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Abstract

We find the asymptotic distribution for rolling linear regression models using various
window widths. The limiting distribution depends on the width of the rolling window,
and on a “bias process” that is typically ignored in practice. Based on the distribution,
we tabulate critical values used to find uniform confidence intervals for the average
values of regression parameters over the windows. We propose a corrected rolling
regression technique that removes the bias process by rolling over smoothed parameter
estimates. The procedure is illustrated using a series of Monte Carlo experiments.
The paper includes an empirical example to show how the confidence bands suggest
alternative conclusions about the persistence of inflation.

Keywords: Parameter instability; Nonparametric estimation; Rolling regressions; Uniform
confidence intervals; Nonstationary.

1 Introduction

Rolling regression is often employed in many applied fields as a method to characterize

changing relationships over time. As a simple robustness check, regression parameters are

estimated using some fraction of the data early in the sample. The fixed fraction is then

“rolled” through the sample, so that the estimated regression parameters may vary over time.

This intuitive procedure is one methods of examining the stability of statistical relationships

over time. A cursory search will reveal that there are rolling regression routines written
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in statistical computing languages or packages such as R, SAS, STATA, Matlab, RATS,

Python, Eviews, and Excel.

As part of the prototypical exercise of reporting rolling regression estimates, researchers

often plot bands around the point estimates as a way to conduct some type of ocular infer-

ence about whether there are changes in relationships over time. The regression bands are

constructed using estimated standard errors from the regression parameters in the relevant

time period for the rolling window. Then, these estimated standard errors are multiplied

by critical values from the standard normal distribution. Recent papers using rolling regres-

sion with confidence bands include Swanson and Williams (2014), Linnainmaa and Roberts

(2017), Adrian et al. (2015), Blanchard (2018), Georgiev et. al. (2018), Jiménez et. al.

(2017), and López-Salido et al. (2017), among others.1

In this paper, we characterize the population parameters that rolling regression is at-

tempting to estimate and we find the distribution of the rolling estimator. We provide new

critical values that are used to construct asymptotically correct confidence bands for the

estimated function. As part of this exercise, we show that rolling regression contains a bias

process that may inhibit inference about the true population parameters. We develop a new

procedure to estimate rolling regression parameters that is not affected by the bias process.

The original idea of rolling regression is an intuitive one, in that we want to use regression

over different time intervals to examine how the relationship may have changed. The window

width may appear to be ad-hoc, but it is often based on equating the window width with

some number of observations that seems appropriate for time series estimation, or based on

decades, or some other relevant time frame. However, the results of this paper suggest that

rolling regression is a compromise of the usual bias variance tradeoff. In particular, we can

obtain the usual parametric convergence rates for rolling regression estimates (rather than

nonparametric ones), although with a different limiting distribution.

The remainder of the paper is structured as follows. In Section 2, we develop the model,

assumptions, and asymptotic distribution results for the existing rolling regression proce-

dures. In Section 3, a new procedure is proposed to deal with the bias process. Our proce-

1Rolling regression is also used in forecasting in work by Clark and McCracken (2009) in a framework
that allows for structural change in regression parameters.
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dure is discussed. Section 4 provides Monte Carlo evidence for the competing procedures.

An empirical example is treated in Section 5 to illustrate differences in results based on our

techniques versus the traditional confidence bands for the persistence of inflation. Section 6

concludes. Finally, all technical proofs are gathered in Section 7.

2 Model and Assumptions

It is natural to ask what we are attempting to estimate by employing rolling regression.

Consider a standard regression model given by

yt = x⊤
t β + 󰂃t, 1 ≤ t ≤ T,

where xt is a p-dimensional regressor. Let λ be the fraction of the total sample of T obser-

vations that is used in the rolling sample of data. The rolling regression estimator uses the

[Tλ] observations, where [x] denotes the integer part of x, and we index each of the periods

with r so that we have

β̂λ(r) =

󰀳

󰁃 1

Tλ

[rT ]󰁛

s=[rT−Tλ+1]

xsx
⊤
s

󰀴

󰁄
−1

1

Tλ

[rT ]󰁛

s=[rT−Tλ+1]

xsys.

Clearly, if a constant coefficient regression model is correctly specified, then the rolling

regression estimator would estimate the same parameter, β, in each of the sub-samples using

λ × 100% of the data. Such an exercise is not interesting as β is constant over time, and

rolling estimators will be inefficient relative to the full sample regression estimator. Consider

the model

yt = x⊤
t β

󰀕
t

T

󰀖
+ 󰂃t

so that the regression parameter changes over time. The data are assumed to become more

dense around a point t as T increases, a device employed in many studies, beginning notably

in Robinson (1989); see, for example, Cai (2007) for details. Given that the regression

parameter is potentially changing at each point in time, as T increases, we hope to estimate

the “average” value of β(t/T ) in the rolling window. To be specific, define

β̄λ(r) =
1

λ

󰁝 r

r−λ

β(u)du,
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which is the population parameter of interest indexed by λ and r. This quantity represents

the average of the coefficients at point r given a rolling window fraction λ.

Our first task is to ascertain whether rolling regression indeed provides a consistent

estimate of the parameter β̄λ(r). We make several assumptions about the data generating

process for the results in this section. Our theory makes use of the characterizations of

processes from Zhou and Wu (2010). First, we allow for time varying processes, a form

of non-stationarity. In particular, given that we are attempting to estimate time-varying

parameters, it is natural to allow for non-stationary processes. Changing values of β(t/T )

necessarily induces non-stationarity in yt. Moreover, if the model is dynamic, then xt is also

non-stationary if β(t/T ) changes. To this end, consider processes depending on deterministic

functions coupled with the iid process vt. Let Ft = {. . . , vt−1, vt}. The processes for the

covariates and errors are given by

xt = G

󰀕
t

T
,Ft

󰀖
and 󰂃t = H

󰀕
t

T
,Ft

󰀖
,

respectively, where the functions G and H allow for non-stationary processes in that the

moments may change over time. The index t is scaled by the sample size T so that the data

are assumed to be observed more densely as we collect more observations. In particular,

define the second moment matrix of the xt process as

M(t) = E

󰀥
G

󰀕
t

T
,Ft

󰀖
G

󰀕
t

T
,Ft

󰀖⊤
󰀦
.

The process associated with xt󰂃t is denoted GH and the covariance matrix of this product

process as

Ω(t) = E

󰀥
GH

󰀕
t

T
,Ft

󰀖
GH

󰀕
t

T
,Ft

󰀖⊤
󰀦
.

Statisticians characterize dependence in data in several ways; linear processes, α-mixing,

β-mixing, etc. Recent papers by Chen and Hong (2012) and Cai (2007) both make use of

β-mixing and α-mixing assumptions, but the data are assumed to be stationary in both

papers. The assumption in Inoue et al. (2017) allows the data to be near-epoch dependent

(NED). As argued in Inoue et al. (2017), the NED assumption is more general than the

α-mixing assumption, allows for heterogeneity over time which is necessary for time-varying
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parameter framework, and overcomes several undesirable features of the α-mixing assump-

tion as addressed by Lu and Linton (2007). In this paper, we follow Zhou and Wu (2008) and

allow for non-stationary processes that might arise from dynamic models with time-varying

parameters. To this end, let v′0 be an iid copy of the variable v0 that is part of Fj. Define

F∗
j = {. . . , v−1, v

′
0, v1, . . . , vj−1, vj}. We wish to characterize the dependence of a process by

measuring the effects of a shock to the system. For the variable xt, define

δq(x, j) = sup
t

󰀫󰀐󰀐󰀐󰀐G
󰀕

t

T
,Fj

󰀖
−G

󰀕
t

T
,F∗

j

󰀖󰀐󰀐󰀐󰀐
q

󰀬

for some q ≥ 1, which is a measure of the effect of a shock after j periods. Limiting the

allowable dependence in a process amounts to specifying suitable rates of decay for δq(x, j)

as j increases.

The dependence in these processes over time is a separate issue than whether the process

is stationary. One class of non-stationary processes is the unit root process, where the

autoregressive parameter is related to both dependence of the process over time as well as

whether the variance of the process is constant over time. In the framework of this paper,

we allow the processes to be non-stationary in a way that is separate from the dependence

over time. To this end, we denote a process G to be stochastically Lipshitz continuous if

sup
0≤s≤t≤T

󰀝󰀐󰀐󰀐󰀐G
󰀓 s

T
,F0

󰀔
−G

󰀕
t

T
,F0

󰀖󰀐󰀐󰀐󰀐
2

󰀞
≤ c1

󰀏󰀏󰀏󰀏
(t− s)

T

󰀏󰀏󰀏󰀏

for finite c1 > 0.

Assumption 1 The true data generating process is given by

yt = x⊤
t β

󰀕
t

T

󰀖
+ 󰂃t,

and β(u) is Riemann integrable on [0, 1].

Assumption 2 The error process 󰂃t is a martingale difference with respect to Ft, so that

E(󰂃t|Ft−1) = 0.

Assumption 3 For xt󰂃t we have

N1/4+γ

∞󰁛

j=N

δ4(x󰂃, j) < ∞

for some γ > 0, and for x2
t we have

󰁓∞
j=N δ4(x, j) < ∞.
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Assumption 4 The functions G and GH are stochastically Lipshitz continuous processes.

Assumption 5 The smallest eigenvalue of M(t) is bounded away from zero.

Assumption 1 allows for the regression parameters to vary over time, perhaps with dis-

continuities. The martingale difference assumption could be relaxed and would require a

long-run variance estimator for inference procedures. In the present case, we can assume a

dynamic model may be specified to remove any correlation in 󰂃t. Moreover, because of the

Assumptions 3 and 4, we allow for dynamic models with changing parameters, so that we

can assume martingale differences for the error process. In particular, autoregressive models

with time varying coefficients are considered in Zhang and Wu (2012). They show that, given

(standard) conditions on the time varying roots of the characteristic function, the process is

locally stationary and they characterize the decay in dependence. These models are shown

to satisfy similar conditions to the conditions in this paper. Assumption 5 is sufficient for

the rolling regression estimator to exist in the limit for any of the rolling windows one might

consider.

We now provide the limiting distribution of the rolling regression estimator with its proof

given in Section 7.

Theorem 2.1 Suppose that Assumptions 1 to 5 hold and that r ∈ [λ, 1]. Then,

√
T (β̂λ(r)− β̄λ(r)− BT (r)) ⇒

󰀕󰁝 r

r−λ

M(s)

󰀖−1

[Q(r)−Q(r − λ)] ,

where

BT (r) =

󰀳

󰁃
[rT ]󰁛

s=[rT−Tλ+1]

xsx
⊤
s

󰀴

󰁄
−1

[rT ]󰁛

s=[rT−Tλ+1]

xsx
⊤
s

󰀵

󰀷β( s
T
)− 1

Tλ

[rT ]󰁛

s=[rT−Tλ]

β(
s

T
)

󰀶

󰀸

serves as the asymptotic bias term, ⇒ indicates weak convergence, and Q(r) denotes a p-

dimensional Gaussian process with covariance E[Q(r1)Q(r2)
⊤] =

󰁕 min(r1,r2)

0
Ω(s).

The result provides several insights toward the use of rolling regression. First, the limit-

ing distribution involves Q(r), a functional of Brownian motion. In the search for confidence

bands of the “average” of the regression parameters, using critical values from a standard
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normal distribution is incorrect.2 As we illustrate in the Monte Carlo section, using stan-

dard normal critical values for confidence bands for the estimate of the average parameter

vector, β̄λ(r), will be too narrow, so that coverage probabilities are well below target lev-

els. Intuitively, the smaller the rolling window, we expect that wider confidence bands are

required.

In addition to the finding of the limiting distribution involving functionals of Brownian

motion, the distribution is affected by a bias process denoted BT (r). If the parameter vector

β(s/T ) is constant over the entire sample, then this process disappears. However, in such

cases, rolling regression is not interesting. If xsx
⊤
s is unrelated to β(s/T ), then the process

will have zero mean, and hence we can apply a functional central limit theorem to it. In this

case, we can think of this term as as generating an additional term in the variance process.

If xsx
⊤
s is related to β(s/T ), then the bias process has non-zero mean. The intuition for

the bias process is that regression over the rolling interval will weight the data, and hence

the parameter vector, with more weights to observations with larger values of xsx
⊤
s . If these

quantities are related to the parameter vector, then we may find inconsistent estimates of the

average, given that some parameter values are over-weighted. A related phenomenon arises

for fixed effects regression in panel data models. In particular, Campello et al. (2019) show

that if cross-sectional units are heterogeneous in slope, a bias may result if the heterogeneity

is related to the second moments of the regressors.

Theorem 2.1 allows for both xt and 󰂃t to exhibit a form of non-stationary behavior,

which complicates the limiting distribution of the rolling estimator. The following corollary

provides a simplification. If xt and 󰂃t are both stationary, the result simplifies. First, the bias

process BT (r) disappears. In addition,M(s) and Ω(s) are constant, so that
󰁕 r

r−λ
M(s) = λM ,

where M = E(xsx
⊤
s ), and

󰁕 min(r1,r2)

0
Ω(s) = min(r1, r2)Ω with Ω = E(xsx

⊤
s 󰂃

2
s).

To illustrate the bias process, we consider a simple autoregressive model given by

yt = α(
t

T
) + φ(

t

T
)yt−1 + 󰂃t where

󰀕
α( t

T
)

φ( t
T
)

󰀖
=

󰀣
k1 ×

t

T
φ

󰀤
,

so that the autoregressive coefficient φ(t/T ) is constant but the intercept term is changing

2A large literature on testing for structural change with unknown change point illustrates the need for
different critical values in hypothesis testing.
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over the sample. It is easy to show, regardless of the width of the rolling window, that the

asymptotic bias for estimating the parameter φ is given by

k2
1(1− φ)(1− φ2)/

󰀅
k2
1(1− φ2) + 12σ2

󰀆
.

To simplify further, if φ = 0, bias is

󰀅
1 + 12σ2/k2

1

󰀆−1
.

This simple case is much like the result in Perron (1989) for an omitted (broken) trend in

the data generating process causes a bias in the estimates of the autoregressive parameters.

Even if there is no serial correlation, the estimated autoregressive parameter may be close

to one. The larger the magnitude of the omitted trend, the more bias. In general, the bias

process BT (r) will be larger in magnitude as there is more correlation in the second moment

of xt and the parameter vector β(t/T ).

2.1 Critical Values

The limiting distribution is a functional of the process given by Q(r). The usual (incorrect)

procedure for constructing confidence bands is to calculate a standard error estimate for

each of the sub-periods in the rolling regression, and then employ standard normal critical

values. For a rolling regression indexed by r, we would use a variance estimator given by

V̂ (β̂λ(r) =

󰀳

󰁃
[Tr]󰁛

s=[T (r−λ)+1]

xsx
⊤
s

󰀴

󰁄
−1

[Tr]󰁛

s=[T (r−λ)+1]

xsx
⊤
s 󰂃

2
s

󰀳

󰁃
[Tr]󰁛

s=[T (r−λ)+1]

xsx
⊤
s

󰀴

󰁄
−1

.

If there is no bias process, it is easy to see that the standardized process will converge to a

Gaussian process, Q̃(r) with covariance

E
󰁫
Q̃(r1)Q̃(r2)

⊤
󰁬
=

󰀕󰁝 r1

r1−λ

Ω(s)

󰀖−1/2 󰁝 r1

r2−λ

Ω(s)

󰀕󰁝 r2

r2−λ

Ω(s)

󰀖−1/2

for r1 < r2 (or 0 if r1 < r2 − λ). The process has variance Ik, and the dependence arises

from the non-zero covariance when r1 > r2 − λ.

From the limiting distribution of rolling regression estimators, we see that if we are

attempting to construct uniform confidence bands for β̄λ(r), standard normal critical values
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are inappropriate. To this end, we want to find critical values θλ such that

P

󰀣
sup

r∈[λ,1]

󰀏󰀏󰀏Q̃(r)
󰀏󰀏󰀏 ≤ θλ

󰀤
= 0.95.

If the variance process is constant over r, so that Ω(s) = Ω, then the distribution of Q̃(r)

is a function of standard Brownian Motion, adjusted for different values of the fraction of

data used in rolling, λ. To illustrate the distribution under this case when k = 1, we simulate

critical values by generating random variables ut from a standard normal distribution. Then,

the standard Brownian Motion W (r) is simulated with 1√
T

󰁓[Tr]
t=1 ut where T = 10, 000. For

values of λ, find supr∈[λ,1]
1√
λ
|W (r) − W (r − λ)|, and repeat 100, 000 times for values of λ

from 0.05 to 0.85. The resulting critical values are analogous to those calculated in Andrews

(1993) for tests of structural change in regression models. The 0.90, 0.95, and 0.99 quantiles

of empirical distribution are provided in Table 1.

The width of the confidence bands increases as the rolling window becomes smaller. For

example, if we use 10% of the sample in the rolling window, a confidence band will be 3.499

times the relevant standard error for 95% confidence. The factor for a 20% window is 3.265,

while an 80% window width increases the factor to 2.377. If one increases the window width

to 100% of the sample, we obtain the usual 1.96. These are the critical values that are

appropriate for confidence bands of rolling regressions in the absence of the bias process. At

a minimum, these tables provide values to replace critical values from the standard normal

tables when applying rolling regression.

In the more realistic case of a time varying variance process governed by Ω(s), critical

values will depend on Ω(s) which enters in the Gaussian process. We follow Hansen (1996)

and simulate the limiting distribution of the process so that we have the proper critical

values for the process associated with Ω(s). To this end, define the following estimators,

󰂃s = ys − x⊤
s β̂λ(s/T )

and let vs be a generated standard normal variable. Then, we can simulate the process Q̃(r)

via

Ũ(r) =

󰀳

󰁃 1

T

[Tr]󰁛

s=[T (r−λ)+1]

xsx
⊤
s 󰂃

2
s

󰀴

󰁄
−1/2

1√
T

[Tr]󰁛

s=[T (r−λ)+1]

xs󰂃svs.
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Table 1. Critical Values for Rolling Confidence Bands

Confidence Level Confidence Level Confidence Level
λ 0.90 0.95 0.99 λ 0.90 0.95 0.99 λ 0.90 0.95 0.99

0.050 3.498 3.708 4.148 0.320 2.795 3.059 3.590 0.590 2.423 2.707 3.262
0.060 3.440 3.648 4.092 0.330 2.780 3.048 3.581 0.600 2.404 2.695 3.260
0.070 3.395 3.614 4.074 0.340 2.767 3.028 3.564 0.610 2.389 2.685 3.252
0.080 3.346 3.570 4.016 0.350 2.753 3.016 3.533 0.620 2.380 2.672 3.266
0.090 3.311 3.535 3.992 0.360 2.730 3.000 3.533 0.630 2.380 2.674 3.248
0.100 3.271 3.499 3.956 0.370 2.712 2.983 3.523 0.640 2.357 2.655 3.238
0.110 3.245 3.478 3.945 0.380 2.700 2.970 3.512 0.650 2.343 2.636 3.214
0.120 3.213 3.444 3.912 0.390 2.690 2.962 3.496 0.660 2.332 2.628 3.208
0.130 3.178 3.415 3.895 0.400 2.677 2.942 3.481 0.670 2.322 2.623 3.214
0.140 3.159 3.388 3.866 0.410 2.662 2.935 3.477 0.680 2.309 2.600 3.176
0.150 3.125 3.356 3.843 0.420 2.646 2.920 3.469 0.690 2.288 2.585 3.163
0.160 3.105 3.344 3.823 0.430 2.635 2.917 3.462 0.700 2.283 2.578 3.176
0.170 3.080 3.319 3.808 0.440 2.617 2.896 3.449 0.710 2.264 2.562 3.155
0.180 3.056 3.299 3.780 0.450 2.603 2.887 3.436 0.720 2.254 2.551 3.145
0.190 3.035 3.284 3.784 0.460 2.591 2.870 3.419 0.730 2.239 2.540 3.135
0.200 3.013 3.265 3.755 0.470 2.582 2.854 3.410 0.740 2.221 2.524 3.136
0.210 2.993 3.240 3.729 0.480 2.563 2.846 3.398 0.750 2.212 2.512 3.115
0.220 2.976 3.225 3.701 0.490 2.554 2.834 3.384 0.760 2.202 2.501 3.079
0.230 2.942 3.194 3.704 0.500 2.544 2.825 3.388 0.770 2.190 2.491 3.093
0.240 2.926 3.182 3.708 0.510 2.530 2.818 3.367 0.780 2.167 2.473 3.062
0.250 2.921 3.174 3.691 0.520 2.513 2.796 3.355 0.790 2.155 2.461 3.058
0.260 2.896 3.154 3.656 0.530 2.499 2.779 3.342 0.800 2.154 2.459 3.059
0.270 2.876 3.134 3.660 0.540 2.483 2.770 3.326 0.810 2.134 2.438 3.029
0.280 2.863 3.120 3.646 0.550 2.468 2.758 3.322 0.820 2.114 2.424 3.024
0.290 2.844 3.103 3.621 0.560 2.459 2.749 3.317 0.830 2.112 2.414 3.027
0.300 2.828 3.091 3.619 0.570 2.443 2.733 3.295 0.840 2.095 2.399 2.995
0.310 2.818 3.078 3.600 0.580 2.428 2.718 3.284 0.850 2.072 2.377 2.999

The simulated (standardized) process will have the same covariance structure as the limiting

distribution in Q̃(r), so that we can construct bands using the maximum of the absolute value

of the appropriate entry of the process, in combination with the element from the variance

matrix to obtain standard errors. The procedure can be applied under the assumption that

the bias process is zero, as would be the case if the second moments of xt are unrelated to

the time-varying regression parameters.
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3 Estimating Average Slope

Given that the goal of rolling regression appears to be estimating the average slope of the

regression function as we move the window through time, we propose to estimate that quan-

tity directly. That is, we seek to estimate the integral of the regression coefficient over the

subintervals of the sample data. Our intent in the direct estimation of β̂λ(r) is to avoid the

potential bias process given by BT (r).

The local linear estimator for β(t/T ) was analyzed in Cai (2007) for stationary α-mixing

data, and is given by β̃(t/T ), where

β̃(t/T ) =
󰀃
Ip 0p

󰀄󰀕ST,0 S⊤
T,1

ST,1 ST,2

󰀖−1 󰀕
VT,0

VT,1

󰀖

with

ST,ℓ(t/T ) =
1

Th

T󰁛

s=1

xsx
⊤
s

󰀕
t− s

Th

󰀖ℓ

Kt,s, VT,ℓ(t/T ) =
1

Th

T󰁛

s=1

xsys

󰀕
t− s

Th

󰀖ℓ

Kt,s

Kt,s = K(t−s/Th), andK(·) being a kernel function. It is well known that the nonparametric

estimator is consistent and point-wise normally distributed. Zhou and Wu (2010) extend

the work of Johnston (1982) to include uniform confidence bands in a time series setting

for the function over the entire range of the data. The uniform confidence bands converge

at an even slower rate than the usual nonparametric estimators. In addition, there is an

additional bias term which depends on the second derivative of β(t/T ) at each point, which

adds another obstacle to the construction of confidence bands.

We propose following estimator for β̄λ(r);

β̂∗
λ(r) =

1

[Tr]

Tλ󰁛

s=[rT−Tλ+1]

β̃
󰀓 s

T

󰀔
.

The intuition for our estimator is that we hope to combine each estimator of β(s/T ) for the

relevant range. By choosing an appropriate bandwidth parameter, we can eliminate the bias

process altogether. We list three additional assumptions for the data generating process and

the bandwidth.

Assumption 6 The function β(s) has three continuous derivatives.
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Assumption 7 The bandwidth is chosen such that h = c2T
−δ with 1/4 < δ < 1/3.

Assumption 8 The kernel function K(z) is second order and takes the value 0 outside of

[−1, 1].

Assumption 6 imposes smoothness conditions on the behavior of the regression coefficients

over time. Since we are estimating the average of the coefficients, this assumption simplifies

the results. Assumption 7 is required so that the estimate of the average slope will converge

at the usual parametric rate, and Assumption 8 is useful to limit the observations that enter

the smoothed estimators. The Epanechnikov kernel is a popular example of such a kernel

and we employ this kernel in our Monte Carlo and empirical examples. We state the theorem

for the modified procedure below with its proof relegated to Section 7.

Theorem 3.1 Suppose that Assumptions 1-8 hold with r ∈ (λ, 1).

√
T (β̂∗

λ(r)− β̄λ(r)) ⇒ [Q2(r)−Q2(r − λ)] ,

where Q2(r) is p-dimensional Gaussian process with covariance matrix E
󰀅
Q2(r1)Q2(r2)

⊤󰀆 =
󰁕 min(r1,r2)

0
Λ(s)ds, and

Λ(s) =
1

λ2
M(s)−1Ω(s)M(s)−1.

The new estimator is consistent for β̂λ(r). Moreover, like the naive rolling estimator,

the limiting distribution of our new statistic is also a function of Q(r). Hence, we can

employ the generated critical values to construct uniform confidence bands for β̂λ(r). This

rolling average smoothed estimator can be viewed as a bias corrected version of rolling

regression, and the limiting distribution still involves a similar Gaussian process. The bias

is absent because we are directly estimating the average of the parameter values through

the two step process. We first estimate the time-varying parameters directly via local-linear

estimation, and then we average those estimates. Similar results are often obtained in semi-

parametric models involving averages of nonparametric estimates. The advantage of this

procedure is that the averaging operation provides a faster rate of convergence that does not

depend on the nonparametric bandwidth rate. In this way, the rolling estimator provides a

computationally tractable procedure with the same interpretation as the traditional rolling
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regression procedure. However, our method now has the correct uniform size, where the

traditional rolling procedure would have bands that are too narrow, resulting in incorrect

coverage.

Construction of the appropriate confidence bands is similar to the method used in Zhang

and Wu (2012) along with our tabulated critical values. We estimate the standard errors of

the modified rolling estimators. Let

S̃(s) =

󰀗
ST,0(s) S⊤

T,1(s)
ST,1(s) ST,2(s)

󰀘
, Ω̃ℓ(s) =

1

Th

T󰁛

r=1

xrx
⊤
r 󰂃

2
r

󰀕
s− r

Th

󰀖ℓ

K

󰀕
s− r

Th

󰀖
,

Ω̃(s) =

󰀗
Ω̃0(s) Ω̃1(s)

Ω̃1(s) Ω̃2(s)

󰀘
, and 󰂃r = yr − x⊤

r β̃(r).

Then, the standard errors are estimated via the variance matrix

1

T 2λ2

[Tr]󰁛

s=[T (r−λ)]

󰁫
Ip
... 0p

󰁬
S̃(s)−1Ω̃(s)S̃(s)−1

󰁫
Ip
... 0p

󰁬⊤
=

1

T 2

[Tr]󰁛

s=[T (r−λ)]

Λ̃(s).

The standardized estimator will be governed by the process Q̃2(r), which is Gaussian with

covariance process

E
󰁫
Q̃2(r1)Q̃2(r2)

⊤
󰁬
=

󰀕󰁝 r1

r1−λ

Λ(s)

󰀖−1/2 󰁝 r1

r2−λ

Λ(s)

󰀕󰁝 r2

r2−λ

Λ(s)

󰀖−1/2

for r1 < r2 (or 0 if r1 < r2 − λ).

We note that the BT (r) process is removed from the limiting distribution due to the

restrictions on the smoothing parameter h. In addition, if xt and 󰂃t are stationary, the

distribution simplifies further since Ω(s) = E(xsx
⊤
s 󰂃

2
s) is constant.

3.1 Critical Values

As in the case of the traditional rolling regression, the appropriate critical values for the

rolling average slope estimator are not the usual values associated with the standard normal

distribution. In the most restrictive case where Ω(s) and the second moment matrix of the

regressors M(s) are constant over s, we can employ the critical values appearing in Table 1.

If Ω(s) and M(s) are time-varying, we can use the estimated components of Λ(s) so that

we can simulate using

Ũ2(r) =

󰀳

󰁃 1

T

[Tr]󰁛

s=[T (r−λ)+1]

Λ̃(s)

󰀴

󰁄
−1/2

1√
T

[Tr]󰁛

s=[T (r−λ)+1]

Λ̃(s)1/2vs.
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4 Monte Carlo Studies

The theorems from Sections 2 and 3 show that rolling regression estimators have a limiting

distribution that depends on functionals of Brownian motion, and those new critical values

are provided in Table 1. The purpose of Theorem 3.1 is to provide a bias corrected estimate

of the average slope.

We explore the performance of various rolling regression estimators in this section. In

particular, the naive rolling regression estimator that uses standard normal critical values

is denoted RO for Rolling OLS. A second estimator is considered but uses the new critical

values, and we refer to this estimator as adjRO. This rolling estimator accounts for Q(r) in

the limiting distribution, but does not correct for the possible bias process B(r). Finally, we

include three versions of the corrected rolling regression estimator proposed in Section 3. The

estimator depends on a bandwidth parameter for the time varying parameter regression at

the first stage. The form of the allowable bandwidth is h = c2T
−δ where −1/4 < δ < −1/3.

We use δ = 0.30 and set c2 = 0.5, 0.75, and 1. The estimators are denoted SRb1, SRb2, and

SRb3.

Before we consider rolling regression, we illustrate the bias that one encounters if an

autoregressive process has an omitted trend, which could be considered a case where λ = 1.

To this end, we simulate the process discussed in Section 2 with a missing trend. The bias

of the estimated AR parameter is indexed by k1, the magnitude of the missing trend. We

simulate an AR process with φ = 0 and consider values of k1 ranging from 0 to 15, with

T = 200 and 1000 replications for each value of k1. The resulting bias for OLS and the

smoothed estimates (Sb1, Sb2, Sb3) appears in Figure 1 (see later). We note that there is

a small negative bias for the smoothed regression estimators. However, it does not change

as the magnitude of the missing trend grows, which illustrates that this procedure removes

the bias process from the estimator. Moreover, the bias in OLS grows as the omitted trend

indexed via k1 grows larger, consistent with the results of Perron (1989).

Given the potential for bias in rolling estimators, we illustrate several data generating

processes using rolling estimators. For each experiment, we allow for time series dimensions

T = 200,400 and 600. The rolling window is set for λ = 0.20 so that there are 40, 80,

14



and 120 observations used in each of the regimes in the estimation window. The number

of replications for each experiment is set to 10, 000. The parameter of interest is β̄λ(r),

the average value of β(r) over each relevant subset of time. Our experiments report the

estimated coverage probability for a 95% uniform confidence band for β̄λ(r). We report the

mean average deviation over the range. In addition, we list the average width of the uniform

confidence band. For example, if two competing procedures both have 95% coverage, we

would prefer the method generating narrow bands.

Denote the current naive technology of using rolling OLS and employing critical values

from the standard normal distribution as RO (rolled OLS). If we use the adjusted critical

values tabulated in Table 1 with rolled OLS, we list the procedure as adjRO. Our smoothed

rolling procedure using the adjusted critical values is indexed by the bandwidths as SRb1,

SRb2, and SRb3.3

Our first experiment uses a simple static regression model given by

yt = 2xt + 󰂃t

where 󰂃t ∼ N(0, 0.25). The results are summarized in Table 2.

We first examine the rolling OLS (RO) estimator using the (incorrect) standard normal

distribution critical values. The coverage for the procedure is below the nominal 95%, and

ranges from around 19% to 26% depending on the sample size. The rolling OLS with adjusted

critical values from Table 1. is much closer to the intended coverage, reaching as high as 91%

when the sample size is 600. The smoothed rolling procedures have much better coverage for

all the considered bandwidth parameters. The SRb2 performs best, does not vary as much

with the sample size. The mean absolute deviation (MAD) is similar for all procedures,

which is to be expected since the coverage issues arise from incorrect critical values. The

smoothed procedures has the narrowest uniform bands (average width) while having the best

coverage.

3In addition to the procedures we evaluated in our Monte Carlo experiment, we also used simulated
critical values to account for the possibility of time varying variances, which were present in the experiments.
However, the case specific simulated critical values for the time varying variance models were similar to those
in Table 1. We attempted to construct pathological examples of time varying variances but the results were
similar to data generating processes with fixed variances.
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Table 2. Static Regression

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.8924 0.9575 0.9839 0.8357 0.1940

Coverage T = 400 0.9052 0.9586 0.9819 0.8991 0.2386
T = 600 0.9081 0.9530 0.9773 0.9152 0.2623

T = 200 0.0577 0.0520 0.0478 0.0650 0.0650
MAD T = 400 0.0414 0.0382 0.0355 0.0455 0.0455

T = 600 0.0336 0.0314 0.0294 0.0367 0.0367

T = 200 0.3918 0.4001 0.4098 0.4978 0.2988
Av. Width T = 400 0.2800 0.2837 0.2883 0.3585 0.2152

T = 600 0.2293 0.2318 0.2348 0.2944 0.1767

Next, we generate data from a simple autoregressive model with no parameter changes.

The data generating process is given by

yt = 0.80yt−1 + 󰂃t

where 󰂃t is N(0,0.25). The results are given in Table 3.

Table 3. Constant AR, ρ = 0.80

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.3502 0.7647 0.9210 0.6154 0.0552

Coverage T = 400 0.4406 0.7947 0.9231 0.8041 0.1266
T = 600 0.4865 0.8076 0.9224 0.8579 0.1734

T = 200 0.1975 0.1350 0.1059 0.1124 0.1124
MAD T = 400 0.1200 0.0832 0.0666 0.0672 0.0672

T = 600 0.0893 0.0630 0.0513 0.0511 0.0511

T = 200 0.5782 0.5623 0.5592 0.6724 0.4036
Av. Width T = 400 0.3871 0.3773 0.3753 0.4480 0.2689

T = 600 0.3075 0.3008 0.2995 0.3686 0.2213

Given the rolling fraction of λ = 0.20, the procedures are attempting to estimate the AR

parameter based on 40 observations. The SRb3 procedure is best for this data generating
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process, with small MAD and narrow confidence bands, but the adjusted rolling OLS pro-

cedure performs respectably. Again, the naive traditional rolling OLS procedure performs

poorly, with coverage of 17% even with a sample of 600 observations.

The next process we consider has a changing autoregressive coefficient

yt = ρ(t/T )yt−1 + 󰂃t with ρ(t/T ) = 0.8 [1− (t/T )] ,

and our results appear in Table 4.

Table 4. AR, ρ = 0.80[1− (t/T )]

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.6907 0.8937 0.9631 0.7701 0.1451

Coverage T = 400 0.7559 0.9109 0.9651 0.8702 0.1950
T = 600 0.7815 0.9156 0.9642 0.8989 0.2236

T = 200 0.1417 0.1131 0.0983 0.1235 0.1235
MAD T = 400 0.0948 0.0784 0.0696 0.0837 0.0837

T = 600 0.0748 0.0632 0.0569 0.0672 0.0672

T = 200 0.6856 0.7028 0.7195 0.8850 0.5313
Av. Width T = 400 0.4916 0.5000 0.5080 0.6380 0.3830

T = 600 0.4040 0.4094 0.4146 0.5248 0.3150

The adjusted rolling OLS estimator performs well once the sample size reaches 600 (ef-

fectively 120 with λ = 0.2), while the smoothed rolled estimators with larger bandwidths

perform well for all sample sizes and have narrower confidence bands.

For the next experiment, the autoregressive coefficients do not change, but there is an

omitted trend variable. This type of data generating process will cause bias in the autore-

gressive parameter if one uses standard OLS, which are illustrated in Figure 1. The process

is given by

yt = 2× (t/T ) + ρyt−1 + 󰂃t.

We report the coverage for the uniform bands for the autoregressive coefficient in Table 5.

The biases in standard OLS are apparent in both the rolled OLS and adjusted rolled

OLS based confidence bands with coverage of 0% for all sample sizes. The bias appears in
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Figure 1: Bias for OLS and the smoothed estimates (Sb1, Sb2, Sb3).

Table 5. Omitted trend, 2× (t/T )

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.8601 0.9480 0.9830 0.0000 0.0000

Coverage T = 400 0.8859 0.9490 0.9783 0.0000 0.0000
T = 600 0.8917 0.9497 0.9774 0.0000 0.0000

T = 200 0.1151 0.1031 0.0942 0.5620 0.5620
MAD T = 400 0.0820 0.0753 0.0699 0.5663 0.5663

T = 600 0.0674 0.0626 0.0586 0.5678 0.5678

T = 200 0.7278 0.7570 0.7781 0.7692 0.4618
Av. Width T = 400 0.5323 0.5471 0.5576 0.5545 0.3347

T = 600 0.4410 0.4508 0.4577 0.4559 0.2737

the MAD rows of Table 5 where both adjusted rolling OLS and rolling OLS are over five

times larger than the smoothed rolling estimators.
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The next data generating process is given by

yt = ρ(t/T )yt−1 + 󰂃t with ρ(t/T ) = 0.8 sin[2π × (t/T )],

so that the autoregressive coefficient starts at zero, and oscillates between 0.80 and zero.

The results are displayed in Table 6.

Table 6. AR, ρ = 0.80 sin[2π × (t/T )]

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.6669 0.8111 0.8484 0.6594 0.0808

Coverage T = 400 0.7212 0.8347 0.8535 0.6928 0.0766
T = 600 0.7445 0.8408 0.8477 0.6683 0.0621

T = 200 0.1334 0.1214 0.1256 0.1202 0.1202
MAD T = 400 0.0895 0.0833 0.0876 0.0848 0.0848

T = 600 0.0710 0.0668 0.0708 0.0710 0.0710

T = 200 0.6222 0.6384 0.6581 0.8040 0.4826
Av. Width T = 400 0.4439 0.4528 0.4637 0.5789 0.3475

T = 600 0.3635 0.3695 0.3773 0.4763 0.2859

The performance of rolling OLS is again poor, and the adjusted rolling OLS is also below

nominal confidence levels. The smoothed rolling procedures improve as the sample size

increases, up to coverage of 84%.

Finally, we treat the case where the intercept term follows increases and then decreases

with

yt = sin[2π × (t/T )] + ρyt−1 + 󰂃t.

The results are presented in Table 7.

The estimators based on OLS perform poorly and get worse as the sample size increases.

Our smoothed rolling estimators perform well and improve as the sample size increases. The

MAD gets smaller and the width of the confidence bands declines with increases in sample

size.

The Monte Carlo experiments suggest that for static models, using the new critical values

from Table 1 provide a simple and effective way to adjust the rolling estimators to obtain
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Table 7. AR, Omitted trend, sin[2π × (t/T )]

SRb1 SRb2 SRb3 adjRO RO
T = 200 0.8860 0.9676 0.9836 0.2161 0.0025

Coverage T = 400 0.8956 0.9622 0.9830 0.0458 0.0001
T = 600 0.9024 0.9591 0.9825 0.0086 0.0000

T = 200 0.1010 0.0962 0.0916 0.1909 0.1909
MAD T = 400 0.0807 0.0725 0.0674 0.1736 0.1736

T = 600 0.0663 0.0610 0.0569 0.1682 0.1682

T = 200 0.7273 0.7561 0.7743 0.9395 0.5640
Av. Width T = 400 0.5319 0.5465 0.5562 0.6846 0.4110

T = 600 0.4407 0.4505 0.4572 0.5651 0.3392

accurate confidence bands. However, from the theorems in earlier sections, we know that bias

results when the second moments of the regressors are related to the parameters in the model.

A well-known case of this phenomenon is the time varying autoregressive model, which we

also explore in the Monte Carlo experiments. We see that employing rolling regression with

the use of the time-varying coefficient regression of Cai (2007) in the first stage removes the

bias from rolling regression.

5 An Empirical Application

Rolling regression was employed by O’Reilly and Whelan (2005) to examine the persistence

of inflation over time in the Euro area. Suppose that one estimates an AR(3) model of U.S.

inflation given by

yt = α + φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + 󰂃t.

A common transformation that is used to evaluate persistence is

∆yt = α + ωyt−1 + γ1∆yt−1 + γ2∆yt−2 + γ3∆yt−3 + 󰂃t.

If ω = φ1 + φ2 + φ3 + φ4 − 1 is zero, the autoregressive process has a unit root which is an

extreme form of persistence. If the process is stationary, ω will be negative, and the closer

to -1 the less persistent is inflation. We use data on inflation from the CPI, with monthly
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observations from February of 1947 to May of 2020. As a preliminary analysis, we estimate

the AR(4) model and test for serial correlation in the residuals. We fail to reject the null of

no serial correlation at the 5% level, and we also reject the unit root hypothesis at the 1%

level. We proceed to analyze rolling estimates of the persistence parameter ω1. Given our

preliminary findings of no unit root, our rolling analysis is not intended to check for unit

roots but to look for changing persistence. To this end, we consider a rolling window over

the sample of data. Adjusting for endpoints, we are left with 880 observations, so that using

λ = 0.20 results in using 176 observations in the rolling window.

The naive approach just estimates the parameter ω with OLS using 176 observations for

each window and includes heteroskedasticity robust standard errors. However, the confidence

bands incorporate the incorrect critical value of 1.96. Given that λ = 0.20, using Table 1

gives the appropriate critical value that accounts for the uniform nature of the confidence

bands, with a value of 3.265, just as used in the Monte Carlo experiments. We plot the

resulting rolling estimator of ω and the competing confidence bands in Figure 2. That is,

we plot the rolling OLS (RO) regression estimator with the incorrect confidence bands, and

the smoothed rolling regression (SR) with the corrected bands that account for the rolling

multiple periods.

There are several conclusions that we see from the empirical exercise of comparing the

existing naive procedure (RO) from the new technique (SR). The first point is that the naive

function is not contained in the corrected bands, suggesting that the bias process is nonzero.

For example, in May of 1969 through August of 1980, we see that the naive rolling OLS

estimate is outside our bands, and the same is true later in the sample in November of 1991.

In addition, the naive RO procedure was shown to have narrow bands so that confidence

levels are far below the prescribed target. A by-product of the incorrectly narrow bands of

the naive rolling OLS procedure is the illusion of a more volatile inflation persistence. That

is, the smoothed rolling regression estimates with more accurate confidence bands and lack

of bias indicates a gradual increase in persistence in the early 1970’s, a peak in the mid

1980’s, and a gradual decline until the early 2000’s.

The examples with an autoregressive process show that the result of a change in the trend

or mean of the process is upward bias in the estimated persistence. In light of this effect, we
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Figure 2: Confidence bands for SR and RO

estimate the α parameter which also influences the mean of the autoregressive process. The

smoothed rolling estimate is shown in Figure 3. We anticipate the more that the estimate

of α changes, the more upward bias we will see in the estimate of persistence. From Figure

3 coupled with Figure 2, this is indeed the case from May of 1964 until May of 1979, where

the naive rolling OLS estimate is much higher than our smoothed estimate, SR.

The use of our new procedure corrects for the poor numerical performance of confidence

bands by increasing the width. Moreover, autoregressive processes estimated via rolling OLS

are susceptible to upward bias in the persistence estimate arising from changes in the mean

of the process through the change in intercept parameters. We mitigate this bias to isolate

the persistence from the change in mean of the process. In the present case, increases in

the level of inflation are misinterpreted by researchers relying on rolling OLS as increases in

persistence.
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Figure 3: The smoothed rolling estimate.

6 Conclusion

The results in this paper provide an asymptotic analysis of the ubiquitous rolling regression

estimator for a class of potentially non-stationary processes. Our analysis covers processes

that allow forms of non-stationary properties which may arise from the changing parameters

in the model. In particular, we can cover classes of varying parameter autoregressions, for

example. In the simplest cases, the usual procedure for using point-wise confidence bands

based on plus and minus 1.96 times the standard error will lead to confidence bands that

are much too narrow. The limiting distribution is a functional of Gaussian processes, but

is readily tabulated. Our results suggest that one should use our new critical values which

depend on the window width to determine uniform confidence bands.

In addition to the new critical values, we showed the potential for a bias process arising

from a relationship between the distribution of the regressors and the regression parameters.

From an empirical standpoint, a dynamic model will be most susceptible for such a process.

23



However, we propose a procedure of averaging smooth coefficient time-varying regression

estimators over the relevant window. The resulting distribution is the same as in the case

with no bias process, and should be used when applying rolling regression in dynamic models.

The empirical example covers time-varying persistence in inflation, and we show that the

new corrected bands suggest that the persistence is less variable than previous studies would

suggest.

Rolling regression is a natural procedure, and one employed in many recent empirical

studies. The choice of window width for the typical rolling procedure is often based on having

“enough” observations in order to estimate parameters, or based on some relevant time frame

for the question at hand. Our results show that one can retain the original idea of rolling

regression, as well as the usual parametric convergence rates, but the statistical distribution

is adjusted to obtain proper coverage. Moreover, the adjusted rolling regression procedures

are simple to implement, with narrower confidence bands relative to fully nonparametric

time-varying coefficient models with uniform confidence bands.

7 Proofs
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s=[rT−Tλ+1]

xsx
⊤
s

󰀴

󰁄
−1

[rT ]󰁛

s=[rT−Tλ+1]

xs󰂃s

󰀶

󰀸+
√
TBT (r)

+
√
T

󰀵

󰀷 1

Tλ

[rT ]󰁛

s=[rT−Tλ+1]

β
󰀓 s

T

󰀔
− β̄λ(r)

󰀶

󰀸

where BT (r) is the bias process defined in the statement of the theorem. The final term is

o(1) by Reimann integrability of β(s/T ). Then applying Corollary 2 of Wu and Zhou (2011)
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for locally stationary processes, we have

1√
T

[rT ]󰁛

s=[rT−Tλ+1]

xs󰂃s ⇒ Q(r)−Q(r − λ).

Now consider xsx
⊤
s . The process xsx

⊤
s − M(s/T ) is mean zero, and following the proof of

Lemma 6 of Zhou and Wu (2010), we apply Doob’s inequality to

1√
T

t󰁛

s=1

󰀃
xsx

⊤
s −M(s/T )

󰀄
,

so that

1

T

[rT ]󰁛

s=[rT−Tλ+1]

xsx
⊤
s

p→
󰁝 r

r−λ

M(s)ds

uniformly in r.

Proof of Theorem 3.1 For the local-linear estimator, define the term

RT,0(s/T ) =
1

T

[T (1−h)]󰁛

t=[Th]

1

h
K

󰀕
t− s

Th

󰀖
xt󰂃t

Given our bandwidth choice, we have

sup
h≤s/T≤1−h

󰀐󰀐󰀐M(G, s/T ){β̃(s/T )− β(s/T )}−RT,0(s/T )
󰀐󰀐󰀐 = Op(κT ξT )

where

κT = (Th)−1T 1/ι + (Th log T )1/2 + h2

ξT = T−1/2h−1 + h

from equations (26) and (27) of Zhou and Wu (2010) and (A.3) of Zhang and Wu (2012).

We have

√
T
󰁫
β̂∗
λ(r)− β̄λ(r)

󰁬
=

1√
Tλ

[rT ]󰁛

s=[rT−Tλ+1]

󰁫
β̃(s/T )− β(s/T )

󰁬

=
1√
Tλ

[rT ]󰁛

s=[rT−Tλ+1]

M(G, s/T )−1RT,0(s/T ) +Op(T
1/2κT ξT ),
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where the last term is op(1) given our bandwidth choice. Then

√
T
󰁫
β̂∗
λ(r)− β̄λ(r)

󰁬
=

1√
Tλ

[rT ]󰁛

s=[rT−Tλ+1]

M(G, s/T )−1 1

Th

[T (1−h)]󰁛

t=[Th]

K

󰀕
t− s

Th

󰀖
xt󰂃t + op(1)

=
1√
Tλ

[T (1−h)]󰁛

t=[Th]

1

Th

[rT ]󰁛

s=[rT−Tλ+1]

M(G, s/T )−1K

󰀕
t− s

Th

󰀖
xt󰂃t + op(1)

=
1√
Tλ

[rT ]󰁛

s=[rT−Tλ+1]

M(G, s/T )−1K

󰀕
t− s

Th

󰀖
1

Th

[T (1−h)]󰁛

t=[Th]

xt󰂃t + op(1).

Consider

D(r) =
1

T

[rT ]󰁛

s=[Th]

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖
1√
Tλ

[T (1−h)]󰁛

t=[Th]

xt󰂃t.

We write

D(r) = D∗(r)−D1(r) +D2(r)

D∗(r) =
1

Tλ

[T (1−h)]󰁛

s=[Th]

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖
1√
T

[Tr]󰁛

t=[Th]

xt󰂃t

D1(r) =
1

Tλ

[T (1−h)]󰁛

s=[Tr]+1

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖
1√
T

[Tr]󰁛

t=[Th]

xt󰂃t

D2(r) =
1

Tλ

[Tr]󰁛

s=[Th]

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖
1√
T

[T (1−h)]󰁛

t=[Tr]+1

xt󰂃t

We show that D1(r) and D2(r) converge to zero uniformly in r.

󰀂D1(r)󰀂 ≤

󰀐󰀐󰀐󰀐󰀐󰀐
1√
Tλ

[Tr]󰁛

t=[Th]

xt󰂃t

󰀐󰀐󰀐󰀐󰀐󰀐

󰀐󰀐󰀐󰀐󰀐󰀐
1

T

[T (1−h)]󰁛

s=[Tr]+1

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖󰀐󰀐󰀐󰀐󰀐󰀐

Consider the second term on the right hand side. Denote the eigenvalue decomposition as

M(G, s/T ) = Γ(s/T )Θ(s/T )Γ(s/T )−1 so that
󰀐󰀐󰀐󰀐󰀐󰀐
1

T

[T (1−h)]󰁛

s=[Tr]+1

M(G, s/T )−1 1

h
K

󰀕
t− s

Th

󰀖󰀐󰀐󰀐󰀐󰀐󰀐
≤ 1

Th

[T (1−h)]󰁛

s=[Tr]+1

󰀐󰀐󰀐󰀐M(G, s/T )−1K

󰀕
t− s

Th

󰀖󰀐󰀐󰀐󰀐

=
1

Th

[T (1−h)]󰁛

s=[Tr]+1

K

󰀕
t− s

Th

󰀖󰁳
tr [Γ(s/T )Θ(s/T )−2Γ(s/T )−1]

≤ 1

Th

[T (1−h)]󰁛

s=[Tr]+1

K

󰀕
t− s

Th

󰀖
c−2k
M
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where cM is the lower bound of eigenvalues of M(s/T ). Note that t ≤ [Tr], so that t < s.

Then

1

Th

[T (1−h)]󰁛

s=[Tr]+1

K

󰀕
t− s

Th

󰀖
∼

󰁝 1−h

r

1

h
K

󰀕
u− v

h

󰀖
dv

=

󰁝 1−h−u
h

r−u
h

K(z)dz

where z = (v − u)/h, u < 1 − h, and r < u. Then as h → 0, this integral is O(h), since

K(z) = 0 for |z| ≥ 1. Hence, D1(r) converges in probability to 0 uniformly in r. The

argument is similar for D2(r).

For D∗(r) we note that

1

Th

[T (1−h)]󰁛

s=[Th]

M(G, s/T )−1K

󰀕
t− s

Th

󰀖
∼

󰁝 (1−h)

h

1

h
M(G, v)−1K

󰀕
u− v

h

󰀖
dv

=

󰁝 u−r+λ
h

u−r
h

M(G, u− zh)−1K(z)dz

= M(G, u)−1 +O(h).

Then

D∗(r) =
1√
Tλ

[rT ]󰁛

t=[Th]

M(G, t/T )−1xt󰂃t + op(1)

uniformly in r. Combining these results, we have

√
T
󰁫
β̂∗
λ(r)− β̄λ(r)

󰁬
= D∗(r)−D∗(r − λ) + op(1).

Given this representation, we apply Corollary 2 of Wu and Zhou (2011), so that

1√
Tλ

[rT ]󰁛

t=[rT−Tλ+1]

M(G, t/T )−1xt󰂃t ⇒ Q2(r)−Q2(r − λ)

whereQ2(r) is p dimensional Gaussian process with covariance E
󰀅
Q2(r1)Q2(r2)

⊤󰀆 =
󰁕 min(r1,r2)

0
Λ(s),

and

Λ(s) =
1

λ2
M(s)−1Ω(s)M(s)−1.
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