et al. (2017) was the first to consider dynamically combining

quantile models, by proposing a dynamic combination technique for value-at-risk (VaR)

predictions using the exponential smoothing moving average process under the framework of

GARCH-type models. In the next subsection, dynamic quantile model averaging approaches

are considered by following the dynamic moving average strategy in Raftery et al. (2010) and

information-theoretic averaging strategies in Burnham and Anderson (2002) and Burnham

and Anderson (2004), described next.
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2.2 Dynamic Quantile Model Averaging Strategies

The goal of the linear dynamic combination is to find a dynamic weight vector wt+1|t to

form a combined forecast yct+1 = w⊤
t+1|ty

f
t+1 at time t, where yf

t+1 = {yft+1,1, y
f
t+1,2, · · · , y

f
t+1,K},

denoting K individual forecasts with predictors Xt,k. For this purpose, DMA, introduced by

Raftery et al. (2010), can be used, defined as follows:

yDMA
t+1 =

K∑
k=1

wt+1|t,k y
f
t+1,k, (2.2)

where yft+1,k is the forecast of the k-th individual model with predictors Xt,k at time t based

on a random coefficient linear regression model; see Raftery et al. (2010) for details. Clearly,

the choice of wt+1|t,k in (2.2) is the key to the DMA approach.

To obtain the dynamic weight wt+1|t,k in DMA, one needs commonly two components in

an updating scheme: wt+1|t,k and wt+1|t+1,k. The recursive relationship between wt+1|t,k and

wt+1|t+1,k is as follows:

wt+1|t,k =
wα0

t|t,k∑K
l=1w

α0

t|t,l

, (2.3)

where 0 < α0 ≤ 1 is a forgetting factor that is a fixed value and slightly less than one; see

Section 3.4.2 on how to choose α0 in our empirical application. The updating equation is:

wt+1|t+1,k =
wt+1|t,kfk(Yt+1|Xt,k)∑K
l=1wt+1|t,lfl(Yt+1|Xt,l)

, (2.4)

where fk(Yt+1|Xt,k) is the predictive density of the kth model evaluated at Yt+1. Now, the

question turns to a challenging issue on how to estimate fk(Yt+1|Xt,k) in (2.4), which relies

commonly on the assumptions of individual (normal) densities. Usually, this assumption is

excessively restrictive and unrealized in practice. Actually, it is difficult to find an appro-

priate distribution for financial series. However, fk(Yt+1|Xt,k) can easily be estimated from

a sequence of quantile estimators of τ ’s without any distributional assumptions under the

framework of quantile regression models; see Koenker and Xiao (2004). Once fk(Yt+1|Xt,k)

is estimated via the conditional quantiles models, it is easy to follow the procedure of DMA.

According to Koenker and Xiao (2004), one can obtain the conditional density of Yt+1

given Xt for some appropriately chosen sequence of τ ’s. Specifically, with 0 < τ1 < · · · <

7



τn0+1 < 1 for some large n0, one can estimate a sequence of n0 + 1 quantile points q̂t+1,τi,k at

grid point τi from the k-th quantile model . Suppose the probability at each quantile interval[
q̂t+1,τi+1,k, q̂t+1,τi,k

]
is τi+1−τi, then, the predictive density from the k-th conditional quantile

model can be estimated by

f̂k(Yt+1|Xt,k) =

{
τi+1−τi

q̂t+1,τi+1,k,
−q̂t+1,τi,k

,
if Yt+1 ⊆

(
q̂t+1,τi+1,k, q̂t+1,τi,k

)
for 1 ≤ i ≤ n0,

0, others.
(2.5)

Therefore, we can directly get the weights of model (2.1) under the procedure of DMA by

replacing the predictive density fk(Yt+1|Xt,k) in (2.4) with (2.5). For the initial weights

w0|0,k, if there is no information prior, equal weights w0|0,k = 1/K should be used. This type

of dynamic quantile model averaging strategy is denoted as DQMA-I.

However, the weights in DQMA-I do not depend on τ . To choose the weights depending

on τ , one can assign weights subjecting to each conditional quantile via Laplace density. Yu

and Moyeed (2001) demonstrated that the minimization of the tick loss function ( see (2.10)

later) of quantile regression is exactly equivalent to the maximization of a likelihood function

formed by combining independently distributed asymmetric Laplace densities defined as

follows

fτ,k(ut+1,k) = τ(1− τ) exp{−ρτ (ut+1,k)}, (2.6)

where ut+1,k = Yt+1 − qt+1,τ,k is the predictive error and ρτ (u) = u(τ − I(u < 0)) is the

so-called tick loss or check function. Therefore, by replacing the predictive density in (2.4)

with this Laplace density (2.6), it is easy to obtain the second-step weights (the weights in

(2.4)) for each quantile forecast of the individual models as follows

wt+1|t+1,τ,k =
wt+1|t,kfτ,k(ut+1,k)∑K
l=1wt+1|t,lfτ,l(ut+1,l)

, (2.7)

which is abbreviated as DQMA-II.

Information-theoretic averaging, which assigns weights based on information, such as the

Akaike information criterion (AIC), Akaike information criterion with a correction (AICc)

and Bayesian information criterion (BIC), is a popular choice; see Burnham and Ander-

son (2002) and Burnham and Anderson (2004). The weight for the k-th model based on
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information-theoretic averaging is given as follows:

wInfo
k =

exp
(
−0.5ΨInfo

k

)
K∑
i=1

exp
(
−0.5ΨInfo

i

) , (2.8)

where ΨInfo
k = ∆k −mini=1,··· ,K {∆i} and ∆k is some model fitting information such as AIC,

AICc or BIC. Another information-theoretic averaging methods is the inverse of the mean

squared error as in Timmermann (2006), where the weights are given by:

wMSE
k =

(MSEk)
−1

K∑
i=1

(MSEi)
−1

, (2.9)

where MSEk is the mean squared error for the kth model.

To obtain the weights wt|t,τ,k for quantile regressions, following the ideas of information-

theoretic averaging methods, two approaches are considered. The first is based on the

goodness of fit of quantile models. The other is analogous to the MSE method of forecasting

the mean of Yt+1 based on the predicted density in (2.5). To quantitatively evaluate the

forecasting accuracy and obtain the goodness of fit for the quantile models, following the

idea from Koenker and Machado (1999), the following check loss function is employed

L̂τ = −
T∑

t:yt+1<qt+1,τ

(1− τ)(Yt+1 − qt+1,τ ) +
T∑

t:Yt+1≥qt+1,τ

τ(Yt+1 − qt+1,τ ) (2.10)

and L̂0,τ denotes the check loss function for the case that there is no predictor at all in the

model. Then, the quantile goodness of fit is defined as follows

Goodnessτ = 1− L̂τ/L̂0,τ . (2.11)

Hence, one can obtain the weights for the conditional quantile models as:

wGoodness
t|t,τ,k =

Goodnesst,τ,k
K∑
i=1

Goodnesst,τ,i

. (2.12)

This method is termed as DQMA-Gods.

For the other information-theoretic averaging method related to the MSE information,

9



two sub-steps are used. First, the fitted mean forecasts of Yt+1 are obtained from individual

quantile models by

Y
q

t+1,k =

n0∑
i=1

[
(τi+1 − τi)

q̂t+1,τi+1,k + q̂t+1,τi,k

2

]
, (2.13)

where Y
q

t+1,k denotes the mean forecast from the k-th conditional quantile model. Then, us-

ing these mean forecasts, one can obtain the in-sample MSE loss, MSEq
k =

1
T0

T0∑
t=1

(
Yt − Y

q

t,k

)2
.

Inserting MSEq
k into (2.9), another combining method for quantile regression is obtained,

which is abbreviated as DQMA-MSE.

However, an often quoted folk theorem in the forecast combination literature is that using

equal average as opposed to optimal weights often works better in practice, which is also the

well-known phenomenon called the forecast combination puzzle. The reason is that it can

be difficult to precisely estimate the optimal forecast combination weights. Equal-weighted

forecast combinations may be biased but they also reduce the forecast error variance by

not relying on estimated combination weights that depend on some statistics of forecast

errors. Therefore, equal weights wEq
k = 1/K should be considered as an alternative, denoted

by DQMA-Eq. In a sum, together with the equal weighting strategy, five combination

strategies are proposed for conditional quantile models based on the ideas of DMA and

information-theoretic averaging strategies.

Finally, it should mention the related method recently proposed by Bernardi et al. (2017)

for a dynamic combining scheme for VaR under the GARCH-type framework using exponen-

tial smoothing moving average process. That is, wt+1,j = kjwt,j+(1−kj)π
(
rt,VaR

τ
t|t−1,j, σ̂t,j

)
,

where π
(
rt,VaR

τ
t|t−1,j, σ̂t,j

)
is the normalized exponential of the τ−quantile loss kernel, rt

is the return, σ̂t,j is the predicted conditional variance at time t of model j, and kj is the

autoregressive parameter estimated by minimizing the average VaR loss function over the

forecast horizon. However, by a comparison, the method in Bernardi et al. (2017) is differ-

ent from our proposed schemes from the following aspects. First, their method is a form

of addition that updates weights via exponential smoothing. By contrast, our method is

a form of multiplication; that is, being analogue to the posterior probability for the j-th

individual model. Second, they have to estimate kj under in-sample conditions, which may
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induce in-sample over-fitting and leads to a poor forecasting performance.

3 Empirical Analysis

In this section, we investigate RV forecasting based on quantile models and DQMA.

First, RV measurement is briefly described and then, our selected eleven HARQ models are

introduced. Also, the in-full-sample estimation results of these eleven quantile models are

empirically analyzed. Furthermore, the out-of-sample forecasting performances of individual

models, DQMA, and two other popular competing models (DMA-TVP and ARFIMA) are

evaluated and compared.

3.1 Realized Volatility Measurement

In this subsection, a basic definition of RV and its theory are provided. In fact, a total

of 35 realized measures are used in our empirical study. However, to save spaces, the related

definitions of other realized measures are skipped. The reader is referred to the related

references cited in Subsection 3.3.1 later. Now, consider a continuous-time stochastic process

for log-price, pt, which consists of a continuous component and a jump component,

pt =

t∫
0

µsds +

t∫
0

σsdws + Jt, (3.1)

where µt is a locally bounded predictable drift process, σt is a strictly positive cadlag process,

and Jt is a pure jump process. Then, the RV on day t is defined by

RVt =
M∑
j=1

r2t,j, 1 ≤ t ≤ T, (3.2)

proposed by Andersen and Bollerslev (1998) as a measure of integrated variance, where rt,j

denotes the j-th intraday return as the difference of logarithm price pt,j on day t and M is

the number of returns of each day. Indeed, Andersen et al. (2003) showed that RVt defined

in (3.2) converges in probability to the quadratic variation as the time intervals between
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observations become infinitely small

RVt →
t∫

0

σ2
sds+

∑
0<s≤t

(∆ps)
2 (3.3)

as M → ∞, where ∆p = ps − ps− captures a jump if present. To get ride of the jump part

in (3.2), the bi-power variation, introduced by Barndorff-Nielsen and Shephard (2004), can

be used

BVt =
π

2

M∑
i=2

|rt,i||rt,i−1| →
t∫

0

σ2
sds (3.4)

as M → ∞, and it was showed by Barndorff-Nielsen and Shephard (2004) that it is a

consistent estimator for the continuous component as in (3.3). Clearly, it follows from (3.3)

and (3.4) that

RVt −BVt →
∑
0<s≤t

(∆ps)
2,

which can be used to capture the jump if present.

3.2 Data and Preliminary Analysis

Following Liu et al. (2015), our focus is on modeling and forecasting RV using 5-minute

data. In this study, 10-years price data of the S&P 500 index from October 1, 2008 to

September 27, 2018 are adopted. All data come from the trading time of each business day

between 9:30:00 and 16:00:00. After some cleaning procedures, we obtain the high-frequency

data for 2473 trading days. All the data are taken from the Datastream and Thomson

Reuters Database.

First, some preliminary analyses to the data are conducted and Table 1 presents descrip-

tive statistics of all the daily realized measures. The mean of RV is greater than all other

continuous component measures (BV, CSP, TC). Moreover, the means of RS+ and RS− are

greater than CSV+ and CSV−, respectively. Note that CSP, TC, RS+, RS−, CSV+, CSV−

and other notations in Table 1 are defined later. This is consistent with our purpose, as the

latter measures do not contain any jump components. Additionally, all these measures are

right skewed except for negative measures and jumps because they are truncated at zero.

All measures have kurtosis greater than three, suggesting that they follow non-Gaussian dis-
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tributions. Also, the Jarque-Bera tests are conducted with their statistics not presented in

the table, to save spaces. But, they are all large enough to indicate that the null assumption

of a normal distribution should be rejected.

Figure 1 shows the evolutions of daily RVt and other realized measures. Although there

are some differences among the realized measurements for the same component, they all have

similar behavior, further confirming that the measurements are consistent. The figure also

shows that periods of large volatilities are associated with large jumps.

Table 1: Descriptive statistics of all realized measures

mean median min max skew kurtosis sd variance

RV 0.6990 0.2757 0.0170 28.5341 8.3515 101.9940 1.5837 2.5081
BV 0.6599 0.2535 0.0174 31.7643 9.2664 126.5340 1.5887 2.5241
CSP 0.6957 0.2739 0.0169 28.5341 8.3074 100.7460 1.5897 2.5271
J 0.0564 0.0165 0.0000 3.5022 9.8754 152.5670 0.1554 0.0242
CJ 0.0068 0.0000 0.0000 1.6186 17.6369 365.3550 0.0633 0.0040
TC 0.6792 0.2661 0.0145 28.5341 8.4259 105.5340 1.5559 2.4209
TJ 0.0234 0.0000 0.0000 12.2217 36.8504 1592.5320 0.2742 0.0752
RS+ 0.3503 0.1374 0.0088 18.0704 9.6267 141.6070 0.8554 0.7316
RS− 0.3523 0.1348 0.0069 14.9944 7.8997 94.1160 0.7874 0.6199
SJ -0.0021 -0.0013 -5.2198 7.6067 3.4870 110.2760 0.4088 0.1671
SJ+ 0.0709 0.0000 0.0000 7.6067 13.9906 282.3990 0.3037 0.0922
SJ− -0.0730 -0.0013 -5.2198 0.0000 -9.7748 134.1240 0.2540 0.0645
r− -0.2716 0.0000 -6.1033 0.0000 -3.9588 23.4650 0.5642 0.3183
V olJ 0.0140 0.0000 0.0000 15.1621 40.8980 1847.1890 0.3279 0.1075
CSV + 0.3257 0.1301 0.0088 15.7947 9.6222 140.4240 0.7894 0.6232
CSV − 0.3208 0.1225 0.0069 14.9944 8.2052 108.7760 0.7179 0.5154
JSV + 0.0246 0.0000 0.0000 6.4559 21.2682 578.4560 0.1966 0.0386
JSV − 0.0316 0.0000 0.0000 8.1230 23.7276 740.6680 0.2253 0.0507
cRet− -0.2484 0.0000 -6.1033 0.0000 -4.2491 27.5310 0.5370 0.2883
jRet -0.0228 0.0000 -2.8758 3.1528 -0.3618 36.8470 0.2399 0.0576
jRet− -0.0559 0.0000 -2.8758 0.0000 -5.9035 54.3320 0.1791 0.0321
cRet 0.0458 0.0741 -6.1033 6.3238 -0.2073 9.8870 0.8407 0.7067

Note: The return takes the percentage form.

3.3 RV Quantile Forecasting Models

3.3.1 Quantile Models

In this section, eleven HARQ type models are considered by following the framework

of Žikeš and Baruńık (2016). The general form of HARQ for the conditional τ -quantile of

RVt+1 given Ωt is defined as a linear quantile regression model as in Koenker and Bassett

(1978), as follows:

qτ (RVt+1|Ωt) = β0(τ) + βd(τ)RVt + βw(τ)RVt−5,t + βm(τ)RVt−22,t + β⊤
z (τ)zt, (3.5)
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Figure 1: Evolutions of realized measures. The starting date is October 31, 2008, due to the lags of RV for
calculating the monthly measure RVm,t.

where Ωt denotes the information set, which may contain different variables in what it follows;

see Models 1 – 11 below, defined in (3.6) – (3.16), RVt−k,t =
k−1∑
j=0

RVt−j/k for k = 5 or 22,

zt is a vector of (weakly) exogenous variables, and β0(τ), βd(τ), βw(τ), βm(τ) and βz(τ)

are coefficients (vectors) to be estimated. For simplicity, Ωt is dropped from qτ (RVt+1|Ωt)

and abbreviate RVt−5,t and RVt−22,t as RVw,t and RVm,t, respectively, which correspond to
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working days of a week and a month. Note, all of the realized measurements below with

subscripts w and m are defined same with RVw,t and RVm,t.

Actually, Žikeš and Baruńık (2016) demonstrated the relationship between HARQ and

(3.1) in theory and found evidences that the conditional quantile of RVt+1 can be approx-

imated by (3.5). As a result, the conditional quantiles of RVt can be modeled by HARQ

without making any distributional assumptions. Also, Žikeš and Baruńık (2016) documented

that HARQ for RV performs well in capturing the dynamics of the respective conditional

distributions. Since Corsi (2009) provided the simple form of HAR-RV model, many exten-

sions have been developed, including but not limited to the papers by Corsi et al. (2010),

Corsi and Renò (2012), Caporin et al. (2014), Patton and Sheppard (2015), and Audrino

and Knaus (2016).

Model 1: Without zt in (3.5), our HARQ-RV models is defined as:

qτ (RVt+1) = β0(τ) + βd(τ)RVt + βw(τ)RVw,t + βm(τ)RVm,t, (3.6)

which is similar to the model HAR-RV in Corsi (2009).

Model 2: Similar to Andersen et al. (2007), HARQ-RV is extended by adding a jump

component to obtain the HARQ-RV-J model, given by

qτ (RVt+1) = β0(τ) + βd(τ)RVt + βw(τ)RVw,t + βm(τ)RVm,t + βj,d(τ)Jt, (3.7)

where Jt = max[RVt −BVt, 0] measures the jump.

Model 3: Considering finite sample performances and the empirical phenomenon, the jumps

measured in (3.7) exhibit an unreasonably large number of nonzero small positive values, and

it is desirable to treat these small jumps as measurement errors. Thus, similar to Andersen

et al. (2007), a truncation technique is employed and HARQ-RV-CJ model is given by

qτ (RVt+1) =β0(τ) + βc,d(τ)CSPt + βc,w(τ)CSPw,t + βc,m(τ)CSPm,t

+ βj,d(τ)CJt + βj,w(τ)CJw,t + βj,m(τ)CJm,t,
(3.8)
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where CSPt and CJt are the shrinkage estimation of continuous sample path component

variation and significant jumps, respectively; see Andersen et al. (2007) for the detailed def-

initions.

Model 4: To eliminate the small sample bias of RVt and BVt, Corsi et al. (2010) proposed

an alternative estimator of integrated powers of volatility in the presence of jumps, the

threshold bi-power variation, and a test for jump detection in time series. As a result, the

HARQ-RV-TCJ model to forecast volatility is given below

qτ (RVt+1) = β0(τ) + βc,d(τ)TCt + βc,w(τ)TCw,t + βc,m(τ)TCm,t + βj,d(τ)TJt, (3.9)

where TCt and TJt are the corresponding continuous part and jump parts estimated from

the threshold bi-power variation, respectively; see Corsi et al. (2010) for details.

Model 5: In empirical applications, the leverage effect is a well-known phenomenon, i.e.,

that negative returns lead to higher future volatility than positive returns. After studying

the impact of signed returns on future volatility for mean regression models, Patton and

Sheppard (2015) introduced several forecasting models by using semi-variance estimators

introduced by Bollerslev et al. (2010). Here, their four main models are used for our quantile

setting and they are described in Models 5 – 8 defined in (3.10) – (3.13), respectively. The first

model, denoted as HARQ-RV-RS-I, is obtained by decomposing RV into two semi-variances,

defined as follows:

qτ (RVt+1)=β0(τ) + β+
d (τ)RS

+
t + β−

d (τ)RS
−
t + βw(τ)RVw,t + βm(τ)RVm,t, (3.10)

where RS+
t =

M∑
i=1

r2i,tI(ri,t > 0) and RS−
t =

M∑
i=1

r2i,tI(ri,t < 0) are the realized semi-variance

estimator, also called good volatility and bad volatility.

Model 6: The second model, termed as HARQ-RV-RS-II, is obtained by adding a term

that interacts with the lagged realized variance with an indicator for negative lagged daily
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returns, RVtI(rt < 0), so that it is defined as

qτ (RVt+1) = β0(τ)+β
+
d (τ)RS

+
t +β−

d (τ)RS
−
t +γ(τ)RVtI(rt < 0)+βw(τ)RVw,t+βm(τ)RVm,t.

(3.11)

Model 7: The third model, presented by HARQ-RV-SJ-I, contains a signed jump variance

and BVt as follows:

qτ (RVt+1) = β0(τ) + βj,d(τ)SJt + βbv,d(τ)BVt + βw(τ)RVw,t + βm(τ)RVm,t, (3.12)

where SJt = RS+
t −RS−

t is the signed jump variation.

Model 8:. The fourth model, to assess the different impacts between positive jump variation

and negative jump variation, named by HARQ-RV-SJ-II, is designed by

qτ (RVt) = β0(τ)+β
+
j,d(τ)SJ

+
t +β−

j,d(τ)SJ
−
t +βbv,d(τ)BVt+βw(τ)RVw,t+βm(τ)RVm,t, (3.13)

where SJ+
t = SJtI(SJt > 0) and SJ−

t = SJtI(SJt < 0).

Model 9: By following the idea in Corsi and Renò (2012) for the volatility forecasting, the

heterogeneous structure to the standard leverage effect is extended by including lagged neg-

ative returns at different frequencies as explanatory variables to forecast volatility under the

quantile setting, which is called the leverage heterogeneous autoregressive with continuous

volatility and jumps quantile model (LHARQ-CJ), given by

qτ (RVt+1) =β0(τ) + βc,d(τ)TCt + βc,w(τ)TCw,t + βc,m(τ)TCm,t + βj,d(τ)TJt + βj,w(τ)TJw,t

+ βj,m(τ)TJm,t + γd(τ)rtI(rt < 0) + γw(τ)rw,tI(rw,t < 0) + γm(τ)rm,tI(rm,t < 0),
(3.14)

where TCt and TCt is defined in (3.9), and rw,t is defined in the same fashion as RVw,t and

similar to rm,t.

Model 10: Motivated by the approaches in Audrino and Hu (2016) for the volatility fore-

casting, to disentangle continuous variation and jump variation via complete decomposition
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of signed continuous and jump variation, we consider the first model, denoted by LHARQ-

JSV-I,

qτ (RVt+1) =β0(τ) + β+
d (τ)CSV

+
t + β−

d (τ)CSV
−
t + β+

j,d(τ)JSV
+

+ β−
j,d(τ)JSV

−
t + θ(τ)V olJt + δ(τ)cRet−t + δw(τ)cRet

−
w,t

+ βw(τ)RVw,t + βm(τ)RVm,t,

(3.15)

where JSV +
t and JSV −

t are the jump semi-variances, CSV +
t = RS+

t − JSV +
t and CSV −

t =

RS−
t − JSV −

t are the continuous semi-variances (good and bad volatilities), V olJt is the

jump in volatility, and cRet−t is the jump-adjusted return.

Model 11: To simplify the above model and improve the out-of-sample results, by following

Audrino and Hu (2016) with focus on the most relevant effects for volatility forecasting:

downside risk, leverage effect and the HAR structure capturing long memory, we consider

the following model, denoted as LHARQ-JSV-II

qτ (RVt+1) =β0(τ) + β+
d (τ)CSV

+
t + β−

d (τ)CSV
−
t + δ(τ)cRet−t

+ φ(τ)jRett + βw(τ)RVw,t + βm(τ)RVm,t

(3.16)

where jRett is the jump size.

Finally, note that for the detail definitions and calculations of variables in Models 1 – 11

defined in (3.6) – (3.16), the reader is referred to the corresponding references as mentioned

above. For simplicity, these eleven models are denoted as HARQi, where i (1 ≤ i ≤ 11) is the

corresponding number of each model. Besides, for brevity, it is called the realized measures

with subscript t,w and m as daily, weekly and monthly realized measures, e.g., RVt is called

daily RV .

3.3.2 Results from Quantile Models

Tables 2 and 3 show the results of the eleven HARQ models over the whole sample period

along with p-values of the t-statistics in brackets. For illustration and brevity, this paper

presents only the results for five quantiles (namely, τ = 0.1, 0.25, 0.5, 0.75, and 0.9). From

these two tables, one can observe the following results.

First, all estimators of the parameters of RVt, RVw,t and RVm,t (namely βd, βw and βm)
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are significantly positive at the 1% significance level in all models at each quantile, except

three estimators at quantile 0.9, which provides a strong evidence to support properties of

the strong persistence and long memory in quantiles of RV. Here, two observations can be

made. On the one hand, there is a clear increasing trend: the daily, weekly and monthly RV

have larger impacts on higher quantiles of future volatility. This result not only is consistent

with common sense that volatility is clustered and has long memory but also indicates that

higher RV could induce a fatter right tail in the future with stronger persistence in high-level

quantiles, namely, increase the probability of producing a much larger value. This result is

also consistent with the findings of volatility-of-volatility effects in Corsi et al. (2008) and

Bollerslev et al. (2009). On the other hand, the daily RV has larger coefficient than the weekly

and the monthly RV. However, this is not true for weekly RV and monthly RV. Although

the weekly RV has larger impact than monthly RV at higher quantiles, the impacts at lower

quantiles are just opposite. Therefore, one can conclude that the long memory in high-level

quantiles declines faster than that in low-level quantiles.

Second, the coefficients of the continuous component (see βc,d, βc,w, βc,m) have similar

changing patterns with lags of RV for different quantiles. While, the impacts of the jumps

are more complicated and mixed with no fixed impact patterns on different quantiles for

different measures of the jumps. They can even be negative, which increases the difficulty

of volatility forecasting. However, from HARQ10, one can see that bad jumps have positive

effects (β−
j,d) on future quantiles of RV while good jumps are opposite. Both components of

jumps have larger absolute effects on higher-level quantiles. This means that bad jumps can

amplify the future outcomes and right tails of RV while good jumps downsize and stable the

outcomes of RV.

Third, we find strong support that bad volatility (β−
d ) has larger effect than good volatility

(β+
d ) with much larger coefficient. Similarly, bad volatility has an increasing effect as the

quantiles increase. However, good volatility has much weaker smooth flat effects on different

quantiles and can even have a negative effect at the high quantile of τ = 0.9. Thus, bad

volatility leads to higher volatility and fatter tails.

Last, the leverage effects of returns (γ) are significant at all horizons for different quan-

tiles. Notably, jump-adjusted daily returns have less impacts than total returns on volatility.
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Furthermore, the leverage effect is also much larger at higher quantile.

In summary, the stylized features of RV are stronger at high-level quantiles, indicating

stronger predictive powers for high-level RV quantiles.
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Table 3: Estimations of realized volatility quantile models for the whole sample
HARQ6 HARQ7 HARQ8

0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

β0
-0.006 -0.001 0.010 0.070 0.130 -0.003 0.002 0.015 0.068 0.136 -0.002 -0.001 0.012 0.071 0.121
(0.018) (0.564) (0.001) (0.000) (0.000) (0.237) (0.427) (0.000) (0.000) (0.000) (0.492) (0.744) (0.000) (0.000) (0.000)

βd

βw
0.039 0.086 0.154 0.333 0.641 0.029 0.102 0.217 0.429 0.703 0.035 0.112 0.207 0.390 0.774
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

βm
0.143 0.151 0.162 0.122 0.064 0.158 0.165 0.169 0.118 0.013 0.146 0.172 0.173 0.126 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.288) (0.000) (0.000) (0.000) (0.000) (0.792)

βc,d

βc,w

βc,m

βj,d
-0.207 -0.212 -0.385 -0.587 -0.976
(0.000) (0.000) (0.000) (0.000) (0.000)

βj,w

βj,m

β+
d

0.065 0.069 0.052 0.120 0.198
(0.000) (0.000) (0.000) (0.000) (0.000)

β−
d

0.165 0.256 0.193 0.081 -0.198
(0.000) (0.000) (0.000) (0.000) (0.000)

γ
0.315 0.439 0.799 0.936 1.378
(0.000) (0.000) (0.000) (0.000) (0.000)

γd

γw

γm

βbv,d
0.274 0.356 0.468 0.519 0.714 0.223 0.288 0.400 0.446 0.482
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β+
j,d

0.093 -0.008 -0.092 -0.194 -0.273
(0.000) (0.516) (0.000) (0.000) (0.000)

β−
j,d

-0.448 -0.585 -0.826 -1.114 -2.104
(0.000) (0.000) (0.000) (0.000) (0.000)

HARQ9 HARQ10 HARQ11

0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

β0
0.002 0.000 0.001 0.009 0.050 -0.010 0.001 0.004 0.050 0.110 -0.009 0.004 0.011 0.065 0.131
(0.682) (0.946) (0.841) (0.295) (0.010) (0.002) (0.826) (0.325) (0.000) (0.000) (0.001) (0.121) (0.002) (0.000) (0.000)

βd

βw
-0.011 0.030 0.137 0.171 0.347 -0.016 0.034 0.124 0.210 0.537
(0.026) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

βm
0.144 0.148 0.144 0.130 0.063 0.143 0.140 0.144 0.090 -0.006
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.668)

βc,d
0.247 0.310 0.441 0.547 0.621
(0.000) (0.000) (0.000) (0.000) (0.000)

βc,w
0.030 0.120 0.164 0.267 0.481
(0.000) (0.000) (0.000) (0.000) (0.000)

βc,m
0.205 0.167 0.160 0.110 0.007
(0.000) (0.000) (0.000) (0.000) (0.682)

βj,d
0.159 0.328 0.455 0.280 0.136
(0.000) (0.000) (0.000) (0.000) (0.002)

βj,w
-0.035 -0.246 -0.358 0.081 0.431
(0.193) (0.000) (0.000) (0.074) (0.000)

βj,m
0.214 0.850 1.176 1.030 0.086
(0.000) (0.000) (0.000) (0.000) (0.694)

β+
d

0.171 0.154 0.167 0.183 -0.191 0.187 0.131 0.244 0.381 -0.171
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β−
d

0.572 0.727 0.934 1.162 1.979 0.573 0.782 0.940 1.161 1.922
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ

γd
-0.070 -0.100 -0.134 -0.220 -0.406
(0.000) (0.000) (0.000) (0.000) (0.000)

γw
-0.058 -0.025 -0.119 -0.285 -0.362
(0.000) (0.042) (0.000) (0.000) (0.000)

γm
0.199 0.122 0.084 -0.038 -0.273
(0.000) (0.000) (0.001) (0.381) (0.009)

βbv,d

β+
j,d

-0.033 -0.190 -0.102 -0.142 -0.077
(0.038) (0.000) (0.000) (0.000) (0.285)

β−
j,d

0.105 0.255 0.558 0.585 0.394
(0.000) (0.000) (0.000) (0.000) (0.000)

θ
0.128 0.361 0.101 -0.076 -0.236
(0.000) (0.000) (0.000) (0.001) (0.000)

δ
-0.016 -0.017 -0.044 -0.050 -0.042 -0.009 -0.018 -0.073 -0.109 -0.167
(0.042) (0.019) (0.000) (0.004) (0.229) (0.144) (0.009) (0.000) (0.000) (0.000)

δw
0.004 -0.030 -0.096 -0.292 -0.423
(0.781) (0.022) (0.000) (0.000) (0.000)

φ -0.001 -0.020 -0.063 -0.114 -0.110
(0.906) (0.046) (0.000) (0.000) (0.016)

Note: The second row is the quantile points. The values in the brackets are the p-values of the
t-statistics. The insignificant results are marked in bold.
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3.4 RV Forecasting Performance of DQMA

After the in-sample analyses, we move to evaluate the out-of-sample forecasting perfor-

mance, which might be more important for practitioners. First, the evaluation criteria are

provided for forecasting performance and then followed by some empirical results. Addi-

tionally, as argued in Wang et al. (2016), DMA-TVP model has a good performance for RV

mean prediction, which outperforms eighteen other strategies, so that DMA-TVP is selected

as a competing strategy for our DQMA models. Another popular competing model used to

capture the long-memory features of RV is the ARFIMA(p, d, q) model

ϕ(B)(1−B)d log(RVt) = ψ(B)ut,

where B denotes the lag operator, ϕ(B) is the pth order of polynomial of B, ψ(B) is the

qth order of polynomial of B, |d| < 1/2, and ut is a white noise series. This model is often

regarded by researchers as a benchmark for modeling volatility; see, for example, Andersen

et al. (2003) and Corsi (2009). Moreover, this model was also used in Žikeš and Baruńık

(2016) as a competing model with their three HARQ models.

3.4.1 Evaluation Criteria

Several evaluation methods exist for quantile (or VaR) forecast; see, for examples, Kupiec

(1995), Christoffersen (1998), Engle and Manganelli (2004), McAleer and Da Veiga (2008)

and the references therein. In particular, Berkowitz et al. (2011) provided an integrated and

unifying framework for assessing the accuracy for VaR forecasts. The accuracy of a set of

quantile forecasts can be assessed by viewing them as one-sided interval forecasts. A hit

variable is usually defined as follows:

Hitt+1 = I(RVt+1 ≤ qt+1,τ ),

which is a binary variable, equal to one if the conditional quantile is violated and zero

otherwise. For the assessment of symmetric interval forecasting (two-sided), another hit

variable, according to Christoffersen (1998), is defined by

Hittst+1 = I(qt+1,τ ≤ RVt+1 ≤ qt+1,1−τ ).
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If the conditional quantiles are correctly forecasted, hits are sequenced independently

with expected probability of τ (or 1− 2τ in interval forecasting). However, for asymmetric

interval forecasting, a three-state Markov transition matrix is needed; see Christoffersen

(1998) for details. This hit variable can then be used to construct tests or evaluations for

quantile forecasting. In this paper, five evaluation methods are used. The first is the UC

test of Kupiec (1995), the second is the CC test of Christoffersen (1998), the third is the DQ

test of Engle and Manganelli (2004), for which 4 lags are chosen as suggested, the fourth is

AE, the actual-over-expected ratio, and the last is the coverage rate of interval forecasting.

Furthermore, to evaluate the quantile forecasting accuracy, following Koenker and Machado

(1999), we suggest using the check loss functions and the goodness of fit of the quantiles,

defined in (2.11).

3.4.2 Results

Clearly, the in-sample predictive relationships are not constant but time-varying, which

can be demonstrated if samples are separated into different intervals and then estimate

models in these intervals. By doing so, one can obtain different estimators for the same model

in different sample periods. In fact, Wang et al. (2016) showed that models with time-varying

coefficients are superior to those with constant coefficients. To investigate the out-of-sample

predictability and mitigate the effects of time-variation, rolling windows are used to estimate

models and realized volatilities are recursively predicted, thereby producing a sequence of

pseudo predictors. While the rolling estimator may appear similar to a parametric estimator,

it is a local constant estimator and, thus, a nonparametric time-varying parameter βt,τ ,

where the estimation window size plays the role of the bandwidth; see Inoue et al. (2017) for

details. Hence, the coefficients of all models are in fact time-varying parameters βt,τ,k in this

section. In terms of how to choose the rolling window size, it is a challenging issue in quantile

regression setting but it is still open. Therefore, after conducting many trials, 500 samples are

chosen as the rolling window size, which is the same number used in Žikeš and Baruńık (2016).

For the prior parameters of DMA, the forgetting factor α0 in (2.3) is set to be 0.99 according

to the suggestions of Raftery et al. (2010) and Koop and Korobilis (2012). In estimating

the recursive moment estimator in DMA, we follow the same procedures as in Koop and
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Korobilis (2012), by using the exponentially weighted moving average (EWMA) and the

same values for the related parameters for daily data. All the initial variances are equal

to 10, a value that is commonly used in volatility modeling in DMA. For ARFIMA model,

ARFIMA(1, d, 0) is used as suggested in Žikeš and Baruńık (2016). As for the sequence

quantile points τ ’s selection in estimating (2.5), we choose the range from 0.05 to 0.95 in

intervals of 0.05 and add two points (0.01 and 0.99) at either end. Clearly, other sequences

can be chosen if desired. In fact, the same experiment is repeated with the range from 0.1

to 0.9 in intervals of 0.1 and similar empirical results can be obtained.

Table 4: Goodness of fit R1
τ , where the rolling window size is 500

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HARQ1 0.1922 0.2401 0.2766 0.3175 0.3539 0.3865 0.4315 0.4826 0.5511
HARQ2 0.1918 0.2300 0.2720 0.3145 0.3548 0.3850 0.4328 0.4770 0.5531
HARQ3 0.1764 0.2251 0.2706 0.3142 0.3490 0.3835 0.4286 0.4827 0.5450
HARQ4 0.1815 0.2297 0.2722 0.3134 0.3509 0.3840 0.4332 0.4803 0.5567
HARQ5 0.1882 0.2418 0.2868 0.3270 0.3632 0.4077 0.4443 0.5002 0.5543
HARQ6 0.1866 0.2449 0.2911 0.3282 0.3644 0.4047 0.4502 0.5002 0.5565
HARQ7 0.1869 0.2391 0.2855 0.3220 0.3623 0.3991 0.4416 0.4957 0.5586
HARQ8 0.1917 0.2388 0.2947 0.3322 0.3683 0.4075 0.4475 0.5008 0.5537
HARQ9 0.1787 0.2414 0.2922 0.3218 0.3568 0.3981 0.4360 0.4702 0.5476
HARQ10 0.1488 0.2234 0.2794 0.3262 0.3703 0.3355 0.4074 0.4679 0.5368
HARQ11 0.2003 0.2531 0.2980 0.3390 0.3746 0.4158 0.4593 0.5086 0.5738
DQMA-I 0.1943 0.2482 0.2959 0.3374 0.3692 0.3890 0.4351 0.4793 0.5464
DQMA-II 0.2014 0.2494 0.2948 0.3357 0.3733 0.4049 0.4513 0.5002 0.5633
DQMA-Eq 0.2009 0.2494 0.2942 0.3335 0.3719 0.4041 0.4495 0.4993 0.5621
DQMA-Gods 0.2008 0.2493 0.2941 0.3334 0.3717 0.4044 0.4499 0.4997 0.5625
DQMA-MSE 0.2019 0.2487 0.2943 0.3341 0.3726 0.4007 0.4477 0.4983 0.5610

Note: The first row is the quantile sequence points. We present only nine points for illustration.
The number in bold is the largest in the specific quantile. Similarly, the number in red is the
smallest.

First, we consider the goodness of fit of individual HARQ and DQMA models in quantile

forecasting, as shown in Table 4. Obviously, the DQMA models never have the smallest

goodness of fit at each quantile. In fact, the values of DQMA models are always being or close

to the best one in different quantiles. Furthermore, the goodness of fit for the DQMA models

is more stable than individual HARQ. This provides a strong evidence to conclude that the

combination method is a good choice to address the risk of model uncertainty. In fact, if one

chooses a worse variable or artificially contaminate one variable in an individual model such

that the intervened model induces a worse forecasting performance, one can obtain much

more significant and clear superiority of out-of-sample performance of the DQMA methods
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(we do not present this manually interfering experiment in this paper). HARQ11 appears to

be the best individual model in terms of fit because it performs the best in eight scenarios

of quantiles. Similarly, HARQ3 and HARQ10 perform worse. Table 4 also indicates that

the goodness of fit is better at high quantiles than low quantiles. This means that quantile

regression is more powerful and suitable for forecasting rare extremely large realizations of

volatility. This ability is very important for investors exposing to risks. In an economic sense,

forecasting extreme increasing RV events is much more important for risk measurement.

Table 5 reports the AE ratio for all models from quantiles 0.1 to 0.9. The numbers in red,

which indicate values far from one, all come from ARFIMA and DMA, as expected. Again,

although the DQMA models do not always perform the best, they are never the worst. Table

5 provides evidences that DMA and ARFIMA tend to underestimate the low-level quantiles

and overestimate high-level quantiles, resulting in low AE ratios for low quantiles and high

AE ratios for high quantiles, as well as large negative deviations for upper interval forecasting

(see Table 7 for details).

Table 5: AE quantile exceedance in out-of-sample

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ARFIMA 0.0000 0.1368 0.7907 1.3191 1.4607 1.4285 1.3265 1.2082 1.0998
DMA 0.4866 0.6918 0.9427 1.1328 1.2164 1.2249 1.1875 1.1138 1.0368
HARQ1 1.1809 1.1252 1.0813 1.0403 1.0177 1.0078 0.9978 1.0016 0.9957
HARQ2 1.1556 1.1100 1.0897 1.0428 1.0208 1.0128 0.9963 1.0016 0.9979
HARQ3 1.1505 1.1353 1.0779 1.0378 1.0117 1.0052 0.9934 0.9953 0.9923
HARQ4 1.2215 1.1379 1.0982 1.0454 1.0258 1.0078 1.0007 1.0010 0.9957
HARQ5 1.1860 1.1024 1.0610 1.0251 1.0309 1.0120 1.0064 0.9997 0.9951
HARQ6 1.1809 1.0897 1.0542 1.0289 1.0238 1.0095 0.9956 1.0023 0.9945
HARQ7 1.1809 1.1024 1.0880 1.0454 1.0279 1.0069 0.9963 1.0067 0.9974
HARQ8 1.1708 1.0973 1.0846 1.0390 1.0177 1.0010 0.9956 0.9953 0.9957
HARQ9 1.2316 1.1531 1.0542 1.0061 1.0208 1.0137 0.9898 0.9807 0.9810
HARQ10 1.1404 1.1125 1.0542 1.0542 1.0319 1.0103 1.0093 1.0029 0.9957
HARQ11 1.1303 1.0897 1.0306 1.0352 1.0228 0.9909 1.0028 0.9997 0.9945
DQMA-I 1.1607 1.1353 1.0644 1.0416 1.0380 1.0272 1.0130 0.9991 0.9928
DQMA-II 1.1860 1.1201 1.0610 1.0264 1.0248 1.0188 1.0108 1.0061 1.0007
DQMA-Eq 1.1911 1.1201 1.0745 1.0327 1.0279 1.0179 1.0115 1.0105 1.0013
DQMA-Gods 1.1961 1.1201 1.0745 1.0314 1.0269 1.0188 1.0122 1.0112 1.0007
DQMA-MSE 1.1860 1.1176 1.0711 1.0289 1.0279 1.0204 1.0115 1.0105 1.0007

Note: The numbers in bold are those closest to one in each column, whereas the numbers in red are those
farthest from one.

Table 6 shows the p-values of the UC test, CC test and DQ test for the quantile fore-

casting performance. First, Table 6 suggests that for forecasting the low-level quantiles

of RV, all the models and methods are somewhat misspecified and inadequate. However,
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Table 6: p-Values of the UC test, CC test and DQ test for out-of-sample performance

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

UC test p-Value
ARFIMA 0.0000 0.0000 0.0940 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 0.0000 0.0000 0.0940 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ1 0.0090 0.0062 0.0190 0.1448 0.4307 0.6723 0.8790 0.8836 0.5656
HARQ2 0.0242 0.0159 0.0097 0.1212 0.3560 0.4844 0.8023 0.8836 0.7819
HARQ3 0.0291 0.0031 0.0245 0.1717 0.6046 0.7756 0.6553 0.6778 0.3088
HARQ4 0.0015 0.0026 0.0047 0.1007 0.2509 0.6723 0.9647 0.9282 0.5656
HARQ5 0.0073 0.0247 0.0778 0.3635 0.1696 0.5136 0.6615 0.9820 0.5165
HARQ6 0.0090 0.0487 0.1166 0.2955 0.2900 0.6065 0.7646 0.8393 0.4698
HARQ7 0.0090 0.0247 0.0111 0.1007 0.2156 0.7061 0.8023 0.5494 0.7252
HARQ8 0.0135 0.0327 0.0146 0.1578 0.4307 0.9560 0.7646 0.6778 0.5656
HARQ9 0.0009 0.0008 0.1166 0.8255 0.3560 0.4561 0.4895 0.0901 0.0135
HARQ10 0.0416 0.0137 0.1166 0.0498 0.1561 0.5747 0.5254 0.7954 0.5656
HARQ11 0.0583 0.0487 0.3753 0.2023 0.3110 0.6199 0.8480 0.9820 0.4698
DQMA-I 0.0200 0.0031 0.0628 0.1326 0.0913 0.1380 0.3778 0.9372 0.3451
DQMA-II 0.0073 0.0085 0.0778 0.3398 0.2699 0.3069 0.4631 0.5878 0.9222
DQMA-Eq 0.0059 0.0085 0.0314 0.2366 0.2156 0.3292 0.4335 0.3476 0.8627
DQMA-Gods 0.0047 0.0085 0.0314 0.2552 0.2328 0.3069 0.4051 0.3191 0.9222
DQMA-MSE 0.0073 0.0100 0.0399 0.2955 0.2156 0.2653 0.4335 0.3476 0.9222

CC test p-Value
ARFIMA 0.0000 0.0000 0.0940 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 0.0000 0.0000 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ1 0.0019 0.0001 0.0000 0.0072 0.4144 0.0196 0.9228 0.7670 0.8057
HARQ2 0.0037 0.0001 0.0000 0.0019 0.3712 0.3601 0.6582 0.7742 0.8989
HARQ3 0.0007 0.0006 0.0000 0.0009 0.1240 0.0295 0.7473 0.7844 0.5636
HARQ4 0.0006 0.0001 0.0001 0.0098 0.2691 0.0411 0.9735 0.8714 0.8363
HARQ5 0.0027 0.0216 0.0479 0.1185 0.3581 0.5441 0.1828 0.7137 0.8039
HARQ6 0.0126 0.1399 0.1487 0.1125 0.4328 0.8723 0.9538 0.7280 0.7357
HARQ7 0.0001 0.0174 0.0001 0.0191 0.0824 0.1164 0.0463 0.5640 0.8938
HARQ8 0.0001 0.0722 0.0005 0.0569 0.2993 0.8467 0.3340 0.7844 0.8454
HARQ9 0.0001 0.0030 0.0843 0.1972 0.4068 0.6777 0.5384 0.1795 0.0161
HARQ10 0.0241 0.0476 0.2846 0.0106 0.3478 0.6356 0.7750 0.7636 0.6068
HARQ11 0.1523 0.1360 0.5295 0.3045 0.5653 0.3968 0.5915 0.6866 0.5066
DQMA-I 0.0058 0.0061 0.0105 0.1199 0.2402 0.2230 0.5022 0.8858 0.6332
DQMA-II 0.0041 0.0089 0.0036 0.0264 0.4533 0.5921 0.7578 0.7211 0.3541
DQMA-Eq 0.0038 0.0089 0.0014 0.0886 0.4638 0.5982 0.7334 0.4675 0.5276
DQMA-Gods 0.0034 0.0089 0.0014 0.0961 0.4905 0.5745 0.6996 0.4616 0.5046
DQMA-MSE 0.0041 0.0114 0.0011 0.0654 0.4258 0.5257 0.7334 0.5202 0.5046

DQ test p-Value
ARFIMA 0.0000 0.0000 0.0940 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ1 0.0000 0.0000 0.0000 0.0001 0.1237 0.0021 0.0070 0.1694 0.3688
HARQ2 0.0000 0.0000 0.0000 0.0001 0.1245 0.0052 0.0196 0.6367 0.5370
HARQ3 0.0000 0.0000 0.0000 0.0001 0.0503 0.0001 0.0919 0.2119 0.8952
HARQ4 0.0000 0.0000 0.0000 0.0000 0.0092 0.0023 0.0768 0.4795 0.9077
HARQ5 0.0000 0.0000 0.0000 0.0002 0.0526 0.0224 0.0748 0.1789 0.2324
HARQ6 0.0000 0.0000 0.0000 0.0182 0.1766 0.2635 0.4922 0.3822 0.2095
HARQ7 0.0000 0.0000 0.0000 0.0000 0.0024 0.0156 0.0169 0.5026 0.3027
HARQ8 0.0000 0.0000 0.0000 0.0001 0.0030 0.0085 0.0342 0.2998 0.8861
HARQ9 0.0000 0.0000 0.0001 0.0045 0.0107 0.0191 0.0198 0.1218 0.0482
HARQ10 0.0000 0.0000 0.0037 0.0002 0.1309 0.2108 0.3473 0.6547 0.7619
HARQ11 0.0003 0.0001 0.0042 0.0008 0.2470 0.5015 0.6911 0.4652 0.8985
DQMA-I 0.0000 0.0000 0.0000 0.0911 0.0675 0.0027 0.0257 0.2326 0.3091
DQMA-II 0.0000 0.0000 0.0000 0.0007 0.1277 0.0549 0.2135 0.3911 0.8124
DQMA-Eq 0.0000 0.0000 0.0000 0.0009 0.0887 0.0130 0.1187 0.2796 0.7714
DQMA-Gods 0.0000 0.0000 0.0000 0.0009 0.0870 0.0132 0.1442 0.3164 0.7912
DQMA-MSE 0.0000 0.0000 0.0000 0.0007 0.1153 0.0188 0.1209 0.2836 0.7467

Note: The numbers in red are significantly different from the null hypothesis at the 1% signifi-
cance level, which indicates misspecification of the quantile model.
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Table 7: Evaluation of the interval forecasting in the out-of-sample

τ interval (0.05,0.95) (0.1,0.9) (0.25,0.75) (0.45,0.95)

length p-0.9 Lcc length p-0.8 Lcc length p-0.5 Lcc length p-0.5 Lcc

ARFIMA 0.7945 0.0944 0.0000 0.6190 0.1899 0.0000 0.3258 0.3510 0.0000 0.4276 -0.1488 0.0000
DMA 1.4041 0.0311 0.0000 1.0940 0.0844 0.0000 0.5758 0.1569 0.0000 0.7557 -0.0819 0.0000
HARQ1 0.7780 -0.0191 0.0001 0.5431 -0.0220 0.0051 0.2740 -0.0215 0.1057 0.6105 -0.0175 0.1599
HARQ2 0.7833 -0.0110 0.0001 0.5443 -0.0174 0.0240 0.2790 -0.0190 0.0663 0.6129 -0.0139 0.1134
HARQ3 0.8055 -0.0196 0.0000 0.5476 -0.0220 0.0021 0.2760 -0.0261 0.0482 0.6334 -0.0139 0.0824
HARQ4 0.7800 -0.0191 0.0000 0.5470 -0.0261 0.0006 0.2823 -0.0215 0.0455 0.6122 -0.0246 0.0075
HARQ5 0.7654 -0.0196 0.0002 0.5476 -0.0230 0.0016 0.2615 -0.0195 0.0246 0.5943 -0.0180 0.0705
HARQ6 0.7637 -0.0201 0.0000 0.5523 -0.0230 0.0050 0.2587 -0.0180 0.0705 0.5944 -0.0170 0.1372
HARQ7 0.7764 -0.0201 0.0000 0.5491 -0.0205 0.0013 0.2664 -0.0266 0.0385 0.5986 -0.0180 0.0039
HARQ8 0.7578 -0.0211 0.0001 0.5488 -0.0210 0.0006 0.2583 -0.0190 0.1045 0.5851 -0.0200 0.0328
HARQ9 0.7554 -0.0318 0.0000 0.5358 -0.0397 0.0000 0.2583 -0.0388 0.0010 0.5922 -0.0150 0.0432
HARQ10 0.7828 -0.0176 0.0020 0.5733 -0.0179 0.0080 0.2889 -0.0139 0.1721 0.6161 -0.0205 0.0305
HARQ11 0.7807 -0.0171 0.0052 0.5442 -0.0179 0.1000 0.2700 -0.0114 0.3256 0.6116 -0.0215 0.0422
DQMA-I 0.7838 -0.0191 0.0025 0.5564 -0.0225 0.0066 0.2704 -0.0139 0.2309 0.6154 -0.0236 0.0625
DQMA-II 0.7720 -0.0105 0.0058 0.5522 -0.0179 0.0306 0.2693 -0.0079 0.7115 0.6016 -0.0185 0.1535
DQMA-Eq 0.7754 -0.0090 0.0049 0.5485 -0.0179 0.0381 0.2703 -0.0084 0.6265 0.6056 -0.0150 0.2177
DQMA-Gods 0.7746 -0.0090 0.0049 0.5475 -0.0190 0.0299 0.2701 -0.0084 0.6265 0.6048 -0.0150 0.1746
DQMA-MSE 0.7758 -0.0080 0.0042 0.5496 -0.0179 0.0381 0.2711 -0.0073 0.7330 0.6060 -0.0165 0.1819

Note: The numbers in bold are the shortest in the length columns (the length of qτi+1
− qτi) and are the

closest to the expected percentage in the p-x columns (the length of the τ interval, τi+1−τi). The numbers
in red are the opposite. The red values in Lcc (CC test of Christoffersen (1998)) are those less than the
1% confidence level for which the null hypothesis is rejected.

except ARFIMA and DMA, almost all the models accept the null hypothesis of correct dy-

namic specification for high-level quantiles of RV. This can be explained by our finding in

the above subsection that the high-level quantiles of RV have stronger predictabilities and

stronger stylized features. Second, all the tests for ARFIMA and DMA models reject the null

hypothesis, demonstrating their inabilities to forecast or model the quantile dynamics of RV.

Third, the DQMA models are more stable than the individual quantile models, especially

in the DQ test. Take the DQ test at τ = 0.5 for example, there are two individual HARQ

models that reject the null hypothesis but no DQMA models. Moreover, even though five

individual HARQ models reject the null hypothesis of the DQ test at τ = 0.6, only one of

DQMA (DQMA-I) model does.

Table 7 shows the evaluation of interval forecasting for the HARQ, DQMA, ARFIMA

and DMA models. For simplicity, we present only the CC tests of Christoffersen (1998) for

interval forecasting (the Lcc column). Here, one can see again the stabilities of DQMA mod-

els contrasted to individual quantile models and the advantages of quantile models compared

with mean models. First, the average longest interval lengths are produced by DMA mod-
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els(the length columns). As well, the largest deviations from the expected percentages come

from ARFIMA(the p-x columns). The performances of ARFIMA and DMA are especially

bad for upper asymmetric interval forecasting. Take the interval (0.45,0.95) for example; the

deviation percentage can reach 14.88% for ARFIM. Clearly, the quantile models are found to

be more suitable than mean models for RV interval forecasting. Second, although the lengths

of forecasting intervals obtained from HARQ and DQMA models are relatively equal, espe-

cially for τ ⊂ (0.05, 0.95), the deviation percentages of DQMA are smaller than those of

HARQ overall. More importantly, it can be evidenced from Lcc that the DQMA models are

more stable than HARQ, e.g., in the interval τ ⊂ (0.1, 0.9), nine individual HARQ models

reject the null hypothesis of the CC tests, but only one DQMA model (DQMA-I) rejects

the null hypothesis. Furthermore, two individual models reject the null hypothesis for the

interval (0.45, 0.95), but no DQMA models do. These results clearly indicate that DQMA

can not only achieve better performance but also reduce the risk of model uncertainty.

Figure 2 shows the dynamics of the S&P 500 index daily price and combination weight

evolution for the different combining strategies. From Figure 2, it can be easily seen that

different combination strategies have dramatically different weights. The weights with the

greatest changes are those of the DQMA-I strategy, followed by those of the DMA method.

The other strategies are smoother and more stable. The dynamics of DQMA-MES are almost

horizontal with nearly constant weights. In addition, the dynamic evolutions of the weights

may provide a picture of the structural changes of RV. See, the second row (DQMA-II)

and the last row (DQMA-Gods) in Figure 2 show structure breaks with dramatic weights

changes, which may imply a guide for analyzing dynamically changing environments. The

related analyses are not presented in this paper, available upon request.

Figure 3 presents the distribution forecasting of RV with seven quantiles from the DQMA

methods. The RV distributions have heavier and longer right tails when there are larger

realized values if the subfigures are compared with the top-left subfigure in Figure 3. Thus,

it is reasonable to infer that the stylized feature of heavier right tails also has a clustering

effect, similar to that of volatility itself. Surely, distribution forecasting provides much more

information than mean forecasting. Another interesting observation is that heavier and

longer right tails correspond to the declining period of index if Figure 3 is compared with
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Figure 2: The S&P 500 index and weight evolution of the DMA and DQMA methods. The historical gray
line represents the equal averaging weights. The middle and bottom rows are, respectively, the weights of
DQMA-II and DQMA-Gods at quantiles τ=(0.2,0.4,0.6,0.8). The colors of the lines in all subfigures are the
same as those in the top-right subfigure.

the first subfigure in Figure 2. Thus, the RV distribution is more dispersed during periods

of stock market decline.

4 Robustness Checks

First, we further test the quantile predictive power and stability of DQMA methods by

comparing them with HARQmodels using the MCS procedure (namely, the model confidence

set developed by Hansen et al. (2011)) with the asymmetric VaR loss function of González-

Rivera et al. (2004), which applies heavier penalties to observations that violate the predicted

VaR. As stated by Bernardi et al. (2017), the tests in the above subsection 3.4.1 can fail to
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Figure 3: Density forecast by quantile combination method. We draw 7 lines in each subfigure at quantiles
qτ , τ = (0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95).

predict accuracy of the delivered quantile estimates and are insensitive to the magnitude of

the violation. Moreover, those tests cannot directly compare each of the competing models.

Therefore, the MCS procedure is adopted to build the superior set of models (SSM), where

the performances of the models are equal at confidence level (1 − α). Actually, Bernardi

et al. (2017) also use the MCS procedure to select VaR models and to compare individual

VaR models.

Table 8 shows the MCS examination results of nine quantile forecasts from individual

HARQ models and DQMA models. Individual quantile regression models can be excluded

from the MCS sets, especially for low quantile forecasting: HARQ3 and HARQ4 are elimi-

nated from the SSM in τ = 0.25 and τ = 0.5. Meanwhile, the DQMA methods are always

included in the SSM.
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Table 8: MCS examination of individual regression
models and DQMAs at different quantiles

τ 0.05 0.1 0.25 0.4 0.5 0.75 0.9 0.95

HARQ1 1 1 1 1 0 1 1 1
HARQ2 1 1 1 1 1 1 1 1
HARQ3 1 1 0 1 0 1 1 1
HARQ4 1 1 0 1 0 1 1 1
HARQ5 1 1 1 1 1 1 1 1
HARQ6 1 1 1 1 1 1 1 1
HARQ7 1 1 1 1 1 1 1 1
HARQ8 1 1 1 1 1 1 1 1
HARQ9 1 1 1 1 1 1 1 1
HARQ10 1 1 1 1 1 1 1 1
HARQ11 1 1 1 1 1 1 1 1
DQMA-I 1 1 1 1 1 1 1 1
DQMA-II 1 1 1 1 1 1 1 1
DQMA-Eq 1 1 1 1 1 1 1 1
DQMA-Gods 1 1 1 1 1 1 1 1
DQMA-MSE 1 1 1 1 1 1 1 1

Note: The testing confidence level of MCS is 90%. The value
is one if the model is included in SSM and zero otherwise.

Second, we discard the two best or worst models and then examine the performances of

the combination strategies. From Table 4 to Table 8, the two best individual models in the

whole empirical period are HARQ6 and HARQ11. Therefore, these two models are removed

to assess whether the performances of the combining strategies will degrade. Then, the two

worst models (HARQ3 and HARQ4) are discarded. The results are shown in Table 9 and

Table 10.

Finally, Table 9 shows the goodness of fit of the quantiles after discarding two individual

models. The goodness of fit declines slightly when the two best individual models are dis-

carded and increases slightly after discarding HARQ3 and HARQ4. However, all the models

are included in the SSM at the 90% confidence level after discarding two models, as shown

in Table 10, which means the DQMA method is robust to the included individual models.

Therefore, the combination strategies are superior to individual models in terms of the risk

of model uncertainty.

5 Conclusions

Using intra-day high-frequency data to study realized volatility has been a common

practice in the past two decades. In this paper, we study the RV of the S&P 500, focusing

32



Table 9: Goodness of fit R1
τ of quantile combining strategies for robustness testing

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DQMA-I-Dis6-11 0.1523 0.2285 0.2888 0.3317 0.3676 0.3414 0.4023 0.4589 0.5298
DQMA-II-Dis6-11 0.1990 0.2446 0.2914 0.3325 0.3714 0.4020 0.4498 0.4976 0.5601
DQMA-Eq-Dis6-11 0.1986 0.2449 0.2907 0.3305 0.3698 0.3998 0.4449 0.4953 0.5594
DQMA-Gods-Dis6-11 0.1984 0.2449 0.2905 0.3303 0.3697 0.4002 0.4453 0.4957 0.5599
DQMA-MSE-Dis6-11 0.1970 0.2441 0.2909 0.3313 0.3707 0.3960 0.4428 0.4941 0.5586
DQMA-I-Dis3-4 0.1910 0.2474 0.2945 0.3399 0.3748 0.3918 0.4390 0.4848 0.5508
DQMA-II-Dis3-4 0.2027 0.2508 0.2965 0.3370 0.3739 0.4046 0.4523 0.5009 0.5674
DQMA-Eq-Dis3-4 0.2023 0.2509 0.2965 0.3355 0.3737 0.4053 0.4514 0.5001 0.5628
DQMA-Gods-Dis3-4 0.2021 0.2509 0.2965 0.3354 0.3736 0.4058 0.4520 0.5006 0.5634
DQMA-MSE-Dis3-4 0.2033 0.2499 0.2963 0.3358 0.3740 0.4012 0.4489 0.4986 0.5616

Note: Numbers in red indicate that the goodness of fit declines compared with the full combined
DQMA with eleven individual models.

Table 10: MCS examinations of DQMA models after
discarding two models

τ 0.05 0.1 0.25 0.5 0.75 0.9 0.95

DQMA-I 1 1 1 1 1 1 1
DQMA-II 1 1 1 1 1 1 1
DQMA-Eq 1 1 1 1 1 1 1
DQMA-Gods 1 1 1 1 1 1 1
DQMA-MSE 1 1 1 1 1 1 1
DQMA-I-Dis6-11 1 1 1 1 1 1 1
DQMA-II-Dis6-11 1 1 1 1 1 1 1
DQMA-Eq-Dis6-11 1 1 1 1 1 1 1
DQMA-Gods-Dis6-11 1 1 1 1 1 1 1
DQMA-MSE-Dis6-11 1 1 1 1 1 1 1
DQMA-I-Dis3-4 1 1 1 1 1 1 1
DQMA-II-Dis3-4 1 1 1 1 1 1 1
DQMA-Eq-Dis3-4 1 1 1 1 1 1 1
DQMA-Gods-Dis3-4 1 1 1 1 1 1 1
DQMA-MSE-Dis3-4 1 1 1 1 1 1 1

Note: The testing confidence level of MCS is 90%. The val-
ues equal one if the model is included in the SSM and zero
otherwise. The suffix Disx-y means discarding the correspond-
ing model x and model y; for example, DQMA-I-Dis6-11 means
discarding HARQ6 and HARQ10 from the original eleven mod-
els.

on quantile forecasting. Heterogeneity, volatility persistence and leverage effects are well

captured by HAR-RV type models, and many extensions of HAR-RV have been reported

since the original method proposed in Corsi (2009). However, the conditional quantile or

distribution forecasting of RV has received much less attention than mean forecasting. Taking

full advantages of nonparametric realized measures and quantile regression, this paper avoids

rigid restrictive distributional assumptions on the dynamics of RV, which often poses serious

problems to econometric modeling. In fact, the heterogeneous autoregressive quantile model
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performs well in capturing the dynamics of the RV conditional distributions; see Žikeš and

Baruńık (2016). Considering that the forecasting accuracy of each individual HARQ model

does not adapt to the full features of a dynamically changing environment and face the risk of

model uncertainty, five dynamic quantile model averaging strategies are proposed to address

this problem. Furthermore, eleven HARQ models are selected with more than 35 realized

measures to study the quantile dynamics and forecasting of RV.

Our empirical examinations indicate clearly that the stylized features of RV are different

at different quantiles, with stronger features at high-level quantiles. For example, persistence

and leverage effects are much stronger at high-level quantiles than at low-level quantiles.

bad volatility and bad jump has stronger impacts on high-level quantiles. These unequal

impacts affect the tails of RV and cause heavier right tails. From the forecasting densities of

RV obtained by DQMA, we can infer that the heavier right tail also has a clustering effect,

similar to volatility itself. However, the effects of jumps are much more complicated and

mixed.

More importantly, we evaluate comprehensively the forecasting performances of DQMA

methods with several evaluation criteria. To show the advantages of DQMA and HARQmod-

els in modeling the dynamics of RV compared with mean models, we choose two best mean

models as benchmarks for comparison. They are the most common popular benchmark com-

peting ARFIMA model and DMA-TVP of Wang et al. (2016), which outperformed eighteen

competing combining strategies. As expected, the DQMA and HARQ models outperform

DMA-TVP and ARFIMA in both quantile forecasting and interval forecasting. Furthermore,

not only do DQMA models demonstrate excellent performances in modeling the quantiles of

RV of the S&P 500, but also they are more stable than individual HARQ models and can

avoid the risk of model uncertainty. In addition, the dynamic evolution of the combining

weights may offer information about the dynamically changing environment, such as struc-

ture breaks. In summary, DQMA methods can not only make accurate RV quantile forecasts

and capture the dynamics of RV well without rigid distributional assumptions but also avoid

the risk of model uncertainty.
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