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1 Introduction

The pecking order theory in finance is a widely held belief that firms prefer internal (retained

earnings) to external funds, and prefer debt to equity if internal funds are exhausted and external

funds are sought (Myers, 1984; Myers and Majluf, 1984). For more than thirty years, a substantial

empirical literature has examined whether and when there is a departure of observed corporate

financing behaviors from the pecking order theory in practice (Brennan and Kraus, 1987; Jung

et al., 1996; Shyam-Sunder and Myers, 1999; Frank and Goyal, 2003; Fama and French, 2005;

Bharath et al., 2009; Brown et al., 2009; Chay et al., 2015; Brown et al., 2019). Unfortunately, no

consensus has been reached.

Indeed, most of these studies employ a mean model, of which the results and conclusions are

not warranted for two main reasons. On the one hand, the traditional mean regression (e.g., OLS)

assumes an unchanging association at different levels of investment scales. However, this paper

predicts that the relationship between financing sources and investments varies across different

investment scales. On the other hand, the estimation of linear model or fixed effect model is

unbiased only when the dependent variable is normally distributed or with a central tendency. In

contrast, the distribution of investment amount is usually highly skewed and heavily tailed, see

Figure 1 later for investment amount in year 2016, which shows clearly that the distribution of

investment amount is highly right-tailed skewed. Thus, the mean regression estimates are likely

to be biased and probably not truly reflect the behavior of data in tail regions. To the best

of our knowledge, Chay et al. (2015) is among the first and the latest study to investigate the

responsiveness of investments to internal funds, debt issues and equity issues taking a quantile

regression based on panel data. However, limited by the difficulties in the theoretical modeling

and computational challenges to control firm and year fixed effects, their findings may suer from

endogeneity problems while this paper takes a further step to introduce a linear quantile model

for panel data with fixed effects.

Recently, there is growing literature to study panel quantile models with individual effects. The

main reason is that the commonly used method to eliminate unobservable individual effects in the

conditional mean model, taking difference, is not available in the conditional quantile regression

model. Among this literature, Koenker (2004) first introduced a location-shift quantile regression

model for panel data with fixed effects which assumes that the fixed effect is purely a location
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shift and time period T goes to infinity. The fixed effects are viewed as nuisance parameters

and regularized by L1-penalty to shrinkage them to common values. Furthermore, Lamarche

(2010) discussed the choice of the tuning parameter λ in Koenker (2004), and proposed an optimal

selection method. Galvao et al. (2013) made an extension to a class of censored quantile regression

models for panel data with fixed effects by applying fixed effects quantile regression to subsets

of observations selected either parametrically or nonparametrically. For more on the most recent

work, the reader is referred to the papers by Powell (2016), Gu and Volgushev (2019), Machado

and Santos Silva (2019), and the references therein. However, the aforementioned studies rely on

the critical assumption that the time period T is large or goes to infinity.

Alternative method of estimating individual effects in the panel quantile model is to view

individual effects as correlated random effects when T is small or finite. In the framework of

Chamberlain (1982, 1984), Abrevaya and Dahl (2008) employed a correlated random-effects quan-

tile model to estimate the effects of mother smoking on the entire birthweight distribution. The

correlated random effects are assumed to be a linear projection on observable independent vari-

ables plus a disturbance, while Harding and Lamarche (2017) relaxed the assumption in Abrevaya

and Dahl (2008), by allowing the unobserved αi to be arbitrarily related to observable variables,

to increase the flexibility in the model specification.

Our contribution is that motivated by controlling the firm-specific heterogeneity in testing the

pecking order theory under the quantile framework, we propose a panel data quantile regression

model with individual effects, which is the usual model specification in conditional mean model

for panel data. We view the individual effects as correlated random effects in the framework

of Chamberlain (1982) and Abrevaya and Dahl (2008). Therefore, we do not require the time

period T going to infinity, as is the main assumption in many models (Koenker, 2004; Lamarche,

2010; Galvao et al., 2013; Powell, 2016; Gu and Volgushev, 2019; Machado and Santos Silva,

2019). Actually, T ≥ 2 is only needed for model identification. Also, our model uses a more

general objective function, a quasi-likelihood function for conditional quantile models proposed by

Komunjer (2005), compared with Abrevaya and Dahl (2008). Finally, our empirical study finds a

strong evidence that the financing hierarchy of U.S. firms is in accordance with the first rung of

the pecking order theory across all levels of investments from 10% to 90%.

The remainder of this paper is organized as follows. Section 2 introduces the proposed quantile
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regression model for panel data with correlated random effects. The estimation method and

asymptotic properties of our estimator are also provided. Section 3 examines the performance

of the proposed estimator with finite samples via Monte Carlo simulations and the simulation

results are consistent with the asymptotic theory in Section 2. In Section 4, we apply the model

to testing the pecking order theory using non-financial and non-utility U.S. firms from Compustat

database. Section 5 offers conclusions and suggests possible extensions for future research. All

technical proofs are relegated to the Appendix together with the list of assumptions needed for

the asymptotic properties for the proposed estimator.

2 Econometric Modeling

2.1 Model Setup

We first introduce the econometric model studied in this paper. Given τ ∈ (0, 1), we consider the

following panel data quantile regression model with correlated random effects (PDQ-CRE). Let yit,

a scalar dependent variable, be the observation on ith individual at time t for 1 ≤ i ≤ N and

1 ≤ t ≤ T . The conditional quantile model is given by

qτ (yit|xit,αi,τ ) = x′
itδτ + αi,τ , (1)

where qτ (yit|xit,αi,τ ) is the τth quantile of yit given xit and αi,τ , xit is regressors with K × 1

dimensions, δτ denotes a K × 1 vector of constant coefficients, and αi,τ is an individual effect

dependent on τ . In this model, we assume both coefficients δτ and individual effect αi,τ can be

dependent on τ . When T goes to infinity, one can use estimation method studied by Koenker

(2004). But in this paper, we consider the case that T is a fixed finite number or small. Thus, we

follow the idea in Chamberlain (1982, 1984), similar to Abrevaya and Dahl (2008) and Harding

and Lamarche (2017), and view the individual effect αi,τ as a correlated random effect which is

allowed to be correlated with covariates xi = (x′
i1, · · · ,x′

iT ); that is,

αi,τ = ατ (xi) + vi,τ ,
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where ατ (·) is an unknown function of xi, and vi,τ is an unobserved random error. The unknown

function ατ (xi) is approximated by a linear projection on xi = (xi1, . . . ,xiT )
′ such that

ατ (xi) =
T󰁛

s=1

x′
isηs,τ + η0,τ ,

where η0,τ is an unknown constant and {ηt,τ}Tt=1 is a sequence of K×1 vector of unknown constant

coefficients or nuisance parameters. Therefore, model (1) can be rewritten as

qτ (yit|xi, vi,τ ) = x′
itδτ +

T󰁛

s=1

x′
isηs,τ + η0,τ + vi,τ . (2)

Although the linear approximation may seem to be restrictive, it is the usual specification

employed by empirical researchers in cross sectional applications and can be seen as reduced-

form approximation to the true conditional quantile, as discussed in Abrevaya and Dahl (2008).

Furthermore, similar to Cai et al. (2018), a semiparametric form of α(xi) might be considered.

Also, it is interesting to notice that model (2) happens to be a special case of the semiparametric

panel data model proposed in Cai et al. (2018) if the nonparametric part of the model is not

considered. Finally, model (2) covers the following conditional quantile regression model with

error in the dependent variable (EIDV) for cross-sectional data as a special case when T is set by

1,

qτ (yi|xi, vi) = qτ (xi) + vi,

where qτ (xi) is the τth quantile of true y∗i with yi = y∗i + vi and vi is the measurement error.

Indeed, Hausman et al. (2019) considered the case that qτ (xi) is a linear function of xi. For

the most recent research about EIDV in quantile models, the reader is referred to the paper by

Hausman et al. (2019) and the references therein.

2.2 Estimation Procedures

2.2.1 Pooled Regression Method

We consider the following equations:

qτ (yit|xit, vi,τ ) = x′
itδτ +

T󰁛

s=1

x′
isηs,τ + η0,τ + vi,τ = x′

it(δτ + ηt,τ ) +
T󰁛

s=1
s ∕=t

x′
isηs,τ + η0,τ + vi,τ ,
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and

qτ (yir|xir, vi,τ ) = x′
irδτ +

T󰁛

s=1

x′
isηs,τ + η0,τ + vi,τ = x′

ir(δτ + ηr,τ ) +
T󰁛

s=1
s ∕=r

x′
isηs,τ + η0,τ + vi,τ ,

where t ∕= r. Obviously, the effects of xit upon the conditional quantile qτ (yit|xit, vi,τ ) are through

two channels: (1) a direct effect x′
itδτ and (2) an indirect effect x′

itηt,τ . In contrast, xit affects

qτ (yir|xir, vi,τ ) only through the effect of x′
itηt,τ , a part of the unobservable αi,τ . Hence, δτ is given

by the following equation:

δτ =
∂qτ (yit|xit, vi,τ )

∂xit

− ∂qτ (yir|xir, vi,τ )

∂xit

=
∂qτ (yir|xir, vi,τ )

∂xir

− ∂qτ (yit|xit, vi,τ )

∂xir

.

That is, δτ tells us how much xit affects qτ (yit|xit, vi,τ ) above the effect that goes through the

unobservable αi,τ .

We adopt the pooled regression as in Abrevaya and Dahl (2008) by stacking xit at different

time t together. Let
󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

y11
...

y1T
...

yi1
...

yiT
...

yN1

...

yNT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

and

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 x′
11 x′

11 · · · x′
1T

...
... · · · ...

1 x′
1T x′

11 · · · x′
1T

...
... · · · ...

1 x′
i1 x′

i1 · · · x′
iT

...
... · · · ...

1 x′
iT x′

i1 · · · x′
iT

...
... · · · ...

1 x′
N1 x′

N1 · · · x′
NT

...
... · · · ...

1 x′
NT x′

N1 · · · x′
NT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

≡

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

g′
11

...

g′
1T

...

g′
i1

...

g′
iT

...

g′
N1

...

g′
NT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

≡ G.

be the dependent and the explanatory variables of the quantile regression, respectively, where g′
11

denotes the first row vector in the above design matrix G, g′
12 denotes the second row vector, etc.

Then, we now consider the following transformed model from (2),

qτ (git, vi,τ ) = g′
itξτ + vi,τ , (3)

where ξτ includes δτ and ητ ’s.
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2.2.2 Quasi-Likelihood Approach

For a conditional quantile regression model proposed by Koenker and Bassett (1978), the estima-

tion of parameters can be obtained by minimizing the following objective (loss) function

ξ̂τ = argmin
ξτ

T󰁛

t=1

ρτ (yt − qτ (yt|xt, ξτ )),

where ρτ (x) = x(τ − Ix<0) is the check function, qτ (yt|xt, ξτ ) is the conditional quantile regression

function of yt given xt, and satisfies P (yt ≤ qτ (yt|xt, ξτ )) = τ . Komunjer (2005) generalized

the estimation of Koenker and Bassett (1978) by proposing a class of quasi-maximum likelihood

estimators (QMLE), obtained by solving

ξ̂τ = argmax
ξτ

T󰁛

t=1

ln lt(yt, qτ (yt|xt, ξτ )),

where lt(·) is the conditional quasi-likelihood function yt given xt at time t.

Using the aforementioned idea, we consider a class of QMLEs for the conditional quantile

regression model defined in (2), obtained by solving the maximization of a quasi-likelihood function

for the τth conditional quantile

ξ̂τ = argmax
ξτ

N󰁛

i=1

T󰁛

t=1

ln l(yit, qτ (yit|git, ξτ )), (4)

where l(yit, qτ (yit, git, ξτ )) is the quasi-likelihood function for the τth conditional quantile on indi-

vidual i at time t. Indeed, model (2) can be expressed as follows:

qτ (yit|xit, vi,τ ) = q−v(yit|xit) + vi,τ ,

where q−v(yit|xit) = x′
itδτ +

󰁓T
s=1 x

′
isηs,τ + η0,τ . Hence, vi,τ in the quasi-likelihood function

l(yit, qτ (yit|xit)) can be integrated out so that we obtain the integrated quasi-likelihood function

l(yit, q−v(yit|xit)) =

󰁝
l(yit, qτ (yit|xit, vi,τ ))f(vi,τ )dvi,τ , (5)

by assuming that {vi,τ} are independent and identically distributed (iid) and independent of

{xit, yit}, where f(v) is the density function of vi,τ , which is assumed to be free of parameter δτ .

Generally speaking, the integral in (5) does not have a close form unless it is assumed that vi,τ

has some particular density, such as the normality assumption as in Cai et al. (2018). Therefore,
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without the normality assumption of vi,τ , we propose using the Laplace approximation1 method

to approximate the above integral as in Breslow and Clayton (1993) and Harding and Hausman

(2007). The Laplace approximation is a two-term Taylor expansion on the log density function. If

ṽ denotes the maxima of a density function f(v), then it is also the maxima of the log probability

density function p(v) = log f(v) and because ṗ(ṽ) = 0, we can write:

p(v) ≃ p(ṽ) + (v − ṽ)ṗ(ṽ) +
1

2
(v − ṽ)2p̈(ṽ) = p(ṽ) + 0 +

1

2
(v − ṽ)2p̈(ṽ)

= c+
1

2
(v − ṽ)2p̈(ṽ) = c− (v − a)2

2b2
,

where a = ṽ, b = {−p̈(ṽ)}−1/2 with p̈(ṽ) < 0 because ṽ is a maxima, and c = p(ṽ). By assuming

the mean of the disturbance vi is zero; see Assumption (A2) later, thus f(v) can be approximated

by:

f̃(v) = c · e−
v2

2σ2 ,

where σ2 is the variance of vi. Since f̃(v) is actually a probability density function, c is a function

of σ with c = 1/
√
2πσ. Therefore, the approximation yields

l(yit, q−v(yit|xit)) =

󰁝 ∞

−∞

1√
2πσ

l(yit, qτ (yit|xit, vi,τ )) e
−

v2i,τ

2σ2 dvi,τ . (6)

According to Komunjer (2005), different choices of l(y, q) would affect the asymptotic theory of

QMLE for quantile models. In this paper, for simplicity, we define l(y, q) as

l(y, q) = e−ρτ (y−q), (7)

which is a probability density function, which is a member of the so-called tick-exponential family;

see Komunjer (2005) for details. Substituting (7) into the integrated quasi-likelihood function for

the τth conditional quantile in (6), we have

l(yit, q−v(yit|xit)) =

󰁝 ∞

−∞

1√
2πσ

exp
󰁱
− ρτ

󰀃
yit − qτ (yit|xit, vi,τ )

󰀄
−

v2i,τ
2σ2

󰁲
dvi,τ .

By a simple calculation, we get

lτ (uit, σ) ≡ l(yit, q−v(yit|xit)) = exp{−ρτ (uit)} ντ (uit, σ)
󰀃
Iuit≥0 + exp{−uit}Iuit<0

󰀄
, (8)

1For any probability densify function that is smooth and unimodal, it can be approximated by a normal density

function, which is the so-called Laplace approximation. Indeed, it is widely used in the literature; see, for instance,

the papers by Breslow and Clayton (1993) and Harding and Hausman (2007).
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where uit = yit − qτ (yit|xit, vi,τ ), ντ (uit, σ) = exp{τ 2σ2/2}Φ(uit/σ − τσ) + exp{(τ − 1)2σ2/2}Φ
󰀃
−

uit/σ + (τ − 1)σ
󰀄
exp{uit}, and Φ(·) is the standard normal distribution function. Therefore, the

log quasi-likelihood function Lτ (ξτ , σ) is given by

Lτ (ξτ , σ) =
N󰁛

i=1

T󰁛

t=1

ln lτ (uit, σ)

=
N󰁛

i=1

T󰁛

t=1

󰀅
− ρτ (uit) + ln(ντ (uit, σ)) + ln(Iuit≥0 + exp{−uit}Iuit<0)

󰀆

=
N󰁛

i=1

T󰁛

t=1

󰀅
− ρτ (uit) + ln(ντ (uit, σ))− uitIuit<0]

=
N󰁛

i=1

T󰁛

t=1

[−τuit + ln(ντ (uit, σ)] .

Hence, for a given σ̃, the QMLE of ξτ is obtained by

ξ̂τ = argmax
ξτ

Lτ (ξτ , σ̃), (9)

and the QMLE of δτ is given by

δ̂τ = e′
1ξ̂τ , (10)

where e1 is a column vector with the first K elements are 1’s and other elements are 0’s. Clearly,

we can estimate both ξτ and σ by iterating ξ̃τ = argmaxξτ Lτ (ξτ , σ̃) and σ̃ = argmaxσ Lτ (ξ̃τ , σ)

until convergence.

2.3 Large Sample Theory

This section provides asymptotic results of ξ̂τ defined in Section 2.2.2. All condtions and proofs

are relegated to the Appendix. First, let δ̂τ be the QMLE of δτ obtained by solving (9) and

(10). Next, some additional notations are defined here for the following asymptotic theorem.

To this end, let git = (xit,xi1, . . . ,xiT )
′, u = y − qτ (y|x), ψτ (u, σ) = −∂ ln lτ (u, σ)/∂u ≡ τ −

hτ (u, σ), and ḣτ (u, σ) = ∂hτ (u, σ)/∂u, where hτ (u, σ) = ∂ln(ντ (u, σ))/∂u. Also, define Dgḣ(σ) =

Σ0E[−ḣτ (yit− qτ (yit|xit), σ)], Dg(σ) = Σ0E[ψτ (yit− qτ (yit|xit), σ)]
2 and Dg1t(σ) = Σt−1E[ψτ (yi1−
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qτ (yi1|xi1), σ)ψτ (yit − qτ (yit|xit), σ)], where

Σ0 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 E(x′
it) E(x′

i1) · · · E(x′
iT )

E(xit) E(xitx
′
it) E(xitx

′
i1) · · · E(xitx

′
iT )

E(xi1) E(xi1x
′
it) E(xi1x

′
i1) · · · E(xi1x

′
iT )

...
... · · · ...

E(xiT ) E(xiTx
′
it) E(xiTx

′
i1) · · · E(xiTx

′
iT )

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

and

Σt−1 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 E(x′
it) E(x′

i1) · · · E(x′
iT )

E(xi1) E(xi1x
′
it) E(xi1x

′
i1) · · · E(xi1x

′
iT )

E(xi1) E(xi1x
′
it) E(xi1x

′
i1) · · · E(xi1x

′
iT )

...
... · · · ...

E(xiT ) E(xiTx
′
it) E(xiTx

′
i1) · · · E(xiTx

′
iT )

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Theorem 1 (Asymptotic Normality). Under Assumptions A1-A5 in the Appendix, we have

√
NT (δ̂τ − δτ ) → N (0,Σ(σ, T )),

where Σ(σ, T ) = e′
1D

−1

gḣ
(σ)

󰀋
Dg(σ) +

󰁓T
t=2 2(1− t/T + 1/T )Dg1t(σ)

󰀌
D−1

gḣ
(σ)e1.

Theorem 1 shows that the convergence rate of the estimator δ̂τ is
√
NT . We can observe that

the covariance-variance matrix Σ(σ, T ) is a function of both T and σ. When σ = 0, the model

degenerates to the case that vi,τ = 0. To be specific, when vi,τ = 0, i.e., σ = 0,

hτ (u, 0) = lim
σ→0+

∂ln(ντ (u, σ))

∂u
= lim

σ→0+

eu+
1−2τ

2
σ2
Φ(−u

σ
+ (τ − 1)σ)

eu+
1−2τ

2
σ2
Φ(−u

σ
+ (τ − 1)σ) + Φ(u

σ
− τσ)

= Iu<0,

and

Dg(0) = Σ0E[−ḣτ (yit − qτ (yit|xit), 0)] = Σ0fy(F
−1(τ)),

where fy(·) is the density function of dependent variable yit and F (·) is its CDF. The second

equality follows from (A.7)-(A.9) in the Appendix if we use the Knight identity in Knight (1998)

for cross sectional data; see the detailed proof of Theorem 1 in the Appendix. Then, we can

rewrite the asymptotic covariance in Theorem 1 for this special case as follows

Σ(0, T ) =e′
1f

−2
y (F−1(τ))Σ−1

0

󰁱
τ(1− τ)Σ0

+
T󰁛

t=2

2(1− t/T + 1/T )Σt−1E[ψτ (yi1 − qτ (yi1|xi1), σ)ψτ (yit − qτ (yit|xit), σ)]
󰁲
Σ−1

0 e1,
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Clearly, Σ(0, T ) is the asymptotic covariance with no disturbance {vi}. The existence of the second

term
󰁓T

t=2 2(1− t/T + 1/T )Σt−1E[ψτ (ui1, σ)ψτ (uit, σ)] is because we allow {xit} to be correlated

over t; see Assumption A1 in the Appendix. When T = 1,

Σ(0, 1) = e′
1τ(1− τ)f−2

y (F−1(τ))Σ−1
0 Σ0Σ

−1
0 e1 = e′

1τ(1− τ)f−2
y (F−1(τ))Σ−1

0 e1,

which is the asymptotic covariance matrix for classical linear quantile model for i.i.d. cross sec-

tional data. Therefore, model (3) and its corresponding estimator can be viewed as an extension

of quantile regression from cross sectional data to panel data.

2.4 Covariance Estimation

To make a statistical test, one needs a consistent estimate of the asymptotic covariance matrix

Σ(σ, T ). The explicit expression of Σ(σ, T ) in Theorem 1 provides a natural consistent estimator.

We will show Σ̂(σ, T ) is a consistent estimator of Σ(σ, T ) for any given σ. First, define

D̂g(σ) = (NT )−1

N󰁛

i=1

T󰁛

t=1

X0,it · (NT )−1

N󰁛

i=1

T󰁛

t=1

ψ2
τ (yit − ŷit,τ , σ),

D̂g1t(σ) = (N(T − t))−1

N󰁛

i=1

T−t󰁛

s=1

Xt,is · (N(T − t))−1

N󰁛

i=1

T−t󰁛

t=1

ψτ (yis− ŷis,τ , σ)ψτ (yi,(s+t)− ŷi,(s+t),τ , σ),

and

D̂gḣ(σ) = (NT )−1

N󰁛

i=1

T󰁛

t=1

X0,it · (NT )−1

N󰁛

i=1

T󰁛

t=1

ḣτ (yit − ŷit,τ , σ),

where ŷit,τ = (1,x′
it,x

′
i1, . . . ,x

′
iT )ξ̂τ ,

X0,it =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 x′
it x′

i1 · · · x′
iT

xit xitx
′
it xitx

′
i1 · · · xitx

′
iT

xi1 xi1x
′
it xi1x

′
i1 · · · xi1x

′
iT

...
... · · · ...

xiT xiTx
′
it xiTx

′
i1 · · · xiTx

′
iT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,
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and

Xt,is =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 x′
i,(s+t) x′

i1 · · · x′
iT

xis xisx
′
i,(s+t) xisx

′
i1 · · · xisx

′
iT

xi1 xi1x
′
i,(s+t) xi1x

′
i1 · · · xi1x

′
iT

...
... · · · ...

xiT xiTx
′
i,(s+t) xiTx

′
i1 · · · xiTx

′
iT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

It can be easily shown that D̂g(σ) = Dg(σ) + op(1), D̂g1t(σ) = Dg1t(σ) + op(1), and D̂gḣ(σ) =

Dgḣ(σ) + op(1) by the law of large numbers. Then, the consistent estimator of Σ(σ, T ) is given by

Σ̂(σ, T ) = e′
1D̂

−1

gḣ
(σ)

󰁱
D̂g(σ) +

T󰁛

t=2

2(1− t/T + 1/T )D̂g1t(σ)
󰁲
D̂−1

gḣ
(σ)e1.

However, we still do not know the value of nuisance parameter σ. We will replace it by σ̃ which is

obtained by iterating ξ̃τ = argmaxξτ Lτ (ξτ , σ̃) and σ̃ = argmaxσ Lτ (ξ̃τ , σ) until convergence for

statistical inference.

To test H0 : Rδτ = rτ (including the simple test H0 : δj,τ = 0 for each j), where R is a J ×K

known matrix with the rank J and rτ is a known constant, a Wald type test statistic can be

constructed as follows:

WN = N(Rδ̂τ − rτ )
′
󰁫
RΣ̂(σ̃, T )R′

󰁬−1

(Rδ̂τ − rτ ).

The limiting distribution of WN is stated in the following theorem which can be established easily

by Theorem 1 and Slutsky’s theorem and omitted.

Theorem 2 (Asymptotic χ2 Test). Under Assumptions A1-A5 in the Appendix and the null

hypothesis H0 : Rδτ = rτ , we have

WN
d→ χ2

J ,

where χ2
J is the χ2-distribution with J degrees of freedom.

3 Simulation Study

In this section, we examine the finite sample performance of the proposed estimator of our model.

We consider the following data generating process:

yit = δ0 + δ1xit,1 + δ2xit,2 + αi + (0.1 + 0.3xit,1 + 0.2xit,2)eit, (11)
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where αi =
󰁓T

t=1 ηt,1xit,1+ηt,2xit,2+vi and T is set by 2. Here, the sequence {eit} is generated from

N (0, 1) and the covariates xit,1 and xit,2 are generated from i.i.d. U(0, 2) and U(0, 3), respectively.

Furthermore, the measurement error term {vi} is a sequence of i.i.d. random variables generated

fromN (0, 0.12), N (0, 0.22), N (0, 0.32), Laplace(0, 0.22), and t(5) distribution. Given that variance

of t(5) is much bigger than that of the other distributions, we set 2.5vi ∼ t(5). The coefficients

are set by δ0 = 3, δ1 = −2.5, δ2 = 2, η1,1 = 1.5, η1,2 = −2, η2,1 = −3, and η2,2 = 2.5, respectively.

Therefore, the quantile model of the DGP in (11) is

qτ (yit) = δ0,τ + δ1,τxit,1 + δ2,τxit,2 + αi,

where δ0,τ = 3 + 0.1Φ−1(τ), δ1,τ = −2.5 + 0.3Φ−1(τ), δ3,τ = 2 + 0.2Φ−1(τ), where Φ(·) is the

cumulative distribution function of the standard normal distribution, and αi =
󰁓T

t=1 ηt,1xit,1 +

ηt,2xit,2 + vi. The individual effect αi,τ in model (1) is actually δ0,τ + αi here.

To evaluate the performance of δ̂j,τ , for 0 ≤ j ≤ 2, we use the absolute deviation error (ADE)

of estimator, which is defined as

ADE(δ̂j,τ ) = |δj,τ − δ̂j,τ |,

for 0 ≤ j ≤ 2.

We consider three sample sizes N = 200, 500, and 1000. For each setting, we conduct the

simulation 500 times and calculate 500 absolute deviation error values. For comparison of the

performance of estimators in three different sample sizes, we also calculate the median and standard

deviation (SD) of 500 absolute deviation error values for each sample size.

Table 1 reports the median and standard deviation of 500 absolute deviation error values for

three sample sizes. As seen from Table 1, the median of 500 absolute deviation error values

decreases when the sample size N increases. For example, in the case of vi ∼ N (0, 0.12) and

τ = 0.2, when the sample size increases from 200 to 1000, the median of 500 ADE values for δ̂0,τ ,

δ̂1,τ , and δ̂2,τ decreases quickly from 0.0862 to 0.0421, from 0.075 to 0.0333, and from 0.0414 to

0.0218, respectively. In the case of vi ∼ Laplace(0, 0.22) and τ = 0.2, the median of 500 absolute

error values for δ̂0,τ , δ̂1,τ and δ̂2,τ decreases from 0.1389 to 0.1272, from 0.0734 to 0.0399, and from

0.0528 to 0.0278, respectively, when the sample size increases. The standard deviation of 500 ADE

values also decreases when the sample size increases. For example, the standard deviation of 500

ADE values for δ̂0,τ , δ̂1,τ , and δ̂2,τ decreases from 0.088 to 0.0389, from 0.0664 to 0.0295, and from
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0.0396 to 0.0218, respectively, when vi ∼ N (0, 0.12) and τ = 0.2. Similar results can been obtained

when τ = 0.5 or 0.8 and the error term vi is generated from Laplace and t distribution. We also

notice that when the distribution of vi becomes heavy-tailed, the median and SD of 500 ADE

values also increased. In sum, the decrease of medians and standard deviations of ADE values

with larger sample size indicates that our simulation result is in consistent with the asymptotic

results above.

Table 1: The median and SD of 500 ADE values for δ̂0,τ ,δ̂1,τ ,δ̂2,τ .

τ = 0.2 τ = 0.5 τ = 0.8

δ̂0,τ δ̂1,τ δ̂2,τ δ̂0,τ δ̂1,τ δ̂2,τ δ̂0,τ δ̂1,τ δ̂2,τ

vi ∼ N (0, 0.12)

200 0.0862 0.075 0.0414 0.0725 0.06 0.0398 0.0893 0.0714 0.0455

(0.088) (0.0664) (0.0396) (0.0671) (0.0584) (0.0346) (0.0801) (0.0671) (0.0424)

500 0.0569 0.0468 0.0338 0.0447 0.0416 0.0243 0.0585 0.0455 0.0282

(0.0565) (0.0416) (0.0259) (0.0453) (0.0349) (0.0222) (0.0551) (0.0387) (0.0271)

1000 0.0421 0.0333 0.0218 0.0329 0.0274 0.0188 0.046 0.0282 0.0206

(0.0389) (0.0295) (0.0191) (0.0325) (0.0253) (0.0158) (0.0418) (0.0299) (0.0187)

vi ∼ N (0, 0.22)

200 0.1244 0.0771 0.0415 0.0795 0.0636 0.0398 0.1155 0.0775 0.0489

(0.1057) (0.068) (0.0417) (0.0737) (0.0584) (0.0346) (0.0991) (0.0688) (0.0441)

500 0.1038 0.0498 0.0345 0.0507 0.04 0.0242 0.1031 0.0513 0.0302

(0.075) (0.0441) (0.0281) (0.0473) (0.0353) (0.0223) (0.072) (0.0411) (0.0284)

1000 0.0997 0.0403 0.0274 0.0358 0.0268 0.0189 0.1016 0.0383 0.0237

(0.055) (0.0331) (0.0218) (0.0362) (0.0254) (0.0156) (0.0605) (0.0329) (0.0206)

vi ∼ N (0, 0.32)

200 0.2021 0.0808 0.0481 0.0891 0.0612 0.0384 0.1937 0.0865 0.0519

(0.1338) (0.0709) (0.0445) (0.0829) (0.0584) (0.0347) (0.1279) (0.072) (0.0463)

500 0.1928 0.0583 0.0401 0.0618 0.041 0.0238 0.1904 0.0604 0.0342

(0.0949) (0.0496) (0.0324) (0.0519) (0.0359) (0.0227) (0.0909) (0.0466) (0.0316)

1000 0.1863 0.053 0.0373 0.0402 0.0273 0.0181 0.1895 0.0543 0.0338

(0.0664) (0.0386) (0.026) (0.0407) (0.0254) (0.0156) (0.0718) (0.0376) (0.024)

vi ∼ Laplace(0, 0.22)

200 0.1389 0.0734 0.0528 0.0879 0.0627 0.0422 0.1431 0.0743 0.048

(0.1125) (0.0628) (0.0477) (0.0788) (0.0558) (0.038) (0.1163) (0.0697) (0.0508)

500 0.1282 0.0518 0.0329 0.0556 0.0391 0.0282 0.1295 0.0517 0.0356

(0.0859) (0.0464) (0.0285) (0.0493) (0.0373) (0.0234) (0.0838) (0.0468) (0.0305)
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1000 0.1272 0.0399 0.0278 0.0442 0.0279 0.018 0.1266 0.0404 0.0272

(0.0681) (0.0351) (0.0214) (0.0366) (0.0255) (0.0166) (0.0649) (0.0372) (0.0237)

2.5vi ∼ t(5)

200 0.3107 0.0848 0.0622 0.1056 0.067 0.0439 0.2967 0.0925 0.0575

(0.1866) (0.0762) (0.049) (0.1037) (0.0587) (0.0394) (0.1733) (0.0781) (0.0543)

500 0.2882 0.0736 0.05 0.0716 0.0414 0.028 0.2904 0.066 0.0466

(0.1227) (0.0566) (0.0366) (0.068) (0.0365) (0.0247) (0.1248) (0.0538) (0.037)

1000 0.2819 0.0696 0.0416 0.0503 0.0255 0.0209 0.2823 0.0641 0.0438

(0.0843) (0.0435) (0.0294) (0.0464) (0.0263) (0.0181) (0.0878) (0.0419) (0.0292)

4 Empirical Study

4.1 Empirical Models

To illustrate our model empirically, we test the pecking order theory in the field of corporate

finance, established by Myers (1984) and Myers and Majluf (1984). There are two important

reasons for using the panel quantile regression to examine the pecking order theory. On the one

hand, prior literature employing mean models does not reach a consensus on whether corporate

financing behaviors conform to the pecking order hypothesis (Brown et al., 2019). Some of prior

studies confirm the pecking order theory analytically and empirically, indicating that firms prefer

internal to external funds (i.e., the first rung of financial hierarchy), and prefer debt to equity

issues (i.e., the second rung of financial hierarchy) when internal funds are exhausted and external

funds are sought (Myers, 1984; Myers and Majluf, 1984; Shyam-Sunder and Myers, 1999; Fama

and French, 2002; Lemmon and Zender, 2010). Nevertheless, the existing studies also document

departures of financing hierarchy from the pecking order theory in different settings (Brennan and

Kraus, 1987; Jung et al., 1996; Frank and Goyal, 2003; Fama and French, 2005; Brown et al.,

2009; Bharath et al., 2009). Their either-or conclusions can be caused by the biased estimation

of mean models. In contrast to the quantile regressions, their use of mean regressions does not

take into consideration the fact that the distribution of the dependent variable is highly skewed.

For instance, the distribution of corporate investments is highly skewed, which can be observed

evidently from Figure 1 (the left figure for the original data and the right figure for the log-
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transformed data) for the investment amount in year 2016. In addition, the employment of mean

regressions fails to capture the phenomenon that the contribution of a given source of funds to

financing investments could change across different levels of investments (Chay et al., 2015). On

the other hand, Chay et al. (2015) used quantile regressions to test the pecking order hypothesis

but they did not control firm and year fixed effects due to difficulties in theoretical modeling and

computational challenges. Since it is difficult to identify valid instrumental variables for financing

variables, the control of unobserved firm-specific heterogeneity, taken as a principal improvement

of panel quantile regressions, is therefore critical for the examination of the pecking order theory.

Figure 1: The density of investment amount for year 2016: Left figure for the original data and

right figure for the log-transformed data.

Following Brown et al. (2009) and Chay et al. (2015), we use a modified investment model

which captures the responsiveness of investments to internal and external funds:

qτ (Iit) = αi,τ + δ1,τCFit + δ2,τEXTFit +
K󰁛

k=1

γk,τControlit,k, (12)

where I denotes the corporate investments in operating activities, measured as capital expenditures

of firm i in fiscal year t. Concerning on the key independent variables, internal funds (CF ) is

defined as the amount of cash flow and external funds (EXTF ) is defined as the sum of debt
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issues (DEBT ) and equity issues (EQUITY ). All of the variables mentioned above are scaled

by net fixed assets. Market-to-book value (MB), cash holdings (Cash), firm size (Size), leverage

(Lev) and year dummy variables {dt} are also added as control variables to the regression above,

and to all of the other regressions. Year dummy variables {dt} is set for t = 2001, 2006, 2011,

and 2016 since we set 1996 as the base year. We calculate the mean values of all responsive and

explanatory variables in each year; see Figure 2. Indeed, we can observe there are significant

differences in sample data across different years, which is consistent with the regression results of

year dummies presented in Table 2. αi is the individual effects used to control the unobserved

firm-specific heterogeneity. In this paper, we approximate αi, as discussed earlier, by a projection

on the explanatory variables of firm i. Hence, the relative importance of internal and external

fund can be observed from the magnitude of δ1,τ and δ2,τ .

To take a further step, external funds (EXTF ) is divided into two separate components, i.e.,

debt issues (DEBT ) and equity issues (EQUITY ). This derivative equation allows us to test the

second rung of the pecking order theory:

qτ (Iit) = αi,τ + δ1,τCFit + δ2,τDEBTit + δ3,τEQUITYit +
K󰁛

k=1

γk,τControlit,k, (13)

where the coefficients of interest are δ1,τ , δ2,τ and δ3,τ , representing the responsiveness of invest-

ments to internal funds, debt issues and equity issues, respectively.

4.2 Data and Sample Construction

To generate our sample, we begin with all listed companies in the U.S. that have annual data

regarding financial information in Compustat. We construct a balanced panel of non-financial and

non-utility companies by drawing the sample every five-years, i.e., 1996, 2001, 2006, 2011, and

2016. We exclude observations with missing values from the sample and trim the outliers in all

key variables following the rules as those in Cleary (1999). Therefore, our final sample consists of

3785 firm-year observations.
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Figure 2: Time series of mean values for responsive and explanatory variables in each year.

4.3 Empirical Results

4.3.1 Testing on the First Rung of Pecking Order Theory

Panel A of Table 2 provides the panel quantile regression results as well as the OLS regression

results estimated for the first rung of the pecking order theory (i.e., internal to external funds).

The OLS results illustrate a simple situation on average, while the results of the quantile regression

model depict a full picture of the financing hierarchy across different scales of investments.

The results of OLS regression indicate that both internal (CF ) and external funds (EXTF )

have statistically significant effect on investment activities (I). Consistent with the assumption in
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the first rung of pecking order theory, the responsiveness of investments to internal funds (0.148)

is significantly more profound than external funds (0.068).

Concerning on the results of the panel quantile regression, the financing hierarchy of investment

activities gets more complicated across different scales of investments. The estimates of δ1,τ and

δ2,τ are positive and statistically significant with p-values < 0.1 at all levels of investments. To

illustrate the trends of each estimate and compare the relative relationship between them, we

then plot the estimates of internal and external funds as shown in Figure 3. The horizontal axis

measures different scales of investment activities (I) and the vertical axis measures the estimated

coefficients of different sources of funds. The solid points indicate the point estimates from the

panel quantile regression and the shaded area represents the corresponding 90% confidence interval.

The two dashed lines indicate the estimates of internal and external funds from the OLS regression,

respectively. It is observed that as the investment quantile ranges from 10% to 90%, the magnitude

of coefficients of external funds (EXTF ) generally experiences an upward trend from 0.042 to

0.117. In the mean time, the magnitude of coefficients of internal funds (CF ) rises to the second

highest point at the 50% quantile and declines at the 60% quantile. Then the magnitude of

coefficients of internal funds remain stable from 60% to 80% quantiles while it rises to the peak at

the highest quantile. Generally, the estimated coefficients of internal funds are significantly larger

than that of external funds except for the lowest investments quantile. Our results, thus, suggest

that the corporate financing hierarchy is in accordance with the first rung of the pecking order

theory across all investments (I) quantiles from 10% to 90%. It is reasonable that our results

supports the view that internal funds are preferred to external funds, as prior literature indicate

that internal funds help firms avoid transaction costs and information asymmetry costs on debt

or equity issuances (Faulkender and Wang, 2006) and liquidation cost on debt issuance (Al-Najjar

and Belghitar, 2011).
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Table 2: Baseline Tests of Pecking Order

Selected quantiles of investments (I)

OLS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: First rung of pecking order

CF 0.148 0.086 0.135 0.156 0.205 0.224 0.186 0.19 0.191 0.271

(0.018)*** (0.022)*** (0.021)*** (0.022)*** (0.023)*** (0.025)*** (0.027)*** (0.03)*** (0.036)*** (0.048)***

EXTF 0.068 0.042 0.026 0.052 0.041 0.062 0.071 0.077 0.069 0.117

(0.016)*** (0.016)*** (0.015)* (0.016)*** (0.017)** (0.018)*** (0.02)*** (0.021)*** (0.026)*** (0.035)***

MB 0.104 0.054 0.072 0.09 0.077 0.064 0.055 0.059 0.055 0.1

(0.016)*** (0.017)*** (0.016)*** (0.017)*** (0.018)*** (0.02)*** (0.021)** (0.023)*** (0.028)** (0.038)***

Cash 0.129 -0.043 0.027 0.063 0.094 0.116 0.141 0.176 0.221 0.192

(0.02)*** (0.025)* (0.025) (0.026)** (0.027)*** (0.029)*** (0.032)*** (0.034)*** (0.042)*** (0.056)***

Size -0.176 0.136 0.074 -0.005 -0.068 -0.125 -0.203 -0.288 -0.385 -0.566

(0.053)*** (0.183) (0.179) (0.189) (0.196) (0.211) (0.232) (0.251) (0.301) (0.403)

Lev -0.117 -0.1 -0.124 -0.083 -0.1 -0.081 -0.096 -0.125 -0.134 -0.075

(0.021)*** (0.028)*** (0.027)*** (0.029)*** (0.03)*** (0.032)** (0.035)*** (0.038)*** (0.046)*** (0.061)

d2001 -0.184 -0.111 -0.155 -0.16 -0.162 -0.169 -0.19 -0.181 -0.205 -0.199

(0.042)*** (0.05)** (0.049)*** (0.051)*** (0.054)*** (0.058)*** (0.063)*** (0.068)*** (0.082)** (0.111)*

d2006 -0.131 -0.098 -0.123 -0.129 -0.136 -0.111 -0.113 -0.133 -0.141 -0.057

(0.046)*** (0.059)* (0.057)** (0.061)** (0.064)** (0.069) (0.075) (0.081) (0.098) (0.132)

d2011 -0.198 -0.18 -0.189 -0.19 -0.2 -0.183 -0.185 -0.172 -0.203 -0.106

(0.049)*** (0.067)*** (0.065)*** (0.069)*** (0.072)*** (0.078)** (0.084)** (0.091)* (0.11)* (0.149)

d2016 -0.27 -0.224 -0.233 -0.254 -0.239 -0.212 -0.235 -0.239 -0.293 -0.23

(0.051)*** (0.073)*** (0.071)*** (0.075)*** (0.078)*** (0.085)** (0.092)** (0.099)** (0.12)** (0.162)

N 3785 3785 3785 3785 3785 3785 3785 3785 3785 3785

Panel B: Second rung of pecking order

CF 0.147 0.102 0.145 0.163 0.205 0.224 0.194 0.186 0.219 0.267

(0.019)*** (0.022)*** (0.021)*** (0.022)*** (0.023)*** (0.025)*** (0.028)*** (0.03)*** (0.036)*** (0.05)***

DEBT 0.049 0.022 0.03 0.029 0.03 0.054 0.061 0.053 0.077 0.086

(0.015)*** (0.013)* (0.013)** (0.013)** (0.014)** (0.016)*** (0.017)*** (0.018)*** (0.022)*** (0.031)***

EQUITY 0.044 0.014 0.007 0.035 0.029 0.056 0.061 0.075 0.047 0.063

(0.017)** (0.019) (0.018) (0.019)* (0.02) (0.022)** (0.024)** (0.026)*** (0.031) (0.044)

MB 0.104 0.044 0.086 0.09 0.076 0.061 0.059 0.061 0.064 0.111

(0.016)*** (0.017)*** (0.016)*** (0.017)*** (0.018)*** (0.02)*** (0.021)*** (0.023)*** (0.027)** (0.039)***

Cash 0.13 -0.015 0.027 0.085 0.104 0.126 0.13 0.19 0.23 0.233

(0.02)*** (0.025) (0.024) (0.026)*** (0.027)*** (0.029)*** (0.032)*** (0.034)*** (0.041)*** (0.058)***

Size -0.173 0.146 0.071 -0.007 -0.07 -0.148 -0.215 -0.262 -0.423 -0.482

(0.054)*** (0.185) (0.179) (0.189) (0.198) (0.215) (0.236) (0.252) (0.301) (0.422)

Lev -0.117 -0.089 -0.128 -0.076 -0.096 -0.089 -0.098 -0.131 -0.142 -0.076

(0.021)*** (0.028)*** (0.027)*** (0.028)*** (0.03)*** (0.033)*** (0.036)*** (0.038)*** (0.046)*** (0.064)

d2001 -0.186 -0.126 -0.155 -0.159 -0.172 -0.176 -0.2 -0.192 -0.154 -0.165

(0.042)*** (0.049)** (0.048)*** (0.05)*** (0.053)*** (0.058)*** (0.063)*** (0.067)*** (0.081)* (0.114)

d2006 -0.133 -0.116 -0.127 -0.126 -0.131 -0.121 -0.107 -0.134 -0.11 -0.086

(0.046)*** (0.059)** (0.057)** (0.06)** (0.063)** (0.069)* (0.075) (0.079)* (0.096) (0.136)

d2011 -0.202 -0.207 -0.194 -0.197 -0.205 -0.179 -0.18 -0.187 -0.146 -0.143

(0.049)*** (0.066)*** (0.064)*** (0.067)*** (0.072)*** (0.078)** (0.085)** (0.09)** (0.108) (0.153)

d2016 -0.273 -0.247 -0.242 -0.268 -0.247 -0.2 -0.227 -0.259 -0.227 -0.277

(0.051)*** (0.072)*** (0.07)*** (0.073)*** (0.078)*** (0.084)** (0.092)** (0.097)*** (0.118)* (0.166)*

N 3785 3785 3785 3785 3785 3785 3785 3785 3785 3785

Table 2 reports the results of tests on pecking order theory employing the OLS regression and the panel quantile regression. Panel A concerning on

the first rung of the pecking order reports the estimates of the internal and external funds on investment activities. Panel B concerning on the second

order of pecking order reports the estimates of the internal funds, debt issues and equity issues, respectively. The dependent variable (I) denotes the

corporate investments in operating activities, measured as capital expenditures scaled by net fixed assets. The independent variable CF is defined as

cash flow, scaled by net fixed assets. Another variable of interest is EXTF , measured as the sum of debt issues (DEBT ) and equity issues (EQUITY ),

scaled by net fixed assets, where DEBT is calculated as funds raised by debt issues and EQUITY is calculated as funds raised by equity issues. We

control for market-to-book value (MB), Cash holdings (Cash), firm size (Size) and leverage (Lev). Panel B reports the results of the internal funds,

debt issues and equity issues, respectively. All control variables are winsorised at the 1% and 99% percentile levels, and all continuous variables are

standardized afterwards. Firm-specific effects and year-specific effects are included. Standard errors are presented in parentheses. Finally, *, ** and ***

represent significance levels of 10%, 5% and 1%, respectively.
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Figure 3: First Rung of Pecking Order

4.3.2 Testing on the Second Rung of Pecking Order Theory

Provided that managers in pursuit of maximizing the value for original shareholders have infor-

mation advantages over outside creditors and investors, the second rung of the pecking order

hypothesis theoretically assumes that managers will use debt and then equity issues in sequence

to invest projects with a positive net present value. Accordingly, we take a further empirical test

for the second rung of the pecking order theory.

Panel B of Table 2 represents the regression results estimated where external funds are divided

into funds raised by debt issues and equity issues. The results, however, are inconsistent with

the pecking order hypothesis in the second rung for both OLS regression and the panel quantile

regression, despite that the first run still holds. For all quantiles of investments, the estimates

of δ2,τ and δ3,τ are positive, and the estimates of δ2,τ are statistically significant with p-values

< 0.1. However, the estimates of δ3,τ are statistically significant only at 30%, 50%, 60% and 70%
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quantiles with p-values < 0.1.

To compare the magnitudes of estimated coefficients on cash flow (CF ), debt issues (DEBT )

and equity issues (EQUITY ) and determine their relative importance for investment activities at

each investment level, we plot the estimates of internal and two types of external funds with the

similar patterns as Figure 3. As is shown in Figure 4, firms prefer internal funds to both debt

and equity issues across all investment levels, in support of the first rung of the pecking order

theory. As for the second rung, the magnitude of δ2,τ keeps an upward tendency while that of

δ3,τ generally experience growth but with slight fluctuations at some of the quantiles. However,

the shaded areas for the estimates of debt issues (DEBT ) and equity issues (EQUITY ) overlap

for all quantiles of investments (I). It implies that the relative magnitudes of the two sources of

external funds are not significantly distinctive from each other, resulting in an evidence against

the second rung of the pecking order theory.

Figure 4: Second Rung of Pecking Order

Although our results reveal some interesting patterns seemingly contradictory to the traditional
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pecking order hypothesis, we acknowledge that the results above are not against the view that

information asymmetry is the driving force of adverse selection and then corporate financing

behavior in terms of pecking order theory. Still, uninformed investors rationally demand different

premiums on debt issues and equity issues given that firms are confronted with severe adverse

selection problems (Myers, 1984; Myers and Majluf, 1984). Our results could be attributable

to the improved information environments in the U.S. thanks to the gradually updated FASB

standards (Khan et al., 2018) and the growing number of small listed companies since 1990s

(Frank and Goyal, 2003; Chay et al., 2015). Frank and Goyal (2003) documented that the net

equity issues track the financing deficit much more closely than net debt issues do, and the bulk of

external financing takes the form of equity. A particularly striking phenomenon is that a lot more

small and unprofitable firms with less severe adverse selection problems became publicly traded

during the 1990s so that they do not behave according to pecking order theory.

The overall results indicate that the financing hierarchy departs from the pecking order theory

at any of the investments quantiles, as presented clearly in Figure 4. Meanwhile, our results are

distinctive from the results documented by previous studies and we presume the difference mainly

arises from our deployment of the panel quantile regression controlling firm-specific and year fixed

effects.

5 Conclusion

This paper studies the estimation and inference of a quantile regression model for panel data with

correlated random effects. Most previous literature concerning panel quantile models with fixed

effects assume both the sample size N and the time period T go to infinity, but we only require

N to go to infinity and allow T to be a fixed finite number under the framework of Abrevaya and

Dahl (2008). The Monte Carlo simulation result is consistent with the asymptotic theory. We then

illustrate the method with an application to testing the pecking order theory using non-financial

and non-utility U.S. firms in Compustat database.

Finally, we note several possible extensions of the present study. For example, it is worth

pointing out that yit might not be independent for many applications. To characterize the de-

pendence among individuals for panel data, it might need to assume large T . In such a way,

two methods of using factors are commonly used in the literature: the common correlated effect
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(CCE) by Pesaran (2006) and the interactive fixed effect (IFE) approach proposed in Bai (2009),

so that our quantile model for panel data can be generalized to quantile model for panel data

with cross-sectional dependence and large T . We leave such extensions as possible future research

topics.
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APPENDIX: Conditions and Proofs

First, we make the following assumptions, which are necessary to establish the asymptotic nor-

mality of our estimator by following the analysis of Cai and Xu (2008) and Cai and Xiao (2012).

All notations can be found in Section 2.3.

Assumptions:

A1. The series {yit,xit} is i.i.d. across individual i but can be correlated over t for fixed i;

A2. The series {vi,τ} is i.i.d. and independent of {xit}, and has a smooth and unimodal density

function with zero mean;

A3. Σx = E(xitx
′
it) is invertible;

A4. E(󰀂xit󰀂θ) < ∞ with θ > 4;

A5. T ≥ 2.

Assumption A1 assumes that the observations {xit, yit} are i.i.d. across individual i, but can

be correlated between different time t for fixed i. Assumption A2 is for model identification. For

those mean of vi,τ is not equal to zero, one can always subtract the non-zero mean and add it to

the constant coefficient. Assumptions A3-A4 about the observations {xit} guarantee the matrix

G′G in model (3) is invertible, and E(󰀂git󰀂)θ < ∞ for some θ > 4. Finally, Assumption A5

excludes the cross sectional data.

Next, we give the proof of Theorem 1. To this end, two lemmas and one proposition are needed

as follows.

Lemma 1. Let VNT (∆) be a vector function that satisfies

(i) −∆′VNT (λ∆) ≥ −∆′VNT (∆),λ ≥ 1,

(ii) sup󰀂∆󰀂≤M 󰀂VNT (∆)− ANT +D∆󰀂 = op(1),

where 󰀂ANT󰀂 = Op(1), 0 < M < ∞, and D is a positive-definite matrix. Suppose ∆̂ is a vector

such that VNT (∆̂) = op(1). Then, we have 󰀂∆̂󰀂 = Op(1) and

∆̂ = D−1ANT + op(1).

Proof. See the proof of Lemma A.4 in Koenker and Zhao (1996).

Proposition 1. Some properties about ψτ (u, σ) = τ − hτ (u, σ) are listed as follows.
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(1) ψτ (u, σ) is a non-decreasing function about u when σ is fixed.

(2) ψτ (u, σ) is a bounded function, and both the first and second derivatives are also bounded.

(3) ψτ (u, σ) has a continuous second derivative function about u.

Proof. (1): Since ψτ (u, σ) = τ − hτ (u, σ), we only need to show that hτ (u, σ) is a non-increasing

function about parameter u when σ is fixed. Denote mτ (u) ≡ hτ (u, σ), then

mτ (u) =
∂ln(ντ (u, σ))

∂u

=
exp{u+ 1−2τ

2
σ2}Φ(−u

σ
+ (τ − 1)σ)

exp{u+ 1−2τ
2

σ2}Φ(−u
σ
+ (τ − 1)σ) + Φ(u

σ
− τσ)

≡ p(u)

q(u)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. Since

m′
τ (u) =

p′(u)q(u)−p(u)q′(u)
q2(u)

, we only need to show that

m1(u) ≡p′(u)q(u)− p(u)q′(u)

= exp

󰀝
u+

1− 2τ

2
σ2

󰀞󰀝
Φ
󰀓u
σ
− τσ

󰀔󰀗
Φ
󰀓
−u

σ
+ (τ − 1)σ

󰀔
− 1

σ
φ
󰀓
−u

σ
+ (τ − 1)σ

󰀔󰀘

− 1

σ
Φ
󰀓
−u

σ
+ (τ − 1)σ

󰀔
φ
󰀓u
σ
− τσ

󰀔󰀞
≤ 0, u ∈ R, (A.1)

where φ(·) is the density probability function of the standard normal distribution. Let x denote

−u
σ
+ (τ − 1)σ, then

m2(x) ≡ m1(u)/ exp

󰀝
u+

1− 2τ

2
σ2

󰀞

= Φ(−x− σ)Φ(x)− 1

σ
Φ(−x− σ)φ(x)− 1

σ
Φ(x)φ(−x− σ).

Notice that m2(x) is a symmetric function about x = −σ
2
and limx→±∞ m2(x) = 0, so (A.1) follows

from

m′
2(x) ≥ 0, x > −σ

2
. (A.2)

The next step is to show (A.2) holds. We only prove (A.2) when σ = 1. For 0 < σ < 1 and σ > 1,

one can show it similarly.

For σ = 1, m2(x) = Φ(−x− 1)Φ(x)−Φ(−x− 1)φ(x)−Φ(x)φ(−x− 1), and the first derivative
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of m2(x) is

m′
2(x) =− φ(−x− 1)Φ(x) + Φ(−x− 1)φ(x)

− [−φ(−x− 1)φ(x) + Φ(−x− 1)φ(x)(−x)]

− [φ(x)φ(−x− 1) + Φ(x)φ(−x− 1)(−x− 1)]

=− φ(−x− 1)Φ(x) + Φ(x)φ(−x− 1)(x+ 1)

+ Φ(−x− 1)φ(x) + Φ(−x− 1)φ(x)x

=φ(−x− 1)Φ(x)x+ Φ(−x− 1)φ(x)(1 + x)

=φ(x+ 1)Φ(x)x+ Φ(−x− 1)φ(x)(1 + x),

where the last equality is by symmetry of φ(x). Obviously, m′
2(−1

2
) = 0, m′

2(0) > 0, and

m′
2(x) ≥ 0, x ≥ 0.

We still need to prove that

m′
2(x) ≥ 0, −1

2
< x < 0. (A.3)

For −1
2
< x < 0, −x2 − x+ 1 ≥ 1, and the second derivative of m2(x) is

m′′
2(x) =− φ(x+ 1)(x+ 1)Φ(x)x+ φ(x+ 1) [φ(x)x+ Φ(x)]

+ φ(−x− 1)(−1)φ(x)(1 + x) + Φ(−x− 1) [φ(x)(−x)(1 + x) + φ(x)]

=φ(x+ 1)Φ(x) [−(x+ 1)x+ 1] + φ(x+ 1)φ(x)[x− 1− x]

+ Φ(−x− 1)φ(x)[−x(1 + x) + 1]

=(−x2 − x+ 1) [φ(x+ 1)Φ(x) + Φ(−x− 1)φ(x)]− φ(x+ 1)φ(x)

≥φ(x+ 1)Φ(x) + Φ(−x− 1)φ(x)− φ(−x− 1)φ(x) ≡ m3(x).

By m′
2(−1

2
) = 0 and m′

2(0) > 0, (A.3) is implied by

m3(x) ≥ 0,−1

2
< x < 0. (A.4)

We now consider m3(x) for −1
2
< x < 0. It is easy to show that

m3(x) =
1√
2π

e−
(x+1)2

2 Φ(x) + Φ(−x− 1)
1√
2π

e−
x2

2 − φ(x+ 1)
1√
2π

e−
x2

2

=
󰁱
e−

2x+1
2 Φ(x) + Φ(−x− 1)− φ(x+ 1)

󰁲 1√
2π

e−
x2

2 .
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The first derivative of
󰀓

1√
2π
e−

x2

2

󰀔−1

m3(x) is

󰀥󰀕
1√
2π

e−
x2

2

󰀖−1

m3(x)

󰀦′

=
󰁱
−e−

2x+1
2 Φ(x) + e−

2x+1
2 φ(x)− φ(x+ 1)− φ(x+ 1)(−x− 1)

󰁲
c1

=
󰁱
−e

2x+1
2 Φ(x) + φ(x+ 1)(x+ 1)

󰁲
c1

=

󰀝
−e

2x+1
2 Φ(x) +

1√
2π

e−
(x+1)2

2 (x+ 1)

󰀞
c1

= {−Φ(x) + φ(x)(x+ 1)} c2,

where c1 and c2 are positive constant numbers. The second derivative of c−1
2 m3(x) is

[(c2)
−1m3(x)]

′′ =− φ(x) + φ(x)(−x)(x+ 1) + φ(x)

=− x(x+ 1)φ(x),

Notice that m′′
3(x) ≥ 0 for −1

2
< x < 0, and m′′

3(0) = 0, m′′
3(−1

2
) > 0. Therefore, m′

3(x) is an

increasing function for −1
2
< x < 0. Combining the fact that m′

3(0) < 0 and m′
3(−1

2
) < 0, we

know that m3(x) is a decreasing function for −1
2
< x < 0. By m3(0) > 0 and m3(−1

2
) > 0, we can

obtain (A.4) holds.

The proof of (2) and (3) follows from the proof of (1).

Lemma 2. Under the assumptions of Theorem 1,
󰀐󰀐󰀐󰀐󰀐

1√
NT

N󰁛

i=1

T󰁛

t=1

ψτ (uit, σ)git

󰀐󰀐󰀐󰀐󰀐 = Op(1). (A.5)

Proof. We rewrite (A.5) as follows

1√
NT

N󰁛

i=1

T󰁛

t=1

ψτ (uit, σ) =
1√
N

N󰁛

i=1

󰀣
1√
T

T󰁛

t=1

ψτ (uit, σ)

󰀤
≡ 1√

N

N󰁛

i=1

Ψi.

By Proposition 1, Ψi has a mean µΨ = 0 and a variance VΨ < ∞. And by Lindeberg-Lévy central

limit theory,

1√
NT

N󰁛

i=1

T󰁛

t=1

ψτ (uit, σ)
d→ N (0, VΨ).

Then, by Assumption (A4) and Slutsky’s theorem,

1√
NT

N󰁛

i=1

T󰁛

t=1

ψτ (uit, σ)git
d→ N (0, VΨE(git)E(g′

it))
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Therefore, 󰀐󰀐󰀐󰀐󰀐
1√
NT

N󰁛

i=1

T󰁛

t=1

ψτ (uit, σ)git

󰀐󰀐󰀐󰀐󰀐 = Op(1).

Proof of Theorem 1.

First, we derive the Bahadur representation of the panel quantile regression. We need to verify

the assumptions listed in Lemma 1. Define a objective function as follows.

ZNT (∆) =
N󰁛

i=1

T󰁛

t=1

󰀋
ln lτ (uit −∆′b−1

NTgit)− ln lτ (uit)
󰀌
,

where bNT = (NT )1/2, and lτ (u) is actually lτ (u, σ) that is defined in (8). In this proof, however,

σ will be omitted for the estimation of ξτ is performed with some fixed σ. Indeed, ZNT (∆) is the

objective function of the following model:

qτ (uit) = (∆b−1
NT )

′
τgit,

and the QMLE of (∆b−1
NT )τ is (ξ̂τ − ξτ ) by (9). Therefore, we can obtain

∂ZNT (∆)

∂∆

󰀏󰀏󰀏󰀏
∆=

√
NT (ξ̂τ−ξτ )

= 0. (A.6)

Using the identity which has a similar form in Knight (1998), we have

− ln lτ (u− v) + ln lτ (u) = −vψτ (u) +

󰁝 v

0

[h(u− s)− h(u)] ds,

where ψτ (u) = −∂ ln lτ (u)
∂u

. Then,

ZNT (∆) =
N󰁛

i=1

T󰁛

t=1

∆′b−1
NTgitψτ (uit)−

N󰁛

i=1

T󰁛

t=1

󰁝 ∆′b−1
NT git

0

[h(uit − s)− h(uit)] ds (A.7)

By (A.7), ZNT (∆) is derivable. Then we define a new function as follows.

VNT (∆) ≡ ∂ZNT (∆)

∂∆

=
N󰁛

i=1

T󰁛

t=1

b−1
NTgitψτ (uit)−

N󰁛

i=1

T󰁛

t=1

b−1
NTgit

󰀅
h(uit −∆′b−1

NTgit)− h(uit)
󰀆
.
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The next step is to show that VNT (∆) satisfies Assumption (i) in Lemma 1. By Proposition 1

that ψτ (u) is a non-dcreasing function, so

−∆′VNT (λ∆) =
N󰁛

i=1

T󰁛

t=1

ψτ (uit − λ∆′b−1
NTgit)(−∆′b−1

NTgit)

is a non-decreasing function of λ if ∆′b−1
NTgit > 0. Similarly,

−∆′VNT (λ∆) =
N󰁛

i=1

T󰁛

t=1

ψτ (uit − λ∆′b−1
NTgit)(−∆′b−1

NTgit)

is a non-decreasing function of λ if ∆′b−1
NTgit < 0. Thus,

−∆′VNT (λ∆) =
N󰁛

i=1

T󰁛

t=1

ψτ (uit − λ∆′b−1
NTgit)(−∆′b−1

NTgit)

is a non-dereasing function of λ. Therefore, we have for λ > 1

−∆′VNT (λ∆) ≥ ∆′VNT (∆),

so that Assumption (i) of Lemma 1 is verified.

We still need to prove that VNT (∆) satisfies Assumption (ii) in Lemma 1.

VNT (∆) =
N󰁛

i=1

T󰁛

t=1

b−1
NTgitψτ (uit)−

N󰁛

i=1

T󰁛

t=1

b−1
NTgit

󰀅
h(uit −∆′b−1

it git)− h(uit)
󰀆

=
N󰁛

i=1

T󰁛

t=1

b−1
NTgitψτ (uit)−

N󰁛

i=1

T󰁛

t=1

E(λit|git)−
N󰁛

i=1

T󰁛

t=1

[λit − E(λit|git)] ,

= ANT −
N󰁛

i=1

T󰁛

t=1

E(λit|git)−
N󰁛

i=1

T󰁛

t=1

[λit − E(λit|git)] , (A.8)

where ANT =
󰁓N

i=1

󰁓T
t=1 b

−1
NTgitψτ (uit) and λit = b−1

NTgit

󰀅
h(uit −∆′b−1

it git)− h(uit)
󰀆
. By Taylor
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expansion,

N󰁛

i=1

T󰁛

t=1

E(λit|git) ≡
N󰁛

i=1

T󰁛

t=1

Eit(λit)

=
N󰁛

i=1

T󰁛

t=1

b−1
NTgitEit

󰀃
h(uit −∆′b−1

NTgit)− h(uit)
󰀄

=
N󰁛

i=1

T󰁛

t=1

b−1
NTgitEit

󰀕
−ḣ(uit)g

′
itb

−1
NT∆+

1

2
ḧ(u∗

it)∆
′b−1
NTgitg

′
itb

−1
NT∆

󰀖

=
N󰁛

i=1

T󰁛

t=1

E
󰀓
−ḣ(uit)|git

󰀔
b−1
NTgitg

′
itb

−1
NT∆+

N󰁛

i=1

T󰁛

t=1

b−1
NTgit

1

2
E
󰀓
ḧ(u∗

it)|git

󰀔
∆′b−1

NTgitg
′
itb

−1
NT∆

≡ B1 +B2,

(A.9)

where Eit(·) denotes the conditional expectation dependent on git and u∗
it is the interior point

between uit and uit +∆′b−1
NT∆git. Note that ḣ < 0 by Proposition 1 (1). We decompose B1 into

two parts as follows.

B1 =
N󰁛

i=1

T󰁛

t=1

E
󰀓
−ḣ(uit)

󰀔
b−1
NTgitg

′
itb

−1
NT∆+

N󰁛

i=1

T󰁛

t=1

󰁱
E
󰀓
−ḣ(uit)|git

󰀔
− E

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬󰁲
b−1
NTgitg

′
itb

−1
NT∆.

We rewrite the second part as follows and want to show it is equal to op(1).

N󰁛

i=1

T󰁛

t=1

󰁱
E
󰀓
−ḣ(uit)|git

󰀔
− E

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬󰁲
b−1
NTgitg

′
itb

−1
NT

=
1√
NT

N󰁛

i=1

T󰁛

t=1

󰁱
E
󰀓
−ḣ(uit)|git

󰀔
− E

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬󰁲
gitg

′
it ·

1√
NT

.

Because 1√
NT

󰁓N
i=1

󰁓T
t=1

󰁱
E
󰀓
−ḣ(uit)|git

󰀔
− E

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬󰁲
d→ N (0,Σ) where Σ = V ar

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬
E(gitg

′
it)E(gitg

′
it)

by Proposition 1 (2) that h(u) is bounded and Assumption (A4), it follows that

N󰁛

i=1

T󰁛

t=1

󰁱
E
󰀓
−ḣ(uit)|git

󰀔
− E

󰁫
E
󰀓
−ḣ(uit)|git

󰀔󰁬󰁲
b−1
NTgitg

′
itb

−1
NT = Op(1) · o(1) = op(1).

Therefore,

B1 = E
󰁫
gitg

′
itE

󰀓
−ḣ(uit, σ)

󰀔󰁬
∆+ op(1) ≡ Dgḣ(σ)∆+ op(1), (A.10)
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where Dgḣ(σ) = E
󰁫
gitg

′
itE

󰀓
−ḣ(uit, σ)

󰀔󰁬
. Also,

󰀂B2󰀂 =

󰀐󰀐󰀐󰀐󰀐

N󰁛

i=1

T󰁛

t=1

b−1
NTgit

1

2
E
󰀓
ḧ(u∗)|git

󰀔
∆′b−1

NTgitg
′
itb

−1
NT∆

󰀐󰀐󰀐󰀐󰀐

≤ b−1
NT

1

2

󰀏󰀏󰀏E
󰀓
ḧ(u∗)|git

󰀔󰀏󰀏󰀏 ·
N󰁛

i=1

T󰁛

t=1

b−2
NT󰀂git󰀂3󰀂∆󰀂2

p→ o(1) · 1
2

󰀏󰀏󰀏E
󰀓
ḧ(u∗)|git

󰀔󰀏󰀏󰀏E󰀂git󰀂3󰀂∆󰀂2 = 0,

by Assumption (A4), Assumption (ii) in Lemma 1 that 󰀂∆󰀂 ≤ M and Proposition 1 (2). Thus,

B2 = op(1). (A.11)

By combining (A.10) and (A.11) , we have

N󰁛

i=1

T󰁛

t=1

E(λit|git) = Dgḣ(σ) + op(1). (A.12)

Next, we will verify that
N󰁛

i=1

T󰁛

t=1

[λit − E(λit|git)] = op(1).

For those satisfying∆′b−1
NTgit > 0, h(uit+∆′b−1

NTgit)−h(uit) > 0, and
󰀅
h(uit +∆′b−1

NTgit)− h(uit)
󰀆
∈

(0, 1) by h(u) ∈ (0, 1), we can show that

N󰁛

i=1

T󰁛

t=1

E(λitλ
′
it) =

N󰁛

i=1

T󰁛

t=1

E[E(λitλ
′
it|git)]

=
1

NT

N󰁛

i=1

T󰁛

t=1

E
󰁱
E[

󰀃
h(uit +∆′b−1

NTgit)− h(uit)
󰀄2

gitg
′
it|git]

󰁲

≤ E
󰀋
E[

󰀃
h(uit +∆′b−1

NTgit)− h(uit)
󰀄
gitg

′
it|git]

󰀌

= E
󰁱
ḣ(u∗

it)∆
′b−1
NTgitgitg

′
it

󰁲

≤ max
u∈R

|ḣ(u)| · 1√
NT

· E(∆′gitgitg
′
it),

where u∗
it ∈ (uit, uit+∆′b−1

NTgit). For those satisfying ∆′b−1
NTgit < 0, we can obtain the same result.

Thus, for 0 < M < ∞,

󰀐󰀐󰀐󰀐󰀐

N󰁛

i=1

T󰁛

t=1

E(λitλ
′
it)

󰀐󰀐󰀐󰀐󰀐 ≤ max
u∈R

|ḣ(u)| · 1√
NT

·M · E󰀂git󰀂3 = o(1),
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by Proposition 1 (2) and Assumption (A4).

As a result, we prove that
N󰁛

i=1

T󰁛

t=1

E(λitλ
′
it) = o(1).

Therefore,

V ar

󰀣
N󰁛

i=1

T󰁛

t=1

[λit − E(λit|git)]

󰀤

≡V ar

󰀣
N󰁛

i=1

T󰁛

t=1

[λit − Eit(λit)]

󰀤

=
N󰁛

i=1

T󰁛

t=1

V ar[λit − Eit(λit)] +
N󰁛

i=1

󰁛

t ∕=s

Cov [λit − Eit(λit),λis − Eis(λis)]

≤
N󰁛

i=1

T󰁛

t=1

V ar[λit − Eit(λit)] + (T − 1)
N󰁛

i=1

T󰁛

t=1

V ar [λit − Eit(λit)]

=T

N󰁛

i=1

T󰁛

t=1

V ar[λit − Eit(λit)] = T

N󰁛

i=1

T󰁛

t=1

E[λit − Eit(λit)][λit − Eit(λit)]
′

≤T
N󰁛

i=1

T󰁛

t=1

E(λitλ
′
it) = o(1).

Thus by Chebyshev’s inequality, we have verified

N󰁛

i=1

T󰁛

t=1

[λit − E(λit|git)] = op(1). (A.13)

By (A.8), (A.12), and (A.13), for 󰀂∆󰀂 ≤ M , 0 < M < ∞,

VNT (∆) = ANT −Dgḣ(σ) + op(1)

Therefore, for 0 < M < ∞,

sup
󰀂∆󰀂≤M

󰀐󰀐VNT (∆) +Dgḣ(σ)− ANT

󰀐󰀐 = op(1). (A.14)

By Lemma 2,

󰀂ANT󰀂 =

󰀐󰀐󰀐󰀐󰀐

N󰁛

i=1

T󰁛

t=1

b−1
NTgitψτ (uit)

󰀐󰀐󰀐󰀐󰀐 = Op(1), (A.15)

and by (A.6),

󰀏󰀏󰀏VNT

󰀓√
NT (ξ̂τ − ξτ )

󰀔󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
∂ZNT (∆)

∂∆

󰀏󰀏󰀏󰀏
∆=

√
NT (ξ̂τ−ξτ )

󰀏󰀏󰀏󰀏󰀏 = 0 = op(1). (A.16)
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Then by (A.14), (A.15) and (A.16), we conclude that Assumption (ii) of Lemma 1 is verified.

Thus, we obtain the Bahadur representation

√
NT (ξ̂τ − ξτ ) ≡ ∆̂ = D−1

gḣ
(σ)ANT + op(1). (A.17)

Since δτ = e′
1ξτ , then the Bahadur representation of δ̂τ is

√
NT (δ̂τ − δτ ) ≃

1√
N

N󰁛

i=1

e′
1D

−1

gḣ
(σ)

1√
T

T󰁛

t=1

ψτ (uit, σ)git ≡
1√
N

N󰁛

i=1

Γi.

It is easy to see the mean of Γi is zero for E[ψτ (u, σ)] = 0 and the variance of Γi is given by

V ar(Γi) = e′
1D

−1

gḣ
(σ)

1

T
V ar

󰀣
T󰁛

t=1

ψτ (uit, σ)git

󰀤
D−1

gḣ
(σ1)e1

= e′
1D

−1

gḣ
(σ)

󰀫
V ar[ψτ (uit, σ)git] +

T󰁛

t=2

2(T − t+ 1)

T
Cov(ψτ (ui1, σ)gi1,ψτ (uit, σ)git)

󰀬
D−1

gḣ
(σ)e1

= e′
1D

−1

gḣ
(σ)

󰀫
E[ψτ (uit, σ)]

2E[gitg
′
it] +

T󰁛

t=2

2(T − t+ 1)

T
E[ψτ (ui1, σ)ψτ (uit, σ)]E[gi1g

′
it]

󰀬
D−1

gḣ
(σ)e1.

Finally, since Γi is i.i.d. across individual i, we can follow the Lindeberg-Lévy central limit theorem

to get the asymptotic normality of δ̂τ .
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