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Abstract

In game theory, p-dominance and p-best response sets serve as important robustness solution
concepts by allowing for deviations from the stringent common knowledge requirements of Nash
equilibrium. However, solving for such sets remains largely intractable beyond the simplest of
settings. The contributions of this paper are twofold: First, in monotone games, (which include
the broad class of supermodular games, submodular games, and their combinations,) we show that
these concepts can be characterized in terms of pure strategy Nash equilibria in an auxiliary game
of complete information. This makes it considerably easier to compute such sets, facilitating their
broader use. Second, these characterizations lead to new results about the structure of entire classes
of such solution concepts, including minimal p-best response (p-MBR) sets, which generalize well-
known results for pure strategy Nash equilibria. In games with strategic complements, these classes
are complete lattices. More generally, they are totally unordered. Several examples highlight the
results.
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1 Introduction

A long-standing problem in game theory is robustness of Nash equilibrium to deviations from

complete information and common knowledge. Epistemic conditions for Nash equilibrium play

require that players hold correct beliefs (of all orders) about what their opponents will play and

are certain about all payoffs. If these are not satisfied, Nash equilibrium play may not necessarily

be justified. A long literature explores different ways to weaken the stringent requirements for

equilibrium play.

As shown in a growing literature, p-dominance is a useful solution concept to study robustness

of Nash equilibrium to these deviations. This notion is defined and developed in Morris, Rob, and

Shin (1995) and in Kajii and Morris (1997). Consider a probability p ∈ [0, 1]. A profile of actions

a∗ = (a∗1, a
∗
2, . . . , a

∗
I) is a p-dominant equilibrium, if for each player i, a∗i is a best response of player

i to every player i belief that opponents are playing a∗−i with probability at least p. Morris, Rob,

and Shin (1995) show that that in two player, finite action games, for all sufficiently small p, a

p-dominant equilibrium is robust in the sense that it survives iterated deletion of strictly dominated

strategies in nearby incomplete information games, extending earlier results on global games due

to Carlsson and van Damme (1993) and shedding more light on the equilibrium selection results

due to Harsanyi and Selten (1988). Kajii and Morris (1997) show that in finite player, finite action

games, for all sufficiently small p, a p-dominant equilibrium is robust to incomplete information

arising from generalized perturbations. Frankel, Morris, and Pauzner (2003) and Hoffmann and

Sabarwal (2019) show that in monotone games, p-dominant equilibria for sufficiently small p emerge

as the unique global games selection, extending the result in Carlsson and van Damme (1993).

Tercieux (2006a) and Tercieux (2006b) have generalized p-dominance to the case when players

may be uncertain about both the actions being played by opponents and the probability with

which different actions are played. Consider a probability p ∈ [0, 1]. A collection of sets of actions

S = (Si)
I
i=1, one for each player i, is a p-best response set (p-BR set), if for each player i, Si

contains all best responses of player i when opponents take actions in S−i with probability at least

p. When every Si is the smallest such set, S is a minimal p-best response set (p-MBR set). In the

special case when each Si is a singleton, a p-MBR set specializes to the case of (strict) p-dominant

equilibrium. Tercieux (2006a) shows that a p-MBR set exists for all p ∈ [0, 1], and p-MBR set

provides a set valued concept of stability. Moreover, Tercieux (2006b) generalizes the robustness
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results in Kajii and Morris (1997) to p-BR sets and Durieu, Solal, and Tercieux (2011) find that

for p sufficiently small, strategies selected by either perturbed joint or independent fictitious play

processes must be contained in a unique p-MBR set.

In all these papers, the results are of the form that if there is a p-dominant equilibrium or a p-

MBR set with particular properties, then something useful about robustness can be concluded. The

question of solving for such p-dominant equilibrium or p-MBR set is not addressed. Indeed, to the

best of the authors’ knowledge, there exists no systematic tool to solve for p-dominant equilibria or

p-MBR sets beyond examining each admissible belief that a player may have about her opponents’

actions and all admissible supports for these beliefs. As there are uncountably many (a continuum

of) such beliefs even in two player, two action games, this can be a very complex task beyond the

simplest of cases.

The main contribution of this paper is to show that for monotone games, solving for these robust

solution concepts (p-dominant equilibria, exact p-BR sets, and p-MBR sets) is equivalent to finding

particular pure strategy Nash equilibria in a corresponding complete information auxiliary game.

The advantages of this approach are threefold. First, traditional methods for finding equilibria may

be applied to the complete information auxiliary game, which allows us to solve for robust solution

concepts in a straightforward, systematic manner and avoiding the need to consider uncountably

many beliefs for each player. Second, as use of Nash equilibrium is ubiquitous, our results make

robust solution concepts more accessible to a broader audience, facilitating their broader use. Third,

by establishing a bijection between robust solutions in the original game and corresponding Nash

equilibria in the auxiliary game, we are able to establish new results on characteristics of entire

classes of robust solutions.

A monotone game is one in which each player has either strategic complements or strategic

substitutes. This is a general class of games that includes the widely used class of games with

strategic complements (or supermodular games), games with strategic substitutes (submodular

games), and it includes games in which both types of players are present simultaneously. We

allow for finitely many players, and finitely or infinitely many actions (a compact subset of reals).

The auxiliary game is formed by taking a “high” copy and a “low” copy of each player in the

original game. Thus, if an original game consists of I players, the corresponding auxiliary game

will consist of 2I players, so that a strategy profile in the latter can be conveniently described as

a pair (x, y), where x is the an I-dimensional vector of strategies for the high players, and y is

2



the an I-dimensional vector of strategies for the low players. The payoff for each high player and

each low player is defined in a transparent manner that elicits information about best responses to

extremal beliefs and preserves the monotone structure of the original game. In this framework, we

show that a profile of actions a∗ is a p-dominant equilibrium in the original game, if, and only if,

(a∗, a∗) is a Nash equilibrium in the auxiliary game at p, and a∗ is a strict p-dominant equilibrium

in the original game, if, and only if, (a∗, a∗) is a strict Nash equilibrium in the auxiliary game at p.

In order to study the corresponding set-valued concepts, we formalize the notion of an exact

p-best response set (p-EBR set) and the notion of extremal response equilibrium. A p-EBR set

generalizes the notion of p-MBR set and is a special case of p-BR set, while extremal response

equilibrium generalizes strict Nash equilibrium to allow for particular non-strict Nash equilibria.

Characterizations for p-EBR sets and p-MBR sets are as follows: We show that in a monotone

game, if an interval [y, x] of profiles of actions is a nonempty p-EBR set in the original game, then

(x, y) with x ≥ y is an extremal response equilibrium in the auxiliary game. If best responses

are interval-valued (Assumption 1), the converse is true as well. This yields a characterization of

all p-EBR sets in a monotone game. An appropriate specialization yields a characterization of all

p-MBR sets.

Our characterization yields new theorems for the structure of the entire class of p-EBR sets and

p-MBR sets in monotone games. In games with strategic complements, the class of nonempty p-EBR

sets and p-MBR sets are both complete lattices (in the standard lattice set order). This generalizes

the result due to Zhou (1994) for the special case of Nash equilibria (which are p-dominant equilibria

with p = 1). Minimal deviations from strategic complements destroy this structure completely. If

only two players have strict strategic substitutes, or if one player has strict strategic substitutes

and another has strict strategic complements, then the class of nonempty, exact p-EBR sets and

p-MBR sets are both totally unordered. This generalizes the result for Nash equilibria in Roy and

Sabarwal (2008) and Monaco and Sabarwal (2016). Several examples highlight these results.

The next section presents a motivating example. Section 3 defines the model and presents

some results. Section 4 defines and characterizes p-dominant equilibrium. Section 5 defines and

characterizes p-EBR set and p-MBR set and gives examples to apply these results. Section 6

presents structure theorems for the class of p-EBR sets and p-MBR sets. Section 7 concludes.
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2 Motivating Example

Example 1. Consider the following two player, three action game with strategic complements. It

modifies Example 1 in Tercieux (2006a) so that payoff of each player has increasing differences.

Each player has three actions {A,B,C} with A ≺ B ≺ C. Payoffs are given in the bimatrix in

Figure 1. The game has three Nash equilibria: (A,A), (B,B), and (C,C).

A B C

A 6,6 0,5 0,0

B 5,0 7,7 7,5

C 0,0 5,7 8,8

Player 2

P
la

y
e
r

1

Figure 1: Motivating example

Suppose we are interested in p-dominant equilibria for p = 1
2 . (Several results in the literature

show that in two player games, p-dominant equilibria for p ≤ 1
2 are strongly robust.) The standard

way to do this would be to check every belief that puts probability at least 1
2 on each opponent action

and to determine which profiles satisfy the definition. Instead, we consider only two belief-based

computations, formalized in the following upper and lower auxiliary games at p = 1
2 .

For the upper auxiliary game at p = 1
2 , player 1 payoff from strategy profile (a1, a2) is given

by weight p on player 1 payoff from (a1, a2) in the original game and weight (1 − p) on player 1

payoff from (a1, C) in the original game, where C is the highest action of player 2. Player 2 payoff

is computed similarly. These payoffs are given in Figure 2. Nash equilibria in the upper auxiliary

game are (B,B) and (C,C).

A B C

A 3,3 0,6 0,4

B 6,0 7,7 7,6.5

C 4,0 6.5,7 8,8

Player 2

P
la

y
e
r

1

Figure 2: Upper auxiliary game at p = 1
2

For the lower auxiliary game at p = 1
2 , player 1 payoff from action profile (a1, a2) is given by
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A B C

A 6, 6 3, 5 3, 0

B 5, 3 6, 6 6, 2.5

C 0,3 2.5, 6 4, 4

Player 2

P
la

y
e
r

1

Figure 3: Lower auxiliary game at p = 1
2

weight p on player 1 payoff from (a1, a2) in the original game and weight (1− p) on player 1 payoff

from (a1, A) in the original game, where A is the lowest action of player 2. Player 2 payoff is

computed similarly. These payoffs are given in Figure 3. Nash equilibria in the lower auxiliary

game are (A,A) and (B,B).

A special case of our Theorem 2 below is that for a game with strategic complements, a profile

a∗ is a p-dominant equilibrium in the original game, if, and only if, a∗ is an equilibrium in both the

upper and the lower auxiliary games at p. In this example, only (B,B) is an equilibrium in both

the upper and the lower auxiliary games. Therefore, (B,B) is the unique p-dominant equilibrium

for p = 1
2 . This also shows that {B} × {B} is the unique minimal p-best response set for p = 1

2 .

The other two Nash equilibria are not robust using the criterion of p-dominance at p = 1
2 . A similar

analysis can be carried out for every p ∈ [0, 1], as shown in Example 3 below.

We extend the logic above to more general cases in Theorems 2, 3, and 4. We show that the

upper and lower payoffs at a given p capture all the information needed to evaluate all beliefs that

put probability at least p on a given profile of opponent actions a−i, and more generally, probability

at least p on sets of opponent actions S−i = (Sj)j 6=i. Our results apply to games with strategic

complements, games with strategic substitutes, and games in which arbitrary numbers of both

types of players are present simultaneously. Moreover, the results extend to set-valued concepts

and show that all p-EBR and p-MBR sets can be found in a similar manner.

3 Monotone game and corresponding auxiliary game

Consider finite dimensional Euclidean space, Rn, with the standard topology and the standard

pointwise order, denoted ≤. It is a lattice in this order, with lattice operations defined component-

wise. For subsets S and S′ of Rn, S is lower than S′ in the lattice set order, denoted S v S′,
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if for every x ∈ S and for every y ∈ S′, x ∧ y ∈ S and x ∨ y ∈ S′.1 Infimum and supremum of a

subset S of Rn are denoted ∧S and ∨S, respectively.

Definition 1. A monotone game is a collection G = (Ai, πi)i∈I , where

1. I is a finite set of players, I = {1, 2, . . . , I}.

2. Each player i ∈ I has an action space Ai ⊂ R that is a compact sublattice in R. The space

of profiles of actions is A =
∏
i∈I
Ai. For notational convenience, we use the same symbol ≤ to

denote the product order on subsets of A.

3. The payoff of each player i is πi : A → R. It is continuous and either πi has increasing

differences in (ai, a−i), or πi has decreasing differences in (ai, a−i), where, as usual,

• πi has increasing differences in (ai, a−i), if for every ai ≤ a′i and a−i ≤ a′−i,

πi(a
′
i, a−i)− πi(ai, a−i) ≤ πi(a′i, a′−i)− πi(ai, a′−i).

• πi has decreasing differences in (ai, a−i), if for every ai ≤ a′i and a−i ≤ a′−i,

πi(ai, a−i)− πi(a′i, a−i) ≤ πi(ai, a′−i)− πi(a′i, a′−i).

We say that player i is a strategic complements player, if πi has increasing differences

in (ai, a−i), and player i is a strategic substitutes player, if πi has decreasing differences in

(ai, a−i). The definition of monotone game naturally subsumes games with strategic complements,

games with strategic substitutes, and arbitrary combinations of the two. A game with strategic

complements (GSC) is a monotone game in which payoff of every player i has increasing dif-

ferences in (ai, a−i). A game with strategic substitutes (GSS) is a monotone game in which

payoff of every player i has decreasing differences in (ai, a−i). Given the relation of increasing differ-

ences to supermodularity and decreasing differences to submodularity, GSC and GSS are sometimes

termed supermodular and submodular games, respectively.

Uncertainty about play of opponents is formalized by a probability measure on actions of op-

ponents. Let ∆[A−i] denote the set of probability measures on the Borel sigma-algebra on A−i.

A measure µ ∈ ∆[A−i] is viewed as player i’s belief about play of opponents. Player i’s expected

payoff from playing ai ∈ Ai when belief about play of opponents is µ ∈ ∆[A−i] is

πi(ai, µ) =

∫
A−i

πi(ai, a−i)dµ.

1The lattice set order is due to Veinott (1989), as mentioned in Topkis (1978). Other terms used in the literature
are induced set ordering and strong set order.
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Following Morris, Rob, and Shin (1995) and Kajii and Morris (1997), p-dominant equilibrium

is defined as follows. For each p ∈ [0, 1], a profile of actions a∗ ∈ A is a p-dominant equilibrium,

if for every player i ∈ I, a∗i is a best response of player i whenever player i believes that opponents

will play a∗−i with probability at least p. That is, for every player i,

a∗i ∈ {ai ∈ Ai | ∀µ ∈ ∆[A−i] with µ(a∗−i) ≥ p, ∀a′i ∈ Ai, πi(ai, µ) ≥ πi(a′i, µ)}.

Following Tercieux (2006a), a p-best response set and minimal p-best response set are defined

as follows. For each player i, consider measurable Si ⊆ Ai, let S =
∏
i∈I
Si and S−i =

∏
j 6=i
Sj . For each

p ∈ [0, 1], a p-belief for player i that opponents play in S−i is a probability measure µ ∈ ∆[A−i] that

assigns to S−i probability at least p. Let Mp[S−i] denote the set of all such probability measures,

that is,

Mp[S−i] = {µ ∈ ∆[A−i] | µ(S−i) ≥ p}.

When each Si ⊆ Ai is nonempty and compact, let Λi[S−i, p] be the set of player i’s best responses

when player i believes that opponents will play in S−i with probability at least p, that is,

Λi[S−i, p] =
{
ai ∈ Ai | ∃µ ∈Mp[S−i], ∀a′i ∈ Ai, πi(ai, µ) ≥ πi(a′i, µ)}.

Moreover, let Λ[S, p] =
∏
i∈I

Λi[S−i, p]. A set S =
∏
i∈I
Si is a p-best response set, or p-BR set, if

Λ[S, p] ⊆ S. A set S is a minimal p-best response set, or p-MBR set, if S is a p-BR set and

S does not contain any proper subset that is a p-BR set. The following properties of p-MBR sets

due to Tercieux (2006a) are useful for the analysis here.

Proposition 1. (Tercieux, 2006a) For each fixed p ∈ [0, 1],

1. Every game has a p-MBR set.

2. Two distinct p-MBR sets are disjoint.

3. If S is a p-MBR set, then Λ[S, p] = S.

In developing the results here, an important insight is that in a monotone game, for each

p ∈ [0, 1], we can construct bounds on measures in Mp[S−i] and on best responses to those measures
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as follows. For each p ∈ [0, 1] and each z−i ∈ A−i, let
¯
µz−i , µ̄z−i ∈ ∆[A−i] be defined as

¯
µz−i = pδz−i + (1− p)δ∧A−i and µ̄z−i = pδz−i + (1− p)δ∨A−i ,

where, as usual, δa is the degenerate measure that puts probability one on a, ∧A−i = inf A−i, and

∨A−i = supA−i. The measure
¯
µz−i puts probability p on z−i and probability 1− p on the lowest

profile of opponent actions, and measure
¯
µz−i puts probability p on z−i and probability 1−p on the

highest profile of opponent actions. Payoff to player i from playing xi when opponents are playing

¯
µz−i or µ̄z−i is

πi(xi,
¯
µz−i) = pπi(xi, z−i) + (1− p)πi(xi,∧A−i)

πi(xi, µ̄z−i) = pπi(xi, z−i) + (1− p)πi(xi,∨A−i).

The intuition that
¯
µz−i is the smallest measure that puts probability p on z−i and µ̄z−i is

the largest is formalized using first order stochastic dominance. Recall that for µ′, µ ∈ ∆[A−i],

µ′ first order stochastically dominates µ, denoted µ ≤F µ′, if for every increasing set E ⊆ A−i,

µ(E) ≤ µ′(E). As usual, a set E ⊆ A−i is increasing if for each x ∈ E and each y ∈ A−i,

x ≤ y ⇒ y ∈ E. Measures in Mp[S−i] and best responses to such measures are bounded as follows.

Lemma 1. Let i ∈ I, S−i =
∏
j 6=i
Sj, and p ∈ [0, 1]. For every µ ∈Mp[S−i],

1.
¯
µ∧S−i ≤F µ ≤F µ̄∨S−i

2. If i ∈ I is a strategic complements player, then

BRi(
¯
µ∧S−i) v BRi(µ) v BRi(µ̄∨S−i).

3. If i ∈ I is a strategic substitutes player, then

BRi(µ̄∨S−i) v BRi(µ) v BRi(
¯
µ∧S−i).

Proof. For statement (1), let µ ∈ Mp[S−i] and E ⊆ A−i be increasing. If S−i ∩ E 6= ∅, then for

every x ∈ S−i ∩E, x ≤ ∨S−i ≤ ∨A−i, whence µ̄∨S−i(E) = p+ (1− p) = 1 ≥ µ(E). If S−i ∩E = ∅,

then as E is increasing, µ̄∨S−i(E) ≥ 1− p, and moreover, it must be that µ(E) ≤ 1− p, because if

µ(E) > 1−p, then µ(S−i)+µ(E) > p+(1−p) = 1, a contradiction. Thus, µ(E) ≤ 1−p ≤ µ̄∨S−i(E),

whence µ ≤F µ̄∨S−i . Similarly, it can be shown that
¯
µ∧S−i ≤F µ.
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For statement (2), notice that for x̂i, x̃i ∈ Ai,

πi(x̃i, µ)− πi(x̂i, µ) =

∫
A−i

πi(x̃i, x−i)− πi(x̂i, x−i)dµ(x−i).

If player i is a strategic complements player, then πi(xi, x−i) has increasing differences in (xi, x−i),

and therefore, πi(xi, µ) has increasing differences in (xi, µ), where the partial order on distribu-

tions is given by first order stochastic dominance. Consequently, by Topkis (1978), BRi(
¯
µ∧S−i) v

BRi(µ) v BRi(µ̄∨S−i). Statement (3) follows similarly.

We analyze p-dominance and p-MBR sets using an auxiliary game defined as follows.

Definition 2. Let G = (Ai, πi)i∈I be a monotone game. The auxiliary game at p ∈ [0, 1] is

G̃ = (Ãi, π̃i)i∈Ĩ , where

1. Ĩ = IH ∪ IL is a set of 2I players, two copies (one high, one low) for each player in G.

The high players are denoted by IH = {1H , . . . , iH , . . . , IH} and the low players by IL =

{1L, . . . , iL, . . . , IL}.

2. The action space for each iH ∈ IH and iL ∈ IL is the same as that for the corresponding

player i in G. That is, ÃiH = ÃiL = Ai, with the same Euclidean order. The space of profiles

of actions is Ã = AH × AL, where AH =
∏
i∈IH
ÃiH and AL =

∏
i∈IL
ÃiL. When convenient,

profiles x, y ∈ A are identified naturally with profile (x, y) ∈ AH ×AL, and conversely.

3. Payoffs are defined as follows.

• If i ∈ I has increasing differences in (ai, a−i), then for the corresponding iH and iL,

π̃iH (x, y) = πi(xi, µ̄x−i) and π̃iL(x, y) = πi(yi,
¯
µy−i).

• If i ∈ I has decreasing differences in (ai, a−i), then for the corresponding iH and iL,

π̃iH (x, y) = πi(xi,
¯
µy−i) and π̃iL(x, y) = πi(yi, µ̄x−i).

The auxiliary game has the following features. Although there are a total of 2I players in the

auxiliary game, each player has I−1 opponents. The identity of the opponents depends on whether

a player has strategic complements in the original game or strategic substitutes. If player i ∈ I is
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a strategic complements player, then payoff for its high copy iH in G̃ is affected only by high copies

of other players, and payoff for its low copy iL in G̃ is affected only by low copies of other players.

If player i ∈ I is a strategic substitutes player, then payoff for its high copy iH is affected only by

low copies of other players, and payoff for its low copy iL is affected only by high copies of other

players.

The construction of the auxiliary game preserves strategic complements and strategic substitutes

for each player.

Theorem 1. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1].

1. If i ∈ I is a strategic complements player in G, then both iH and iL are strategic complements

players in G̃.

2. If i ∈ I is a strategic substitutes player in G, then both iH and iL are strategic substitutes

players in G̃.

3. G̃ is a monotone game.

Proof. For statement (1), suppose player i is a strategic complements player in G. Then payoff for

its high copy in G̃ is given by

π̃iH (x, y) = πi(xi, µ̄x−i) = pπi(xi, x−i) + (1− p)πi(xi,∨A−i).

If p = 0, then π̃iH is constant with respect to opponent actions (x, y)−iH , and therefore, π̃iH

satisfies increasing differences in (xiH , (x, y)−iH ) trivially. For p > 0, π̃iH does not depend on

y, and therefore, π̃iH satisfies increasing differences in (xiH , (x, y)−iH ), if, and only if, πi satisfies

increasing differences in (xi, x−i). This shows that iH is a strategic complements player in G̃. A

similar argument shows that iL is a strategic complements player in G̃. Statement (2) is proved

similarly. Statement (3) follows from statements (1) and (2).

Payoff functions in the auxiliary game are designed to produce the highest and lowest best

response for each type of player, in the following sense.

If player i is a strategic complements player, then payoff for its high copy is given by π̃iH (x, y) =

πi(xi, µ̄x−i), and therefore, best response of its high copy is given by B̃RiH ((x, y)−iH ) = BRi(µ̄x−i),

where BRi(µ̄x−i) is best response of player i to belief µ̄x−i about opponent actions in the original
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game G. Lemma 1 shows that if S−i = {x−i}, then µ̄x−i is the highest belief that opponents play

x−i with probability at least p. As player i is a strategic complements player, Lemma 1 shows

further that BRi(µ̄x−i) is the highest best response. Similarly, payoff for its low copy is π̃iL(x, y) =

πi(yi,
¯
µy−i), and therefore, best response for its low copy is B̃RiL((x, y)−iL) = BRi(

¯
µy−i), where

BRi(
¯
µy−i) is best response of player i to belief

¯
µy−i about opponent actions in the original game G.

Lemma 1 shows that
¯
µy−i is the lowest belief that opponents play y−i with probability at least p.

As player i is a strategic complements player, Lemma 1 shows further that BRi(
¯
µy−i) is the lowest

best response. To summarize, if player i is a strategic complements player, then

B̃RiH ((x, y)−iH ) = BRi(µ̄x−i) and B̃RiL((x, y)−iL) = BRi(
¯
µy−i).

A similar argument shows that if player i is a strategic substitutes player, then

B̃RiH ((x, y)−iH ) = BRi(
¯
µy−i) and B̃RiL((x, y)−iL) = BRi(µ̄x−i).

The definition of (pure strategy) Nash equilibrium is unchanged, both in the original game and

in the auxiliary game.

In the special case when all players are strategic complements players, that is, for a GSC, there

is an additional aspect of the auxiliary game that is useful. In this case, the definition shows that for

each player, payoff for their high copy is affected by actions of high types of other players only, and

payoff for their low copy is affected by actions of low types of other players only. This implies that

the auxiliary game G̃, which is also a GSC, can be decomposed into two GSC, an upper auxiliary

game, denoted G̃H , and a lower auxiliary game, denoted G̃L. In G̃H , only high copies of all players

are included, and in G̃L, only low copies of all players are included. In particular, a profile (x, y) is

a Nash equilibrium in G̃, if, and only if, x is a Nash equilibrium in G̃H and y is a Nash equilibrium

in G̃L. This is helpful to analyze GSC. This decomposition does not hold either for general GSS or

for games in which both types of players are present.

4 Characterizing p-dominant equilibrium

The main result here characterizes p-dominant and strict p-dominant equilibrium in terms of Nash

equilibrium in the corresponding auxiliary game. For each p ∈ [0, 1], a profile of actions a∗ ∈ A is

11



a p-dominant equilibrium, if for every player i ∈ I,

a∗i ∈ {ai ∈ Ai | ∀µ ∈Mp[{a∗−i}], ∀a′i ∈ Ai, πi(ai, µ) ≥ πi(a′i, µ)}.

We also define the notion of strict p-dominant equilibrium. For each p ∈ [0, 1], a profile of actions

a∗ ∈ A is a strict p-dominant equilibrium, if for every player i ∈ I,

a∗i ∈ {ai ∈ Ai | ∀µ ∈Mp[{a∗−i}], ∀a′i ∈ Ai \ {ai}, πi(ai, µ) > πi(a
′
i, µ)}.

The strength of Theorem 2 below is that in order to locate every p-dominant equilibrium and

every strict p-dominant equilibrium, it is both necessary and sufficient to consider a subset of pure

strategy Nash equilibria in the auxiliary game. In general, locating p-dominant equilibria requires

checking the best response of every player to every possible belief that puts probability p or more on

different profiles of opponent actions. This involves taking into account uncountably many beliefs

even in simple cases when players have only a few actions. Construction of the auxiliary game

makes the task much easier by considering high and low payoffs only and by looking for particular

Nash equilibria.

In other words, p-dominant equilibrium and strict p-dominant equilibrium in the original game

may be found with the same tractability as that of computing pure strategy Nash equilibrium in the

auxiliary game. This is much easier given the availability of an array of optimization, computation,

and fixed point techniques to find Nash equilibrium in a game.

Theorem 2. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1].

1. A profile of actions a∗ is a p-dominant equilibrium in G, if, and only if, (a∗, a∗) is a Nash

equilibrium in G̃.

2. A profile of actions a∗ is a strict p-dominant equilibrium in G, if, and only if, (a∗, a∗) is a

strict Nash equilibrium in G̃.

Proof. Consider statement (1). Suppose a∗ is a p-dominant equilibrium in G. Then for every player

i and for every µ ∈ Mp({a∗−i}), a∗i ∈ BRi(µ). In particular, a∗i ∈ BRi(µ̄a∗−i
) and a∗i ∈ BRi(

¯
µa∗−i

).

Suppose player i is a strategic complements player and consider its two copies iH and iL in G̃.

Then a∗i ∈ BRi(µ̄a∗−i
) = B̃RiH ((a∗, a∗)−iH ) and a∗i ∈ BRi(

¯
µa∗−i

) = B̃RiL((a∗, a∗)−iL). A similar

12



argument works if player i is a strategic substitutes player. Thus, (a∗, a∗) is a Nash equilibrium

in G̃. In the other direction, suppose (a∗, a∗) is a Nash equilibrium in G̃. Fix player i ∈ I, and

let a∗i be the common value of a∗iH and a∗iL . If i is a strategic complements player, then for every

µ ∈Mp({a∗−i}),

BRi(
¯
µa∗−i

) v BRi(µ) v BRi(µ̄a∗−i
).

Moreover, (a∗, a∗) is a Nash equilibrium implies that a∗i ∈ B̃RiH ((a∗, a∗)−iH ) = BRi(µ̄a∗−i
) and

a∗i ∈ B̃RiL((a∗, a∗)−iL) = BRi(
¯
µa∗−i

). As BRi(µ) 6= ∅, pick b ∈ BRi(µ), and then properties of

lattice set order imply that a∗i = (a∗i ∨b)∧a∗i ∈ BRi(µ). A similar argument works if i is a strategic

substitutes player. Thus, for every i and for every µ ∈ Mp({a∗−i}), a∗i ∈ BRi(µ), whence a∗ is a

p-dominant equilibrium in G.

Consider statement (2). Suppose a∗ is a strict p-dominant equilibrium. Then for every player

i and for every µ ∈ Mp({a∗−i}), a∗i = BRi(µ). In particular, a∗i = BRi(µ̄a∗−i
) and a∗i = BRi(

¯
µa∗−i

).

Suppose player i is a strategic complements player and consider its two copies iH and iL in G̃. Then

a∗i = BRi(µ̄a∗−i
) = B̃RiH ((a∗, a∗)−iH ) and a∗i = BRi(

¯
µa∗−i

) = B̃RiL((a∗, a∗)−iL). A similar argu-

ment works if i is a strategic substitutes player. Consequently, (a∗, a∗) is a strict Nash equilibrium

in G̃. In the other direction, suppose (a∗, a∗) is a strict Nash equilibrium in G̃. Fix player i ∈ I,

and let a∗i be the common value of a∗iH and a∗iL . If i is a strategic complements player, then for

every µ ∈Mp({a∗−i}),

{a∗i } v BRi(µ) v {a∗i },

whence BRi(µ) = a∗i . A similar argument works if player i is a strategic substitutes player. Thus,

a∗ is a strict p-dominant equilibrium in G.

Theorem 2 provides a natural bijection between p-dominant equilibria in G and particular Nash

equilibria in G̃, and between strict p-dominant equilibria in G and particular strict Nash equilibria

in G̃. Moreover, it helps to characterize singleton p-MBR sets, as follows.

Corollary 1. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1].

For a profile of actions a∗ ∈ A,

{a∗} is a p-MBR set in G, if, and only if, (a∗, a∗) is a strict Nash equilibrium in G̃.

Proof. Tercieux (2006a) points out that {a∗} is a singleton p-MBR set, if, and only if, a∗ is a strict

p-dominant equilibrium, and Theorem 2 shows that this is equivalent to (a∗, a∗) is a strict Nash
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equilibrium in G̃.

5 Characterizing p-EBR set and p-MBR set

In order to characterize p-MBR sets more generally, it is useful to consider a new class of sets. A

set S =
∏
i∈I
Si is an exact p-best response set, denoted p-EBR set, if Λ(S, p) = S. In other

words, for every player i, Λi(S−i, p) = Si. As shown in proposition 1, every p-MBR set has this

property, and therefore, p-EBR set is a generalization of p-MBR set. Moreover, it is immediate

that every p-EBR set is a p-BR set. The converse to both statements is not necessarily true. In

other words, p-EBR set is an intermediate notion between p-MBR set and p-BR set.

We shall also find it useful to formalize a notion of extremal response equilibrium in the auxiliary

game. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1]. A Nash equilibrium (x, y) in

G̃ is an extremal response equilibrium, if all high players are best responding with their highest

best response, and all low players are best responding with their lowest best response. That is, for

every iH ∈ IH , xiH = ∨B̃RiH ((x, y)−iH ), and for every iL ∈ IL, yiL = ∧B̃RiL((x, y)−iL). Notice

that every strict Nash equilibrium is trivially an extremal response equilibrium. The definition

generalizes this to the case when a player may have multiple best responses in equilibrium, in

which case the extremal response equilibrium is the one in which high players are playing their

highest best response and low players are playing their lowest best response.

As shown in Theorem 3, extremal response equilibrium emerges naturally as a necessary con-

dition to study p-EBR sets. For it to be a sufficient condition, the following assumption is helpful.

Assumption 1. For each player i ∈ I, each p ∈ [0, 1], and each a−i, a
′
−i ∈ A−i such that a′−i ≥ a−i,

BRi(pδa−i + (1− p)δa′−i
) (1)

is interval-valued.

When Ai is an interval in R, assumption 1 is equivalent to the statement that BRi(pδa−i +

(1 − p)δa′−i
) is convex valued, for which any one of the following conditions is sufficient. Consider

the corresponding payoff function pπi(·, a−i) + (1− p)πi(·, a′−i) for which BRi(pδa−i + (1− p)δa′−i
)

is the best response. One sufficient condition for Assumption 1 to be satisfied is that this payoff

function has a unique maximizer, in which case it is trivially convex valued. A standard sufficient
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condition is that the payoff function is strictly quasiconcave.2 A second sufficient condition is that

each πi(·, a−i) is concave in ai, in which case the payoff function is concave, and therefore, the best

response is convex valued. For a third sufficient condition, Choi and Smith (2017) give conditions

under which the sum of two quasiconcave functions remains quasiconcave, so that if each πi(·, a−i)

is quasiconcave in ai and has an increasing portion that is more concave than each decreasing

portion, their weighted sum is quasiconcave in ai as well, and this implies that best response is

convex valued.

When Ai ⊆ R is not convex, another sufficient condition based on diminishing returns is avail-

able. Say that πi has diminishing returns in ai, if for every a−i ∈ A−i, and every a′′i , a
′
i, ai ∈ Ai

with a′′i > a′i > ai,

π(a′i, a−i)− π(ai, a−i) ≥ π(a′′i , a−i)− π(a′i, a−i).

In other words, for fixed actions of opponents a−i, the marginal return to player i from playing a′i

over a lower ai are reduced when player i plays the higher pair a′′i versus a′i. Morris and Ui (2005)

use this assumption with strategic complements. Sufficiency of this condition is formalized in the

following proposition.

Proposition 2. If for every player i ∈ I, πi has diminishing returns in ai, then Assumption 1 is

satisfied.

Proof. See Appendix.

Lemma 2. Let G be a monotone game, G̃ the auxiliary game at p ∈ [0, 1], and suppose Assumption

1 holds. If (x, y) is an extremal response equilibrium in G̃ with x ≥ y, then for every i ∈ I,

[yi, xi] ⊆ Λi({y−i, x−i}, p).

Proof. See Appendix.

The next theorem gives the main result in this section. It is significant because solving for

all p-MBR sets directly from the definition in Tercieux (2006a) involves evaluating each player’s

best responses to all beliefs which put at least probability p over arbitrary subsets of opponents’

actions. This is a daunting task even with few players and few actions. Our approach reduces

2See Christensen (2017) for necessary and sufficient conditions for when a function has a unique maximizer.
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this problem to checking for extremal response equilibria in the auxiliary game. Indeed, Theorem

3 shows that in order to find p-EBR sets (a class that includes p-MBR sets), it is necessary and

sufficient to consider extremal response equilibria in the auxiliary game. We don’t need to evaluate

best responses to uncountably many beliefs each time over different subsets of opponent actions.

Consequently, p-EBR sets (and therefore, p-MBR sets) can be found using standard techniques to

compute Nash equilibrium.

Theorem 3. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1].

1. If S is a nonempty p-EBR set in G, then (∨S,∧S) is an extremal response equilibrium in G̃.

2. If (x, y) is an extremal response equilibrium in G̃ with x ≥ y, then the interval [y, x] is a

nonempty p-BR set in G.

3. Suppose Assumption 1 is satisfied.

(a) Interval [y, x] is a nonempty p-EBR set in G, if, and only if, profile (x, y) with x ≥ y is

an extremal response equilibrium in G̃.

(b) Every nonempty p-EBR set S in G is an interval of the form S = [∧S,∨S].

Proof. For statement (1), suppose for every i, Si = Λi[S−i, p]. Consider player i and suppose player i

is a strategic complements player. Then BRi(µ̄∨S−i) ⊆ Λi(S−i, p) = Si implies ∨BRi(µ̄∨S−i) ≤ ∨Si.

Moreover, Λi(S−i, p) = Si implies that there is µ̂ ∈ Mp[S−i] such that ∨Si ∈ BRi(µ̂), and there-

fore, using strategic complements, ∨Si ≤ ∨BRi(µ̄∨S−i). It follows that ∨Si = ∨BRi(µ̄∨S−i) ∈

BRi(µ̄∨S−i) = B̃RiH ((∨S,∧S)−iH ). Similarly, it can be shown that ∧Si = ∧BRi(
¯
µ∧S−i) ∈

BRi(
¯
µ∧S−i) = B̃RiL((∨S,∧S)−iL). A similar argument holds if player i is a strategic substitutes

player.

For statement (2), suppose (x, y) is an extremal response equilibrium in G̃ with x ≥ y. For

player i, consider ai ∈ Λi([y−i, x−i], p), and let µ ∈ Mp[y−i, x−i] be such that ai ∈ BRi(µ̂). If

player i is a strategic complements player, then BRi(
¯
µy−i) v BRi(µ) v BRi(µ̄x−i), and there-

fore, yiL = ∧BRi(
¯
µy−i) ≤ ai ≤ ∨BRi(µ̄x−i) = xiH . A similar argument holds if player i is a

strategic substitutes player. Identifying yiL = yi and xiH = xi implies that for every player i,

Λi([y−i, x−i], p) ⊆ [yi, xi].

For statement (3)(a), only necessity needs to be proved. Suppose (x, y) with x ≥ y is an

extremal response equilibrium in G̃. By statement (2), [y, x] is a p-BR set, so that for each player i,
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Λi([y−i, x−i], p) ⊆ [yi, xi]. Moreover, by Lemma 2, [yi, xi] ⊆ Λi({y−i, x−i}, p). Therefore, for every

player i, Λi([y−i, x−i], p) = [yi, xi], as desired.

For statement (3)(b), suppose S is a p-EBR set. By statement 1, (∨S,∧S) is an extremal

response equilibrium in G̃, and therefore, for each player i,

Si ⊆ [∧Si,∨Si] ⊆ Λi({∧S−i,∨Si}, p) ⊆ Λi(S−i, p) = Si,

where the second inclusion follows from Lemma 2 and the equality from the assumption that S is

a p-EBR set. Consequently, for every player i, Si = [∧Si,∨Si].

Theorem 3 shows the close connection between p-EBR sets in G and extremal response equilibria

in G̃. Statement (1) shows the necessity of considering extremal response equilibria in order to find

p-EBR sets in G. When combined with Assumption 1, statement (3)(a) shows the necessity and

sufficiency of extremal response equilibria for interval p-EBR sets. Statement (3)(b) exhausts all

other possibilities by necessitating p-EBR sets to be intervals.

Theorem 3 yields straightforward recipes to compute p-EBR sets in G. It also provides a natural

bijection between p-EBR sets in G and the subset of extremal response equilibria (x, y) in G̃ with

x ≥ y. These are formalized as follows.

Corollary 2. Let G be a monotone game, G̃ the auxiliary game at p ∈ [0, 1], and suppose Assump-

tion 1 is satisfied.

1. Every strict Nash equilibrium (x, y) in G̃ with x ≥ y yields a nonempty p-EBR set [y, x] in G.

2. If best responses are singleton-valued, then every Nash equilibrium (x, y) in G̃ with x ≥ y

yields a nonempty p-EBR set [y, x] in G.

3. There is a natural bijection between nonempty p-EBR sets in G and extremal response equi-

libria (x, y) in G̃ with x ≥ y.

Proof. Statement (1) follows immediately from statement (3) of Theorem 3, because a strict Nash

equilibrium is an extremal response equilibrium. Statement (2) follows from statement (1), because

with singleton best responses, every Nash equilibrium is strict. Statement (3) follows from statement

(3) in Theorem 3, using the natural mapping [y, x] 7→ (x, y) restricted to nonempty p-EBR sets in

G.
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We now turn our attention to characterizing p-MBR sets. The following lemma will be useful.

Lemma 3. Every p-BR set contains a p-MBR set.

Proof. See Appendix.

Theorem 4. Let G be a monotone game and G̃ the auxiliary game at p ∈ [0, 1].

1. If interval [y, x] is a nonempty p-MBR set in G, then (x, y) is an extremal response equilibrium

in G̃ with x ≥ y, and there is no other extremal response equilibrium (x′, y′) in G̃ with y ≤

y′ ≤ x′ ≤ x.

2. Suppose Assumption 1 is satisfied as well.

(a) Interval [y, x] is a nonempty p-MBR set in G, if, and only if, (x, y) is an extremal

response equilibrium in G̃ with x ≥ y, and there is no other extremal response equilibrium

(x′, y′) in G̃ with y ≤ y′ ≤ x′ ≤ x.

(b) Every p-MBR set S in G is of the form S = [∧S,∨S].

Proof. For statement (1), notice that a p-MBR set is a p-EBR set and therefore, Theorem 3 implies

that (x, y) is an extremal response equilibrium in G̃ with x ≥ y. Moreover, if there is a different

extremal response equilibrium (x′, y′) in G̃ with y ≤ y′ ≤ x′ ≤ x, then Theorem 3 implies that

[y′, x′] is a strictly smaller p-BR set contained in [y, x], a contradiction.

For statement (2)(a), only necessity needs to be proved. Suppose (x, y) is an extremal response

equilibrium in G̃ with x ≥ y, and there is no other extremal response equilibrium (x′, y′) in G̃ with

y ≤ y′ ≤ x′ ≤ x. In this case, Theorem 3 implies that [y, x] is an p-BR set in G. Suppose to

the contrary that [y, x] is not a p-MBR set. Then there is a p-BR set S in G that is a proper

subset of this set, that is, S ( [y, x]. By Lemma 3, S contains a p-MBR set, say, K ⊆ S, which,

by Proposition 1, is a p-EBR set. If follows from Theorem 3 that K = [∧K,∨K] and also that

(∨K,∧K) is an extremal response equilibrium in G̃. Finally, [∧K,∨K] ⊆ S ( [y, x] implies that

(∨K,∧K) is a different extremal response equilibrium than (y, x) with y ≤ ∧K ≤ ∨K ≤ x, a

contradiction.

Statement (2)(b) follows, because Proposition 1 shows that a p-MBR set is a p-EBR set, which,

by Theorem 3 has the desired form.
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The following examples highlight these results.

Example 2. Consider the following two player, four action game with strategic complements. Each

player i has a strategy space Ai = {A,B,C,D} with A ≺ B ≺ C ≺ D for i = 1, 2. Payoffs are given

in Figure 4 below. This game is a GSC, because each player’s payoff has increasing differences.

The game has four Nash equilibria, (A,A), (B,B), (C,C), and (D,D).

A B C D

A 10, 10 10, 0 0, -10 -40, -10

B 0, 10 10, 10 0, 0 0, 0

C -10, 0 0, 0 0, 0 0, 0

D -10, -40 0, 0 0, 0 10, 10

Player 2
P

la
y
e
r

1

Figure 4: Two player, four action GSC

To fix ideas, suppose we are interested in p-dominant equilibria, p-MBR sets, and p-EBR sets

for p = 3
4 . As pointed out in the discussion following Theorem 1, when G is a GSC, a corresponding

auxiliary game G̃ can be analyzed in terms of an upper auxiliary game, G̃H , and a lower auxiliary

game, G̃L. Payoffs in the upper auxiliary game at p = 3
4 are given in Figure 5. The Nash equilibria

in the upper auxiliary game are (B,B) and (D,D). Payoffs in the lower auxiliary game at p = 3
4

are given in Figure 6. The Nash equilibria in the lower auxiliary game are (A,A) and (D,D). As

all Nash equilibria in the auxiliary games are strict, they are also extremal response equilibria.

A B C D

A -2.5, -2.5 -2.5, 0 -10, -7.5 -40, -5

B 0, -2.5 7.5, 7.5 0,0 0, 2.5

C -7.5, -10 0, 0 0, 0 0, 2.5

D -5, -40 2.5, 0 2.5, 0 10, 10

Player 2

P
la

y
e
r

1

Figure 5: Upper auxiliary game at p = 3
4

As (D,D) is the only Nash equilibrium in both upper and lower auxiliary games and it is a strict

Nash equilibrium in both games, theorem 2 implies that (D,D) is the unique strict p-dominant

equilibrium at p = 3
4 . Actions in each of the other three Nash equilibria in the original game are
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A B C D

A 10, 10 10, 0 2.5, -10 -27.5, -10

B 0, 10 7.5, 7.5 0, -2.5 0, -2.5

C -10, 2.5 -2.5, 0 -2.5, -2.5 -2.5, -2.5

D -10, -27.5 -2.5, 0 -2.5, -2.5 5, 5

Player 2

P
la

y
e
r

1
Figure 6: Lower auxiliary game at p = 3

4

no longer optimal when each player puts probability 3
4 or higher on their opponent playing their

specified Nash equilibrium action. Corollary 1 implies that {D} × {D} is a p-MBR set at p = 3
4 .

Theorem 3 tells us how to solve for all p-EBR sets. As (B,B,A,A) is an extremal response

equilibrium, the interval [(A,A), (B,B)] = {A,B} × {A,B} is a p-EBR set. Similarly, the interval

[(A,A), (D,D)], which is the whole space, and the singleton interval [(D,D), (D,D)] are p-EBR

sets. There are no other p-EBR sets. Theorem 4 shows that the only p-MBR sets are the interval

[(A,A), (B,B)] and the singleton interval [(D,D), (D,D)].

This is a much easier solution than the conventional approach of considering each possible belief

that a player may have about her opponents’ actions and for each possible subset of opponent

actions.

Example 3. Consider the motivating example from section 2 with payoffs give in Figure 7. The

game has three Nash equilibria: (A,A), (B,B), and (C,C).

A B C

A 6, 6 0, 5 0, 0

B 5, 0 7, 7 7, 5

C 0, 0 5, 7 8, 8

Player 2

P
la

y
e
r

1

Figure 7: Two player, three action GSC

As this game is a GSC, we can use the upper and lower auxiliary games to find all p-dominant

equilibria, all p-EBR sets, and all p-MBR sets for every p ∈ [0, 1]. Payoffs for the upper auxiliary

game at p are given in Figure 8 and payoffs for the lower auxiliary game at p are given in Figure

9. Nash equilibria in the auxiliary games are listed in Figure 10.
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A B C

A 6p, 6p 0, 5p+7(1-p) 0, 8(1-p)

B 5p+7(1-p), 0 7, 7 7, 5p+8(1-p)

C 8(1-p), 0 5p+8(1-p), 7 8, 8

Player 2

P
la

y
e
r

1

Figure 8: Upper auxiliary game at p

A B C

A 6, 6 6(1-p), 5 6(1-p), 0

B 5, 6(1-p) 7p+5(1-p), 7p+5(1-p) 7p+5(1-p), 5p

C 0, 6(1-p) 5p, 7p+5(1-p) 8p, 8p

Player 2

P
la

y
e
r

1

Figure 9: Lower auxiliary game at p

p NE: Lower auxiliary game NE: Upper auxiliary game

p < 1
8 (A,A) (C,C)

p ∈ [18 ,
1
3) (A,A), (B,B) (C,C)

p ∈ [13 ,
5
6) (A,A), (B,B) (B,B), (C,C)

p ∈ [56 ,
7
8) (A,A), (B,B), (C,C) (B,B), (C,C)

p ≥ 7
8 (A,A), (B,B), (C,C) (A,A), (B,B), (C,C)

Figure 10: Nash equilibria in upper and lower auxiliary games
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Using Theorems 2, 3, and 4, we can read off all p-dominant equilibria, all p-EBR sets, and all

p-MBR sets using the list of Nash equilibria for every p ∈ [0, 1]. These are listed in Figure 11. Once

again, the exhaustive list of these robustness solutions can be computed easily.

p p-EBR sets p-MBR sets p-dominant equilibria

p < 1
8 {A,B,C} × {A,B,C} {A,B,C} × {A,B,C} None

p ∈ [18 ,
1
3) {A,B,C} × {A,B,C}, {B,C} × {B,C} None

{B,C} × {B,C}
p ∈ [13 ,

5
6) {A,B,C} × {A,B,C}, {B} × {B} (B,B)

{A,B} × {A,B},
{B,C} × {B,C},
{B} × {B}

p ∈ [56 ,
7
8) {A,B,C} × {A,B,C}, {B} × {B}, (B,B),

{A,B} × {A,B}, {C} × {C} (C,C)

{B,C} × {B,C},
{B} × {B},
{C} × {C}

p ≥ 7
8 {A,B,C} × {A,B,C}, {A} × {A}, (A,A),

{A,B} × {A,B}, {B} × {B}, (B,B),

{B,C} × {B,C}, {C} × {C} (C,C)

{A} × {A},
{B} × {B},
{C} × {C}

Figure 11: All p-EBR sets, p-MBR sets and p-dominant equilibria

Example 4. Consider a two player game in which player 1 has strategic complements and player

2 has strategic substitutes. Each player has three actions {A,B,C} with A ≺ B ≺ C. Payoffs are

given in Figure 12. The game has a unique pure strategy Nash equilibrium, (B,B).

A B C

A 2,0 2,1 0,2

B 1,2 3,3 1,2

C 0,2 2,1 2,0

Player 2

P
la

y
e
r

1

Figure 12: Game with strategic complements and substitutes

As this game has players with strategic substitutes, there are cross linkages between the payoffs

of players in the auxiliary game. For example, payoff for player 1H depends on actions of player 2H ,

but payoff for player 2H depends on actions of player 1L. Payoff for player 1L depends on actions
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of player 2L, but payoff for player 2L depends on actions of player 1H . These cross linkages imply

that the auxiliary game can no longer be decomposed into an upper and lower auxiliary game as

in the case of a GSC. The theorems apply without any modifications, but the analysis is carried

out in the full auxiliary game.

Payoffs for each player in the auxiliary game at p are summarized in Figure 13.

A B C

A 2p 2p 0

B 1 2p+1 1

C 2-2p 2 2

P2 High

P
1

H
ig

h

(a) Payoffs for player 1H

A B C

A 2 2 2-2p

B 1 2p+1 1

C 0 2p 2p

P2 Low

P
1

L
o
w

(b) Payoffs for player 1L

A B C

A 0 1 2

B 2p 2p+1 2

C 2p 1 2-2p

P2 High

P
1
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(c) Payoffs for player 2H

A B C

A 2-2p 1 2p

B 2 2p+1 2p

C 2 1 0

P2 Low

P
1

H
ig

h

(d) Payoffs for player 2L

Figure 13: Payoffs in auxiliary game

For player 1H , we see that if player 2H plays A, best response of player 1H is A, if p ≥ 1
2 , and

C, if p ≤ 1
2 . If player 2H plays B, best response of player 1H is B, if p ≥ 1

2 , and C, if p ≤ 1
2 . If

player 2H plays C, best response of player 1H is C for all p ∈ [0, 1].

For player 1L, we find that if player 2L plays A, player 1L always best responds with A. If

player 2L plays B, best response of player 1L is A, if p ≤ 1
2 , and B, if p ≥ 1

2 . If player 2L plays C,

best response of player 1L is A, if p ≤ 1
2 , and C, if p ≥ 1

2 .

For player 2H , one can easily verify that if player 1L plays A, player 2H always best responds

with C. If player 1L plays B, best response of player 2H is C, if p ≤ 1
2 , and B, if p ≥ 1

2 . If player

1L plays C, best response of player 2H is C, if p ≤ 1
2 , and A, if p ≥ 1

2 .

Lastly, for player 2L, if player 1H plays A, best response of player 2L is A, if p ≤ 1
2 , and C, if

p ≥ 1
2 . If player 1H plays B, best response of player 2L is A, if p ≤ 1

2 , and B, if p ≥ 1
2 . If player 1H
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plays C, player 2L always best responds with A.

Solving for Nash equilibria in the auxiliary game, it is easy to check that for p < 1
2 , the

unique Nash equilibrium in the auxiliary game is (x1H , x2H , y1L , y2L) = (C,C,A,A), and for p ≥
1
2 , there are two Nash equilibria in the auxiliary game: (x1H , x2H , y1L , y2L) = (B,B,B,B) and

(x1H , x2H , y1L , y2L) = (C,C,A,A).

Using Theorems 2, 3, and 4, we conclude that for p < 1
2 , the entire action space {A,B,C} ×

{A,B,C} is the unique p-EBR set and the unique p-MBR set, and there is no p-dominant equilib-

rium. For p ≥ 1
2 , there are two p-EBR sets, one given by the entire space {A,B,C} × {A,B,C}

and the other is the singleton {B} × {B}, there is a unique p-MBR set {B} × {B}, and a unique

p-dominant equilibrium (B,B).

The payoffs of this game can also be represented in one combined payoff matrix, which is

illustrated in Figure 14. The top (bottom) row in each cell contains the payoffs of Player 1’s

(Player 2’s) high player on the left and Player 1’s (Player 2’s) low player on the right. The payoffs

for the Nash equilibria for each case are in boldface.
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The next example is a Cournot duopoly with continuous action spaces.

Example 5. Consider a Cournot duopoly in which each firm i ∈ {1, 2} chooses quantity of output

qi ∈ [0, 50] and has a constant marginal cost of production MC(qi) = 10. Suppose inverse market

demand is given by P (q1, q2) = 100− q1 − q2. Profit of each firm i can be written as πi(qi, q−i) =

(90−qi−q−i)qi. This is a GSS and profit functions are concave in own action. Therefore, Assumption

1 is satisfied.

Let p ∈ [0, 1] be arbitrary. As both firms have strategic substitutes, payoffs in the auxiliary

game are given by, for each i ∈ {1, 2} and each (x, y) ∈ AH ×AL,

π̃iH (x, y) = πi(xi, pδy−i + (1− p)δ0) = (90− xi − py−i)xi, and

π̃iL(x, y) = πi(yi, pδx−i + (1− p)δ50) = (40 + 50p− yi − px−i)yi.

The auxiliary game has a unique Nash equilibrium given by

(q∗1H , q
∗
2H
, q∗1L , q

∗
2L

) =
(180− 40p− 50p2

4− p2
,
180− 40p− 50p2

4− p2
,
80 + 10p

4− p2
,
80 + 10p

4− p2
)
.

Theorems 2, 3, and 4 imply that the interval [(q∗1L , q
∗
2L

), (q∗1H , q
∗
2H

)] ⊆ A is the unique p-EBR set

and unique p-MBR set in the original game, and therefore, for p < 1 there is no p-dominant equi-

librium. For p = 1, the unique p-EBR set, unique p-MBR set, and unique p-dominant equilibrium

are given by the unique Nash equilibrium (q∗1, q
∗
2) = (30, 30).

Notice that for p = 0, this interval contains those actions that survive the first round of the

process of iteratively deleting strictly dominated actions, and as p increases to 1, this interval

shrinks toward the unique Nash equilibrium in the original game, (q∗1, q
∗
2) = (30, 30). Figure 15

illustrates the boundaries of these intervals for p = 0, p = 0.5 and p = 1.

To the best of the authors’ knowledge, there is no other solved example with continuous action

spaces in the literature. Solving for p-EBR sets, p-MBR sets and p-dominant equilibria in this case

requires keeping track of best response sets over a continuum of beliefs, each over a continuum of

actions, and over subsets of continuum of actions. Our results continue to apply to such cases, sim-

ply by solving for pure strategy Nash equilibria in the auxiliary game using standard optimization

techniques.
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Figure 15: p-EBR (MBR) sets and Nash equilibrium in Cournot duopoly

6 Structure of class of p-EBR sets and p-MBR sets

Let SE be the collection of nonempty p-EBR sets in G, and SM be the collection of nonempty

p-MBR sets in G. From Theorems 3 and 4, we know that every nonempty p-EBR set and every

nonempty p-MBR set is a nonempty interval in A. As the set of nonempty intervals is partially

ordered by the lattice set order, it follows that both SE and SM are partially ordered in the lattice

set order.

In order to understand the structure of SE and SM , it is helpful to have a notion of strict

strategic complements and strict strategic substitutes, as follows. For subsets A,B of Rn, A is

completely lower than B, denoted A @c B, if ∀a ∈ A, ∀b ∈ B, a < b. (As usual, a < b means

a ≤ b and a 6= b.)

Definition 3. Let G be a monotone game and G̃ be the auxiliary game at p ∈ [0, 1].

Player i ∈ I has strict strategic complements, if for its high copy iH , for every x, x′ ∈ AH

and for every y ∈ AL, x−iH < x′−iH ⇒ B̃RiH ((x, y)−iH ) @c B̃RiH ((x′, y)−iH ), and for its low copy

iL, for every y, y′ ∈ AL and for every x ∈ AH , y−iL < y′−iL ⇒ B̃RiL((x, y)−iL) @c B̃RiL((x, y′)−iL).
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Player i ∈ I has strict strategic substitutes, if for its high copy iH , for every y, y′ ∈ AL and

for every x ∈ AH , y−iL < y′−iL ⇒ B̃RiH ((x, y′)−iH ) @c B̃RiH ((x, y)−iH ), and for its low copy iL,

for every x, x′ ∈ AH and for every y ∈ AL, x−iH < x′−iH ⇒ B̃RiL((x′, y)−iL) @c B̃RiL((x, y)−iL).

The next theorem shows that under Assumption 1, when G is a game with strategic comple-

ments, both SE and SM are a complete lattice. On the other hand, if G is a monotone game in

which there are only two players with strict strategic substitutes or in which there is one player

with strict strategic substitutes and one player with strict strategic complements, then both SE

and SM are totally unordered. In other words, moving away from a GSC even in some minimal

sense completely destroys the complete lattice structure of p-EBR sets and p-MBR sets. This is

consistent with results for the set of Nash equilibria in these types of games, as shown in Roy and

Sabarwal (2008) and in Monaco and Sabarwal (2016).

Theorem 5. Let G be a monotone game, G̃ be the auxiliary game at p ∈ [0, 1], and suppose

Assumption 1 holds.

1. If G is a GSC, then both SE and SM are complete lattices.

2. If G has either (1) two players with strict strategic substitutes, or (2) one player with strict

strategic substitutes and one player with strict strategic complements, then both SE and SM

are totally unordered.

Proof. For statement (1), we show first that SE is a complete lattice. Consider a collection of

non-empty p-EBR sets indexed by t, denoted {[yt, xt] ∈ SE | t ∈ T}. Then for every t ∈ T ,

(xt, yt) is an extremal response equilibrium in G̃ with xt ≥ yt. Thus, for every t, for every iH ,

xtiH ∈ ∨B̃RiH ((x, y)−iH ), and for every iL, ytiL ∈ ∧B̃RiL((x, y)−iL).

As each player is a strategic complements player, payoff of a high type is affected only by payoffs

of other high types and payoff of a low type is affected only by payoffs of other low types. That

is, ∨B̃RiH ((x, y)−iH ) does not depend on y and ∧B̃RiL((x, y)−iL) does not depend on x. Denote

this as ∨B̃RiH (x−iH ) and ∧B̃RiL(y−iL) and notice that strategic complements implies that the

corresponding joint best response functions denoted by ∨B̃R(x) and ∧B̃R(y) are increasing, and

therefore, the set of fixed points of each is a complete lattice.
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As each xt is a fixed point of ∨B̃R and each yt is a fixed point of ∧B̃R, let x be the infimum

of {xt} over the set of fixed points of ∨B̃R, and x be the supremum, and similarly, let y be the

infimum of {yt} over the set of fixed points of ∧B̃R and y be the supremum. Then x ≤ ∧{xt},

x ≥ ∨{xt}, y ≤ ∧{yt}, and y ≥ ∨{yt}, and moreover, (x, y) and (x, y) are both extremal response

equilibria in G̃ with x ≥ y and x ≥ y. Consequently, both [y, x] and [y, x] are nonempty p-EBR

sets in G.

We show that [y, x] = infSE{[yt, xt] ∈ SE | t ∈ T} and [y, x] = supSE{[y
t, xt] ∈ SE | t ∈ T}. As

for every t, y ≤ yt ≤ y and x ≤ xt ≤ x, it follows that for every t,

[y, x] v [yt, xt] v [y, x].

Therefore, [y, x] is a lower bound for {[yt, xt] ∈ SE | t ∈ T} and [y, x] an upper bound. To check

that [y, x] is the infimum, consider an abritrary nonempty p-EBR set [ŷ, x̂] that is also a lower

bound. Then (x̂, ŷ) is an extremal response equilibrium in G̃ with x̂ ≥ ŷ, x̂ is an extremal response

equilibrium in the upper auxiliary game G̃H , ŷ is an extremal response equilibrium in the lower

auxiliary game G̃L, and for every t, ŷ ≤ yt and x̂ ≤ xt. As x is the largest of the equilibria smaller

than xt, it follows that x̂ ≤ x and similarly, ŷ ≤ y. That is, [ŷ, x̂] v [y, x], and therefore, [y, x] is

the infimum. Similarly, [y, x] is the supremum. This shows that SE is a complete lattice.

To show that SM is a complete lattice, consider a collection of nonempty p-MBR sets indexed

by t, denoted {[yt, xt] ∈ SM | t ∈ T}. As SM ⊆ SE , each [yt, xt] is a nonempty p-EBR set. For

this collection of sets, let x, x, y, and y be defined as above. Then [y, x] is a nonempty p-EBR set

and as SE is complete, [y, x] = infSE{[yt, xt] ∈ SM | t ∈ T}. We show that [y, x] contains a unique

p-MBR set of the form [y, x̂] for some x̂ � x and this is the desired infimum. A similar argument

produces the desired supremum.

Notice first that every nonempty p-EBR set that is a subset of [y, x] must be of the form [y, x′]

for some x′ ≤ x. Consider a nonempty p-EBR set [y, x] ⊂ [y, x]. As [y, x] is an infimum, it cannot

be that y < y, because if y < y, then there is t′ such that y ≤ yt
′
< y ≤ x ≤ x ≤ xt

′
, and this

contradicts the fact that [yt
′
, xt
′
] is a p-MBR set.

Notice next that as [y, x] is a p-BR set, Lemma 3 implies that it contains at least one p-MBR
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set, (which must also be a p-EBR set,) and therefore, by the previous argument is of the form [y, x′]

for some x′ ≤ x. Moreover, by Proposition 1, every p-MBR set is disjoint from every other p-MBR

set, and therefore, there can be at most one p-MBR set that is a subset of [y, x]. It follows that

there is a unique x̂ ≤ x such that [y, x̂] is the only p-MBR set contained in [y, x]. It is immediate

that [y, x̂] v [y, x], and therefore, [y, x̂] is a lower bound for {[yt, xt] ∈ SM | t ∈ T}. To check that

this is the infimum, consider a p-MBR set [y′, x′] that is a larger lower bound, that is,

[y, x̂] v [y′, x′] v [y, x].

This implies that y = y′ and x̂ ≤ x′ ≤ x. As there is only one such p-MBR set, it follows that

x̂ = x′, and therefore, [y, x̂] is the infimum. A similar argument shows that there is unique ŷ ≥ y

such that [ŷ, x] is a p-MBR set and [ŷ, x] = supSM {[y
t, xt] ∈ SM | t ∈ T}. Together, this shows

that SM is a complete lattice.

For statement (2), suppose G has two players with strict strategic substitutes, say, players 1

and 2, without loss of generality. Consider two distinct nonempty p-EBR sets [y, x] and [y′, x′], and

suppose [y, x] v [y′, x′]. Then x ≤ x′, y ≤ y′, and at least one inequality is strict. Suppose x < x′.

As case 1, suppose x−1 < x′−1. In this case, x−1H < x′−1H and strict strategic substitutes implies

B̃R1L((x′, y)−1L) @c B̃R1L((x, y)−1L). Therefore, ∧B̃R1L((x′, y)−1L) < ∧B̃R1L((x, y)−1L). As

(x, y) and (x′, y′) are extremal response equilibria, y′1L = ∧B̃R1L((x′, y′)−1L) = ∧B̃R1L((x′, y)−1L)

and y1L = ∧B̃R1L((x, y)−1L), and this implies y′1L < y1L , a contradiction to y ≤ y′. As case 2,

suppose x−1 = x′−1 and x1 < x′1. Then x−2H < x′−2H , and the same argument as in the previous

case shows that y′2L < y2L , a contradiction to y ≤ y′. A similar argument applies to the case y < y′.

Therefore, SE is totally unordered. As SM is a subset of SE , it follows that SM is totally unordered

as well.

Now suppose G has one player with strict strategic substitutes (say, player 1) and one player

with strict strategic complements (say, player 2). Consider two distinct nonempty p-EBR sets

[y, x] and [y′, x′], and suppose [y, x] v [y′, x′]. Then x ≤ x′, y ≤ y′, and at least one inequality

is strict. Suppose x < x′. If x−1 < x′−1, the same argument as in the case above yields a

contradiction. If x−1 = x′−1 and x1 < x′1, then x−2 < x′−2, and therefore, x−2H < x′−2H . Player
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2 has strict strategic complements implies B̃R2H ((x, y)−2H ) @c B̃R2H ((x′, y)−2H ), and therefore,

∨B̃R2H ((x, y)−2H ) < ∨B̃R2H ((x′, y)−2H ). As (x, y) and (x′, y′) are extremal response equilibria,

x2H = ∨B̃R2H ((x, y)−2H ) and x′2H = ∨B̃R2H ((x′, y′)−2H ) = ∨B̃R2H ((x′, y)−2H ), and this implies

x2H < x′2H , a contradiction to x−1 = x′−1. A similar argument applies to the case y < y′. Therefore,

SE is totally unordered. As SM is a subset of SE , it follows that SM is totally unordered as well.

Example 6. Consider the GSC in Example 3 and consider the case when p ≥ 7
8 . In this case,

as shown in Figure 11, the game has six p-EBR sets, {A,B,C} × {A,B,C}, {A,B} × {A,B},

{B,C} × {B,C}, {A} × {A}, {B} × {B}, and {C} × {C}. The last three sets are also the three

p-MBR sets for p ≥ 7
8 . These sets are illustrated in Figure 16. By Theorem 5, the collection of

p-EBR sets and the collection of p-MBR are complete lattices. In other words, for any two p-EBR

(or p-MBR) sets, their infimum and supremum (in the lattice set order) are p-EBR (or p-MBR) sets

as well. For example, consider the p-EBR sets {A,B,C}×{A,B,C} and {B}×{B}. The infimum

of these two sets is {A,B} × {A,B}, the supremum is {B,C} × {B,C}, and both are p-EBR sets.

structure 2.png

Figure 16: p-EBR and p-MBR sets for p ≥ 7
8

Example 7. Consider the monotone game with one strategic substitutes and one strategic com-

plements player from Example 4. Recall that for p ≥ 1
2 , this game has two p-EBR sets, {A,B,C}×

{A,B,C} as well as {B}× {B}. These sets are illustrated in Figure 17. By Theorem 5, the collec-

tion of p-EBR sets is totally unordered. In particular, {B}×{B} 6v {A,B,C}×{A,B,C}, because
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(B,B) ∧ (A,A) 6∈ {B} × {B}, and {A,B,C} × {A,B,C} 6v {B} × {B}, because (C,C) ∨ (B,B) 6∈

{B} × {B}.

Figure 17: p-EBR and p-MBR sets for p ≥ 1
2

7 Conclusion

We show that for monotone games, solving for p-dominant equilibrium and p-MBR set is equivalent

to finding a corresponding Nash equilibrium in an auxiliary game. This shows that traditional

methods for finding equilibria may be applied to the complete information auxiliary game, which

allows us to solve for robust solution concepts in a straightforward, systematic manner and avoiding

the need to consider uncountably many beliefs for each player. Moreover, as use of Nash equilibrium

is ubiquitous, our results make robust solution concepts more accessible to a broader audience,

facilitating their broader use. Furthermore, by establishing a bijection between robust solutions in

the original game and corresponding Nash equilibria in the auxiliary game, we are able to establish

new results on characteristics of entire classes of robust solutions.

For p-dominant equilibrium, we show that a profile of actions a∗ is a p-dominant equilibrium

in a monotone game, if, and only, if (a∗, a∗) is a Nash equilibrium in the auxiliary game, and a∗

is a strict p-dominant equilibrium in a monotone game, if, and only if, (a∗, a∗) is a strict Nash

equilibrium in the auxiliary game. This gives a bijection between p-dominant equilibria in the
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original game and particular types of Nash equilibria in the auxiliary game.

For p-EBR set, we show that in a monotone game, under Assumption 1, an interval [y, x] is a

p-EBR set, if, and only if, (x, y) with x ≥ y is an extremal response equilibrium in the auxiliary

game. This gives a bijection between p-EBR sets in the original game and particular types of

Nash equilibria in the auxiliary game. An appropriate specialization yields a characterization of all

p-MBR sets and a bijection to a subclass of the Nash equilibria in the auxiliary game.

These characterizations show that we may find p-dominant equilibrium, p-EBR set, and p-MBR

set in a monotone game by considering particular pure strategy Nash equilibria in the auxiliary

game. Several examples highlight applications of these results.

We also provide structure theorems for the class of p-EBR sets and for the class of p-MBR sets

in monotone games. In games with strategic complements, each class is a complete lattice. With

minimal extensions beyond that, each class is totally unordered.
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Appendix

Proof of Proposition 2

Proof. Let i ∈ I, a−i, a
′
−i ∈ A−i be such that a′−i ≥ a−i, and consider a′′i , a

′
i, ai ∈ Ai such that

a′′i > a′i > ai, and let p ∈ [0, 1]. Notice that

πi(a
′
i, pδa−i + (1− p)δa′−i

)− πi(ai, pδa−i + (1− p)δa′−i
) =

p[πi(a
′
i, a−i)− πi(ai, a−i)] + (1− p)[πi(a′i, a−i)− πi(ai, a′−i)] ≥

p[πi(a
′′
i , a−i)− πi(a′i, a−i)] + (1− p)[πi(a′′i , a−i)− πi(a′i, a′−i)] =

πi(a
′′
i , pδa−i + (1− p)δa′−i

)− πi(a′i, pδa−i + (1− p)δa′−i
),

so that πi satisfies decreasing returns in ai against each belief pδa−i + (1 − p)δa′−i
. Suppose that

x, y ∈ BRi(pδa−i + (1− p)δa′−i
) are such that x > y, and suppose z ∈ Ai is such that x ≥ z ≥ y. If

z /∈ BRi(pδa−i + (1− p)δa′−i
), then by decreasing returns in ai,

0 > πi(z, pδa−i + (1− p)δa′−i
)− πi(y, pδa−i + (1− p)δa′−i

) ≥

πi(x, pδa−i + (1− p)δa′−i
)− πi(z, pδa−i + (1− p)δa′−i

),

contradicting the optimality of x. Hence BRi(pδa−i + (1− p)δa′−i
) is interval-valued.

Proof of Lemma 2

Proof. Notice first that for each a−i, a
′
−i ∈ A−i, the best response correspondence BRi(pδa−i +

(1− p)δa′−i
) is upper hemicontinuous in p. This follows from Berge’s theorem, because the function

(ai, p) 7→ pπi(ai, a−i) + (1− p)πi(ai, a′−i) is continuous, and therefore,

BRi(pδa−i + (1− p)δa′−i
) = argmax

ai∈Ai

(pπi(ai, a−i) + (1− p)πi(ai, a′−i))

is upper hemicontinuous in p.
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Suppose without loss of generality that player i is a strategic complements player, so that

πi satisfies increasing differences in (ai, a−i). The case when πi satisfies decreasing differences in

(ai, a−i) can be proven similarly.

We now show that [yi, xi] ⊆ Λi({y−i, x−i}, p). The remainder of the proof follows along the

lines of the intermediate value theorem given for correspondences in Mutoh (2006), but adapted

for our purposes. Because player i ∈ I is a complements player and (x, y) is an extremal response

equilibrium, the definition of an auxiliary game implies

xi = ∨B̃RiH ((x, y)−i) = ∨BRi(µ̄x−i) and yi = ∧B̃RiL((x, y)−i) = ∧BRi(
¯
µy−i),

so that yi, xi ∈ Λi({y−i, x−i}, p). Also, because BRi(y−i) and BRi(x−i) are best responses to

beliefs δy−i and δx−i , respectively, both of which put probability 1 on {y−i, x−i}, we have that

BRi(y−i), BRi(x−i) ∈ Λi({y−i, x−i}, p) as well. Using arguments similar to those in the proof to

Theorem 1, it is readily verified that T = {
¯
µy−i , δy−i}, T ′ = {δy−i , δx−i}, and T

′′
= {δx−i , µ̄x−i} are

partially ordered sets. By strategic complementarities, when ≥F is a partial order, µ ≥F ν implies

BRi(ν) v BRi(µ), and hence we can write [yi, xi] as

[yi, xi] = [yi,∧BRi(y−i)] ∪ [∧BRi(y−i),∨BRi(x−i)] ∪ [∨BRi(x−i), xi],

where the endpoints of all three intervals above are included in Λi({y−i, x−i}, p). Thus, the result

follows by showing that all three intervals are included in Λi({y−i, x−i}, p).

We first show that [yi,∧BRi(y−i)] is included in Λi({y−i, x−i}, p). Consider the beliefs µα ∈

∆(A−i) given by

µα = [αp+ (1− α)]δy−i + [α(1− p)]δ∧A−i ,

for each α ∈ [0, 1]. Note that for each such α, µα puts at least probability p on y−i, and hence on

{y−i, x−i}. Also, by the discussion above, ∧BRi(y−i) ∈ BRi(µ0), and yi ∈ BRi(µ1). Suppose there

exists some z ∈ Ai such that yi < z < ∧BRi(y−i), but z /∈ Λi({y−i, x−i}, p). Then yi < z < xi.

Consider the sets

K−z = {α ∈ [0, 1] | ∀x ∈ BRi(µα), x < z},
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and

K+
z = {α ∈ [0, 1] | ∀x ∈ BRi(µα), z < x}.

First, notice that K−z and K+
z are non-empty: From above, we know yi ∈ BRi(µ1) and yi < z. If

some other x ∈ BRi(µ1) were such that x ≥ z, then because BRi(µ1) is interval-valued, we would

have z ∈ BRi(µ1) as well. Because the belief µ1 puts probability at least p on {y−i, x−i}, we would

have z ∈ Λi({y−i, x−i}, p), a contradiction. Hence, 1 ∈ K−z . Likewise, 0 ∈ K+
z . Next, notice that

[0, 1] = K−z ∪K+
z : Since each µα puts at least probability p on {y−i, x−i}, then for each α ∈ [0, 1],

BRi(µα) ⊆ Λi({y−i, x−i}, p). Suppose α ∈ [0, 1] is such that for some x ∈ BRi(µα), x > z. If

there exists some other y ∈ BRi(µα) such that z > y, then because BRi(µα) is interval-valued,

we have that z ∈ BRi(µα) ⊆ Λi({y−i, x−i}, p), a contradiction. Hence, for each α such that for

some x ∈ BRi(µα) we have x > z, it follows that α ∈ K+
z . Likewise, for each α such that for some

x ∈ BRi(µα) we have z > x, it follows that α ∈ K−z . Because each α ∈ [0, 1] satisfies one of the

two requirements, it follows that [0, 1] ⊆ K−z ∪K+
z , establishing equality.

Lastly, upper hemicontinuity of BRi(µα) in α implies that K−z is an open set, because it is

the upper inverse of the open set (−∞, z) and K+
z is an open set, because it is the upper inverse

of the open set (z,∞). Taken together, this contradicts the connectedness of [0, 1]. Therefore,

[yi,∧BRi(y−i)] ⊆ Λi({y−i, x−i}, p).

A similar argument shows that [∨BRi(x−i), xi] ⊆ Λi({y−i, x−i}, p) by considering beliefs of the

form

µα = [αp+ (1− α)]δx−i + [α(1− p)]δ∨A−i ,

and likewise it follows that [∧BRi(y−i),∨BRi(x−i)] ⊆ Λi({y−i, x−i}, p) by considering beliefs of

the form

µα = (1− α)δy−i + αδx−i .
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Proof of Lemma 3

Proof. This follows from the same reasoning as part (1) of Theorem 1 in Tercieux (2006a). Suppose

that Z ⊆ A is a p−BR set, and consider

Q = {S ⊆ Z | S ∈ P,Λ[S, p] ⊆ S},

the collection of p−BR subsets of Z, which are partially ordered by set inclusion ⊆. Notice that Q

is non-empty, as Z is by assumption a p−BR set, and Z ⊆ Z. By the Hausdorff maximal principle,

there exists a chain Q′ ⊆ Q such that Q′ is not a strict sub-family of any other chain T ⊆ Q. For

each player i ∈ I, define

Ŝi =
⋂

S′∈Q′
S′i,

which, as the intersection of closed (compact) and nonempty sets, is itself closed and nonempty.

Furthermore, since Ŝi ⊆ Zi, and Zi is compact, Ŝi is compact as well. Hence, Ŝ =
∏
i∈I
Ŝi ∈ P .

Since Ŝ ⊆ S′ for each S′ ∈ Q′, it follows that Λi[Ŝ−i, p] ⊆ Λi[S
′
−i, p] ⊆ S′i for each i ∈ I and all

S′ ∈ Q′, where the last inequality follows because each S′ is a p−BR set. Hence,

Λi[Ŝ−i, p] ⊆
⋂

S′∈Q′
S′i = Ŝi,

and hence Ŝ is a p−BR set. Note that Ŝ is a minimal p−BR set, for if there exists some strict subset

M ⊂ Ŝ which is a p−BR set, then Q′ is a strict sub-family of the chain {M} ∪ Q′, contradicting

the maximality of Q′.
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