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on the Cramér-von Mises type criterion. The asymptotic properties of the proposed test statistic
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proposed methods is illustrated through Monte-Carlo experiments and an empirical application on
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varies across different mother’s age.
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1 Introduction

Understanding the causal effect of a treatment or a policy, such as participating into a

training program, is a basic goal of many empirical studies in economics and many other

applied fields. This interest has led to a surge in theoretical and applied work focusing on

estimating average treatment effects (ATE) or average treatment effects on the treated (ATT)

under various environments. Influential surveys include, but not limited to, the papers by

Angrist and Krueger (1999), Heckman, Lalonde and Smith (1999), Blundell and Dias (2002),

and among others. Moreover, Imbens (2004) and Imbens and Wooldridge (2009) provided

comprehensive reviews on the recent developments in the treatment effect literature.

The average treatment effect, although vital, sometimes reveals only a partial picture

for the outcome distribution of interest. For example, the mean effect cannot measure how

the dispersion of the outcome distribution has altered after a treatment, and furthermore,

it is usually uninformative on whether the effects are stronger in some quantiles than in

others. However, such distributional information can be important in many applications,

particularly from policy-making of views. Here, there are some examples, evaluating the

effect of the unionization on wage inequality as in Freeman (1980) and Card (1996), the

effects of government training programs on lower quantiles of earning distributions studied

by LaLonde (1995) and Abadie, Angrist and Imbens (2002), the effect of the government-

subsidized saving program on lower tails of savings distributions, and among many others

applications. From a policy perspective, a policy treatment that helps to raise the lower tail

of an income distribution is often more appreciated than one that shifts the median, even

though the average treatment effects of both are identical. To characterize the distributional

effects of policy variables, quantile treatment effects (QTE), as addressed in the papers by

Lehmann (1975) and Doksum (1974), can be an effective method which has emerged as an

important concept for measuring distributional impacts in the literature. Recent studies

on QTE include, but not limited to the papers by Abadie et al. (2002), Chernozhukov and

Hansen (2005), Donald and Hsu (2014), Firpo (2007), Frölich and Melly (2013), and the

references therein.

Another challenge in the policy evaluation literature is how to characterize the hetero-

geneity of treatment effects across different individuals as in Heckman and Robb (1985) and

Heckman, Smith, and Clements (1997). Researchers are of interest to estimate the effect of

a treatment or a policy on outcomes in various sub-populations defined by some characteri-

zations of the components of pre-treatment variables X. For example, when estimating the

effect of maternal smoking during pregnancy on the birth weight, it is interesting to catch

heterogenous effects across mothers with different ages. Moreover, it is also important for
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policy makers to understand how the heterogenous effects of the participation into 401(k)

programs on financial assets for families with different incomes and/or ages. To this end,

Abrevaya, Hsu and Lieli (2015) and Lee, Okui and Whang (2017) developed the concept

of partially conditional average treatment effect (PCATE) to measure the heterogeneity in

mean effects across sub-populations. More detailedly, Abrevaya, Hsu and Lieli (2015) pro-

posed using a nonparametric method to estimate the PCATE, whereas Lee, Okui and Whang

(2017) suggested a doubly roust estimation approach.

In this paper, our attempt is to capture heterogeneities for both across-distribution and

across-individuals simultaneously. To this end, we propose a partially conditional quantile

treatment effect (PCQTE) for characterizing the heterogeneity along the outcome distribu-

tion conditional on some continuous covariate Z, which is only a strict subset of covariates

X, under the condition that the unconfoundedness assumption holds (see Assumption 2.1(i)

later). We show that the PCQTE is nonparametrically identified and a semiparametric esti-

mation is provided. Furthermore, a specification test is conducted for testing whether there

exists heterogeneity in quantile effects across sub-populations defined by Z. To be specific,

a test statistic is proposed based on the Cramér-von Mises type criterion to test whether

the PCQTE conditional on Z is equal to the corresponding unconditional quantile treatment

effect. To the best of our knowledge, it is believed that this test is novel in the quantile regres-

sion literature, although there are some papers in the literature of testing treatment effect

heterogeneity under the framework of average treatment effect but not quantile treatment

effect. For example, Crump, Hotz, Imbens and Mitnik (2008) developed two nonparametric

tests based on series approach, in which the first is to test whether a treatment has a zero

average effect for all sub-populations defined by covariates, and the second is to test whether

the average treatment effect conditional on the covariates is identical for all sub-populations,

in other words, whether there is heterogeneity in average treatment effects by covariates.

Our motivation comes actually from exploring an empirical example for estimating the

quantile treatment effect of first-time mothers’ smoking status during pregnancy on birth

weight conditional on their ages. Abrevaya et al. (2015) and Lee et al. (2017) considered

the case of investigating the average treatment effect of maternal smoking during pregnancy

on infant birth weights conditional on mothers’ ages, whereas Abrevaya et al. (2015) pro-

posed nonparametric and semiparametric estimators of the conditional average treatment

effect conditional on continuous covariates. A semiparametric estimator was proposed if the

propensity score function is estimated parametrically in the first stage, and the authors also

provided a fully nonparametric estimator when the propensity score function is estimated

nonparametrically. To avoid the curse of dimensionality for nonparametric estimation, Lee

et al. (2017) instead proposed a doubly robust estimator based on parametric regression in
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the sense that the estimator is consistent when either the regression model or the propen-

sity score model is correctly specified. But the aforementioned papers do not address the

heterogeneity issue. Therefore, in this paper, we re-analyze this real example by using the

proposed methods for the PCQTE model. As a result, our findings look very interesting and

novel in the literature, and further, they provide different interpretations to this applica-

tion. First, the smoking quantile effects become stronger, more negative on birth weights, at

higher ages, and for whites, the estimated values at lower quantiles are bigger than those at

the median or higher quantiles, conditional on mothers’ ages. Secondly, when the proposed

test is applied to test whether the quantile effects varies across ages, it turns out that the

quantile treatment effects of whites changes over ages but not for blacks for the quantile

levels considered.

The rest of the paper is organized as follows. Section 2 introduces the partially con-

ditional quantile treatment effect model and discusses its identification conditions as well

as estimation procedures, together with the presentation of the asymptotic properties of

the proposed estimator. Section 3 develops a specification test for testing whether there

exists heterogeneity by some covariates. Monte Carlo simulations are conducted in Section

4 to illustrate the finite sample performances of the proposed estimators and test statistic,

and Section 5 is devoted to an empirical study to investigate how the distributional effect

of maternal smoking on birth weights varies across different groups of mothers. Section 6

concludes. The proofs of the main results are delegated to mathematical appendices.

2 Partially Conditional Quantile Treatment Effect Model

2.1 Model Setup

We consider the effect of a treatment on a continuous outcome variable. Let Di be the

binary treatment variable of individual i, where Di = 1 if individual i receives the treatment

of interest and otherwise, Di = 0. Using the potential outcome framework initialized by

Rubin (1974), let Yi(0) and Yi(1) be the potential outcomes of individual i if it is in the

control group or in the treated group, respectively. Note that for each individual i, we can

only observe Yi(Di) but Yi(1−Di) is missing. Hence, the observed outcome variable Yi can

be written as

Yi = Di · Yi(1) + (1−Di) · Yi(0).

In addition, we observe a L-dimensional vector of pre-treatment variables, denoted by Xi.

Throughout this paper, it is assumed that
(
Yi(0), Yi(1), Xi, Di

)
, i = 1, · · · , n, are independent
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and identically distributed. Since only one of Yi(0) and Yi(1) is observable for each individual

i, the following assumptions are needed to identify the treatment effect.

Assumption 2.1. (i) (Unconfounded Treatment Assignment) Given pre-treatment variables

Xi, the potential outcomes are jointly independent from the treatment variable Di, namely,(
Yi(0), Yi(1)

)

|= Di | Xi,

where |= indicates statistical independence.

(ii) (Common support) For almost all x in the support of Xi,

0 < p ≤ p(x) = P (Di = 1|Xi = x) ≤ p < 1,

for some 0 < p < p < 1, where p(x) is called propensity score function.

Assumption 2.1(i) is also known as the (strongly) “ignorable treatment assignment”,

“conditional independence assumption” or “selection on observables” in the econometrics

and/or statistics literature; see Rosenbaum and Rubin (1983) and Lechner (1999, 2002). It

rules out the existence of unobserved factors that affect the treatment choice and are also

correlated with the potential outcomes. Assumption 2.1(ii) states that in the population

for almost all values of X, both treatment assignment levels have a positive probability of

occurrence. However, lack of common support is one of main concerns in practice. A common

approach to address this problem is to drop observations with the propensity score close to

zero or one, and focus on the treatment effect in the subpopulation with propensity score

bounded away from zero and one. These two assumptions have been widely used in literature

on treatment effect evaluation, such as Heckman, Ichimura, Smith and Todd (1998), Dehejia

and Wahba (1999), Hirano, Imbens and Ridder (2003), Firpo (2007), and among others.

In this paper, our purpose is on the quantile treatment effect conditional on a subset of

the pre-treatment variables. Specifically, let Zi be a k-dimensional sub-vector of Xi, where

1 ≤ k < L, and then, the τ -th partially conditional quantile treatment effect (PCQTE),

where τ ∈ (0, 1), is defined as

∆τ (z) = q1,τ (z)− q0,τ (z), (2.1)

where for j = 0 and 1, qj,τ (z) is the τ -th conditional quantile of Yi(j) conditional on Zi = z.

Note that the unconfounded treatment assignment assumption may not hold if one only

controls the sub-vector Zi instead of Xi.
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2.2 Estimation Procedure

Since the potential outcomes Yi(0) and Yi(1) are not observable for every individual,

Y1(j), · · · , Yn(j) can not directly used to estimate qj,τ (z) in (2.1) for j = 0 and 1. Now, by

defining W0(Xi, Di) = (1 −Di)/[1 − p(Xi)] and W1(Xi, Di) = Di/p(Xi), it is easy to show

by Assumption 2.1 that

E
[
Wj(Xi, Di) g(Yi)

∣∣Zi] = E
[
Wj(Xi, Di) g(Yi(j))

∣∣Zi] = E
[
g(Yi(j))

∣∣Zi]
for j = 0 and 1 and any function g(·) with finite expectation, which leads to that qj,τ (z),

j = 0 and 1, can be easily expressed as

qj,τ (z) = arg min
q
E
(
ρτ (Yi(j), q)

∣∣∣Zi = z
)

= arg min
q
E
(
Wj(Xi, Di)ρτ (Yi, q)

∣∣∣Zi = z
)
, (2.2)

where ρτ (Y, q) = (Y − q){τ − I(Y ≤ q)} is the check function as in Koenker and Bassett

(1978) and Koenker (2005). Here, I{·} is the indicator function. When the propensity

score function p(x) is known, observations (Yi, Xi, Di), i = 1, · · · , n, can be used directly

to estimate qj,τ (z) for j = 0 and 1 by running a weighted quantile regression model as in

Koenker and Bassett (1978) and Koenker (2005).

Because p(x) is unknown, from (2.2), a two-step estimation procedure is needed for

estimating ∆τ (z). Firstly, one needs to obtain the estimated propensity score function p̂(x)

using (Xi, Di), i = 1, · · · , n, and then, at the second stage, the kernel-based local average

method is used to estimate qj,τ (z) and ∆τ (z). Specifically,

∆̂τ (z) = q̂1,τ (z)− q̂0,τ (z), (2.3)

where for j = 0 and 1,

q̂j,τ (z) = arg min
q

1

n

n∑
i=1

Kh

(
Zi − z

)
Ŵn,j(Xi, Di)ρτ (Yi, q) (2.4)

with Ŵn,0(Xi, Di) = (1−Di)/[1− p̂(Xi)], Ŵn,1(Xi, Di) = Di/p̂(Xi), and Kh(u) = K(u/h)/h.

Here, K(·) is a kernel function, h is the bandwidth parameter, and p̂(x) is a consistent

estimate of p(x). Now, the question is how to obtain a consistent estimate of p(x). It is

well documented in the literature that there are two common approaches used for estimating

the propensity score function p(x). The first approach is to assume a parametric model for

p(x) = p(x; θ), for example, a logit model or a probit model. The parameter θ can be easily

estimated through the maximum likelihood method. The second approach is nonparametric1.

1For a nonparametric method, one can use the so-called series logit estimator as in Hirano et al. (2003)

5



The first one is used in this paper so that the estimation in (2.3) is called a semiparametric

estimator.

2.3 Asymptotic Theory

This subsection is devoted to investigating the asymptotic properties for the semipara-

metric estimator for PCQTE in (2.3), in the sense that the propensity score function p(x)

is estimated parametrically, and ∆τ (z) is estimated nonparametrically using equations (2.3)

and (2.4). Although the asymptotic theory for ∆̂τ (z) can be obtained for any k-dimensional

Zi with k < L, the result is presented only for k = 1 to save notation throughout the rest of

this paper. As pointed out by Abrevaya et al. (2015), the case for k = 1 is the most relevant

case in practice, since ∆̂τ (z) can easily be displayed in a two-dimensional graph when Zi is a

scalar. Before studying the asymptotic properties of the proposed estimators, the following

technical assumptions are needed, list below.

Assumption 2.2. (Distributions of Xi and Zi) The support of Xi, denoted by X , is a

Cartesian product of compact intervals, that is, X =
L∏
l=1

[xl, xl], and there exists a constant

c > 0, such that the density function of Xi, fX(x) satisfies infx∈X fX(x) ≥ c. Furthermore,

the density function of Zi, fZ(z) is twice continuously differentiable on the support of Zi.

Assumption 2.3. (i) The conditional density function fY (j)|X(y|x) is continuous and

bounded on the support of Yi(j) and Xi for j = 0, 1. (ii) The conditional density func-

tion fY (j)|Z(y|z) is continuous and uniformly bounded away from zero in a neighborhood of

qj,τ (z) for j = 0 and 1. It is twice differentiable with respect to z, and its first derivative

with respect to y is continuous and bounded on the support of Yi(j) and Zi.

Assumption 2.4. (Kernel and bandwidth) (i) The kernel function K(u) is a symmetric

density function with compact support. It is also continuously differentiable on its support.

(ii) h→ 0, nh1+ε →∞ for some ε > 0 and nh5 is bounded as n→∞.

Assumption 2.5. (Parametric propensity score function) Suppose the propensity score

function has a parametric form p(x) = p(x; θ0) with a fixed dimensional parameter θ0. Also

assume that the estimated propensity score function p̂(x) = p(x; θ̂n) satisfies supx∈X
∣∣p(x; θ̂n)−

p(x; θ0)
∣∣ = Op(n

−1/2).

The restriction imposed on the distribution of Xi in Assumption 2.1 is commonly used

in the literature on treatment effect evaluation; see Hirano et al. (2003), Abadie and Imbens

and Firpo (2007) or other suitable consistent estimators of p(x) are also possible. For example, Ichimura and
Linton (2005) used local polynomial regression and Abrevaya et al. (2015) used higher order kernel regression
to estimate p(x). Of course, we conjecture that the first-order asymptotic results displayed in the following
section do not depend critically on the choice of p̂(x). That is, the similar conclusions as in Theorem 2.1
could be obtained under similar conditions for a nonparametric estimation of p(x).
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(2006, 2016), Firpo (2007), Abrevaya et al. (2015), and among others. Assumption 2.2 guar-

antees the solution of (2.2) is unique and the smoothness conditions imposed in Assumption

2.3 are easily satisfied in practice. Assumption 2.4 on kernel function and bandwidth is

frequently assumed in the literature on nonparametric estimation. Many commonly used

kernel functions, such as the Epanechnikov kernel, satisfy the requirements. Assumption 2.5

typically holds for standard parametric estimation methods under reasonably mild regularity

conditions.

Next, we establish the asymptotic properties of ∆̂τ (z), which are stated in the following

theorem with the detailed proof given in the Appendix. For easy presentation, define some

notation as follows. First, define Fj(y|z) = FY (j)|Z(y|z) to be the conditional CDF of Y (j)

given Z = z for j = 0 and 1, and its ith order derivative F
(i)
j (y|z) = ∂iFj(y |z)/∂zi for i ≥ 0.

Also, let ψj(Yi, Xi, Di; z) = Wj(Xi, Di) (I{Yi ≤ qj,τ (z)} − τ) and δτ (z) = δ1,τ (z) − δ0,τ (z),

where for j = 0 and 1,

δj,τ (z) =
2f ′Z(z)F

(1)
j (qj,τ (z)|z)

fZ(z)fY (j)|Z(qj,τ (z)|z)
+

F
(2)
j (qj,τ (z)|z))

fY (j)|Z(qj,τ (z)|z)
. (2.5)

Theorem 2.1. Suppose that Assumptions 2.1-2.5 hold. Then, for each z in the support of

Zi, one has

√
nh

[
∆̂τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)

]

= − 1√
nh

1

fZ(z)

n∑
i=1

{
Kiψ1(Yi, Xi, Di, z)− E

(
Kiψ1(Yi, Xi, Di, z)

)
fY (1)|Z(q1,τ (z)|z)

−
Kiψ0(Yi, Xi, Di, z)− E

(
Kiψ0(Yi, Xi, Di, z)

)
fY (0)|Z(q0,τ (z)|z)

}
+ op(1) (2.6)

D−→ N
(

0, ||K||22σ2
ψ(z)/fZ(z)

)
, (2.7)

where Ki = K
(
(Zi − z)/h

)
, µ2(K) =

∫
u2K(u)du, ||K||22 =

∫
K2(u)du, and

σ2
ψ(z) = E

{(
ψ1(Yi, Xi, Di, z)

fY (1)|Z(q1,τ (z)|z)
− ψ0(Yi, Xi, Di, z)

fY (0)|Z(q0,τ (z)|z)

)2∣∣∣Zi = z

}
.

It can be seen from Theorem 2.1 that the first term in (2.6) is the first-order approxima-

tion for ∆̂τ (z), which is the so-called local Bahadur representation; see Cai and Xu (2008),

which makes the asymptotic analysis in (2.7) much easier. Another consequence of Theorem

2.1 is to provide a formulation for constructing a pointwise confidence interval for making

an easy statistical inference. To construct a pointwise confidence interval for ∆τ (z) for each
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given z, by ignoring the asymptotic bias term, h2µ2(K)δτ (z)/2, one needs some consistent

estimations for fZ(z) and σ2
ψ(z), respectively. Clearly, the density function of Zi can be

estimated by the kernel density estimator as f̂Z(z) = 1
n

n∑
i=1

Kh(Zi− z). But, it is much more

involved to estimate σ2
ψ(z) because it includes the unknown conditional density function

fY (j)|Z(qj,τ (z)|z) for j = 0 and 1. As pointed out by Koenker and Xiao (2004), Koenker

(2005), and Cai and Xu (2008), it might not be easy to estimate consistently the conditional

density function fY (j)|Z(qj,τ (z)|z). Indeed, there are two methods available in the literature.

For example, DiNardo, Fortin and Lemieux (1996) and Firpo (2007) used the re-weighted

kernel method to estimate the density function of Yi(j) conditional on Zi = z, whereas

Koenker (2005) proposed using the following estimator for j = 0 and 1,

f̂Y (j)|Z(qj,τ (z)|z) =
2h∗

q̂j,τ+h∗(z)− q̂j,τ−h∗(z)
,

where h∗ is a bandwidth parameter. Indeed, Koenker (2005) showed that f̂Y (j)|Z(qj,τ (z)|z)

converges to fY (j)|Z(qj,τ (z)|z) in probability if h∗ → 0 and h∗
√
nh → ∞. Therefore, a

consistent estimate of σ2
ψ(z) can be given by

σ̂2
ϕ(z) =

n∑
i=1

Kh(Zi − z)

(
ψ̂1(Yi, Xi, Di; z)

f̂Y (1)|Z(q1,τ (z)|z)
− ψ̂0(Yi, Xi, Di; z)

f̂Y (0)|Z(q0,τ (z)|z)

)2/ n∑
i=1

Kh(Zi − z),

where ψ̂j(Yi, Xi, Di; z) = Ŵn,j(Xi, Di)
(
I{Yi ≤ q̂j,τ (z)} − τ

)
for j = 0 and 1. Therefore, it is

easy to compute a pointwise confidence interval for ∆τ (z) by ignoring the asymptotic bias

and this is implemented in Section 5 for an empirical study; see Figure 6(b) in Section 5 for

detail.

3 Specification Test

It is of interest to investigate whether there exists heterogeneity in quantile treatment

effects by covariates Z. To this end, we consider the following hypothesis testing problem:

H0 : ∆τ (z) = ∆τ , for all z ∈ Z versus H1 : ∆τ (z) 6= ∆τ , for some z ∈ Z, (3.1)

where ∆τ = q1,τ − q0,τ with qj,τ being the τ -th unconditional quantile of Yi(j), and Z is the

support of Zi. Under the null hypothesis, the conditional quantile effect of the treatment

equals to the unconditional QTE for all z, whereas, under the alternative, there are at least

some values of z under which the conditional quantile treatment effect ∆τ (z) differs from

the unconditional QTE.
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Next, we propose a test statistic for (3.1) based on the Cramér-von Mises criterion. To

this end, let

J =

∫ (
∆τ (z)−∆τ

)2
ω(z)dz ≥ 0, (3.2)

where ω(z) is a pre-specified continuous and strictly positive weighting function. Note that

J = 0 only and only if the null hypothesis in (3.1) is true. Hence, a test statistic using the

sample analogue of J is defined by

Jn =

∫ (
∆̂τ (z)− ∆̂τ

)2
ω(z)dz, (3.3)

where ∆̂τ is a
√
n-consistent estimator for ∆τ , such as the estimator proposed in Firpo

(2007), and ∆̂τ (z) is the semiparametric estimator of ∆τ (z) in (2.3).

Remark 3.1. Except for the testing issue displayed in (3.1), one may be interested in testing

whether the partially conditional quantile treatment effect model is correctly specified; that

is, the more general interest than testing (3.1) is to consider the hypothesis testing problem

H0 : ∆τ (z) = ∆τ,0(z; θτ ) ; for all z ∈ Z

where ∆τ,0(·) is a known function with unknown parameter θτ . In particular, one might have

an interest in testing

H0 : ∆τ (z) ≤ 0 or ≥ 0 for all z ∈ Z,

which leads to studying the stochastic dominance such as Y (1) ≤ Y (0) or Y (1) ≥ Y (0) for

all Z. These extensions are beyond the scope of this paper but certainly worth pursuing in

future research.

The following theorem describes the asymptotic properties of the proposed test statistic

Jn with their proofs given in the Appendix. To this end, now, define some notation. Let

µ0(z;u) = E
[
(I{Y (0) ≤ q0,τ (u)} − τ)2/[1 − p(X)]

∣∣Z = z
]

and µ1(z;u) = E
[
(I{Y (1) ≤

q1,τ (u)} − τ)2/p(X)
∣∣Z = z

]
.

Theorem 3.1. Suppose Assumptions 2.1-2.5 are satisfied. We further assume that qj,τ (z),

j = 0, 1, is differentiable on z ∈ Z with bounded second order derivatives and nh9/2 → 0.

Then, under the null hypothesis H0, one has

n
√
h
(
Jn − µJ

) D−→ N (0, σ2
J)

and under the alternative hypothesis H1,

n
√
h
(
Jn − µJ

) p−→ +∞,
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where

µJ =
1

nh

∫
K2(s)ds

∫ {
µ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
µ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
ω(z)

fZ(z)
dz

and

σ2
J = 2

∫ (∫
K(t)K(t+ s)dt

)2
ds

∫ {
µ1(u;u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
µ0(u;u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
ω2(u)

f 2
Z(u)

du.

Although the asymptotic distribution of Jn is established in the above theorem, the test

based on the asymptotic distribution might be sensitive to the choice of bandwidth h and the

consistent estimation of σ2
J in small samples. In particular, it is well known in the literature

that the consistent estimation of the conditional density of Y (j) given Z is not an easy

task; see, for example, Koenker and Xiao (2004) and Cai and Xu (2008). To overcome this

difficulty, a Bootstrap method adopted by Chen, Linton and Van Keilegom (2003), Firpo,

Galvao and Song (2017) and Lehrer, Pohl and Song (2018), is suggested to determine p-

value for Jn. Specifically, first, generate B Bootstrapping samples by drawing samples from

the original sample
{

(Yi, Xi, Di)
}n
i=1

with replacement, each denoted by
{

(Y b
i , X

b
i , D

b
i )
}n
i=1

,

b = 1, · · · , B, and then, compute J bn :=
∫ [

(∆̂b
τ (z)− ∆̂τ (z))

]2
dz, b = 1, · · · , B, where ∆̂b

τ (z)

is the estimated PCQTE using the Bootstrapping sample b and ∆̂τ (z) is the estimated

PCQTE using the original dataset, and finally, compute the Bootstrap p-value for Jn by

B−1
B∑
i=1

I{J bn ≥ Jn}.

4 Monte Carlo Studies

In this section, Monte Carlo experiments are conducted to examine the finite sample

performance of the proposed estimation procedures and the proposed test Jn. The goal is to

assess the finite sample accuracy in various scenarios. The scenarios examined in estimation

differ in the choices of the bandwidth parameter h. It has been well known that the choice

of the smoothing parameter in kernel-based or local polynomial estimation is important.

To assess the performance of the finite sample sizes, for each settings, the mean absolute

deviation error (MADE) criterion is used and which is defined as

MADE
(
∆̂τ (·)

)
=

1

J

J∑
j=1

∣∣∆̂τ (zj)−∆τ (zj)
∣∣,

10



where {zj}Jj=1 are the grid points taken from the support of Z with an equal increments. At

last, the median and standard deviation of the MADE values for each setting are reported.

Example 1. We consider the Skorohod representation for the potential outcomes Y (1) and

Y (0). Specifically, the data generating process is given by

Y (0) = α0X1 + β0 exp(U0 + c0)X2, and Y (1) = α1X1 + β1 exp(U1 + c1)X2,

and the propensity score function is p(X, θ) = P (D = 1|X) = exp(θ′X)/[1 + exp(θ′X)],

where X = (1, X1, X2)
′, θ = (−0.5, 1.5, 0.5)′, α0 = −1.5, β0 = 0.4, c0 = −0.5, α1 = −0.8,

β1 = 0.5, c1 = 0.2, X1 ∼ iid 2Beta(1, 2)− 1, X2 ∼ iid unif [0, 1] and Uj ∼ iid unif [0, 1] for

j = 0 and 1.

Motivated by Assumption 2.4, h = c · n−1/5 is set for c = {0.25, 0.5, 1.0} to illustrate

how they affect the quality of the estimator. As presented in (2.3), the estimate ∆̂τ (z)

is computed. Following the treatment effect literature, the estimated propensity score is

often trimmed to prevent it from getting too close to the boundaries of the [0, 1] interval.

Therefore, in this paper, the estimated propensity score p̂(x) is truncated to be between

[ε, 1 − ε] with ε = 0.005; that is, if the fitted value p̂(Xi) is strictly less than the threshold

ε, p̂(Xi) is reset to be ε. Similarly, if p̂(Xi) is strictly greater than 1 − ε, p̂(Xi) is set to be

1− ε. As comparison, the estimation results for the partially conditional average treatment

effect (PCATE) are also considered as in Abrevaya et al. (2015). Finally, the conditional

variable Z is taken to be X1 in this example and the number of replications are 1, 000 for

all cases and the normal kernel function is used.

Table 1: Median and standard deviation (in parentheses).

τ

h = 0.25n−1/5 h = 0.5n−1/5 h = 1.0n−1/5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

MADE MADE MADE MADE MADE MADE MADE MADE MADE

0.1
0.115 0.110 0.079 0.104 0.091 0.073 0.103 0.098 0.084
(0.025) (0.020) (0.015) (0.029) (0.022) (0.018) (0.030) (0.019) (0.015)

0.25
0.097 0.083 0.067 0.094 0.081 0.065 0.099 0.085 0.078
(0.018) (0.016) (0.010) (0.019) (0.012) (0.009) (0.024) (0.017) (0.014)

0.5
0.092 0.078 0.061 0.081 0.068 0.059 0.094 0.078 0.067
(0.016) (0.013) (0.008) (0.015) (0.010) (0.008) (0.017) (0.015) (0.010)

0.75
0.107 0.091 0.072 0.102 0.088 0.071 0.101 0.094 0.081
(0.022) (0.016) (0.011) (0.020) (0.015) (0.011) (0.025) (0.017) (0.015)

0.9
0.132 0.128 0.111 0.127 0.119 0.107 0.125 0.111 0.104
(0.030) (0.025) (0.020) (0.031) (0.024) (0.018) (0.029) (0.021) (0.017)

CATE
0.110 0.091 0.072 0.098 0.085 0.068 0.101 0.097 0.084
(0.024) (0.020) (0.012) (0.025) (0.017) (0.010) (0.025) (0.018) (0.015)

Table 1 reports the simulation results for the semiparametric estimator. As seen in Table
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1, the semiparametric estimator performs well in terms of MADE and the choice of the

bandwidth h in a reasonable range seems to have little influence on the MADEs and its

standard deviations. As expected, due to the sparsity of sample observations in tail regions,

the estimator performs better around median regions than in tail regions. Finally, from the

results presented in Table 1, one can see clearly that there is a sharply decrease in MADEs

and its standard errors as sample size goes from n = 500 to n = 2000 in all cases, which is

in line with the asymptotic theory.

Example 2. In this example, we investigate the finite-sample performance of the proposed

test Jn. Also, the Skorohod representation is used to generate the potential outcomes Y (1)

and Y (0). To be specific, the data generating process is given by

Y (1) = (λ+ λ0)X1 + γ1 exp(U1 + `1)X2, Y (0) = λ0X1 + γ0 exp(U0 + `0)X2,

and the propensity score function is

p(X1, X2) = P (D = 1|X1, X2) = exp(0.5 +X1 −X2)/[1 + exp(0.5 +X1 −X2)],

where U1 and U0 are generated from iid U(0, 1), X1 and X2 are generated from iid U(−1, 1)

and U(0, 1) respectively. The constants above are set by λ0 = 1.0, γ1 = 1.0, γ0 = 0.5,

`0 = 0.2 and `1 = −0.5. The constant λ is varied in experiments.

In this example, the conditional variable Z is taken to be X1 again. By a simple calcu-

lation, the exact conditional quantile functions for Y (1) and Y (0) conditional on Z = z, are

given by, if 0 < τ ≤ 1− e−1,

q1,τ (z) =
τγ1e

`1

1− e−1
+ (λ+ λ0)z, q0,τ (z) =

τγ0e
`0

1− e−1
+ λ0z,

and if 1 > τ > 1− e−1,

q1,τ (z) = γ1e
`1ω + (λ+ λ0)z, q0,τ (z) = γ0e

`0ω + λ0z,

where τ ∈ (0, 1) is the quantile level and ω is the solution of equation lnw−we−1−(τ−1) = 0.

The power function is indexed by λ and it is easy to see that only when λ = 0, the partially

conditional quantile treatment effect ∆τ (z) is a constant, which corresponds to the null

hypothesis. The Bootstrap procedure outlined in Section 3 is used to determine the critical

value. The number of Bootstrap replications is set as B = 999. To examine the the size and

power properties of the test statistic Jn, three different sample sizes n = 200, n = 400 and

n = 800 are considered. To check the sensitivity of the test with respect to different values

of the bandwidth h, motivated by the asymptotic theory, h = a · n−1/4 is considered with

12



a = 0.5, 1.0 and 2.0. Finally, three quantiles of the distribution, namely, τ = 0.2, 0.5 and

τ = 0.8, are computed. The estimated sizes and power of the test Jn are computed for 1, 000

simulations under the nominal size α = 5%, respectively.

Table 2: Estimated sizes of Jn (nominal size α = 5%)

Empirical rejection probability of Jn with

a = 0.5

λ n τ = 0.2 τ = 0.5 τ = 0.8

200 0.024 0.030 0.023

0 400 0.036 0.038 0.032

800 0.045 0.048 0.042

a = 1.0

λ n τ = 0.2 τ = 0.5 τ = 0.8

200 0.032 0.038 0.030

0 400 0.036 0.043 0.037

800 0.047 0.049 0.044

a = 2.0

λ n τ = 0.2 τ = 0.5 τ = 0.8

200 0.032 0.036 0.030

0 400 0.060 0.046 0.056

800 0.046 0.052 0.042

The empirical sizes of the Jn test based on Bootstrap critical value are reported in Table

2 which presents the empirical rejection probabilities of the test Jn when the different values

of bandwidth h are considered. It can be seen from Table 2 that the empirical sizes converge

to their nominal sizes as the sample sizes n increases. Particularly, when the sample size

increases to 800, the test Jn performs well in all cases considered. Also, one can observe that

the choice of the bandwidth h seems to have little influence on empirical sizes.

Next, Figures 1-3 display the estimated power curves with nominal size α = 5% of the

Jn test for different quantiles and different choices of the bandwidth. In general, the test Jn

performs reasonably powerful in detecting the deviation from the null in all cases considered.

It is not surprising that the powers increase quickly with the sample size n or the value of

λ increasing. It is also noticed from these figures that the bandwidth h in a certain range

seems to have little impact on the power of the test Jn.
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Figure 1: Power curves for test statistic Jn with nominal size α = 5% and a = 0.5.
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Figure 2: Power curves for test statistic Jn with nominal size α = 5% and a = 1.0.
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Figure 3: Power curves for test statistic Jn with nominal size α0 = 5% and a = 2.0.

5 Empirical Application

Many studies document that low infant birth weight is associated with prolonged negative

effects on health, educational and labor market outcomes throughout life, although there has

been a debate over its magnitude; see, for example, Abrevaya (2006), Almond, Chay and

Lee (2005) and Currie and Almond (2011) and among others. It is well known that there

are many risk factors which can cause low birth weight, and it is generally recognized that

maternal smoking is considered to be the most important preventable negative cause of low

birth weight; see Kramer (1987) for more discussions. Over the last decades, there have

been many studies that attempt to estimate the effect of maternal smoking on low birth

weight using various procedures. Recently, program evaluation approach is employed to

estimate this effect; see, for example, Almond et al. (2005), da Veiga and Wilder (2008),

Abrevaya (2006), Abrevaya and Dahl (2008) and Abrevaya et al. (2015) and the references

therein. In this paper, our interest is to see how the effect of maternal smoking changes across
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different age groups of mothers along with the infant birth weight distribution. To capture

this heterogeneity, the proposed procedure above is used to estimate the quantile effect of

maternal smoking on infant birth weight conditional on different mothers’ ages, which is

different from the studies by Abrevaya et al. (2015) and Lee et al. (2017) by considering the

average effect of maternal smoking on infant birth weight conditional on different mothers’

ages in their application. Because a large number of covariates is needed to make the

unconfoundedness assumption plausible in this example, our focus is on the parametric

estimator for the propensity score function p(x) as in Abrevaya et al. (2015) and Lee et al.

(2017).

To this end, the same data as Abrevaya et al. (2015) is used, which is based on the records

between 1988 and 2002 by the North Carolina State Center Health Services, accessible

through the Odum Institute at the University of North Carolina. As in Abrevaya et al.

(2015), our sample is limited to first-time mothers and as routine in the literature, the total

sample contains blacks which consist of a sample of 157, 989 observations and whites which

consist of a sample of 433, 558 observations as separate populations throughout.

In this example, the outcome of interest Y is the infant birth weight measured in grams

and the treatment variable D is a binary variable which takes value 1 if the mother smokes

and 0 otherwise. Y (0) denotes birth weights for the untreated (no-smoking) group and Y (1)

for the treated (smoking) group. Since our interest is to see how the quantile effect of smoking

varies across different values of the mother’s ages, hence the conditional variable Z is the

mother’s age in this application. The kernel density estimations of the infant birth weights

are displayed in Figures 4(a) for blacks and 4(b) for whites, respectively. For blacks and

whites, skewness and kurtosis of infant birth weights and the results of the symmetry test

for the distributions of Y (0) and Y (1) are all reported in Table 3. Based on these results,

one can observe that both the distributions of infant birth weights for blacks and whites are

fat-tailed in the left side. Therefore, this motivates us to consider the distributional effect

of maternal smoking on infant birth weight.
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Figure 4(a): The kernel density estimation of
birth weight for blacks
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Figure 4(b): The kernel density estimation of
birth weight for whites

Table 3: Descriptive statistics and some test results.

Variable

Blacks Whites

Y (0) Y (1) Y (0) Y (1)

Mean 3103.722 3082.726 3398.681 3346.848

Skewness -1.181 -1.204 -0.846 -0.840

Kurtosis 6.245 6.164 5.931 5.734

Symmetry test (p-value) 0.000 0.000 0.000 0.000

Number of observations 146399 11590 359172 74386

To estimate the PCQTE function ∆τ (z), the same set of covariates X is used as in

Abrevaya et al. (2015). Specifically, the set of covariates X includes the mother’s age,

education, month of first prenatal visit which is equal to 10 if prenatal care is foregone,

number of prenatal visits, and indicators for the baby’s gender, the mother’s marital status,

whether or not the father’s age is missing, gestational diabetes, hypertension, amniocentesis,

ultra sound exams, previous (terminated) pregnancies, and alcohol use; see Abrevaya et al.

(2015) for the detailed discussion. A logit model is used to estimate the propensity score

function p(x). The explanatory variables used in the logit model consist of all the elements
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of X, the square of the mother’s age, and the interaction terms between the mother’s age

and all other elements of X. The PCQTE function is estimated for mothers aged between

20 and 30.

Figure 5 presents the estimated curves of the conditional CDFs for infant birth weights

conditional on mother’s age (z = 26) for whites. Also, the estimated conditional CDFs of

infant birth weights under different mother’s ages can be obtained but the patterns are quite

similar. It can be seen from Figure 5 that the estimated conditional CDF curves for Y (1)

are all on the right of Y (0), which implies that the partially conditional quantile treatment

effects should be negative across all quantile levels.
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Figure 5: Estimated curves of conditional CDFs for infant birth weight conditional on mother’s age (z = 26)
for whites (F (1) is for treated and F (0) is for untreated)

Figure 6(a) plots the estimated PCQTE curves across mothers’ ages for three quantile

levels τ = 0.10 (the solid line), 0.25 (the long dashed line) and τ = 0.50 (the short dashed

line) for whites. For a comparison, Figure 6(a) also depicts the estimated PCATE curve by

the long dashed-dotted line, considered in Lee et al. (2017), across mothers’ ages with its

95%-confidence interval denoted by the thin dotted lines, which is described in detail in Lee

et al. (2017), and the estimated unconditional ATE as well (the short dashed-dotted line).

From Figure 6(a), first, one can see that ∆̂τ (z) for three τ ’s and the estimated PCATE

curve seem to change over age linearly and in particular, ∆̂0.5(z) is similar to its PCATE

curve although they are not exactly same. More importantly, one can observe that there is

a significant negative effect of smoking on infant birth weight across all ages and quantile

levels considered. Moreover, the estimated results displayed in Figure 6(a) show substantially
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heterogeneity across different ages. Overall speaking, the estimated quantile effects become

stronger (more negative) at higher ages. On the other hand, the estimated values at lower

quantiles are bigger than those at the median or higher quantiles, conditional on the same

mother’s age. Therefore, these results are in line with the findings displayed by Figure

5. Finally, for making an easy statistical inference, Figure 6(b) demonstrates the estimated

PCQTE curve, ∆̂τ (z) and the unconditional QTE, ∆̂τ for τ = 0.10 and τ = 0.50, respectively,

together with their 95% confidence intervals. Note that the 95% confidence interval for ∆τ (z)

is pointwise and by ignoring the asymptotic bias for ∆̂τ (z). Clearly, one can see that ∆̂τ is

not complete within the 95% pointwise confidence interval of ∆τ (z). Therefore, this means

that ∆τ (z) is not a constant.
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Figure 6(a): Estimation results for PCQTE for
whites for three quantile levels, together PCATE
and its 95% confidence interval, as well as the
unconditional ATE.
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Figure 6(b): Estimation results of the PCQTE
and the unconditional QTE for τ = 0.10 and
τ = 0.50 for whites with their 95% confidence
intervals.

Figure 7 displays the estimated PCQTEs for blacks under two quantile levels τ = 0.10 (the

dashed-dotted line) and 0.50 (the solid line), respectively. Their corresponding unconditional

QTEs for τ = 0.1 (the dashed line) and 0.5 (the thin solid line), respectively, are also

reported, together with their 95% confidence intervals indicated by the dashed dotted lines

for τ = 0.10 and the dotted lines for τ = 0.50, which are given by Firpo (2007). The

estimated PCQTEs all lie in the 95%-confidence intervals of the corresponding unconditional

QTE for all two quantile levels considered. In other words, ∆̂τ (z) does not depend on z for
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all quantiles. Therefore, motivated by the estimation results above, it is interesting to test

whether or not the partially conditional quantile treatment effects, for whites and blacks,

change over mothers’ ages, and the testing results are presented in Table 4.
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Figure 7: Estimation results for PCQTE for blacks for two quantile levels τ = 0.10 (the dashed-dotted line)
and τ = 0.50 (the solid line), together with their unconditional QTEs and their 95% confidence intervals.

Table 4: Testing results for PCQTE over z

Quantile level
Test statistic Jn

(Bootstrap p-value)

τ Blacks Whites

0.10 0.633 0.028

0.25 0.218 0.002

0.50 0.201 0.003

0.75 0.479 0.005

0.90 0.785 0.035

It can be seen from Table 4 that there is a strong evidence to support the homogeneity of
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PCQTE over z for blacks for all quantile levels considered, especially for τ = 0.1 and τ = 0.9

with p-value being 0.633 and 0.785, respectively. These testing results are in line with the

findings presented by Figures 6(a) and 6(b). For whites, one can observe from Table 4 that

one should reject the null hypothesis that there is a constant effect over z for all quantile

levels considered at the significance level α = 5%.

6 Conclusion

In this paper, we consider the estimation of the partially conditional quantile treatment

effect, a functional parameter designed to capture the variation in the quantile treatment

effect conditional on some covariate(s). We propose a new estimation method and establish

the asymptotic theory. Furthermore, we propose a new procedure to test the homogeneity for

the partially conditional quantile treatment effects over the conditional variable and derive

the asymptotic normality for the proposed test statistic. Using the proposed semiparametric

estimator, we estimate the quantile effect of a first time mother’s smoking on her baby’s birth

weight conditional on the mother’s age. Moreover, using the proposed testing procedure, we

test whether the partially conditional quantile treatment effect for both whites and blacks

changes over mothers’ ages. We find that smoking has a more negative impact at higher ages

or at lower quantile levels for whites. Meanwhile, we also find that the partially conditional

quantile treatment effects for whites change over mothers’ ages but not for blacks for some

quantile levels considered.
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Appendix

Recall that W0(Xi, Di) = 1−Di
1−p(Xi) , W1(Xi, Di) = Di

p(Xi)
and Ŵn,0(Xi, Di) = 1−Di

1−p̂(Xi) ,

Ŵn,1(Xi, Di) = Di
p̂(Xi)

, where p̂(x) is the parametric estimator of the propensity score function

using (Xi, Di), i = 1, · · · , n. To prove Theorem 2.1, we need the following lemma.

Lemma 1. For j = 0, 1, consider random functions

Γn,j(q, z) =
n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)
[
ρτ (Yi; q)− ρτ

(
Yi; qj,τ (z)

)]
and

Γ̃n,j(q, z) =
n∑
i=1

hKh,i(z)Wj(Xi, Di)ϕτ
(
Yi; qj,τ (z)

)(
q − qj,τ (z)

)
+
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh

(
q − qj,τ (z)

)2
,

where Kh,i(z) = 1
h
K
(
(Zi − z)/h

)
and ϕτ (y; q) = I(y ≤ q)− τ . Under Assumptions 2.1-2.5,

one has

sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣Γn,j(q, z)− Γ̃n,j(q, z)
∣∣∣ = op(1)

for any z ∈ Z and any ε > 0.

Proof of Lemma 1: By the definition of ρτ (y; q) and ϕτ (y; q), we can write

Γn,j(q, z) =
n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)
[
ϕτ
(
Yi; qj,τ (z)

)(
q − qj,τ (z)

)
+(Yi − q)

(
I{Yi ≤ qj,τ (z)} − I{Yi ≤ q}

)]
.

Therefore,

sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣Γn,j(q, z)− Γ̃n,j(q, z)
∣∣∣ (A.1)

≤ sup
|q−qj,τ (z)|≤ε/

√
nh

{∣∣q − qj,τ (z)
∣∣ · n∑

i=1

hKh,i(z) ·
∣∣∣∣Ŵn,j(Xi, Di)−Wj(Xi, Di)

∣∣∣∣ · ∣∣ϕτ(Yi; qj,τ (z)
)∣∣}

+ sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣∣ n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)(Yi − q)
(
I{Yi ≤ qj,τ (z)} − I{Yi ≤ q}

)
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−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh

(
q − qj,τ (z)

)2∣∣∣∣
:= A1 +A2.

First, we considerA1. Note that supx∈X

∣∣∣∣Ŵn,j(x,Di)−Wj(x,Di)

∣∣∣∣ = Op(n
−1/2) and

∣∣ϕτ(Yi; qj,τ (z)
)∣∣

is bounded, it is easy to show

A1 = sup
|q−qj,τ (z)|≤ε/

√
nh

{∣∣q − qj,τ (z)
∣∣ · n∑

i=1

hKh,i(z) ·
∣∣∣∣Ŵn,j(Xi, Di)−Wj(Xi, Di)

∣∣∣∣ · ∣∣ϕτ(Yi; qj,τ (z)
)∣∣}

≤ ε√
nh
·

n∑
i=1

hKh,i(z) ·Op(n
−1/2) ·O(1) = Op(h

1/2) · 1

n

n∑
i=1

Kh,i(z).

Since 1
n

n∑
i=1

Kh,i = Op(1), it is easy to show that

A1 = Op(h
1/2) ·Op(1) = op(1). (A.2)

Now, we move to A2. Define Ψ(y; q1, q2) = (y − q1)
(
I{y ≤ q2} − I{y ≤ q1}

)
, then

A2 =

sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣∣ n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)Ψ(Yi; q, qj,τ (z))−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh

(
q − qj,τ (z)

)2∣∣∣∣
≤ sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣∣ n∑
i=1

hKh,i(z)
[
Ŵn,j(Xi, Di)−Wj(Xi, Di)

]
Ψ(Yi; q, qj,τ (z))

∣∣∣∣
+ sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣∣ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh

(
q − qj,τ (z)

)2∣∣∣∣
:= A21 +A22.

Note that

sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣Ψ(Yi; q, qj,τ (z)
∣∣∣ = sup

|q−qj,τ (z)|≤ε/
√
nh

∣∣∣(Yi − q)(I{Yi ≤ qj,τ (z)} − I{Yi ≤ q}
)∣∣∣

≤ sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣q − qj,τ (z)
∣∣∣ = ε/

√
nh.

By the similar argument to show A1 = op(1), we also have A21 = op(1). Next, we focus on

the term
∑n

i=1 hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z)) in A22. Indeed,

E
[ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ
(
Yi; q, qj,τ (z)

)]
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= nE
[
hKh,i(z)Ψ(Yi(j); q, qj,τ (z))

]
= nh · E

{
Kh,i(z)E

[
(Yi(j)− q)

(
I{Yi(j) ≤ qj,τ (z)} − I{Yi(j) ≤ q}

)∣∣∣Zi]}
= nh · E

{
Kh,i(z)

∫ qj,τ (z)

q

(y − q) fY (j)|Z(y|Zi) dy
}

= nh · E
{
Kh,i(z)

∫ qj,τ (z)

q

(y − q)
[
fY (j)|Z(qj,τ (z)|Zi) +O(|qj,τ (z)− q|)

]
dy

}
= nh · (qj,τ (z)− q)2

2
· E
{
Kh,i(z)

[
fY (j)|Z(qj,τ (z)|Zi) +O(|qj,τ (z)− q|)

]}
= nh · (qj,τ (z)− q)2

2
·
[
fZ(z)fY (j)|Z(qj,τ (z)|z) +O(|qj,τ (z)− q|) + o(1)

]
.

and

Var
[ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))
]

= nVar
[
hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

]
≤ n · E

[
hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

]2
= nh2 · E

[
Kh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

]2
= nh ·O(1) · E

{
hK2

h,i(z)E
[
(Yi(j)− q)2

(
I{Yi(j) ≤ qj,τ (z)} − I{Yi(j) ≤ q}

)2∣∣∣Zi]}
= nh ·O(1) · E

{
hK2

h,i(z) ·
∣∣∣ ∫ qj,τ (z)

q

(y − q)2 fY (j)|Z(y|Zi) dy
∣∣∣}

= nh ·O(1) ·O(|qj,τ (z)− q|3).

Therefore, one can conclude that

n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

= E
[ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))
]

+Op

(
Var
[ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))
])1/2

= nh · (qj,τ (z)− q)2

2
·
[
fZ(z)fY (j)|Z(qj,τ (z)|z) +O(|qj,τ (z)− q|) + o(1)

]
+ Op

(
nh · |qj,τ (z)− q|3

)1/2
,
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and

A22 = sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣∣ n∑
i=1

hKh,i(z)Wj(Xi, Di)Ψ(Yi; q, qj,τ (z))

−
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· nh ·

(
q − qj,τ (z)

)2∣∣∣∣
= sup

|q−qj,τ (z)|≤ε/
√
nh

∣∣∣∣nh · (qj,τ (z)− q)2

2
·
[
O(|qj,τ (z)− q|) + o(1)

]
+ Op

(
nh · |qj,τ (z)− q|3

)1/2∣∣∣∣
= op(1).

Thus, one has the following result:

A2 = A21 +A22 = op(1). (A.3)

It follows from (A.1), (A.2) and (A.3) that

sup
|q−qj,τ (z)|≤ε/

√
nh

∣∣∣Γn,j(q, z)− Γ̃n,j(q, z)
∣∣∣ = op(1). �

Proof of Theorem 2.1: We first consider

q̃j,τ (z) = arg min
q

{
Γ̃n,j(q, z)

}
= qj,τ (z)− 1

fZ(z)fY (j)|Z(qj,τ (z)|z)
· 1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)ϕτ
(
Yi; qj,τ (z)

)
= qj,τ (z)− 1

fZ(z)fY (j)|Z(qj,τ (z)|z)
· 1

n

n∑
i=1

Kh,i(z)ψj(Yi, Xi, Di; z)

for j = 0, 1. By some calculations, one obtains

E
(
q̃j,τ (z)

)
= qj,τ (z)− h2

2
µ2(K)δj,τ (z) + o(h2),

where µ2(K) =
∫
u2K(u)du and

δj,τ (z) =
2f ′Z(z)

∂FY (j)|Z(qj,τ (z)|u)
∂u

∣∣
u=z

+ fZ(z)
∂2FY (j)|Z(qj,τ (z)|u)

∂u2

∣∣
u=z

fZ(z)fY (j)|Z(qj,τ (z)|z)
,

which leads to

√
nh
(
q̃j,τ (z)− E

(
q̃j,τ (z)

))
=
√
nh
(
q̃j,τ (z)− qj,τ +

h2

2
µ2(K)δj,τ (z) + o(h2)

)
(A.4)

= − 1√
nh

1

fZ(z)fY (j)|Z(qj,τ (z)|z)
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×
n∑
i=1

[
hKh,i(z)ψj(Yi, Xi, Di; z)− E

(
hKh,i(z)ψj(Yi, Xi, Di; z)

)]
.

Next, we consider the difference between q̃j,τ (z) and q̂j,τ (z), where

q̂j,τ (z) = arg min
q

n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)ρτ (Yi; q)

= arg min
q

n∑
i=1

hKh,i(z)Ŵn,j(Xi, Di)
[
ρτ (Yi; q)− ρτ

(
Yi; qj,τ (z)

)]
= arg min

q

{
Γn,j(q, z)

}
.

Since Γn,j(q, z) is convex in q, it is easy to show that(
1− ε/

√
nh

|q − q̃j,τ (z)|

)
Γn,j

(
q̃j,τ (z), z

)
+

ε/
√
nh

|q − q̃j,τ (z)|
Γn,j(q, z) ≥ Γn,j

(
q̃j,τ (z) +

q − q̃j,τ (z)

|q − q̃j,τ (z)|
ε√
nh
, z
)

for any ε > 0 and |q − q̃j,τ (z)| > ε/
√
nh. Hence,

ε/
√
nh

|q − q̃j,τ (z)|

[
Γn,j(q, z)− Γn,j

(
q̃j,τ (z), z

)]
≥ Γn,j

(
q̃j,τ (z) +

q − q̃j,τ (z)

|q − q̃j,τ (z)|
ε√
nh
, z
)
− Γn,j(q̃j,τ (z), z)

≥ Γ̃n,j

(
q̃j,τ (z) +

q − q̃j,τ (z)

|q − q̃j,τ (z)|
ε√
nh
, z
)
− Γ̃n,j(q̃j,τ (z), z)− 2 sup

|u−q̃j,τ (z)|≤ε/
√
nh

∣∣∣Γn,j(u, z)− Γ̃n,j(u, z)
∣∣∣

for all |q − q̃j,τ (z)| > ε/
√
nh. Note that Γ̃n,j(q, z) is a quadratic function of q and q̃j,τ (z) =

arg minq
{

Γ̃n,j(q, z)
}

. Then,

ε/
√
nh

|q − q̃j,τ (z)|

[
Γn,j(q, z)− Γn,j

(
q̃j,τ (z), z

)]
≥

fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· ε2 − 2 sup

|u−q̃j,τ (z)|≤ε/
√
nh

∣∣∣Γn,j(u, z)− Γ̃n,j(u, z)
∣∣∣

≥
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· ε2 − 2 sup

|u−qj,τ (z)|≤ε/
√
nh+|qj,τ (z)−q̃j,τ (z)|

∣∣∣Γn,j(u, z)− Γ̃n,j(u, z)
∣∣∣

for all |q−q̃j,τ (z)| > ε/
√
nh. Since |qj,τ (z)−q̃j,τ (z)| = Op(1/

√
nh) from (A.4) and Assumption

2.4, together with Lemma 1,

ε/
√
nh

|q − q̃j,τ (z)|

[
Γn,j(q, z)− Γn,j

(
q̃j,τ (z), z

)]
≥
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· ε2 + op(1)
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for all |q − q̃j,τ (z)| > ε/
√
nh. Since Γn,j

(
q̂j,τ (z), z

)
≤ Γn,j

(
q̃j,τ (z), z

)
by definition of q̂j,τ (z),

one can show that

P
(√

nh
∣∣q̂j,τ (z)− q̃j,τ (z)

∣∣ > ε
)

≤ P

(
inf

|q−q̃j,τ (z)|>ε/
√
nh

{
Γn,j(q, z)− Γn,j

(
q̃j,τ (z), z

)}
≤ 0

)
≤ P

(
fZ(z)fY (j)|Z(qj,τ (z)|z)

2
· ε2 + op(1) ≤ 0

)
→ 0,

which implies q̂j,τ (z) = q̃j,τ (z) + op(1/
√
nh). It follows by combining (A.4) and q̂j,τ (z) =

q̃j,τ (z) + op(1/
√
nh) that

√
nh

[
∆̂τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)

]
√
nh

[
∆̃τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2) + ∆̂τ (z)− ∆̃τ (z)

]

= − 1√
nh

1

fZ(z)

n∑
i=1

{
hKh,i(z)ψ1(Yi, Xi, Di, z)− E

(
hKh,i(z)ψ1(Yi, Xi, Di, z)

)
fY (1)|Z(q1,τ (z)|z)

−
hKh,i(z)ψ0(Yi, Xi, Di, z)− E

(
hKh,i(z)ψ0(Yi, Xi, Di, z)

)
fY (0)|Z(q0,τ (z)|z)

}
+ op(1),

where ∆̃τ (z) = q̃1,τ (z)−q̃0,τ (z). Note that E
[
hKh,i(z)ψj(Yi, Xi, Di; z)−E

(
hKh,i(z)ψj(Yi, Xi, Di; z)

)]
=

0, by applying the Lyapunov’s central limit theorem, we can easily show that

√
nh

[
∆̂τ (z)−∆τ (z) +

h2

2
µ2(K)δτ (z) + op(h

2)

]
D−→ N

(
0, ||K||22σ2

ψ(z)/fZ(z)

)
.

This completes the proof. �

Now, it turns to the proof of Theorem 3.1. To this end, first, one needs to show the

following lemmas.

Lemma 2. Suppose that Assumptions 2.2-2.4 hold, then

sup
z∈Z

∣∣∣Sn,j(z)− fY (j)|Z(qj,τ (z)|z)fZ(z)
∣∣∣ = O

(
h+ (nh/ lnn)−1/2

)
,

where

Sn,j(z) =

∫
K(u)fY (j)|Z

(
qj,τ (z + hu)|z + hu

)
fZ(z + hu)du, j = 0, 1.
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Proof of Lemma 2: The proof is given by Lemma 8 in Kong et al. (2010). �

Lemma 3. For any α, β ∈ R and j = 0, 1, define

Ωn,i,j,τ (z;α, β) (A.5)

= Wj(Xi, Di)hKh,i(z)
{
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))− αϕτ (Yi; qj,τ (z))

}
= Wj(Xi, Di)hKh,i(z)

{
ρτ (Yi(j);α + β + qj,τ (z))− ρτ (Yi(j); β + qj,τ (z))− αϕτ (Yi(j); qj,τ (z))

}
= Wj(Xi, Di)hKh,i(z)

∫ α+β

β

{
ϕτ (Yi(j); qj,τ (z) + t)− ϕτ (Yi(j); qj,τ (z))

}
dt

= Wj(Xi, Di)hKh,i(z)

∫ α+β

β

(
I
{
Yi(j) < qj,τ (z) + t

}
− I
{
Yi(j) < qj,τ (z)

})
dt,

and

Gn,i,j,τ (z;α, β) = Ωn,i,j,τ (z;α, β)− E
[
Ωn,i,j,τ (z;α, β)

]
, (A.6)

where ϕτ (y; q) = I(y ≤ q)−τ . Then, under Assumptions 2.1-2.4, it is clear that for all large

M > 0,

sup
z∈Z

sup
|α|≤Md

(1)
n

|β|≤M1/4d
(2)
n

∣∣∣ n∑
i=1

Gn,i,j,τ (z;α, β)
∣∣∣ ≤M3/2dn almost surely,

where d
(1)
n = (nh)−3/4(lnn)3/4, d

(2)
n = (nh)−1/2(lnn)1/2 and dn = (nh)−1/2(lnn)3/2.

Proof of Lemma 3: This result can be proved using similar arguments as in the proof of

Lemma 1 in Kong et al. (2010). �

Lemma 4. Suppose that Assumptions 2.1-2.4 hold. Then there is a constant C > 0 such

that, for each M > 0 and all large n,

sup
z∈Z

sup
|α|≤M d

(1)
n

|β|≤M1/4d
(2)
n

∣∣∣ n∑
i=1

E
[
Ωn,i,j,τ (z;α, β)

]
− nh

2
α(α + 2β)Sn,j(z)

∣∣∣ ≤ CM3/2dn1,

where dn1 = (nh)−3/4(lnn)7/4.

Proof of Lemma 4: The result can be proved following the proof of Lemma 9 in Kong

et al. (2010). �

Lemma 5. Let ξ1, ξ2, · · · , ξn be independent random variables such that E(ξi) = 0, |ξi| ≤ ς
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for all i and
n∑
i=1

Eξ2i ≤ A. Then, for any η > 0,

P

(∣∣∣ n∑
i=1

ξi

∣∣∣ ≥ η

)
≤ 2 exp

{
− λ η + λ2A

}
for all λ ≤ 1/2ς.

Proof of Lemma 5: Since |ξi| ≤ ς for all i = 1, · · · , n, we have λ|ξi| ≤ 1/2. Using the

inequality exp(x) ≤ 1 + x+ x2 for all |x| ≤ 1/2, we can obtain

exp
(
± λnξi

)
≤ 1± λnξi + λ2nξ

2
i .

Hence, we have

E
[

exp
(
± λξi

)]
≤ 1± λE(ξi) + λ2E

(
ξ2i
)
≤ exp

[
E
(
λ2ξ2i

)]
,

where we used Eξi = 0 and 1 + u ≤ exp(u) for the second inequality. Therefore, by the

Markov inequality and independence of ξ1, ξ2, · · · , ξn, we have

P

(∣∣∣ n∑
i=1

ξi

∣∣∣ ≥ η

)
≤ P

(
λ

n∑
i=1

ξi ≥ λη

)
+ P

(
− λ

n∑
i=1

ξi ≥ λη

)
≤

{
E
[

exp(λ
n∑
i=1

ξi)
]

+ E
[

exp(−λ
n∑
i=1

ξi)
]}/

exp(λη)

= exp(−λη)

{ n∏
i=1

E
[

exp(λξi)
]

+
n∏
i=1

E
[

exp(−λξi)
]}

≤ exp(−λη)

{ n∏
i=1

exp
[
E
(
λ2ξ2i

)]
+

n∏
i=1

exp
[
E
(
λ2ξ2i

)]}
= 2 exp(−λη)

[
exp

(
λ2

n∑
i=1

Eξ2i

)]
≤ 2 exp(−λη)

[
exp(λ2A)

]
= 2 exp

{
− λη + λ2A

}
.

The proof is completed. �

Lemma 6. Suppose that Assumptions 2.1-2.4 are satisfied, we then have

sup
z∈Z

∣∣∣ 1
n
S−1n,j(z)

n∑
i=1

Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (Zi))

∣∣∣ = O

{( lnn

nh

)1/2}
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almost surely for j = 0, 1.

Proof of Lemma 6: Note that Sn,j(z) is bounded away from zero by Assumption 2.2-2.3

and Lemma 2, we only need to show

sup
z∈Z

∣∣∣Vn,j(z)
∣∣∣ = O

{( lnn

nh

)1/2}
almost surely,

where Vn,j(z) =
n∑
i=1

ξn,i,j(z) and

ξn,i,j(z) = n−1Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (Zi)).

Since the support Z of Zi is compact, it can be covered by a finite number Ln =
(

n
h3 lnn

)1/2
of intervals Zn,k with length `n = O(L−1n ) = O

(
h3 lnn
n

)1/2
and centers zn,k, k = 1, · · · , Ln.

Then

sup
z∈Z
|Vn,j(z)| = max

1≤k≤Ln
sup

z∈Z∩Zk
|Vn,j(z)|

≤ max
1≤k≤Ln

sup
z∈Z∩Zk

|Vn,j(z)− Vn,j(zn,k)|+ max
1≤k≤Ln

|Vn,j(zn,k)|

:= Q1 +Q2. (A.7)

We first consider Q1. It is easy to see by Assumption 2.4 that

|Vn,j(z)− Vn,j(zk)| =

∣∣∣∣ 1n
n∑
i=1

Wj(Xi, Di)ϕτ (Yi; qj,τ (Zi))
[
Kh

(
Zi − z

)
−Kh

(
Zi − zk

)]∣∣∣∣
≤ 1

n

n∑
i=1

Wj(Xi, Di)
∣∣ϕτ (Yi; qj,τ (Zi))∣∣∣∣∣Kh

(
Zi − z

)
−Kh

(
Zi − zk

)∣∣∣
≤ C

h2
|z − zk|,

so that

Q1 ≤
C`n
h2

= O

{( lnn

nh

)1/2}
almost surely. (A.8)

Now, we consider Q2. For any η > 0,

P (Q2 ≥ η) = P

(
max

1≤k≤Ln

∣∣∣Vn,j(zn,k)∣∣∣ ≥ η

)
≤
Ln∑
k=1

P
(∣∣Vn,j(zn,k)∣∣ ≥ η

)
. (A.9)

It is easy to show that

E[ξn,i,j(z)] = E
[
n−1Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (Zi))

]
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= E
[
n−1Kh

(
Zi − z

)
ϕτ (Yi(j); qj,τ (Zi))

]
= E

{
n−1Kh

(
Zi − z

)
E
[
ϕτ (Yi(j); qj,τ (Zi))

∣∣Zi]} = 0,

|ξn,i,j(z)| ≤ C1

nh
and

∑n
i=1E[ξn,i,j(z)]2 ≤ C2

nh
, where C1 and C2 do not depend on z. Note

that (nh lnn)1/2 < 1
2|ξn,i,j(z)| for large n, we can apply Lemma 5 to Vn,j(z) =

n∑
i=1

ξn,i,j(z) with

ηn = C3

(
lnn
nh

)1/2
and λn = (nh lnn)1/2. Then, we obtain

P
(∣∣Vn,j(z)

∣∣ ≥ ηn

)
≤ 2 exp

{
−λnηn + λ2n

C2

nh

}
= 2 exp {−C3 lnn+ C2 lnn} = nC2−C3 for all z.

It is clear from (A.9) to see that

P (Q2 ≥ ηn) ≤
Ln∑
k=1

P
(∣∣Vn,j(zn,k)∣∣ ≥ η

)
≤ LnnC2−C3 =

( n

h3 lnn

)1/2
nC2−C3 .

Choosing a large C3, we can ensure that
∑∞

n=1 P (Q2 ≥ ηn) is finite. An application of the

Borel-Cantelli Lemma implies that

Q2 = O(ηn) = O

{( lnn

nh

)1/2}
almost surely. (A.10)

Combining (A.7), (A.8) and (A.10), we obtain

sup
z∈Z

∣∣∣Vn,j(z)
∣∣∣ = O

{( lnn

nh

)1/2}
almost surely.

This completes the proof. �

Lemma 7. Under Assumptions 2.1-2.4,

βn,j(z)− Eβn,j(z)− 1

n
S−1n,j(z)

n∑
i=1

Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (Zi)) = O

{( lnn

nh

)1/2}
uniformly in z ∈ Z with probability 1, where

βn,j(z) =
1

n

n∑
i=1

%n,j(Yi, Xi, Di; z) (A.11)

= − 1

n

n∑
i=1

S−1n,j(z)Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (z)).
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Proof of Lemma 7: The result can be proved by following the proof of Corollary 1 in Kong

et al. (2010). �

Lemma 8. Suppose Assumptions 2.1-2.4 hold. Then,

sup
z∈Z

∣∣∣q̄j,τ (z)− qj,τ (z)− 1

n

n∑
i=1

%n,j(Yi, Xi, Di; z)
∣∣∣ = O

[( lnn

nh

)3/4]
almost surely (A.12)

for j = 0, 1, where

q̄j,τ (z) = arg min
q

n∑
i=1

Wj(Xi, Di)hKh,i(z)ρτ (Yi; q)

and

%n,j(Yi, Xi, Di; z) = −S−1n,j(z)Wj(Xi, Di)Kh

(
Zi − z

)
ϕτ (Yi; qj,τ (z)).

Proof of Lemma 8: Based on Lemmas 3 and 4, one can see that with probability 1, there

exists some C1 > 1, such that for all large M > 0,

sup
z∈Z

sup
|α|≤Md

(1)
n

|β|≤M1/4d
(2)
n

∣∣∣ n∑
i=1

Ωn,i,j,τ (z;α, β)− nh

2
Sn,j(z)α(α + 2β)

∣∣∣
≤ C1M

3/2(dn1 + dn) ≤ 2C1M
3/2dn

for large n, where d
(1)
n = (nh)−3/4(lnn)3/4, d

(2)
n = (nh)−1/2(lnn)1/2, dn = (nh)−1/2(lnn)3/2

and dn1 = (nh)−3/4(lnn)7/4. Hence,

inf
z∈Z

inf
|α|≤M d

(1)
n

|β|≤M1/4d
(2)
n

{ n∑
i=1

Ωn,i,j,τ (z;α, β)− nh

2
Sn,j(z)α(α + 2β)

}
≥ −2C1M

3/2(nh)−1/2(lnn)3/2.

Note that based on the definition in (A.11),

α
n∑
i=1

Wj(Xi, Di)hKh

(
Zi − z

)
ϕτ (Yi; qj,τ (z)) = −nhSn,j(z)βn,j(z)α.

36



Then, by the definition of Ωn,i,j,τ (z;α, β) in (A.5), it is easy to show that

inf
z∈Z

inf
|α|≤M d

(1)
n

|β|≤M1/4d
(2)
n

{ n∑
i=1

Ωn,i,j,τ (z;α, β)− nh

2
Sn,j(z)α(α + 2β)

}

= inf
z∈Z

inf
|α|≤M d

(1)
n

|β|≤M1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]

−α
n∑
i=1

Wj(Xi, Di)hKh,i(z)ϕτ (Yi; qj,τ (z))− nh

2
Sn,j(z)α(α + 2β)

}
= inf

z∈Z
inf

|α|≤M d
(1)
n

|β|≤M1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,j(z)αβn,j(z)− nh · Sn,j(z)αβ − nh

2
Sn,j(z)α2

}
≥ −2C1M

3/2(nh)−1/2(lnn)3/2.

Moving the term −nh
2
Sn,j(z)α2 to the right-hand side, we obtain

inf
z∈Z

inf
|α|≤M d

(1)
n

|β|≤M1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,jα

(
βn,j(z)− β

)}
≥ sup

z∈Z
sup

|α|≤Md
(1)
n

{nh
2
Sn,j(z)α2

}
− 2C1M

3/2(nh)−1/2(lnn)3/2

for all large enough M . Let Bn,k = {α : kNd
(1)
n < |α| ≤ (k + 1)Nd

(1)
n }, k = 1, 2, · · · , and

M = (K + 1)N . Then,

inf
z∈Z

inf
α∈Bn,k,

|β|≤[(k+1)N ]1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,j(z)α

(
βn,j(z)− β

)}
≥ sup

z∈Z
sup

α∈Bn,k

{nh
2
Sn,j(z)α2

}
− 2C1[(k + 1)N ]3/2(nh)−1/2(lnn)3/2

≥ sup
z∈Z

{nh
2
Sn,j(z)k2N2(nh)−3/2(lnn)3/2

}
− 2C1[(k + 1)N ]3/2(nh)−1/2(lnn)3/2

= sup
z∈Z

{[
N1/2 − 4C1S

−1
n,j(z)k−2(k + 1)3/2

]
N3/2(nh)−1/2(lnn)3/2

}
.
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Since C1S
−1
n,j(z)k−2(k + 1)3/2 is uniformly bounded for all z ∈ Z and k = 1, 2, · · · , we can

find a large enough N such that

inf
z∈Z

inf
α∈Bn,k,

|β|≤[(k+1)N ]1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,j(z)α

(
βn,j(z)− β

)}
> 0

for all k = 1, 2, · · · almost surely. Furthermore, we can obtain that

Eβn,j(z) = E
[
%n,j(Yi, Xi, Di; z)

]
(A.13)

= − 1

Sn,j(z)
f ′Z(z)

∂FY (j)|Z(qj,τ (z)|u)

∂u

∣∣∣
u=z

h2
∫
s2K(s)ds+ o(h2) = O(h2)

uniformly in z. Since nh5 is bounded, it is clear to see that Eβn,j(z) = O(h2) = O
{(

lnn
nh

)1/2}
,

which together with Lemmas 6 and implies that |βn,j(z)| = O
(
d
(2)
n

)
uniformly in z ∈ Z

almost surely. Hence, |βn,j(z)| ≤ [(k + 1)N ]1/4d
(2)
n for large N and for all k = 1, 2, · · · with

probability 1. Then,

0 < inf
z∈Z

inf
α∈Bn,k,

|β|≤[(k+1)N ]1/4d
(2)
n

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,j(z)α

(
βn,j(z)− β

)}
≤ inf

z∈Z
inf

α∈Bn,k,
β=βn,j(z)

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + β + qj,τ (z))− ρτ (Yi; β + qj,τ (z))

]
+nh · Sn,j(z)α

(
βn,j(z)− β

)}
(A.14)

= inf
z∈Z

inf
α∈Bn,k

{ n∑
i=1

Wj(Xi, Di)hKh,i(z)
[
ρτ (Yi;α + βn,j(z) + qj,τ (z))

−ρτ (Yi; βn,j(z) + qj,τ (z))
]}
.

Note that

q̄j,τ (z) = arg min
q

n∑
i=1

Wj(Xi, Di)hKh,i(z)ρτ (Yi; q),

Inequality (A.14) implies clearly that q̄j,τ (z) 6= α + βn,j(z) + qj,τ (z) for any α ∈ Bn,k = {α :

kNd
(1)
n < |α| ≤ (k + 1)Nd

(1)
n } for any k = 1, 2, · · · . This concludes that

|q̄j,τ (z)− qj,τ (z)− βn,j(z)| < Nd(1)n = O
[( lnn

nh

)3/4]
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for some N > 0 almost surely, where N does not depend on z. This completes the proof. �

Lemma 9. Suppose that Assumptions 2.1-2.5 are satisfied, then,

sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ = Op

{
max

(
lnn√
n
,
( lnn

nh

)3/4)}
, j = 0, 1.

Proof of Lemma 9: For j = 0, 1, define cumulative distribution functions

F̄n,j(y | z) =

∑n
i=1Kh,i(z)Wj(Xi, Di)I{Yi ≤ y}∑n

i=1Kh,i(z)Wj(Xi, Di)

and

F̂n,j(y | z) =

∑n
i=1Kh,i(z)Ŵn,j(Xi, Di)I{Yi ≤ y}∑n

i=1Kh,i(z)Ŵn,j(Xi, Di)
.

By the definitions of q̄j,τ (z) and q̂j,τ (z), and the properties of the check function ρ(y; q), it

follows that q̄j,τ∗(z) = inf{y : F̄n,j(y | z) ≥ τ ∗} and q̂j,τ∗(z) = inf{y : F̂n,j(y | z) ≥ τ ∗} for

0 < τ ∗ < 1. We also have F̄n,j
(
q̄j,τ∗(z) | z

)
= τ ∗ +Op(1/nh). For j = 0 and 1, define

f̄n,j(z) = n−1
n∑
i=1

Kh,i(z)Wj(Xi, Di)

and

f̂n,j(z) = n−1
n∑
i=1

Kh,i(z)Ŵn,j(Xi, Di).

Then, by using supx∈X
∣∣Ŵn,j(x,Di) − Wj(x,Di)

∣∣ = Op(n
−1/2) and supz∈Z

1
n

n∑
i=1

Kh,i(z) =

Op(1), it is easy to show that

sup
z∈Z

∣∣f̄n,j(z)− f̂n,j(z)
∣∣ ≤ sup

z∈Z

1

n

n∑
i=1

Kh,i(z)
∣∣Wj(Xi, Di)− Ŵn,j(Xi, Di)

∣∣
≤ Op(n

−1/2) · sup
z∈Z

1

n

n∑
i=1

Kh,i(z) = Op(n
−1/2).

In addition, by the proof of Lemma 4.4 in Donald and Hsu (2014), we know that

sup
z∈Z

∣∣f̂n,j(z)− fZ(z)
∣∣ = op(1),

which implies that 1
/(

infz∈Z f̂n,j(z)
)

= Op(1) by Assumption 2.2. Therefore, for j = 0 and
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1,

sup
y∈Yj

sup
z∈Z

∣∣F̂n,j(y | z)− F̄n,j(y | z)
∣∣

≤ 1

infz∈Z f̄n,j(z)
sup
y∈Yj

sup
z∈Z

∣∣∣ 1
n

n∑
i=1

Kh,i(z)I{Yi ≤ y}
(
Wj(Xi, Di)− Ŵn,j(Xi, Di)

)∣∣∣
+

1

infz∈Z f̄n,j(z)

1

infz∈Z f̂n,j(z)
sup
y∈Yj

sup
z∈Z

∣∣∣f̄n,j(z)− f̂n,j(z)
∣∣∣∣∣∣ 1
n

n∑
i=1

Kh,i(z)Ŵn,j(Xi, Di)I{Yi ≤ y}
∣∣∣

≤ Op(1) ·Op(n
−1/2) · sup

z∈Z

1

n

n∑
i=1

Kh,i(z) +Op(1) ·Op(n
−1/2) · sup

z∈Z

1

n

n∑
i=1

Kh,i(z)Ŵn,j(Xi, Di)

= Op(n
−1/2),

where Yj is the support of Y (j). Now, let cn = max
{

lnn√
n
, (lnn)

2

nh

}
. Then,

F̂n,j
(
q̄j,τ+cn(z) | z

)
= F̄n,j

(
q̄j,τ+cn(z) | z

)
+Op(1/

√
n)

= τ + cn +Op(1/nh) +Op(1/
√
n) > τ

in probability as n→∞. Similarly,

F̂n,j
(
q̄j,τ−cn(z) | z

)
= F̄n,j

(
q̄j,τ−cn(z) | z

)
+Op(1/

√
n)

= τ − cn +Op(1/nh) +Op(1/
√
n) < τ

in probability as n→∞. Since q̂j,τ (z) = inf{y : F̂n,j(y | z) ≥ τ}, then, we have

q̄j,τ−cn(z) ≤ q̂j,τ (z) ≤ q̄j,τ+cn(z).

Obviously, one also can see that

q̄j,τ−cn(z) ≤ q̄j,τ (z) ≤ q̄j,τ+cn(z).

Therefore, by using the Bahadur representation of q̄j,τ∗(z) provided by Lemma 8, it follows

that

sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ ≤ sup

z∈Z

∣∣q̄j,τ+cn(z)− q̄j,τ−cn(z)
∣∣

≤ sup
z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣+ sup

z∈Z

∣∣∣S−1n,j(z)
1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)

×
(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}+ 2cn

)∣∣∣+Op

{( lnn

nh

)3/4}
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≤ sup
z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣+ sup

z∈Z

∣∣∣S−1n,j(z)
1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)

×
(
I{Yi ≤ qj,τ−cn(z)} − I{Yi ≤ qj,τ+cn(z)}

)∣∣∣
+2cn · sup

z∈Z

∣∣∣S−1n,j(z)
1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)
∣∣∣+Op

{( lnn

nh

)3/4}
:= M1 +M2 +M3 +Op

{( lnn

nh

)3/4}
.

For M1, first note that FY (j)|Z(qj,τ+cn(z)|z) = τ + cn and FY (j)|Z(qj,τ−cn(z)|z) = τ − cn.

Thus we can obtain

2cn = FY (j)|Z(qj,τ+cn(z)|z)− FY (j)|Z(qj,τ−cn(z)|z) = fY (j)|Z(q∗n|z)
(
qj,τ+cn(z)− qj,τ−cn(z)

)
,

where q∗n lies in between qj,τ−cn(z) and qj,τ+cn(z), which implies that

sup
z∈Z

∣∣qj,τ+cn(z)− qj,τ−cn(z)
∣∣ = O(cn)

by Assumption 2.3.

ForM2, since qj,τ−cn(z) ≤ qj,τ (z) ≤ qj,τ+cn(z) and supz∈Z
∣∣qj,τ+cn(z)−qj,τ−cn(z)

∣∣ = O(cn),

we know that there exists a constant A which does not rely on z, such that

M2 ≤ sup
z∈Z

∣∣∣S−1n,j(z)
1

n

n∑
i=1

Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}
∣∣∣

≤ sup
z∈Z

∣∣∣∣S−1n,j(z)
1

n

n∑
i=1

[
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

−E
(
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)]∣∣∣∣
+ sup

z∈Z

∣∣∣∣S−1n,j(z)E
(
Kh,i(z)Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)∣∣∣∣
:= M2,1 +M2,2.

Next, we show M2,1 = op(cn). To this aim, first note that the following classes of functions

(i) {K
(
(Zi − z)/h

)
: z ∈ Z}, (ii)

{
I{Yi ≤ qj,τ (z) − Acn} : z ∈ Z

}
and (iii)

{
I{Yi ≤

qj,τ (z) +Acn} : z ∈ Z
}

are all Euclidean for a constant envelope (Lemma 18 and Lemma 22

of Nolan and Pollard (1987)). The closer properties of Euclidean classes further dictates that{
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)−Acn ≤ Yi ≤ qj,τ (z) +Acn} : z ∈ Z

}
is also Euclidean,

which together with lnn
nhcn

= o(1) implies the conditions required by Theorem II.37 of Pollard
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(1984) are met. In addition, by straightforward calculations, we know that

E

[(
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)2]
= E

{
K2
(
(Zi − z)/h

)
p(Xi)

−j(1− p(Xi))
j−1E

[
I{qj,τ (z)− Acn ≤ Yi(j) ≤ qj,τ (z) + Acn}

∣∣Xi

]}
= O(hcn)

by Assumption 2.3. Hence, by Theorem II.37 of Pollard (1984),

sup
z∈Z

∣∣∣∣ 1n
n∑
i=1

[
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

−E
(
K
(
(Zi − z)/h

)
Wj(Xi, Di)I{qj,τ (z)− Acn ≤ Yi ≤ qj,τ (z) + Acn}

)]∣∣∣∣ = op(hcn).

Since Sn,j(z) is bounded away from zero by Assumption 2.2-2.3 and Lemma 2, we know that

M2,1 = op(cn). Also, it is easy to show thatM2,2 = O(cn). This together withM2,1 = op(cn)

leads to M2 = Op(cn). Finally, it is easy to see that

M3 = Op(cn)

holds. Therefore,

sup
z∈Z

∣∣q̂j,τ (z)− q̄j,τ (z)
∣∣ = Op

{
max

(
lnn√
n
,
( lnn

nh

)3/4)}
.

This completes the proof. �

Lemma 10. Under Assumptions 2.1-2.5, we have

sup
z∈Z

∣∣∣q̂j,τ (z)− qj,τ (z)− 1

n

n∑
i=1

%n,j(Yi, Xi, Di; z)
∣∣∣ = Op

{
max

(
lnn√
n
,
( lnn

nh

)3/4)}
,

for j = 0, 1.

Proof of Lemma 10: The result comes from Lemma 8 and Lemma 9. �

Lemma 11. Let R1, R2, · · · be an i.i.d. sequence. Suppose that the U-statistic Un =∑
1≤i<j≤n

Hn(Ri, Rj) with symmetric variable function Hn is centered (i.e., E[Hn(R1, R2)] = 0)

and degenerated (i.e., E[Hn(R1, R2)|R1 = z1] = 0 almost surely for all z1). Let

σ2
n = E

[
H2
n(R1, R2)

]
, Π̃n(z1, z2) = E

[
Hn(Ri, z1)Hn(Ri, z2)

]
.
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Then if

lim
n→∞

E
[
Π̃2
n(R1, R2)

]
+ n−1E

[
H4
n(R1, R2)

](
E[H2

n(R1, R2)]
)2 = 0,

we have that as n→∞,
21/2

nσn
Un

D−→ N (0, 1).

Proof of Lemma 11: The result is Theorem 1 given in Hall (1984).

Lemma 12. Suppose the conditions required by Theorem 3.1 are satisfied. Then

n
√
h

{∫ [ 1

n

n∑
i=1

(
%n,1(Yi, Xi, Di; z)− %n,0(Yi, Xi, Di; z)

)]2
ω(z)dz − µJ

}
D−→ N (0, σ2

J),

where

µJ =
1

nh

∫
K2(s)ds

∫ {
µ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
µ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
ω(z)

fZ(z)
dz,

and

σ2
J = 2

∫ (∫
K(t)K(t+ s)dt

)2
ds

∫ {
µ1(u;u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
µ0(u;u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
ω2(u)

f 2
Z(u)

du,

with

µ0(z;u) = E

[
1

1− p(Xi)

(
I{Yi(0) ≤ q0,τ (u)} − τ

)2∣∣Zi = z

]
,

and

µ1(z;u) = E

[
1

p(Xi)

(
I{Yi(1) ≤ q1,τ (u)} − τ

)2∣∣Zi = z

]
.

Proof of Lemma 12: Let γn(Yi, Xi, Di; z) = %n,1(Yi, Xi, Di; z) − %n,0(Yi, Xi, Di; z) and

γ̃n(Yi, Xi, Di; z) = γn(Yi, Xi, Di; z)− E
[
γn(Yi, Xi, Di; z)

]
, then,∫ ( 1

n

n∑
i=1

γn(Yi, Xi, Di; z)
)2
ω(z)dz (A.15)

= n−2
n∑

i,k=1

∫
γn(Yi, Xi, Di; z)γn(Yk, Xk, Dk; z)ω(z)dz

= 2n−2
∑

1≤i<k≤n

∫
γ̃n(Yi, Xi, Di; z)γ̃n(Yk, Xk, Dk; z)ω(z)dz + n−2

n∑
i=1

∫
γ2n(Yi, Xi, Di; z)ω(z)dz

43



+2n−2(n− 1)
n∑
i=1

∫
γ̃n(Yi, Xi, Di; z) · E[γn(Y1, X1, D1; z)]ω(z)dz

+n−1(n− 1)

∫
E2
[
γn(Y1, X1, D1; z)

]
ω(z)dz

:= In,1 + In,2 + In,3 + In,4.

We first consider the term In,1. Let Ri = (Yi, Xi, Di) and

Hn(Ri, Rk) =
2

n2

∫
γ̃n(Ri; z)γ̃n(Rk; z)ω(z)dz.

Then, In,1 =
∑

1≤i<k≤n
Hn(Ri, Rk) is a centered and degenerated U -statistic. Thus,

E
[
Hn(Ri, Rk)

2
]

(A.16)

= E

[
4

n4

∫ ∫
γ̃n(Ri;u)γ̃n(Rk;u)ω(u) γ̃n(Ri; v)γ̃n(Rk; v)ω(v) dudv

]
=

4

n4

∫ ∫
E [γ̃n(Ri;u)γ̃n(Ri; v)γ̃n(Rk;u)γ̃n(Rk; v)]ω(u)ω(v) dudv

=
4

n4

∫ ∫
E2
[
γ̃n(Ri;u)γ̃n(Ri; v)

]
ω(u)ω(v) dudv

By noting that E
[
%n,j(Yi, Xi, Di; z)

]
= O(h2) for j = 0 and 1, as in (A.13), then, we have

E
[
γ̃n(Ri;u)γ̃n(Ri; v)

]
(A.17)

= S−1n,1(u)S−1n,1(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) Di

p2(Xi)
ϕτ (Yi; q1,τ (u))ϕτ (Yi; q1,τ (v))

]
+S−1n,0(u)S−1n,0(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1−Di

(1− p(Xi))2
ϕτ (Yi; q0,τ (u))ϕτ (Yi; q0,τ (v))

]
+O(h4)

= S−1n,1(u)S−1n,1(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1

p(Xi)
ϕτ (Yi; q1,τ (u))ϕτ (Yi; q1,τ (v))

]
+S−1n,0(u)S−1n,0(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

) 1

1− p(Xi)
ϕτ (Yi; q0,τ (u))ϕτ (Yi; q0,τ (v))

]
+O(h4)

= S−1n,1(u)S−1n,1(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

)
κ1(Zi;u, v)

]
+S−1n,0(u)S−1n,0(v)E

[
Kh

(
Zi − u

)
Kh

(
Zi − v

)
κ0(Zi;u, v)

]
+O(h4)

=
1

h
S−1n,1(u)S−1n,1(v)

∫
K(t)K

(
t+

u− v
h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

+
1

h
S−1n,0(u)S−1n,0(v)

∫
K(t)K

(
t+

u− v
h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt+O(h4),
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where

κ1(z;u, v) = E
[ 1

p(Xi)
ϕτ (Yi(1); q1,τ (u))ϕτ (Yi(1); q1,τ (v))

∣∣Zi = z
]
,

and

κ0(z;u, v) = E
[ 1

1− p(X)
ϕτ (Yi(0); q0,τ (u))ϕτ (Yi(0); q0,τ (v))

∣∣Zi = z
]
,

with ϕτ (y; q) = I(y ≤ q)− τ . Thus,

E2
[
γ̃n(Ri;u)γ̃n(Ri; v)

]
=

1

h2
S−2n,1(u)S−2n,1(v)

(∫
K(t)K

(
t+

u− v
h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

)2
+

1

h2
S−2n,0(u)S−2n,0(v)

(∫
K(t)K

(
t+

u− v
h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt

)2
+

2

h2
S−1n,1(u)S−1n,1(v)S−1n,0(u)S−1n,0(v)

∫
K(t)K

(
t+

u− v
h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

×
∫
K(t)K

(
t+

u− v
h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt

+2O(h3)S−1n,1(u)S−1n,1(v)

∫
K(t)K

(
t+

u− v
h

)
κ1(u+ ht;u, v)fZ(u+ ht)dt

+2O(h3)S−1n,0(u)S−1n,0(v)

∫
K(t)K

(
t+

u− v
h

)
κ0(u+ ht;u, v)fZ(u+ ht)dt+O(h8).

An application of (A.16) and some straightforward calculations implies that

E
[
Hn(Ri, Rk)

2
]

=
4

n4

∫ ∫
E2
[
γ̃n(Ri;u)γ̃n(Ri; v)

]
ω(u)ω(v) dudv

=
4

n4h

{∫ (∫
K(t)K(t+ s)dt

)2
ds ·

(∫
S−4n,1(u)κ21(u;u, u)f 2

Z(u)ω2(u)du

+

∫
S−4n,0(u)κ20(u;u, u)f 2

Z(u)ω2(u)du

+2

∫
S−2n,1(u)S−2n,0(u)κ1(u;u, u)κ0(u;u, u)f 2

Z(u)ω2(u)du
)

+ o(1)

}
.

This, coupled with Sn,j(z) = fZ(z)fY (j)|Z(qj,τ (z)|z) +O(h2) for j = 0, 1, yields

E
[
Hn(R1, R2)

2
]

=
4

n4h

(∫ (∫
K(t)K(t+ s)dt

)2
ds

×
∫ {

κ1(u;u, u)

f 2
Y (1)|Z(q1,τ (u)|u)

+
κ0(u;u, u)

f 2
Y (0)|Z(q0,τ (u)|u)

}2
ω2(u)

f 2
Z(u)

du+ o(1)

)
= O

( 1

n4h

)
.
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Similarly, by straightforward calculations, we can obtain

E
[
Π̃n(R1, R2)

2
]

= O

(( 1

n2h2

)4
h7
)
,

and

E
[
Hn(R1, R2)

4
]

= O

(( 1

n2h2

)4
h5
)
.

Thus, the condition

lim
n→∞

E
[
Π̃n(R1, R2)

2
]

+ n−1E
[
Hn(R1, R2)

4
](

E
[
Hn(R1, R2)2

])2 = 0

in Lemma 11 is satisfied, so that

√
2

nE1/2
[
Hn(R1, R2)2

] In,1 D−→ N (0, 1),

or equivalently,

n
√
h In,1

D−→ N (0, σ2
J). (A.18)

Next, we move to the term In,2 = n−2
n∑
i=1

∫
γ2n(Yi, Xi, Di; z)ω(z)dz. Note that

E
[
γ2n(Yi, Xi, Di; z)

]
= S−2n,1(z)E

[
1

h2
K2
(Zi − z

h

) Di

p2(Xi)
(I{Yi ≤ q1,τ (z)} − τ)2

]
+S−2n,0(z)E

[
1

h2
K2
(Zi − z

h

) 1−Di

(1− p(Xi))2
(I{Yi ≤ q0,τ (z)} − τ)2

]
= S−2n,1(z)E

[
1

h2
K2
(Zi − z

h

) 1

p(Xi)
(I{Yi(1) ≤ q1,τ (z)} − τ)2

]
+S−2n,0(z)E

[
1

h2
K2
(Zi − z

h

) 1

1− p(Xi)
(I{Yi(0) ≤ q0,τ (z)} − τ)2

]
= S−2n,1(z)E

[
1

h2
K2
(Zi − z

h

)
µ1(Zi; z)

]
+ S−2n,0(z)E

[
1

h2
K2
(Zi − z

h

)
µ0(Zi; z)

]
= S−2n,1(z)

[
1

h

(
µ1(z; z)fZ(z)

∫
K2(s)ds+O(h)

)]
+ S−2n,0(z)

[
1

h

(
µ0(z; z)fZ(z)

∫
K2(s)ds+O(h)

)]
=

1

h

{∫
K2(s)ds ·

(
S−2n,1(z)µ1(z; z) + S−2n,0(z)µ0(z; z)

)
fZ(z) +O(h)

}
,

coupled with Sn,j(z) = fZ(z)fY (j)|Z(qj,τ (z)|z) +O(h2) for j = 0 and 1, we have

E
(
In,2
)

=
1

n

∫
E
[
γ2n(Yi, Xi, Di; z)

]
ω(z)dz (A.19)
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=
1

nh

{∫
K2(s)ds ·

∫ (
S−2n,1(z)µ1(z; z) + S−2n,0(z)µ0(z; z)

)
fZ(z)ω(z)

}
+O

( 1

n

)
=

1

nh

∫
K2(s)ds ·

∫ {
λ1(z; z)

f 2
Y (1)|Z(q1,τ (z)|z)

+
λ0(z; z)

f 2
Y (0)|Z(q0,τ (z)|z)

}
ω(z)

f(z)
dz +O

( 1

n

)
= µJ +O

( 1

n

)
.

Furthermore,

Var
(
n
√
hIn,2

)
= E

{
n
√
h
[
In,2 − E(In,2)

]}2

= n−1h

{
E

[(∫
γ2n(Yi, Xi, Di; z)ω(z)dz

)2]
− E2

[ ∫
γ2n(Yi, Xi, Di; z)ω(z)dz

]}
= n−1h

{
E

[(∫
γ2n(Yi, Xi, Di; z)ω(z)dz

)2]
−O(h−2)

}
= n−1h

{∫ ∫
E
[
γ2n(Yi, Xi, Di;u)γ2n(Yi, Xi, Di; v)

]
ω(u)ω(v)dudv −O(h−2)

}
= n−1h ·O(h−2)→ 0,

together with (A.19), we have

n
√
h
[
In,2 − µJ

]
= n

√
h
[
In,2 − E(In,2)

]
+ op(1) = op(1). (A.20)

We now consider In,3 and In,4. By noting that E
[
γn(Yi, Xi, Di; z)

]
= O(h2) from (A.13)

and

E

(∫
γ̃n(Yi, Xi, Di; z)ω(z) dz

)2

=

∫ ∫
E
[
γ̃n(Yi, Xi, Di;u)γ̃n(Yi, Xi, Di; v)

]
ω(u)ω(v)dudv = O(1)

from (A.17), we obtain

E
[
In,3
]2

= Var
[
In,3
]

= 4n−4(n− 1)2
n∑
i=1

Var

(∫
γ̃n(Yi, Xi, Di; z) · E[γn(Y1, X1, D1; z)]ω(z)dz

)
= 4n−4(n− 1)2 · nE

(∫
γ̃n(Yi, Xi, Di; z) · E[γn(Y1, X1, D1; z)]ω(z)dz

)2

= 4n−3(n− 1)2E

(∫
γ̃n(Yi, Xi, Di; z) ·O(h2)ω(z)dz

)2

= O(n−1h4).
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Hence,

n
√
h In,3 = n

√
h ·O(n−1/2h2) = O(

√
nh5). (A.21)

Furthermore, we have

n
√
h In,4 = n

√
h n−1(n− 1)

∫
E2
[
γn(Y1, X1, D1; z)

]
ω(z)dz = O(nh9/2). (A.22)

It follows by combining (A.15), (A.18), (A.20), (A.21) and (A.22) that

n
√
h

[∫ ( 1

n

n∑
i=1

γn(Yi, Xi, Di; z)
)2
ω(z)dz − µJ

]
D−→ N (0, σ2

J)

under the assumption that nh9/2 → 0. �

Proof of Theorem 3.1: Let ∆τ (z) and ∆τ be the partially conditional quantile treatment

effect on Zi = z and the unconditional quantile treatment effect, respectively. Then

Jn =

∫ (
∆̂τ (z)− ∆̂τ

)2
ω(z)dz

=

∫ [(
∆̂τ (z)−∆τ (z)

)
+
(

∆τ − ∆̂τ

)
+
(

∆τ (z)−∆τ

)]2
ω(z)dz

where ∆̂τ is a
√
n-consistent estimate of ∆τ . Recall that γn(Yi, Xi, Di; z) = %n,1(Yi, Xi, Di; z)−

%n,0(Yi, Xi, Di; z). Under the null hypothesis H0, ∆τ (z)−∆τ ≡ 0, thus,

Jn =

∫ ( 1

n

n∑
i=1

γn(Yi, Xi, Di; z) + en

)2
ω(z)dz

=

∫ ( 1

n

n∑
i=1

γn(Yi, Xi, Di; z)
)2
ω(z)dz + e2n + 2en

∫
1

n

n∑
i=1

γn(Yi, Xi, Di; z)ω(z)dz

:= Jn,1 + Jn,2 + Jn,3,

where en = Op

(
max

{
lnn√
n
,
(

lnn
nh

)3/4})
by Lemma 10. Now, it is easy to verify that

n
√
h Jn,2 = op(1). Also, by noting that E

[
γn(Yi, Xi, Di; z)

]
= O(h2) from (A.13) and

E

(∫
γ̃n(Yi, Xi, Di; z)ω(z) dz

)2

= O(1) from (A.17), then, we have

en

∫
1

n

n∑
i=1

γn(Yi, Xi, Di; z)ω(z)dz
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= en

∫
1

n

n∑
i=1

γ̃n(Yi, Xi, Di; z)ω(z)dz +

∫
E
[
γn(Yi, Xi, Di; z)

]
ω(z)dz

= Op

(
n−1/2en

)
+Op(h

2en).

Hence, n
√
h Jn,3 = op(1) under the assumption nh9/2 → 0. Finally, an application of Lemma

12 leads to

n
√
h
(
Jn − µJ

)
= n
√
h
(
Jn,1 − µJ + Jn,2 + Jn,3

) D−→ N (0, σ2
J).

Now, we consider the case under the alternative hypothesis H1. Under H1, it is easy to

show that Jn − µJ =
∫ (

∆τ (z) − ∆τ

)2
ω(z)dz + op(1). Since

∫ (
∆τ (z) − ∆τ

)2
ω(z)dz is a

positive constant under H1, so that

n
√
h
(
Jn − µJ

) p−→ +∞.

This completes the proof. �
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