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1 Introduction

There is an increasing number of interests in estimating causal effect of a treatment,

program or policy on economic or other outcomes, which is important in comparing different

medical treatments, social programs and intervention policies. A conventional approach is to

assume that the treatment variable is unconfounded after conditioning on a set of observable

covariates, which leads to regression, matching or inverse probability weighting based meth-

ods, among others, for estimating the average treatment effects1. However, although the

average treatment effects are interesting and critical measures in determining a treatment or

policy’s effect, they might not be sufficient to fully capture the impact of the treatment or

policy except under very restrictive conditions. In particular, when the treatment effect is

heterogeneous, the average treatment effects can not provide enough information about the

effect of the treatment or policy on other points in the outcome distribution which the re-

searcher may be more interested in. Such distributional aspects beyond simple averages can

be of fundamental interest and arise naturally in many areas of empirical economic research2.

To characterize the heterogeneous effects along with the outcome distribution, quantile treat-

ment effect (QTE), originally introduced by Doksum (1974) and Lehmann (1975), provides

an effective and intuitive tool to document such heterogeneity. The importance of QTE has

motivated researchers to consider its identification and estimation under common identify-

ing assumptions such as selection on observables (see Assumption 2.1(i) later) as in Firpo

(2007) and Donald and Hsu (2014). Recently, Tang (2019) provided a comprehensive survey

on recent developments in modeling methods for the quantile treatment effect.

It has been explicitly recognized in program evaluation literature that the effect of a

treatment can be heterogeneous across different individuals (Heckman and Robb (1985),

Heckman et al. (1997)). Therefore, except for the treatment effect for the entire population,

it may also be of interest to estimate the treatment effect in various sub-populations defined

by some covariates of interest. Some of this interest in treatment effect heterogeneity has

been extensively considered in the recent literature. For example, to characterize the het-

erogeneous effect across different sub-populations, Abrevaya et al. (2015) and Lee, Okui and

Whang (2017) considered the partially conditional average treatment effect.

In this paper, we propose a parametric quantile treatment effect model to characterize

1For example, Heckman et al. (1998), Hahn (1998), Hirano, Imbens and Ridder (2003), Abrevaya, Hsu
and Lieli (2015), Abadie and Imbens (2006, 2016), and the references therein.

2For example, in trying to understand the effect of a government-subsidized training program, the effect
of the program on the lower tail of the savings distribution is of central interest for welfare analysis; see
LaLonde (1995) and Abadie et al. (2002) for more details. Similarly, when evaluating effects of unionization
on wage inequality, distributional effect is also of central interest for welfare analysis; see Freeman (1980)
and Card (1996) for more discussions.
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the heterogeneously distributional effect of treatment variable on outcome of interest across

different sub-populations defined by the covariates of interest. More specifically, a polynomial

restriction is proposed to specify the quantile functions of the potential outcome distributions

conditional on the covariates of interest. The rationale for using a polynomial model is that

the notation is simple and the estimator is computationally convenient and the resulting

estimator simplifies to a linear quantile regression as in Koenker and Bassett (1978). Different

from Koenker and Bassett (1978), there are missing data in the potential outcomes. Hence,

the unknown parameters in the conditional quantile functions can not be estimated directly

by the quantile regression estimator as in Koenker and Bassett (1978). To this end, we

provide conditions (see Assumption 2.1 later) under which the conditional quantiles of the

potential outcome distributions can be recovered from the distribution of the observable

data.

In our empirical study, the proposed model is applied to reexamine the quantile treatment

effect of a first-time mother’s smoking during pregnancy on the birth weight of her baby

conditional on the mother’s age. Some previous work has been investigated the effect of

maternal smoking during pregnancy on infant birth weight; see for example, Abrevaya (2006),

Abrevaya and Dahl (2008), Abrevaya et al. (2015), Lee et al. (2017), and the reference therein.

In particular, Abrevaya et al. (2015) and Lee et al. (2017) investigated the average effect

of mother’s smoking during pregnancy on infant birth weight across different age groups of

mothers. However, Cai, Fang, Lin and Tang (2019) argued that the heterogeneity of the

effect of mother’s smoking on infant birth weight exists so that it might not be enough to

consider the average treatment effect. Instead, they explored the nonparametric quantile

effects of maternal smoking during pregnancy on her baby’s birth weight across different age

groups of mothers. In this paper, we apply the proposed parametric model to re-investigate

the quantile treatment effect of mother’s smoking during pregnancy on infant birth weight

across different sub-populations defined by the mother’s age. It is worth stressing that our

goal is not to provide another estimate of the quantile treatment effect of mother’s smoking

on the birth weight of her child per se, but rather to illustrate how the proposed parametric

model can be easily used to explore the heterogeneity of the quantile treatment effect across

different sub-populations defined by the mother’s age.

The structure of the paper is as follows. In the next section, we introduce the model

framework and the estimation procedure. Section 3 presents an empirical application and

Section 4 concludes.
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2 Econometric Model

2.1 Framework

The focus of our interest is to estimate the causal effect of a binary treatment, represented

by the binary variable D, on some scalar outcome variable, denoted by Y . More specifically,

D = 1 denotes that some individual in a large sample receives the active treatment, while

D = 0 denotes the same individual receives the control treatment. Following Rubin (1974)

and Imbens and Rubin (2015), treatment effects are defined in terms of potential outcomes.

Specifically, Y (1) denotes the potential outcome for the individual under treatment and Y (0)

stands for the potential outcome under control. For each individual, the treatment variable

D and the outcome Y are observed, which has the following relationship with the potential

outcomes Y (1) and Y (0) as Y = D ·Y (1)+(1−D)Y (0). In addition, a vector of pretreatment

variables or covariates, denoted by X are observed too, which are predetermined relative to

the treatment assignment and oftentimes contain characteristics of the units measured before

the treatment assignment is known.

Recently, the quantile treatment effect has been popularly studied and extensively applied

in the economics literature and real applications3. Specifically, for j = 0 and 1, let FY (j)(y)

be the distribution function of the potential outcome Y (j). Then, for a given quantile level

τ ∈ (0, 1), the QTE is defined as F−1
Y (1)(τ)−F−1

Y (0)(τ), where for j = 0 and 1, F−1
Y (j)(τ) is the τth

quantile function of the distribution FY (j)(y), given by F−1
Y (j)(τ) = inf{y ∈ R : FY (j)(y) ≥ τ}.

The quantile treatment effect can be used to characterize the heterogeneously distributional

effect of a treatment or policy on outcome of interest. However, as stated in the introduction,

in many applications, except for the population quantile treatment effect, researchers may

also be interested in estimating the heterogeneously distributional effect of a treatment or

policy on outcome of interest across different sub-populations defined by certain covariates of

interest. To this end, the focus in this paper is on the quantile treatment effect conditional on

a subset of the pretreatment variables, termed as the partially conditional quantile treatment

effect. Specifically, let W = (W1, · · · ,Wk) ∈ Rk be a sub-vector of X ∈ Rp, where 1 ≤ k < p.

Similarly, let FY (j)|W (y |w) denote the distribution function of Y (j) conditional on W = w

for j = 0 and 1. Then, the quantile regression model for treatment effect is defined as

δτ (w) = Q1,τ (w)−Q0,τ (w),

where Qj,τ (w) is the τth quantile function of the distribution of Y (j) conditional on W ,

given by Qj,τ (w) = inf{y ∈ R : FY (j)|W (y |w) ≥ τ} and τ ∈ (0, 1) is the quantile level.

3See, for example, Firpo (2007), Donald and Hsu (2014), Chernozhukov and Hansen (2005, 2006), Frölich
and Melly (2013), and the references therein.
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It is easy to see that estimation of quantile treatment effect is complicated by the fact

that for each individual in the population, we observe at most one of the potential outcomes

Y (1) and Y (0). Therefore, the parameter of interest can not be identified without further

restrictions. To solve the identification problem, it is assumed in this paper that assignment

to treatment is unconfounded as in Rubin (1980) and Rosenbaum and Rubin (1983), and

that the probability of assignment is bounded away from 0 and 1. Formally, the following

assumptions are imposed.

Assumption 2.1. For almost every x ∈ X , where X is the support of X,

(i)
(
Y (0), Y (1)

)
is independent of D conditional on X = x;

(ii) 0 < c ≤ p(x) = P (D = 1|X = x) ≤ c < 1 for some 0 < c < c < 1, where p(x) is the

so-called propensity score function.

Assumption 2.1(i) is often referred to as unconfoundedness or ”selection on observables”

and it states that when a vector of measured covariates are controlled, the treatment variable

is independent of the potential outcomes. It rules out the existence of unobserved factors that

affect treatment assignment and are also correlated with the potential outcomes. Assumption

2.1(ii) implies that, for almost all values of X, the population includes treated and untreated

units. Clearly, it is easy to show that indeed, δτ (w) can be identified under Assumption 2.1

so that Assumption 2.1 holds true through the whole paper.

2.2 Model Specification and Estimation Procedure

In this paper, our focus is on estimating δτ (w) based on a linear model for the conditional

quantile functions of the potential outcome distributions. Formally, a linear restriction for

the conditional quantile functions is given by

Qj,τ (w) = αj,τ + β′
j,τw (2.1)

for j = 0 and 1, where αj,τ ∈ R and βj,τ ∈ Rk are the unknown parameters. Based on the

specification in (2.1), it is easy to see that the treatment effect parameter of interest δτ (w)

has the form of

δτ (w) = (α1,τ − α0,τ ) + (β1,τ − β0,τ )
′w.

Note that the particular form of the conditional quantile functions specified in (2.1) can be

easily extended to nonlinear parametric models, since identification does not depend on the

particular specification adopted for the conditional quantile functions.

According to the approach proposed by Bassett and Koenker (1982), the parameters of
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the conditional quantile functions in (2.1) can be expressed as

(αj,τ , βj,τ ) = arg min
(α, β)∈Rk+1

E
[
ρτ (Y (j)− α− β′W )

]
(2.2)

for j = 0 and 1, where ρτ (u) is the check function, defined as ρτ (u) = u · (τ − I{u <

0}). It is important to note that the potential outcomes Y (1) and Y (0) are not observed

simultaneously. Therefore, the minimization problem in (2.2) can not be solved directly. To

overcome this problem, the following weight functions of D and X are defined

κ1(X,D) = D/p(X), and κ0(X,D) = (1−D)/[1− p(X)].

Then, it follows by the unconfoundedness assumption and the law of iteration expectation

that

(αj,τ , βj,τ ) = arg min
(α, β)∈Rk+1

E
[
κj(X,D) · ρτ (Y − α− β′W )

]
(2.3)

for j = 0 and 1. It should be noted that the weights κ1(X,D) and κ0(X,D) are non-negative,

so both the population objective function in (2.3) and its sample analogy are globally convex

in (α, β) and hence the global optimum can be obtained in a finite number of iterations.

Following the analogy principle in Manski (1988), a natural estimator of (αj,τ , βj,τ ) is the

sample counterpart of (2.3).

To be specific, it is assumed that a random sample of n observations on {Yi, Xi, Di}ni=1

is observed. If the weight function κj(Xi, Di) for j = 0 and 1 would be known, then the

estimation problem becomes a weighted quantile regression as discussed in Newey and Powell

(1990). Unfortunately, the propensity score function p(x) is unknown in general in practice,

so these two weight functions are also unknown. Therefore, to estimate the unknown param-

eters αj,τ and βj,τ , one needs an estimation in two steps. First, one can use some standard

parametric or nonparametric techniques to estimate the unknown function p(x). Since the

treatment variable D is binary, a logistic or probit regression model can be used to estimate

p(x) in the parametric case4.

Once the estimator p̂(x) of p(x) is obtained, the fitted values {κ̂j(Xi, Di)} can be used

to estimate (αj,τ , βj,τ ) in the second step as follows, for j = 0 and 1,

(α̂j,τ , β̂j,τ ) = arg min
(α, β)∈Rk+1

1

n

n∑
i=1

κ̂j(Xi, Di) ρτ (Yi − α− β′Wi). (2.4)

4Of course, one can use a nonparametric procedure to estimate p(x), and several approaches have been
proposed in the treatment effect literature. Examples include the series logit estimator (SLE) as in Hirano
et al. (2003) and Firpo (2007), local polynomial regression estimation as in Ichimura and Linton (2005) and
higher order kernel regression estimation as in Abrevaya et al. (2015). The reader is referred to the original
references for details.
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3 Empirical Application

In this section, the proposed parametric quantile regression model for treatment effect is

applied to the analysis of the quantile treatment effect of maternal smoking during pregnancy

on infant birth weight while allowing for arbitrary treatment effect heterogeneity conditional

on the mother’s age.

3.1 Data description

We use the same dataset as in Abrevaya et al. (2015), collected by the North Carolina

State Center Health Services. Similar to Abrevaya et al. (2015), our focus is on the sample

for the first-time pregnant white mothers with 433, 558 observations.

It is well documented that there are many factors to cause low birth weight and maternal

smoking during pregnancy has been labeled the most important preventable negative cause

of low birth weight; see Kramer (1987) for the detailed discussion. Although it is well un-

derstood that there is a negative relationship between maternal smoking during pregnancy

and infant birth weight, it is not an easy task to accurately estimate the causal effect of ma-

ternal smoking during pregnancy on infant birth weight. Actually, there were some previous

attempts to estimating the causal effect of maternal smoking on infant birth weight by using

an instrumental variable strategy or panel data approach; see, for example, Evans and Lien

(2005), Abrevaya (2006), Abrevaya and Dahl (2008), and the references therein. Recently,

the program evaluation approach is successfully employed to estimating this effect; see, for

example, Almond, Chay, and Lee (2005), Walker, Tekin, and Wallace (2009), Abrevaya et al.

(2015), and Lee et al. (2017). In particular, both Abrevaya et al. (2015) and Lee et al. (2017)

explored how the average effect of maternal smoking on infant birth weight changes across

different age groups of mothers. They found different degrees of heterogeneity by age and

the main qualitative finding is that smoking has a more severe impact at higher ages. As

discussed in Abrevaya and Dahl (2008), the costs associated with birth weight have been

found to exist primarily at the low end of the infant birth weight distribution (with costs

increasing significantly at the very low end). Therefore, researchers may be more interested

in understanding the distributional effect of maternal smoking on baby’s birth weight. This

motivates us to consider the estimation of the quantile treatment effect of maternal smoking

on infant birth weight. To be specific, our interest is to estimate how the quantile effect of

smoking changes across different age groups of mothers. To this end, the proposed model is

used to estimate the quantile effect of maternal smoking during pregnancy on infant birth

weight conditional on the mother’s age.

Since our interest is to estimating how the quantile effect of maternal smoking during
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pregnancy changes across different age groups of mothers, the conditional variable W is the

mother’s age. In addition, D denotes the treatment variable which is equal to one if the

mother smokes and zero otherwise. The outcome of interest Y is the baby’s birth weight

measured in grams. In this example, Y (1) denotes the infant birth weight for the treated

(smoking) group and Y (0) stands for the infant birth weight for the untreated (no-smoking)

group. Figure 1 depicts the kernel density estimations of infant birth weight for the un-

treated (solid line) and treated (dotted line) groups, respectively. It looks that the density

estimations of infant birth weight both for the treated and untreated groups are asymmetric

and fat-tailed in the left side. To further confirm these findings, the skewness and kurtosis of

the distributions of infant birth weight are computed and also, a symmetry test is conducted

to see if the distributions are symmetry. The results are reported in Table 1, which support

the findings observed from Figure 1. Based on the discussions above, it gives us a strong

motivation to consider the distributional effect of maternal smoking during pregnancy on

infant birth weight.
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Figure 1: The kernel density estimation of infant birth weight for white. The solid line is for Y (0) and the
dotted line for Y (1).
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Table 1: Descriptive statistics and symmetry testing results.

Y (0) Y (1)

Mean 3398.68 3346.85

Skewness -0.846 -0.840

Kurtosis 5.931 5.734

Symmetry test (p-value) 0.000 0.000

Number of observations 359172 74386

To estimate the causal effect of maternal smoking on infant birth weight using program

evaluation procedure, the main difficulty is to find certain baseline covariates such that the

potential birth weight outcomes are independent of the smoking decision conditional on the

baseline covariates. Several studies have been conducted in the literature by using variants

of the unconfoundedness assumption to identify the average effect of smoking on infant birth

weight; see, for example, Almond et al. (2005), Da Veiga and Wilder (2008), and Walker et al.

(2009) for details. In this paper, the same set of covariates X as in Abrevaya et al. (2015)

are used, including certain parents’ background information and the mothers’ medical and

health records as well as other variables. Specifically, Table 2 summarizes the pre-treatment

covariates used in the dataset.

Another practical problem is how to estimate the unknown propensity score function

p(x). Following Abrevaya et al. (2015), a logit model for the propensity score function is

considered and the explanatory variables used in the logit model consist of all the elements

of X displayed in Table 2, the square of the mother’s age, and the interaction terms between

the mother’s age and all other elements of X. Finally, the conditional quantile treatment

effect, δτ (w), is estimated for mother’s ages in the interval from 20 to 30.
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Table 2: Variable description

Variable name Variable type Description

Outcome of interest bweight continuous variable Infant birth weight measured in grams

Treatment variable smoke binary Whether mother smokes or not during pregnancy?

Pre-treatment
covariates (X):

Certain
parents’

background
information

mage continuous variable Mother’s age

fage continuous variable Father’s age

meduc integer Mother’s years of schooling

feduc integer Father’s years of schooling

fagemiss integer Whether or not father’s age is missing?

married binary Whether or not mother is married?

Mothers’
medical
and

health
records

prenatal integer
Month of first prenatal visit which is equal to 10

if prenatal care is foregone

prenatal-visits integer Number of prenatal visits

hyperpr binary Whether or not mother suffered from hypertension?

terms integer Previous (terminated) pregnancies

anemia binary Whether or not mother suffered from anemia?

ultra binary Whether or not mother took ultra sound exams?

diabetes binary Whether or not mother suffered from gestational diabetes?

amnio binary Whether or not mother took amniocentesis?

Other variables
male binary Whether or not baby is male?

drink binary Whether or not mother used alcohol?

3.2 Empirical Results

As stated above, since the costs associated with birth weight exist primarily at the low

end of the birth weight distribution, we consider three quantile levels: τ = 0.1, 0.25 and

τ = 0.5. First, a polynomial model is explored and it turns out that the following models

Q0,τ (w) and Q1,τ (w) are suitable

Qj,τ (w) = αj,τ + βj,τ · age + γj,τ · age2

for j = 0 and 1. Therefore,

δτ (w) = (α1,τ − α0,τ ) + (β1,τ − β0,τ ) · age + (γ1,τ − γ0,τ ) · age2,

which is a quadratic form of age. Table 3 summarizes the estimation results from the com-

puter output in the package quantreg inR5. It can be seen from Table 3 that all the estimated

coefficients are statistically significant at the 1% level. In particular, γ̂j,τ is significant too

for three values of τ (0.1, 0.25 and 0.50). Based on these estimated coefficients, δ̂τ (w) can be

computed easily and it is displayed in Figure 2, plotting the estimation results for the par-

5The command rq() in the package quantreg in R with the weights {ω̂j,i} as in (2.4) is employed to obtain

the estimated coefficients α̂j,τ , β̂j,τ , and γ̂j,τ .
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tially conditional quantile treatment effect, δ̂τ (w) at three quantile levels τ = 0.1, τ = 0.25

and τ = 0.5, respectively. For example,

δ̂0.10(w) = −57.222− 8.951 · age + 0.067 · age2.

However, since γ̂1,τ − γ̂0,τ = 0.067 for τ = 0.10 (−0.043 for τ = 0.25 and −0.025 for τ = 0.50)

is too small, the linear term in the estimated curve δ̂τ (w) dominates the whole curve in the

range of (20, 30) (look like a linear), which can be seen in Figure 2.

From Table 3 and Figure 2, one can see clearly that the results exhibit a number of

striking features. First, one can observe that there is a significant negative effect of smoking

on infant birth weight across all ages and quantile levels considered. Second, the estimation

results show substantial heterogeneity across different ages. For example, the estimated

effect ranges from about −200g to −250g at the quantile level τ = 0.1 and about −185g to

−235g at the quantile level τ = 0.25. Another interesting feature of the results is that for

a given age, the numerical values of the quantile treatment effect point estimates at lower

quantiles are bigger than those at the higher quantiles, and for a given quantile level, the

estimated quantile treatment effects become stronger (more negative) at higher ages. These

findings are new in the literature, different from those in Abrevaya et al. (2015) and Lee

et al. (2017).

Table 3: Estimation results of the coefficients

Coefficients

Quantile regressions

10% 25% 50%

α0
1850.455∗∗∗ 2414.536∗∗∗ 2819.315∗∗∗

(51.755) (31.466) (24.092)

β0
71.734∗∗∗ 52.741∗∗∗ 46.288∗∗∗

(4.283) (2.616) (1.976)

γ0
-1.378∗∗∗ -0.984∗∗∗ -0.845∗∗∗

(0.086) (0.053) (0.039)

α1
1793.233∗∗∗ 2299.294∗∗∗ 2679.412∗∗∗

(119.690) (91.859) (75.539)

β1
63.283∗∗∗ 50.057∗∗∗ 44.556∗∗∗

(9.791) (7.638) (6.286)

γ1
-1.311∗∗∗ -1.027∗∗∗ -0.870∗∗∗

(0.190) (0.152) (0.125)

Note: The dependent variable is infant birth weight (in grams). ∗: significant at 10% level; ∗∗: 5% level; ∗∗∗: 1% level. Standard errors
of the estimates are reported in the parentheses.
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Figure 2: Estimation results for the partially conditional quantile treatment effects

4 Conclusion

In this paper, a parametric quantile regression model for treatment effect is proposed

to analyze the data from the North Carolina State Center Health Services, which have

previously been used by Abrevaya et al. (2015), Lee et al. (2017) and Cai et al. (2019), to

examine the quantile effect of maternal smoking during pregnancy on infant birth weight

across different age groups of mothers. The estimated results suggest that the quantile effect

of maternal smoking on infant birth weight is quiet heterogeneous across different age groups

of mothers. The results also indicate that for a given quantile level, the effect is monotonically

decreasing in the mother’s age and for a given mother’s age, the numerical values of the effect

at lower quantiles are bigger than those at the higher quantiles. These results demonstrate

that estimates of treatment effect which focus on a single feature of the outcome distribution,

for example, the average treatment effect, may fail to capture the full impact of the treatment

variable on the outcome of interest and that examining additional features may provide

more information about the relationships between the treatment variable and the outcome

of interest.
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