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1 Introduction

A long-term issue in financial statistics is to test whether or not a return process (say, asset return or

housing price return) is predictable by a set of lagged predictors (say, financial ratios or/and macroeconomic

variables). The typical method in previous studies is an ordinary least squares (OLS) approach, which is

applied to mean regressions, while conventional test statistics are used to test the significance of coefficients.

The conclusions are mixed despite an enormous amount of efforts devoted to this problem in the literature;

see, for example, the papers by Ang and Bekaert (2007), Campbell and Thompson (2008), Welch and

Goyal (2008), Rapach, Strauss and Zhou (2010), Sekkel (2011), and the references therein. The indefinite

conclusions are partially due to the statistical issues caused by those highly persistent regressors where

conventional test statistics are invalid with a serious size distortion. The problem is more serious if the

innovation in the predictor is highly correlated with the innovation in dependent variable, which is the so-

called embedded endogeneity, as studied by Campbell and Yogo (2006), Torous, Valkanov and Yan (2004),

Zhu, Cai and Peng (2014), Yang, Long, Peng and Cai (2019), and among others.1 Another explanation is that

the predictability of asset returns might be heterogenous, relying on economic environment. For example, a

stronger prediction power is usually found in recession periods for stock markets; see Gonzalo and Pitarakis

(2012), which implies potentially greater predictability at lower quantiles. Because mean regressions reflect

the average predictability over all quantiles, they may fail to find evidence for the predictability of asset

returns at some quantiles, particularly in tails. That has motivated researchers to examine the predictability

of asset returns using quantile regressions, which reveal more information about the predicability under the

entire underlying conditional distribution; see, for example, the papers by Koenker (2005) and Xiao (2009)

for details.

Testing the predictability in a quantile setting is of importance in economics and statistics and also

of practical attractiveness. First, from economic perspective, empirical evidences have documented that in-

vestors’ interest in asset returns is beyond their mean and variance. For example, Harvey and Siddique (2000)

and Dittmar (2002) found that the higher order moments are helpful to explain cross-sectional variation in

US stock returns, whereas Cenesizoglu and Timmermann (2008) concluded that the entire distribution of

1In the framework of mean regressions, several solutions were proposed in literature, such as the Bon-
ferroni’s method by Campbell and Yogo (2006), the conditional likelihood method by Jansson and Moreira
(2006), the linear projection method by Cai and Wang (2014), the instrumental variable (IVX) approach by
Magdalinos and Phillips (2009), Kostakis, Magdalinos and Stamatogiannis (2015), Phillips and Lee (2016),
and Yang et al. (2019), the weighted empirical likelihood approach by Zhu, Cai and Peng (2014), Liu, Yang,
Cai and Peng (2019), and Yang, Liu, Peng and Cai (2018), and the variable addition (VA) or augmented
regression or control function approach by Elliott (2011) and Breitung and Demetrescu (2015) and Yang et
al.(2018).
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future stock returns is informative for investment decisions of risk averse investors. Second, from the sta-

tistical point of view, quantile regressions are more suitable when the distribution is skewed and/or heavy

tailed, which is a stylized fact in financial statistics, and consequently the quantile regression technique has

been applied widely in risk management operations. For example, the Value at Risk is defined by the un-

conditional/conditional quantile and is widely used to measure the tail risk in practice. Finally, predictive

quantile regressions avoid the order-imbalance issue, a well known theoretical challenge that arises for mean

regressions where the dependent variable commonly behaves as martingale differences, while the regressors,

fundamental variables, are highly persistent as argued in Phillips (2015).

Modeling predictive quantiles and examining their predictability with possible nonstationary regressors

is not a trivial task. The main challenging statistical issues in mean regressions causing the failure of tra-

ditionally statistical inferences of the predictive regression still exist for predictive quantile regressions. To

the best of our knowledge, the papers by Lee (2016) and Fan and Lee (2019) were the first to investigate the

asymptotic theory for predictive quantile regressions with both various degrees of persistency and embedded

endogeneity. Indeed, Lee (2016) extended the exogenous instrumental variable approach filtering method-

ology by Magdalinos and Phillips (2009), Kostakis et al.(2015) for mean regressions to quantile regression,

termed as IVX-QR approach. Further, Lee (2016) obtained the asymptotic distribution of test statistics that

are robust to the degree of persistency under the null hypothesis, which can be applied to the multiple pre-

dictors case. Recently, Fan and Lee (2019) extended the IVX-QR method in Lee (2016) to the situation with

conditionally heteroskedastic errors. However, the IVX-QR requires that the instrumental variable should

be less persistent than the predictors. Thus, it might lose some of its test power as illustrated in Kostakis et

al. (2015). Meanwhile, the performance of the test is sensitive to the choice of turning parameters involved

in the construction of mildly integrated instrumental variables, and it is difficult to extend to the case with

mixed persistent regressors, including both stationary and nonstationary predictors.

The main contribution of this paper is to propose a novel approach, termed as double weighted method,

to develop a uniform inferential theory for predictive quantile regressions with highly persistent variables.

Our method is based on a quantile regression with an auxiliary regressor, which is generated as a weighted

combination of an exogenous simulated nonstationary process and a bounded transformation of the original

regressor. The weight is well-selected through a data-driven approach, such that the auxiliary regressor

enjoys having the same persistency degree with the original predictor. Using the coefficients of both original

regressor and auxiliary regressor, with a similar idea of rotation, we construct a weighted estimator between

them to eliminate the impact of the embedded endogeneity. Under some mild conditions, it shows that

the self-normalized test statistics based on the weighted estimator converge to a standard normal or χ2-
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distribution. Comparing to the IVX-QR approach, our method does not require a less persistent instrumental

variable, and it could reach the local power under the optimal convergence rate T with nonstationary

predictors and
√

T with stationary predictors, respectively. More importantly, our method can easily be

generalized to multiple regressors with mixed persistence degrees and this generalization is seminal in the

literature. Simulations are conducted to demonstrate the effectiveness of our newly proposed approach. For

most cases, our method has better size control and power performance in a finite sample compared over

IVX-QR method.

Indeed, our motivation for this study is to implement the newly proposed approach for re-examining the

predictability of US stock market returns using eight popular financial ratios and macroeconomic indictors.

For the convenience of comparison, the same data set used by Lee (2016) is taken with the sample period

from 1927 to 2005. To view whether there is any change after the 2008 global crisis, the data set is updated to

December of 2018. The main empirical findings can be summarized as follows. First, the predictability for the

middle quantile levels is weaker than both lower and upper quantiles, which is consistent with the previous

findings. Second, in the multivariate prediction quantile regression, many variables lose their prediction

power after controlling other variables. Third, after the World War II, we do not find much evidence of

the prediction power for some well-known financial ratios, such as earnings to price (d/p) ratio, dividend

to price (d/p) ratio and book to market (b/m) ratio. However, the macroeconomic indicators, like T-bill

rate (tbl), default yield spread (dfy), term spread (tms), show some strong evidence of significant prediction

power, especially at lower and upper quantile levels. The detailed result of this empirical study is reported

in Section 6.

Our paper is closely related to the literature of predictive regression with highly persistent regressors.

Acknowledging the fact that the asymptotic distribution relies on the time series properties of the regressors

and errors, a series of research papers have aimed to developing a uniform inference theory on predictive mean

regressions in the sense that the testing procedure for testing predictability is robust to different persistence

categories, including, but not limited to, the papers by Campbell and Yogo (2006), Magdalinos and Phillips

(2009), Chen and Deo (2009), Chen, Deo and Yi (2013), Phillips and Lee (2013), Zhu et al. (2014), Kostakis

et al. (2015), Phillips and Lee (2016), Yang et al. (2018), Yang et al. (2019), and Liu et al. (2019), which

focused on predictive mean regression models.

Also, in some way, our paper is tied to the regression with auxiliary variables. Indeed, Toda and

Yamamoto (1995), and Dolado and Lütkepohl (1996) first proposed a robust testing strategy irrespective of

the persistency type of regressor through a regression with additional (redundant) variables, such that the

coefficients to be tested are attached to stationary variables, whereas Bauer and Maynard (2012) considered
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the variable addition approach in the context of vector autoregressive processes with unknown persistence.

In particular, Breitung and Demetrescu (2015) argued that the traditional VA approaches suffer from a loss

of power and generalized VA approach by using instrumental variables that are constructed exogenously

or endogenously. Different from Breitung and Demetrescu (2015), our paper particularly constructs the

additional regressor in its own way and proposes a new test statistic.

The rest of this paper is organized as follows. Section 2 introduces the model framework and Section

3 provides the procedures to estimate parameters and to construct the test statistics and also presents

the asymptotic theories for the proposed estimators and the test statistics. An extension to the multiple

regressors with mixed persistence degrees is discussed in Section 4. Section 5 reports the Monte Carlo

simulation results. Section 6 presents the analysis results for the empirical applications. Finally, Section 7

concludes the paper. The detailed proofs of the main results are given in Appendix.

Throughout this paper, the standard notations ⇒, d󲿋→ and p󲿋→ are used to represent weak convergence

and convergence in distribution as well as convergence in probability, respectively. All limits are for T →∞

in all theories, and Op(1) is stochastically asymptotically bounded while op(1) is asymptotically negligible.

2 Model Framework

Assume that yt is a dependent variable and its τth quantile is Qyt(τ 󳈌Ft−1), defined by P (yt ≤ Qyt(τ 󳈌Ft−1)󳈌Ft−1) =

τ , where Ft−1 is the information set available at time t − 1. For simplicity, a linear2 predictive quantile re-

gression is given by

Qyt(τ 󳈌Ft−1) = Qyt(τ 󳈌xt−1) = µτ + βτ xt−1, (2.1)

where xt−1 is a predictor to be the presentative (proxy) of Ft−1, such as dividend-price ratio, earnings-price

ratio or macroeconomic variable and so on, which is a time series, commonly modeled by an autoregressive

(AR) model as

xt = ρxt−1 + vt, ρ = 1 + c󳆋T α, 1 ≤ t ≤ T, (2.2)

where α = 0 or 1 and x0 = op(
√

T ). Of course, a higher order AR model can be considered for xt in (2.2).

For simplicity of exposition, we begin with the univariate predictive quantile regression to illustrate the main

idea in this paper. For xt, the following typical types of persistency with different values of c and α are

considered in the literature:

(I0) stationary: α = 0 and 󳈌1 + c󳈌 < 1;

2Of course, it would be interesting to investigate a nonlinear predictive quantile regression and it would
be a future research topic.
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(NI1) local to unit root: α = 1 and c < 0;

(I1) unit root: c = 0;

(LE) local to unity on the explosive side: α = 1 and c > 0.

Of course, it is interesting to consider the other cases as 0 < α < 1, corresponding to the so-called mildly

integrated processes (c < 0) or mildly explosive processes (c > 0). The latter can be used to explore the

mild economic or financial bubbles and other applications, see Phillips, Shi and Yu (2015) and the references

therein.3 Here, following Lee (2016), a general weakly dependent innovation structure of the linear process

on {vt} in (2.2) is imposed and listed below.

Assumption 2.1. Assume that vt follows a linear process given by

vt =
∞
󱮦
j=0

Fxjεt−j ,

where εt is a martingale difference sequence with E(εt󳈌Ft−1) = 0 and var(εtε
󰐞
t󳈌Ft−1) = Σε for Σε > 0 and

E󳈒εt󳈒2+ν < ∞ for some ν > 0. Here, Fx0 = IK , K is the dimension of xt and ∑∞j=0 j󳈒Fxj󳈒 < ∞ and

Fx(1) = ∑∞j=0 Fxj > 0, where Fx(z) = ∑∞j=0 Fxjzj. The variance matrix of vt can be expressed as Ωvv =

∑∞h=−∞E(vtv
⊺
t−h) = Fx(1)ΣεFx(1)⊺.

Remark 2.1. Assumptions 2.1 allows for linear process dependence for vt and imposes a conditionally

homoskedastic martingale difference sequence (mds) condition for εt. Different from Lee (2016), here we

do not specify a linear predictive mean regression model and hence avoid to impose any assumption on the

innovation for the mean regression model. Note that, for the univariate case, K = 1.

Define utτ ≡ yt −Qyt(τ 󳈌Ft−1), which is commonly called the quantile measurement error, similar to the

measurement error in the predictive mean regression model, and also, ψτ(utτ) = τ − 1(utτ < 0). Now, it is

easy to verify that P (utτ ≤ 0󳈌Ft−1) = τ , E(ψτ(utτ)󳈌Ft−1) = 0, E(ψ2
τ(utτ)󳈌Ft−1) = τ(1 − τ) and E[ψτ(utτ)4] =

−3τ4 + 6τ3 − 4τ2 + τ <∞. One may refer to Appendix for the details of proof. Further, define

Σψτ v =
∞
󱮦

h=−∞
E[ψτ(utτ)vt+h] = Fx(1)E[ψτ(utτ)εt].

By Lemma A.2 in Appendix, one can show easily that Σψτ v <∞. Then, similar to Lee (2016), the functional

central limit theorem (FCLT) for {ψτ(utτ), vt} holds

1√
T

⌊rT ⌋
󱮦
t=1
󳆚 ψτ(utτ)

vt
󳆞 ⇒ 󳆚 Bψτ (r)

Bv(r)
󳆞 = BM 󳆚 τ(1 − τ) Σψτ v

Σψτ v Ωvv
󳆞 , (2.3)

3Our methods can be extended to allow for these two cases with some adjustment. To make the proof
easy to follow, our focus is on the simple setting.
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where [Bψτ (r), Bv(r)]⊺ is a vector of Brownian motions. Furthermore, the local to unity limit law implies

that x⌊rT ⌋󳆋
√

T ⇒ Jc
x(r), where Jc

x(r) = ∫
r

0 e(r−s)cdBv(s) with NI1, I1 and LE predictor; see Phillips (1987)

for details.

Define λτ,t = Corr(ψτ(utτ), vt) and assume that λτ,t = λτ for simplicity. Then, similar to Campbell

and Yogo (2006) for the predictive mean regression model, Lee (2016) seminally showed that the conven-

tional t test statistic tβ̂τ
of the predictive quantile regression with nonstationary predictor has the following

asymptotic behavior

tβ̂τ
⇒
󳆻

1 − λ2
τ Z + λτ󱮬 J̄c

x(r)dBx(r)󳆋
󳆽

Ωvv 󱮬 J̄c
x(r)2dr,

where Z represents the standard normal distributions. Clearly, λτ measures the degree for the so-called

embedded endogeneity as in Campbell and Yogo (2006) for the predictive mean regression model. Therefore,

the conventional test statistics in predictive quantile regression with the NI1, I1 and LE predictor xt are

invalid if λτ 󳆋= 0. Moreover, it is almost impossible to distinguish the difference between I0 and NI1, and/or

between NI1 and I1, and so on; see also Fan and Lee (2019) for more details, because it is extremely

challenging to estimate consistently the nuisance parameter c and to test if the persistence α equals zero or

not or 0 < α < 1. Thus, it is necessary to develop a unified inference method to avoid the mistake of making

a false judgement about the persistence of predictors under a quantile framework.

Next, some regular assumptions on the conditional density of utτ are imposed, similar to Xiao (2009)

and Lee (2016).

Assumption 2.2. (i)The sequence of conditional stationary probability density functions {futτ ,t−1(⋅)} of

{utτ} given Ft−1 evaluated at zero satisfies a moment condition with a non-degenerate mean fuτ (0) =

E(futτ ,t−1(0)) > 0 and E(fϑ
utτ ,t−1(0)) <∞ for some ϑ > 1.

(ii) For each t and τ ∈ (0, 1), f 󰐞utτ ,t−1(x) is bounded with probability one around zero, i.e.,f 󰐞utτ ,t−1(󰂃) <∞ and

futτ ,t−1(󰂃) <∞ almost surely for all 󳈌󰂃󳈌 < η for some η > 0.

Remark 2.2. As shown by Xiao (2009), the above conditions in Assumption 2.2 are quite standard and not

restrictive. In particular, the part (i) in Assumption 2.2 is not as restrictive as the counterpart assumption

in Lee (2016), which assumes that futτ ,t−1(0) follows the FCLT.

3 Statistical Modeling Procedures

3.1 Estimation Approach

Motivated by the variable addition approach of predictive mean regression studied by Elliott (2011)

and Breitung and Demetrescu (2015), the following new approach is proposed for the predictive quantile
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regression. That is, (2.1) is re-written as follows:

Qyt(τ 󳈌xt−1) = µτ + βτ xt−1 = µτ + βτ x∗t−1 + γτ zt−1, (3.1)

where x∗t−1 = xt−1 − zt−1 and zt−1 is an additional (auxiliary) variable which is chosen in Section 3.2 in detail.

Note that γτ = βτ in (3.1), which will be used to construct weighted combined estimator for βτ later. Clearly,

µτ , βτ and γτ in (3.1) can be estimated by running the following quantile regression

θ̂τ ≡ 󳆖µ̂τ , β̂τ , γ̂τ󳆛
⊺
= arg min

µτ ,βτ ,γτ

T

󱮦
t=2

ρτ (yt − µτ − βτ x∗t−1 − γτ zt−1) ,

where ρτ(u) = u[τ − 1(u < 0)] is the so-called check function in the statistics literature. Note that Breitung

and Demetrescu (2015) only used γ̂τ , the estimator of the coefficient of the auxiliary variable zt, to construct

the test statistic in the predictive mean regression, and required zt to be an instrumental variable (IV) less

persistent than xt or an exogenous deterministic or stochastic trend process, in order to guarantee that

the asymptotic distribution of the test statistic is irrelevant to the nuisance parameter c. However, if zt is

generated as an IV less persistent than xt, the corresponding test statistic suffers from the loss of power for

the case with nonstationary xt, while if zt is generated as an exogenous deterministic or stochastic trend

process, the test is invalid for the case with stationary xt.

To avoid this problem, the variable addition approach is improved in the following two aspects. First,

a combined approach is used to construct the appropriate additional variable zt, such that its persistence

is always the same as that for the predictor xt while its key component is independent of xt for NI1, I1

and LE cases. Second, a weighted combined estimator is proposed by using the coefficients of x∗t−1 and the

additional variable zt. With these two improvements, one can show that the test statistic based on the

weighted estimator, after constructed by self-normalization to eliminate the nuisance parameter c, can avoid

not only the size distortion but also the loss of power with arbitrary persistence.

Next, it turns to the discussion on how to construct the weighted estimator for given zt and then,

elaborating the choice of zt which will be presented in Section 3.2. As mentioned earlier, γτ = βτ so that it

should be better to combine β̂τ and γ̂τ together to obtain a weighted estimation for βτ . Consequently, the

rotation idea in the principle component analysis is applied here to construct the estimator for βτ , which is

the weighted sum of β̂τ and γ̂τ , denoted by β̂w
τ ,

β̂w
τ =

W1

W1 +W2
β̂τ +

W2

W1 +W2
γ̂τ , (3.2)

where W1 and W2 are two weighting functions. By selecting some appropriate weights W1 and W2, one can

construct a β̂w
τ , whose asymptotic distribution follows a mixture normal distribution4 and is irrelevant to

4For the definition of mixture normal, the reader is referred to the paper by Phillips (1987). That is,
Y ∼MN(µ, Σ) means Y ∼ N(µ, Σ) given µ and Σ, which might be random.
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the nuisance parameter c after normalization. For this purpose, the weights W1 and W2 are taken to be

W1 =
T

󱮦
t=2

x∗t−1zt−1󳆋T 2 −
T

󱮦
t=2

x∗t−1

T

󱮦
t=2

zt−1󳆋T 3, (3.3)

and

W2 =
T

󱮦
t=2

z2
t−1󳆋T 2 − 󳆚

T

󱮦
t=2

zt−1󳆞
2

󳆋T 3. (3.4)

Note that in Section 3.3, some arguments will be provided to explain the reason on why the above W1 and

W2 are used.

3.2 Choice of Auxiliary Variable

This section is devoted to how to construct the additional regressor zt−1, such that our method is

valid for both stationary and nonstationary predictor without sacrificing any convergence rate. To achieve

this target, a three-step approach is proposed to construct zt−1. First, an exogenous unit root process

ζt−1 = ∑t−1
s=1 ςs is generated, where ςs ∼ iid(0, 1). Therefore, Wζ,T (⋅) ⇒ B(⋅) based on the FCLT, where

Wζ,T (r) = ζ⌊rT ⌋󳆋
√

T for 0 ≤ r ≤ 1 and B(⋅) is the standard Brownian motion. In the second step, the

coefficient π̂1 is obtained by estimating the following regression

xt−1 = π0 + π1ζt−1 + et. (3.5)

Finally, we define zt−1 as a linear combination of ζt−1 and one bounded transformation of xt−1 as follows

zt−1 = π̂1ζt−1 + xt−1󳆋
󳆼

1 + x2
t−1. (3.6)

Note that the second term in the above equation xt−1󳆋
󳆻

1 + x2
t−1 is always bounded with probability 1 for

any stationary and nonstationary xt−1.

Remark 3.1. Indeed, the idea of using an independent random walk process as the instrumental variable is

similar to that in Breitung and Demetrescu (2015) under the framework of predictive mean regressions, by

considering two types of instruments: Type-I and Type II instruments. Type I instruments are generated

from the original predictor xt−1 but are required to be less persistent than xt−1. A special case of Type I

instruments is the mild integrated instrument variable adopted in the IVX approach in Phillips and Mag-

dalinos (2009). Type II instruments include strictly exogenous nonstationary variables, deterministic terms

and Cauchy type instrument. Therefore, in a certain sense, both ζt−1 and xt−1󳆋
󳆻

1 + x2
t−1 can be regraded

as Type II instruments, as xt−1󳆋
󳆻

1 + x2
t−1 converges to the Cauchy instrument sign(xt−1) for nonstationary

xt−1. However, the random walk instrument ζt−1 does not work for stationary cases, while xt−1󳆋
󳆻

1 + x2
t−1

can not handle the predictive regression with intercept term for nonstationary cases without some necessary
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adjustments.5 Here, we take a weighted combination of ζt−1 and xt−1󳆋
󳆻

1 + x2
t−1, with the weight π̂1 esti-

mated from (3.5). By doing so, our method is robust to both nonstationary and stationary cases, and can

be easily extended to the multivariate case with mixed persistence.

The following proposition can be established for the asymptotic properties of π̂1.

Proposition 3.1. It follows that

π̂1 =
T

󱮦
t=2

ζ̄t−1x̄t−1󳆋
T

󱮦
t=2

ζ̄2
t−1 =

⎧⎪⎪⎨⎪⎪⎩

π̃1 + op(1), NI1, I1 and LE;
Op(T −1), I0,

(3.7)

where x̄t−1 = xt−1 − ∑T
t=2 xt−1󳆋T , ζ̄t−1 = ζt−1 − ∑T

t=2 ζt−1󳆋T , and π̃1 = ∫ B̄(r)J̄c
x(r)dr󳆋 ∫ B̄(r)2dr with B̄(r) =

B(r) − ∫ B(r)dr and J̄c
x(r) = Jc

x(r) − ∫ Jc
x(r)dr.

Remark 3.2. The proof is standard and thus, details are skipped here. Clearly, (3.7) implies that the

coefficient π̂1 plays a role of filtering such that the auxiliary variable zt−1 has the same persistency as

xt−1 does. Particularly, if xt−1 is nonstationary, including NI1, I1 and LE, π̂1 converges to a nonzero

random variable due to the spurious correlation between xt−1 and ζt−1 (Phillips, 2014), and the second term

xt−1󳆋
󳆻

1 + x2
t−1 is dominated by the first term π̂1ζt−1. If xt−1 is stationary, then π̂1 converges to zero with

the convergence rate T and the first term in zt−1 is dominated by the second term xt−1󳆋
󳆻

1 + x2
t−1.

Moreover, given the above construction of zt−1, the asymptotic property of W1 +W2 can be established

easily for the cases with stationary and nonstationary xt, respectively.

Proposition 3.2. It is easy to show that
⎧⎪⎪⎨⎪⎪⎩

T (W1 +W2) = E 󳅱x2
t (1 + x2

t )−1󳆋2󳇺 + op(1), I0;
W1 +W2 = π2

c + op(1), NI1, I1 and LE,
(3.8)

where πc = ∫ B̄(r)J̄c
x(r)dr 󳅱∫ B̄2(r)dr󳇺−1󳆋2 with π̃1 defined in Proposition 3.1.

Remark 3.3. The basic idea for showing the above proposition is as follows. If xt−1 is nonstationary, by

plugging (3.6) into (3.3) and (3.4), one can show easily that

W1 +W2 =
T

󱮦
t=2

x̄t−1z̄t−1󳆋T 2 = π̂1
T

󱮦
t=2

x̄t−1ζ̄t−1󳆋T 2 + op(1) = π̃1 󱮬 B̄(r)J̄c
x(r)dr + op(1).

where z̄t−1 = zt−1−∑T
t=2 zt−1󳆋T . On the other hand, if xt−1 is stationary, zt−1 is determined by xt−1󳆋

󳆻
1 + x2

t−1

and then,

T (W1 +W2) =
1
T

T

󱮦
t=2

x̄t−1
xt−1󳆻

1 + x2
t−1
+ op(1) = E 󳅱x2

t (1 + x2
t )−1󳆋2󳇺 + op(1).

5In predictive mean regressions with intercept term, Zhu et al.(2014) and Liu et al.(2019) applied the
sample splitting approach to remove the impact of intercept, with a loss of information. However, the sample
splitting approach does not work in the quantile regression framework and loses the power of test.
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3.3 Large Sample Theory

To obtain the asymptotic distribution of β̂w
τ , we will first establish the so-called Bahadur representation6

for θ̂τ ; that is, use the first order approximation to get an explicit expression for θ̂τ . To this end, define θ̂a
τ =

DT (µ̂τ −µτ , β̂τ −βτ , γ̂τ −βτ)⊺, where DT = diag(
√

T , T, T ) for NI1, I1 and LE and DT = diag(
√

T ,
√

T ,
√

T )

for I0. Then, the Bahadur representation for θ̂a
τ is given as follows with its mathematical proof given in

Appendix. Note that this result is new in the literature when regressors might be nonstationary and is of

own interest.

Theorem 3.1. (Bahadur Representation) Under Assumptions 2.1 and 2.2,

θ̂a
τ = fuτ (0)−1N−1

T D−1
T

T

󱮦
t=2

Λt−1ψτ(utτ) + op(1), (3.9)

where Λt−1 = (1, x∗t−1, zt−1)⊺, NT =D−1
T ∑

T
t=2 Λt−1Λ⊺t−1D

−1
T , and fuτ (0) is defined in Assumption 2.2 (i).

Remark 3.4. From Theorem 3.1, one can see clearly that the second and the third components of the vector

on the right-hand side of (3.9) involves x∗t−1. To construct a pivotal test statistic free of nuisance parameter

c, the weighted estimator β̂w
τ is constructed as in (3.2), with a similar idea of rotation in factor analysis, to

get rid of x∗t−1. It will then be shown by Lemma A.5 in Appendix that the following result holds true for

β̂w
τ ,

(W1 +W2)T (β̂w
τ − βτ) = fuτ (0)−1

T

󱮦
t=2

1√
T
󳆚zt−1 −

T

󱮦
t=2

zt−1󳆋T󳆞ψτ(utτ)󳆋
√

T + op(1). (3.10)

Evidently, in contrast from the second or the third components of the vector on the right-hand side of (3.9),

the right-hand side of (3.10) involves only zt−1 but not xt−1 or x∗t−1 so that it makes the asymptotic (or

mixture) normality of β̂w
τ only depends on zt−1.

Next, one of the main results in this paper is stated in the following theorem with its proof given in

Appendix.

Theorem 3.2. Under Assumptions 2.1 and 2.2, for I0, NI1, I1 and LE cases, the asymptotic distribution

of β̂w
τ is given below,

⎧⎪⎪⎨⎪⎪⎩

√
T (β̂w

τ − βτ)
d󲿋→ N 󳆖0, σ2

βτ
󳆛 , I0,

T πc (β̂w
τ − βτ)

d󲿋→ N 󳆖0, σ2
τ󳆛 , NI1, I1 and LE,

(3.11)

where with σ2
τ = τ(1 − τ)󳆋f2

uτ
(0), σ2

βτ
= σ2

τ 󳆟E 󳅱x2
t (1 + x2

t )−1󳆋2󳇺󳆣−2
V ar 󳅱xt(1 + x2

t )−1󳆋2󳇺 and πc is given in

Proposition 3.2
6See, for example, Cai and Xu (2008) for stationary quantile regression.
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Remark 3.5. Clearly, Theorem 3.2 shows the convergence rate of the estimator of β̂w
τ with N1, I1 and LE

xt is faster than that for the IVX-QR method proposed in Lee (2016).

Although the asymptotic distribution of β̂w
τ with NI1, I1 and LE xt still contains the nuisance parameter

c, we can construct the t-test statistic tw by self normalization because the asymptotic distribution of β̂w
τ is

mixture normal, as follows:

tw = f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)T β̂w
τ ,

where f̂uτ (0) is a consistent estimator of fuτ (0), while the detailed construction of f̂uτ (0) can be found in

Lee (2016). The following theorem states the asymptotic behavior of the proposed t-test statistic tw under

both the null hypothesis and the local alternative hypothesis with its detailed proof delegated to Appendix.

Theorem 3.3. (1) Under the null hypothesis H0 ∶ βτ = 0,

tw d󲿋→ N(0, 1).

(2)(a) Under the local alternative hypothesis Ha ∶ βτ = bτ 󳆋
√

T for any bτ , if xt−1 is I0,

tw d󲿋→ N(bτ 󳆋σβτ , 1),

where σβτ is defined in Theorem 3.2.

(b) Under the local alternative hypothesis Ha ∶ βτ = bτ 󳆋T for any bτ , if xt−1 is NI1, I1 or LE,

tw d󲿋→ N(0, 1) + bτ 󳈌πc󳈌󳆋στ ,

where πc is given in Proposition 3.2 and στ is defined in Theorem 3.2.

Remark 3.6. From Theorem 3.3, one can conclude that the test statistic tw reaches the optimal convergence

rate T for NI1, I1 and LE predictor xt−1 and
√

T for I0 predictor xt−1. In particular, for nonstationary case,

the quantity bτ 󳈌πc󳈌󳆋στ , the deviation from the standard normality, varies between (−∞, 0) or (0,+∞), relying

on the sign of bτ only. Thus, tw enjoys an additional increase of local power compared to the t-test statistic

in Breitung and Demetrescu (2015), where its local lower relies on a deviation varying between (−∞,+∞),

see Part 1 of Corollary 3 and Remark 4 in Breitung and Demetrescu (2015).

4 Multiple Predictive Quantile Regressions

When some of regressors are nonstationary and some are stationary in a multiple regression, it is

well known in the literature that the convergence rates for estimators of coefficients are totally different for
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nonstationary and stationary; see, for example, Cai and Wang (2014). When regressors are nonstationary,

as pointed out by Phillips and Lee (2013), the Bonferroni’s method in Campbell and Yogo (2006) and the

weighted empirical likelihood approach in Zhu, at al. (2014), Liu et al. (2019), and Yang et al. (2019) can

not be easily extended to a multiple regression. However, the proposed method in previous section can be

easily extended to the following multivariate predictive quantile regression with mixed persistencies

Qyt(τ 󳈌Xt−1) = µτ +β⊺τXt−1, (4.1)

where βτ = (β1τ , β2τ ,⋯, βKτ)⊺ is a K × 1 vector and Xt−1 is a K × 1 vector of predictors, which might

contain both stationary and nonstationary predictors. For the purpose of exposition, Xt−1 is written

as Xt−1 = (X⊺
1,t−1,X⊺

2,t−1)⊺ with X1,t−1 = (x1,t−1, x2,t−1⋯, xK1,t−1)⊺ being nonstationary and X2,t−1 =

(xK1+1,t−1, xK1+2,t−1,⋯, xK,t−1)⊺ being stationary. It is assumed there is no cointegration relationship among

X1,t−1. Note that 0 ≤ K1 ≤ K and K1 = 0 means all elements in Xt−1 are I0, while K1 = K means all

elements in Xt−1 are NI1, I1 or LE. Now, xi,t can be modeled by an AR(1) as

xi,t = ρixi,t−1 + vi,t, ρi =
⎧⎪⎪⎨⎪⎪⎩

1 + ci󳆋T, i = 1,⋯, K1;
1 + ci, where 󳈌1 + ci󳈌 < 1, i =K1 + 1,⋯, K

(4.2)

for all 1 ≤ t ≤ T . Thus, different predictors in multivariate predictive quantile regression are allowed to

have different degrees of persistency. Similar to the univariate case, the local to unity limit law holds for all

nonstationary predictors and for i = 1,⋯, K1, xi,⌊rT ⌋󳆋
√

T ⇒ Jci
xi
(r) and Jci

xi
(r) = ∫

r
0 e(r−s)cidBvi(s), where

Bvi(s) is the i-th element of Bv(s), which is a vector of Brownian motions defined in (2.3).

Remark 4.1. It is clear that the model in (4.1) is new and it covers some known models in mean models

in the literature. For example, if there is nonstationary part (K1 = 0), (4.1) reduces to the model studied by

Amihud, Hurvich and Wang (2009) for mean regression models.

To estimate µτ and βτ in (4.1), let X∗
t−1 =Xt−1 −Zt−1 and Zt−1 be the vector of additional variables.

Then, µτ and βτ can be estimated based on the variable addition as follows:

󳆖µ̂τ , β̂τ , γ̂τ󳆛
⊺
= arg min

µτ ,βτ ,γτ

T

󱮦
t=2

ρτ 󳆖yt − µτ −β⊺τX∗
t−1 − γ⊺τ Zt−1󳆛 ,

where Zt = (z1,t, z2,t⋯, zK,t)⊺ is constructed by three steps similar to the univariate case as in Section 3.2;

that is, first, for each i, ζi,t−1 = ∑t−1
s=1 ςi,s, where ςi,s ∼ iid(0, 1) generated by simulation and thus, independent

of yt and Xt. Therefore, Wi,ζ,T (⋅) ⇒ Bi(⋅) based on the FCLT, where Wi,ζ,T (r) = ζi,rT 󳆋
√

T for 0 ≤ r ≤ 1

and Bi(⋅) is the standard Brownian motion. Secondly, we run the following quantile regression:

xi,t = π0,i + π1,i ζi,t−1 + ei,t
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for all 1 ≤ i ≤ K. Similarly, one can show that π̂1,i
d󲿋→ π̃1,i = ∫ B̄i(r)J̄ci

xi
(r)dr󳆋∫ B̄i(r)2dr, where B̄i(r) =

Bi(r)− ∫ Bi(r)dr for nonstationary xi,t while π̂1,i = Op(T −1) for stationary xi,t. Thirdly, we define zi,t−1 as

a linear combination of ζi,t−1 and one bounded transformation of xi,t−1 as follows

zi,t−1 = π̂1,iζi,t−1 + xi,t−1󳆋
󳆼

1 + x2
i,t−1.

Since the procedure could be implemented one predictor by one predictor and each step does not rely

on others, then our proposed method is valid in multivariate predictive quantile regression with mixed

persistence.

Similar to the univariate case, the weighted estimator β̂w
τ in the multivariate predictive quantile re-

gression is given as follows:

β̂w
τ = (W1 +W2)−1 󳆖W1β̂τ +W2γ̂τ󳆛 ,

where

W1 =
T

󱮦
t=2

Zt−1(X∗
t−1)⊺󳆋T 2 −

T

󱮦
t=2

Zt−1
T

󱮦
t=2
(X∗

t−1)⊺󳆋T 3,

and

W2 =
T

󱮦
t=2

Zt−1Z
⊺
t−1󳆋T 2 −

T

󱮦
t=2

Zt−1
T

󱮦
t=2

Z⊺t−1󳆋T 3.

Without loss of generalization, the asymptotic property of β̂w
τ is presented for the special case with K = 2 in

the following theorem. For different mixed persistence cases, we define the following weighting matrix DT

accordingly

DT =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

diag(
√

T ,
√

T ), K1 = 0;
diag(T,

√
T ), K1 = 1;

diag(T, T ), K1 = 2.

Furthermore, to describe the asymptotic properties for βw
τ , we define the following two matrices V1 and V2

for three cases as follows:

Case 1 (K1 = 0):

V1 =

⎛
⎜⎜⎜⎜
⎝

E 󳆚 x2
1,t󳆼

1+x2
1,t

󳆞 E 󳆚 x1,tx2,t󳆼
1+x2

1,t

󳆞

E 󳆚 x1,tx2,t󳆼
1+x2

2,t

󳆞 E 󳆚 x2
2,t󳆼

1+x2
2,t

󳆞

⎞
⎟⎟⎟⎟
⎠

, (4.3)

and

V2 =

⎛
⎜⎜⎜⎜
⎝

E 󳆘 x2
1,t

1+x2
1,t
󳆝 −E 󳆚 x1,t󳆼

1+x2
1,t

󳆞
2

E 󳆚 x1,t󳆼
1+x2

1,t

x2,t󳆻
1+x2

2t

󳆞 −E 󳆚 x1,t󳆼
1+x2

1,t

󳆞E 󳆚 x2,t󳆼
1+x2

2,t

󳆞

E 󳆚 x1,t󳆼
1+x2

1,t

x2,t󳆻
1+x2

2t

󳆞 −E 󳆚 x1,t󳆼
1+x2

1,t

󳆞E 󳆚 x2,t󳆼
1+x2

2,t

󳆞 E 󳆘 x2
2,t

1+x2
2,t
󳆝 −E 󳆚 x2,t󳆼

1+x2
2,t

󳆞
2

⎞
⎟⎟⎟⎟
⎠

.

(4.4)
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Case 2 (K1 = 1):

V1 =
⎛
⎜
⎝

π̃1,1 ∫ B̄1 (r)Jc1
x1
(r)dr 0

0 E 󳆚 x2
2,t󳆼

1+x2
2,t

󳆞
⎞
⎟
⎠

, (4.5)

and

V2 =
⎛
⎜⎜
⎝

π̃2
1,1 ∫ B̄1 (r)2 dr 0

0 E 󳆘 x2
2,t

1+x2
2,t
󳆝 −E 󳆚 x2,t󳆼

1+x2
2,t

󳆞
2
⎞
⎟⎟
⎠

. (4.6)

Case 3 (K1 = 2):

V1 = 󳆚
π̃1,1 ∫ B̄1(r)Jc1

x1
(r)dr π̃1,1 ∫ B̄1(r)Jc2

x2
(r)dr

π̃1,2 ∫ B̄2(r)Jc1
x1
(r)dr π̃1,2 ∫ B̄2(r)Jc2

x2
(r)dr

󳆞 , (4.7)

and

V2 = 󳆚
π̃2

1,1 ∫ B̄1(r)2dr π̃1,1π̃1,2 ∫ B̄1(r)B̄2(r)dr

π̃1,1π̃1,2 ∫ B̄2(r)B̄1(r)dr π̃2
1,2 ∫ B̄2(r)2dr

󳆞 . (4.8)

Then, the asymptotic distribution for β̂w
τ is stated in the following theorem with its proof delegated to

Appendix.

Theorem 4.1. Under Assumptions 2.1 and 2.2, the asymptotic distribution of β̂w
τ is given by

DT (β̂w
τ −βτ)

= fuτ (0)−1 󳇥(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞X⊺
t−1(DT )−1󳈓

−1

(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞ψτ(utτ) + op(1)

d󲿋→ fuτ (0)−1V −1
1 MN (0, τ(1 − τ)V2) , (4.9)

where V1 and V2 are defined in (4.3)-(4.8), respectively.

To test H0 ∶ Rβτ = rτ , where R is a r ×K matrix with the rank r, a Wald type test statistic Qw
m can

be easily constructed as follows:

Qw
m =

f̂uτ (0)2

τ(1 − τ)
T 2(Rβ̂w

τ − rτ)⊺ 󳆠R(W1 +W2)−1W2 󳅱R(W1 +W2)−1󳇺⊺󳆤
−1
(Rβ̂w

τ − rτ),

where f̂uτ (0) is a consistent estimator of fuτ (0). The limiting distribution of Qw
m under the null hypothesis

is stated in the following theorem with its proof given in Appendix.

Theorem 4.2. Under Assumptions 2.1 and 2.2 and the null hypothesis H0: Rβτ = rτ , one has

Qw
m

d󲿋→ χ2
r,

where χ2
r is a χ2-distribution with r degrees of freedom.
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5 Monte Carlo Simulation Studies

To demonstrate the effectiveness of the proposed method, two Monte Carlo simulation experiments are

considered. The first experiment considers a data generating process (DGP) with a univariate predictor,

while the second experiment is devoted to a bivariate case with mixed persistence which is not studied by

Lee (2016). For the first simulations, a comparison with the IVX-QR approach in Lee (2016) is reported.

Example 1. In this example, the following DGP is set up for the univariate quantile regression:

yt = (1 + β ⋅ xt−1)(ut + 3), and xt = ρxt−1 + vt,

where ρ = 1 + c󳆋T α. To create the embedded endogeneity among innovations, the innovation processes are

generated as (ut, vt)⊺ ∼ iid N(02×1, Σ2×2), where Σ = 󳆚 1 −0.95
−0.95 1 󳆞. By Proposition 1 of Gaglianone,

Lima, Linton and Smith (2011), it is easy to see that the conditional quantile of yt given xt−1 at the quantile

level τ is given by

Qyt(τ 󳈌Ft−1) = Qut(τ) + 3 + β[Qut(τ) + 3]xt−1 = µτ + βτ xt−1,

where µτ = Qut(τ) + 3, βτ = β[Qut(τ) + 3] and Qut(τ) is the τ -th quantile of ut.

First, the results for the comparison of the size performances of our method with IVX-QR for two

cases, α = 1 and α = 0, are shown in Tables 1 for α = 1 and 2 for α = 0, respectively, with sample sizes of

T = 150, 300 and 700, the different values of τ as τ = 0.05, 0.1, ⋯, 0.90, and 0.95, and the nominal size

at 5%. Simulation is repeated 100 times for each setting and the rejection rate is computed based on 500

simulations. The mean and the standard error in parenthesis of 100 rejection rates are given in Tables 1 for

α = 1 and 2 for α = 0, respectively. For each setting, four values of c are considered further as c = 1.5, 0, −5

and −25, corresponding to the cases: LE, I1, NI1 and NI1 (with large deviation from unit root). Clearly, the

following findings can be evidently observed from Table 1 for α = 1. First, for quantile level τ close to 0.5,

the size of the proposed method is very close to the nominal size at 0.05, while IVX-QR still suffers from

somehow size distortion, where there is a over-rejection for the case of LE predictors, and an under-rejection

for the some case of NI1 predictors (c = −5). Second, it is not surprising to see that due to less data points

in tails, both methods might have size distortions for the extreme quantile levels, but for most cases, the

newly proposed method performs better. Similar findings can be summarized for the stationary case, i.e.,

α = 0 from Table 2, and for most cases, the IVX-QR has an under-rejection problem, because it invalids the

requirement for a less persistent instrumental variable.
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Table 1: Size performances of tw and IVX-QR for α = 1 with the nominal size 5%.

tw

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 c=1.5 0.114 0.081 0.066 0.060 0.059 0.059 0.057 0.061 0.065 0.083 0.108

(0.014) (0.013) (0.011) (0.012) (0.011) (0.011) (0.010) (0.010) (0.011) (0.013) (0.013)
c=0 0.110 0.082 0.063 0.057 0.055 0.054 0.056 0.059 0.062 0.080 0.111

(0.014) (0.011) (0.012) (0.010) (0.012) (0.010) (0.011) (0.010) (0.011) (0.011) (0.014)
c=-5 0.108 0.075 0.057 0.051 0.050 0.050 0.050 0.052 0.059 0.078 0.107

(0.013) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.010) (0.012) (0.013)
c=-25 0.109 0.077 0.058 0.054 0.051 0.049 0.051 0.055 0.059 0.078 0.111

(0.013) (0.012) (0.010) (0.011) (0.010) (0.010) (0.010) (0.011) (0.012) (0.011) (0.015)
T=300 c=1.5 0.086 0.071 0.060 0.056 0.055 0.055 0.056 0.057 0.062 0.067 0.087

(0.013) (0.012) (0.010) (0.010) (0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)
c=0 0.085 0.069 0.057 0.055 0.053 0.053 0.052 0.053 0.058 0.067 0.084

(0.013) (0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011) (0.011) (0.012)
c=-5 0.084 0.065 0.053 0.048 0.048 0.048 0.048 0.050 0.052 0.063 0.083

(0.011) (0.011) (0.010) (0.010) (0.009) (0.009) (0.008) (0.009) (0.009) (0.011) (0.012)
c=-25 0.089 0.069 0.056 0.052 0.051 0.051 0.050 0.054 0.056 0.069 0.089

(0.015) (0.011) (0.009) (0.010) (0.011) (0.009) (0.010) (0.011) (0.009) (0.010) (0.013)
T=700 c=1.5 0.070 0.062 0.055 0.053 0.052 0.052 0.052 0.053 0.056 0.062 0.073

(0.011) (0.011) (0.009) (0.010) (0.010) (0.010) (0.008) (0.011) (0.011) (0.013) (0.012)
c=0 0.070 0.059 0.053 0.051 0.049 0.049 0.050 0.051 0.050 0.062 0.071

(0.013) (0.011) (0.010) (0.011) (0.010) (0.010) (0.011) (0.010) (0.009) (0.010) (0.010)
c=-5 0.069 0.057 0.049 0.049 0.046 0.048 0.047 0.049 0.052 0.058 0.069

(0.012) (0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.011) (0.011)
c=-25 0.071 0.060 0.055 0.054 0.052 0.049 0.052 0.052 0.056 0.062 0.073

(0.011) (0.009) (0.011) (0.009) (0.011) (0.010) (0.010) (0.011) (0.009) (0.011) (0.012)
IVX-QR

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 c=1.5 0.175 0.130 0.113 0.155 0.102 0.090 0.101 0.152 0.114 0.129 0.179

(0.017) (0.016) (0.014) (0.017) (0.014) (0.014) (0.015) (0.017) (0.013) (0.014) (0.016)
c=0 0.138 0.096 0.074 0.109 0.071 0.059 0.069 0.105 0.074 0.093 0.136

(0.015) (0.013) (0.012) (0.017) (0.012) (0.011) (0.013) (0.015) (0.012) (0.012) (0.015)
c=-5 0.098 0.063 0.043 0.047 0.038 0.035 0.038 0.047 0.044 0.061 0.095

(0.012) (0.012) (0.011) (0.010) (0.009) (0.008) (0.008) (0.010) (0.010) (0.010) (0.013)
c=-25 0.115 0.085 0.063 0.058 0.054 0.051 0.052 0.056 0.064 0.085 0.114

(0.015) (0.010) (0.011) (0.010) (0.011) (0.009) (0.009) (0.011) (0.011) (0.011) (0.013)
T=300 c=1.5 0.162 0.135 0.119 0.164 0.097 0.093 0.096 0.162 0.118 0.134 0.166

(0.017) (0.015) (0.013) (0.016) (0.014) (0.013) (0.012) (0.016) (0.015) (0.015) (0.017)
c=0 0.119 0.093 0.074 0.108 0.056 0.054 0.058 0.110 0.072 0.088 0.119

(0.015) (0.013) (0.011) (0.015) (0.010) (0.010) (0.011) (0.014) (0.012) (0.012) (0.013)
c=-5 0.080 0.057 0.046 0.051 0.037 0.036 0.038 0.051 0.043 0.058 0.081

(0.013) (0.011) (0.010) (0.009) (0.008) (0.008) (0.008) (0.008) (0.010) (0.011) (0.011)
c=-25 0.103 0.080 0.061 0.056 0.053 0.052 0.052 0.055 0.061 0.081 0.100

(0.013) (0.012) (0.011) (0.011) (0.009) (0.009) (0.009) (0.010) (0.011) (0.011) (0.013)
T=700 c=1.5 0.147 0.142 0.117 0.146 0.104 0.103 0.104 0.143 0.115 0.140 0.146

(0.015) (0.015) (0.015) (0.015) (0.014) (0.013) (0.014) (0.014) (0.015) (0.015) (0.014)
c=0 0.103 0.094 0.070 0.093 0.059 0.059 0.059 0.092 0.070 0.094 0.102

(0.012) (0.012) (0.011) (0.013) (0.009) (0.010) (0.011) (0.012) (0.011) (0.012) (0.013)
c=-5 0.071 0.059 0.046 0.050 0.041 0.041 0.042 0.049 0.044 0.057 0.069

(0.011) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.012)
c=-25 0.088 0.073 0.059 0.056 0.055 0.054 0.054 0.057 0.060 0.073 0.089

(0.012) (0.012) (0.011) (0.011) (0.011) (0.010) (0.008) (0.010) (0.011) (0.012) (0.012)
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Table 2: Size performances of tw and IVX-QR for α = 0 with the nominal size 5%.
tw

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 c=-0.05 0.107 0.076 0.058 0.051 0.049 0.048 0.050 0.051 0.059 0.075 0.105

(0.014) (0.012) (0.012) (0.010) (0.010) (0.009) (0.011) (0.011) (0.011) (0.012) (0.014)
c=-0.1 0.108 0.075 0.058 0.052 0.050 0.049 0.050 0.053 0.058 0.077 0.110

(0.014) (0.012) (0.010) (0.010) (0.011) (0.009) (0.009) (0.009) (0.010) (0.012) (0.014)
c=-0.15 0.109 0.080 0.058 0.054 0.050 0.050 0.050 0.053 0.061 0.077 0.112

(0.013) (0.013) (0.010) (0.010) (0.010) (0.009) (0.010) (0.011) (0.010) (0.012) (0.014)
c=-0.2 0.110 0.077 0.060 0.054 0.053 0.050 0.050 0.052 0.059 0.079 0.109

(0.015) (0.012) (0.012) (0.010) (0.010) (0.008) (0.009) (0.010) (0.010) (0.012) (0.014)
T=300 c=-0.05 0.089 0.069 0.055 0.050 0.049 0.049 0.050 0.050 0.055 0.067 0.085

(0.013) (0.010) (0.011) (0.011) (0.009) (0.009) (0.010) (0.009) (0.009) (0.011) (0.012)
c=-0.1 0.089 0.067 0.057 0.054 0.050 0.051 0.051 0.054 0.058 0.068 0.088

(0.012) (0.012) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.012) (0.011) (0.011)
c=-0.15 0.090 0.069 0.058 0.054 0.052 0.051 0.052 0.055 0.056 0.070 0.090

(0.011) (0.012) (0.010) (0.010) (0.010) (0.011) (0.011) (0.009) (0.010) (0.010) (0.012)
c=-0.2 0.086 0.071 0.056 0.053 0.051 0.050 0.050 0.052 0.058 0.070 0.088

(0.011) (0.011) (0.011) (0.009) (0.010) (0.008) (0.009) (0.011) (0.010) (0.012) (0.014)
T=700 c=-0.05 0.073 0.064 0.058 0.055 0.050 0.052 0.051 0.054 0.055 0.063 0.074

(0.013) (0.010) (0.012) (0.010) (0.010) (0.011) (0.010) (0.009) (0.010) (0.012) (0.011)
c=-0.1 0.075 0.064 0.056 0.055 0.052 0.051 0.052 0.054 0.056 0.064 0.073

(0.011) (0.011) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.013)
c=-0.15 0.074 0.063 0.055 0.053 0.052 0.051 0.053 0.052 0.053 0.062 0.073

(0.013) (0.011) (0.010) (0.011) (0.010) (0.010) (0.010) (0.008) (0.009) (0.012) (0.011)
c=-0.2 0.075 0.063 0.055 0.053 0.051 0.052 0.052 0.051 0.054 0.060 0.074

(0.013) (0.010) (0.009) (0.010) (0.011) (0.010) (0.009) (0.009) (0.011) (0.011) (0.012)
IVX-QR

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 c=-0.05 0.094 0.061 0.042 0.044 0.036 0.033 0.036 0.043 0.042 0.059 0.092

(0.014) (0.010) (0.009) (0.009) (0.008) (0.009) (0.007) (0.009) (0.010) (0.009) (0.013)
c=-0.1 0.091 0.060 0.040 0.041 0.034 0.032 0.034 0.041 0.040 0.059 0.091

(0.014) (0.012) (0.009) (0.011) (0.009) (0.009) (0.007) (0.009) (0.008) (0.011) (0.011)
c=-0.15 0.092 0.060 0.041 0.040 0.034 0.032 0.033 0.040 0.040 0.058 0.091

(0.014) (0.011) (0.008) (0.010) (0.009) (0.008) (0.007) (0.008) (0.009) (0.012) (0.014)
c=-0.2 0.092 0.060 0.041 0.040 0.034 0.033 0.034 0.040 0.040 0.060 0.091

(0.015) (0.011) (0.008) (0.009) (0.008) (0.008) (0.008) (0.008) (0.009) (0.011) (0.013)
T=300 c=-0.05 0.075 0.055 0.042 0.043 0.036 0.036 0.037 0.043 0.041 0.055 0.079

(0.011) (0.012) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.009) (0.010) (0.011)
c=-0.1 0.077 0.058 0.043 0.042 0.037 0.036 0.037 0.043 0.043 0.056 0.080

(0.012) (0.010) (0.009) (0.010) (0.008) (0.007) (0.008) (0.009) (0.009) (0.010) (0.012)
c=-0.15 0.078 0.058 0.043 0.043 0.037 0.036 0.038 0.043 0.042 0.056 0.080

(0.010) (0.010) (0.009) (0.009) (0.009) (0.007) (0.009) (0.009) (0.009) (0.011) (0.013)
c=-0.2 0.078 0.058 0.042 0.043 0.038 0.036 0.039 0.043 0.043 0.059 0.081

(0.011) (0.011) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.009) (0.011) (0.013)
T=700 c=-0.05 0.067 0.054 0.045 0.044 0.040 0.040 0.040 0.043 0.044 0.051 0.066

(0.010) (0.010) (0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.011)
c=-0.1 0.067 0.053 0.046 0.044 0.042 0.042 0.040 0.043 0.045 0.053 0.067

(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.008) (0.010) (0.009) (0.010) (0.010)
c=-0.15 0.069 0.055 0.047 0.045 0.042 0.042 0.042 0.043 0.045 0.054 0.068

(0.011) (0.010) (0.010) (0.010) (0.009) (0.010) (0.009) (0.009) (0.010) (0.011) (0.011)
c=-0.2 0.070 0.056 0.047 0.045 0.042 0.042 0.042 0.044 0.046 0.054 0.070

(0.013) (0.011) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.008) (0.009) (0.011)

Next, a comparison of the power of the proposed method with that for the IVX-QR method is made. To

this end, at the nominal size 5%, Figures 1 and 2 display the results for α = 1 and α = 0 with different c, given
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τ = 0.5 and the sample size T = 300, while Figures 3 and 4 display the results for the lower quantile τ = 0.05,

and Figures 5 and 6 for the upper quantile τ = 0.95. To see the local power, we set β = b󳆋T (1+α)󳆋2 and thus,

βτ = bτ 󳆋T (1+α)󳆋2 = b[Qut(τ)+ 3]󳆋T (1+α)󳆋2. Evidently, our method performs better than the IVX-QR method

in terms of power for all cases. This finding confirms Theorem 3.3 which states that the convergence rate of

the newly proposed method is faster than that for the IVX-QR method. We also replicate the simulations

with sample size T = 700, and obtain similar conclusions.
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Figure 1: Local power performances of tw and IVX-QR for α = 1, βτ = bτ󳆋T = 3b󳆋T , τ = 0.5
and T = 300.
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Figure 2: Local power performances of tw and IVX-QR for α = 0, βτ = bτ󳆋
√

T = 3b󳆋
√

T ,
τ = 0.5 and T = 300.
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Figure 3: Local power performances of tw and IVX-QR for α = 1, βτ = bτ󳆋T = 1.355b󳆋T ,
τ = 0.05 and T = 300.

19



0 1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
1.0

I0(c=−0.05)

b

rej
ec

t ra
te

tw
IVX−QR

0 1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
1.0

I0(c=−0.1)

b

rej
ec

t ra
te

tw
IVX−QR

0 1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
1.0

I0(c=−0.15)

b

rej
ec

t ra
te

tw
IVX−QR

0 1 2 3 4 5
0.0

0.2
0.4

0.6
0.8

1.0

I0(c=−0.2)

b

rej
ec

t ra
te

tw
IVX−QR

Figure 4: Local power performances of tw and IVX-QR for α = 0, βτ = bτ󳆋
√

T = 1.355b󳆋
√

T ,
τ = 0.05 and T = 300.
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Figure 5: Local power performances of tw and IVX-QR for α = 1, βτ = bτ󳆋T = 4.644b󳆋T ,
τ = 0.95 and T = 300.
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Figure 6: Local power performances of tw and IVX-QR for α = 0, βτ = bτ󳆋
√

T = 4.644b󳆋
√

T ,
τ = 0.95 and T = 300.

Example 2. In this example, the model includes two predictors with different persistence types (one is NI1

and the other one is I0). The DGP is set up as follows:

yt = (µ + β1x1,t−1 + β2x2,t−1)(ut + 3), (5.1)

where x1,t = (1 + c1󳆋T )x1,t−1 + v1,t, and x2,t = (1 + c2)x2,t−1 + v2,t with

(v1,t, v2,t, ut)⊺ ∼ iid N
⎛
⎜
⎝

⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

,
⎛
⎜
⎝

1 −0.78 0.4
−0.78 1 0.21
0.4 0.21 1

⎞
⎟
⎠

⎞
⎟
⎠

,

µ = 10, c1 = −1 and c2 = −0.2. Therefore, x1,t is NI1 and x2,t is I0. The true conditional quantile of yt given

x1,t−1 and x2,t−1 is

Qyt(τ 󳈌Ft−1) = µ[Qut(τ) + 3] + β1[Qut(τ) + 3]x1t−1 + β2[Qut(τ) + 3]x2t−1

= µτ + β1τ x1t−1 + β2τ x2t−1,

where µτ = µ[Qut(τ) + 3], β1τ = β1[Qut(τ) + 3], β2τ = β2[Qut(τ) + 3], and Qut(τ) is the τ -th quantile of ut.

We set the sample size T as 150, 300, or 700, the nominal size as 5% and the quantile level τ as 0.05,

0.5, or 0.95. Similar to Example 1, simulation is repeated 100 times for each setting and the reject rate is

computed based on 500 simulations. Table 3 shows the sizes and power performances of testing H0 ∶ β1τ = 0,
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while keeping β2τ = 0, Table 4 depicts the sizes and power performances of testing H0 ∶ β2τ = 0 while keeping

β1τ = 0, and Table 5 displays the joint testing results for the null hypothesis H0 ∶ β1τ = β2τ = 0. The first

column in Tables 3-5 (Table 3 for β1 = 0, Table 4 for β2 = 0, and Table 5 for β1 = 0 and β2 = 0) reports the

empirical sizes of the proposed test, and the rest columns are for the empirical powers of the proposed test.

Evidently, these tables show the proposed method works well in bivariate regression model in (5.1) which

contains both stationary and nonstationary predictors. The proposed method is free of size distortion in

those tests when the quantile level τ is 0.5 and also performs well in terms of power too. When our method

is applied to the bivariate predictive model, it suffers from a little size distortion when the quantile level

τ = 0.05 or τ = 0.95; however, its degree of size distortion decreases as the sample size grows. In summary,

the proposed method works reasonably well in both univariate and bivariate predictive quantile models.

Therefore, when compared to existing methods in the literature, our method works reasonably well and is

quite competitive.

Table 3: Test results for β1τ for the nonstationary predictor x1,t with a nominal size of 5%.

β1 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
T=150 τ = 0.05 0.121 0.134 0.161 0.212 0.277 0.351 0.424 0.497 0.560 0.613 0.653

(0.015) (0.016) (0.018) (0.018) (0.02) (0.021) (0.021) (0.021) (0.023) (0.021) (0.021)
τ = 0.5 0.048 0.110 0.292 0.478 0.642 0.748 0.827 0.875 0.907 0.930 0.945

(0.009) (0.013) (0.017) (0.023) (0.021) (0.017) (0.018) (0.015) (0.013) (0.012) (0.011)
τ = 0.95 0.126 0.201 0.388 0.569 0.710 0.805 0.865 0.904 0.930 0.945 0.956

(0.015) (0.017) (0.022) (0.023) (0.019) (0.017) (0.015) (0.013) (0.010) (0.008) (0.008)
T=300 τ = 0.05 0.095 0.102 0.125 0.159 0.213 0.277 0.349 0.417 0.483 0.546 0.597

(0.013) (0.014) (0.014) (0.015) (0.019) (0.016) (0.021) (0.017) (0.025) (0.021) (0.024)
τ = 0.5 0.048 0.112 0.280 0.479 0.638 0.754 0.833 0.882 0.916 0.936 0.953

(0.009) (0.013) (0.021) (0.023) (0.022) (0.018) (0.015) (0.015) (0.011) (0.011) (0.009)
τ = 0.95 0.094 0.167 0.348 0.530 0.682 0.785 0.854 0.893 0.927 0.945 0.958

(0.015) (0.017) (0.022) (0.023) (0.02) (0.017) (0.015) (0.015) (0.010) (0.009) (0.008)
T=700 τ = 0.05 0.074 0.079 0.097 0.128 0.170 0.221 0.277 0.337 0.397 0.451 0.509

(0.011) (0.013) (0.013) (0.014) (0.016) (0.019) (0.02) (0.019) (0.021) (0.023) (0.022)
τ = 0.5 0.047 0.109 0.272 0.455 0.613 0.731 0.810 0.868 0.906 0.931 0.948

(0.010) (0.013) (0.021) (0.023) (0.021) (0.02) (0.018) (0.015) (0.016) (0.011) (0.009)
τ = 0.95 0.076 0.140 0.304 0.484 0.632 0.741 0.820 0.875 0.909 0.932 0.949

(0.010) (0.015) (0.02) (0.022) (0.024) (0.022) (0.018) (0.016) (0.014) (0.011) (0.010)
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Table 4: Test results for β2τ for the stationary predictor x2,t with a nominal size of 5%.

β2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T=150 τ = 0.05 0.129 0.126 0.140 0.163 0.197 0.237 0.290 0.349 0.413 0.482 0.548

(0.015) (0.014) (0.016) (0.017) (0.016) (0.019) (0.021) (0.022) (0.023) (0.019) (0.021)
τ = 0.5 0.050 0.075 0.181 0.349 0.549 0.718 0.835 0.904 0.945 0.964 0.976

(0.011) (0.013) (0.017) (0.023) (0.022) (0.021) (0.017) (0.012) (0.01) (0.008) (0.007)
τ = 0.95 0.129 0.164 0.288 0.464 0.643 0.769 0.865 0.920 0.952 0.970 0.979

(0.014) (0.015) (0.02) (0.021) (0.02) (0.019) (0.016) (0.012) (0.011) (0.008) (0.007)
T=300 τ = 0.05 0.099 0.101 0.116 0.137 0.169 0.214 0.266 0.326 0.391 0.459 0.530

(0.015) (0.015) (0.014) (0.014) (0.017) (0.021) (0.022) (0.023) (0.021) (0.024) (0.02)
τ = 0.5 0.048 0.084 0.211 0.427 0.645 0.813 0.910 0.958 0.980 0.989 0.992

(0.009) (0.013) (0.017) (0.022) (0.018) (0.016) (0.011) (0.009) (0.006) (0.005) (0.004)
τ = 0.95 0.097 0.143 0.285 0.488 0.689 0.829 0.917 0.959 0.980 0.988 0.993

(0.012) (0.016) (0.021) (0.021) (0.022) (0.017) (0.013) (0.009) (0.007) (0.005) (0.004)
T=700 τ = 0.05 0.077 0.083 0.095 0.118 0.152 0.197 0.245 0.313 0.376 0.448 0.523

(0.012) (0.013) (0.014) (0.017) (0.017) (0.017) (0.021) (0.019) (0.021) (0.022) (0.02)
τ = 0.5 0.048 0.091 0.246 0.489 0.726 0.882 0.956 0.985 0.993 0.996 0.998

(0.009) (0.013) (0.019) (0.02) (0.018) (0.014) (0.01) (0.005) (0.004) (0.002) (0.002)
τ = 0.95 0.078 0.129 0.288 0.509 0.725 0.870 0.951 0.981 0.992 0.996 0.998

(0.011) (0.017) (0.018) (0.02) (0.019) (0.014) (0.01) (0.007) (0.004) (0.003) (0.002)

Table 5: Joint test results with a nominal size of 5%.

β1 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
β2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T=150 τ = 0.05 0.164 0.170 0.201 0.250 0.321 0.398 0.489 0.563 0.629 0.688 0.734
(0.015) (0.019) (0.019) (0.02) (0.02) (0.021) (0.021) (0.022) (0.021) (0.021) (0.019)

τ = 0.5 0.050 0.109 0.297 0.516 0.695 0.811 0.884 0.926 0.952 0.964 0.975
(0.009) (0.014) (0.022) (0.023) (0.022) (0.017) (0.013) (0.013) (0.01) (0.008) (0.007)

τ = 0.95 0.162 0.240 0.436 0.632 0.777 0.865 0.917 0.948 0.965 0.975 0.982
(0.017) (0.018) (0.023) (0.021) (0.019) (0.016) (0.012) (0.01) (0.008) (0.006) (0.006)

T=300 τ = 0.05 0.116 0.126 0.147 0.195 0.252 0.331 0.413 0.496 0.570 0.642 0.706
(0.014) (0.015) (0.015) (0.018) (0.019) (0.02) (0.019) (0.022) (0.023) (0.024) (0.022)

τ = 0.5 0.047 0.111 0.314 0.550 0.744 0.866 0.930 0.962 0.979 0.988 0.991
(0.01) (0.012) (0.018) (0.023) (0.02) (0.015) (0.012) (0.008) (0.006) (0.006) (0.004)

τ = 0.95 0.118 0.198 0.408 0.627 0.788 0.886 0.941 0.967 0.981 0.989 0.992
(0.015) (0.019) (0.02) (0.022) (0.017) (0.014) (0.01) (0.008) (0.006) (0.005) (0.005)

T=700 τ = 0.05 0.087 0.095 0.117 0.156 0.209 0.272 0.349 0.427 0.506 0.587 0.663
(0.012) (0.012) (0.014) (0.015) (0.016) (0.018) (0.02) (0.022) (0.021) (0.023) (0.022)

τ = 0.5 0.046 0.114 0.327 0.591 0.793 0.909 0.962 0.985 0.994 0.997 0.998
(0.009) (0.014) (0.019) (0.022) (0.021) (0.012) (0.008) (0.006) (0.004) (0.003) (0.002)

τ = 0.95 0.086 0.167 0.376 0.619 0.800 0.909 0.960 0.983 0.991 0.996 0.998
(0.013) (0.015) (0.022) (0.021) (0.014) (0.014) (0.008) (0.006) (0.004) (0.003) (0.002)

6 An Empirical Application

6.1 Data

This section applies the newly proposed method to revisit the question of whether or not stock market

index returns are predictable by a set of macroeconomic indicators and financial ratios. For the convenience

of comparison, our main results are based on the same dataset (monthly data) in Lee (2016), with a sample
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period from January 1927 to December 2005. An updated dataset until December 2018 is considered too to

see whether there is any change after the 2008 global crisis.7. The dependent variable is stock market excess

returns, which is computed as the difference between S&P 500 index (including dividends) monthly returns

and the one-month Treasury bill rate. Following the literature, eight popular predictors are considered,

including dividend-price (d󳆋p), earnings-price (e󳆋p), book to market ratios (b󳆋m), net equity expansion

(ntis), dividend-payout ratio (d󳆋e), T-bill rate (tbl), default yield spread (dfy), term spread (tms).8 These

predictors are standard in the predictive regression literature, and could be further classified into three

categories: valuation ratios (d󳆋p, e󳆋p and b󳆋m), corporate finance variables (ntis and d󳆋e) and bond yield

measures (tbl, tms and dfy), see Cenesizoglu and Timmermann (2008) and Lee (2016).

Table 6 reports the 95% confidence interval of the first-order autocorrelation coefficient ρ for the eight

predicting variables during different sample periods. All predictors show strong evidence of high persistence

for all periods, but we are still unable to identify the persistence category for each variable, see Fan and Lee

(2019). Given that our new method is robust to all persistence categories, it is expected to provide more

reliable conclusions than traditional approaches developed under a specific type of persistence.

Table 6: 95% confidence intervals for ρ in different sample periods.

Predictor 1927-2002 1927-2005 1927-2018 1952-2002 1952-2005 1952-2018
d/p [0.983, 1.000] [0.985, 1.000] [0.986, 1.000] [0.988, 1.003] [0.989, 1.002] [0.989, 1.002]
e/p [0.979, 0.999] [0.978, 0.997] [0.978, 0.996] [0.986, 1.003] [0.984, 1.001] [0.980, 0.999]
b/m [0.971, 0.994] [0.973, 0.995] [0.976, 0.995] [0.985, 1.001] [0.985, 1.001] [0.987, 1.001]
ntis [0.957, 0.987] [0.957, 0.987] [0.971, 0.993] [0.954, 0.990] [0.954, 0.989] [0.970, 0.995]
d/e [0.991, 1.001] [0.993, 1.002] [0.983, 0.998] [0.989, 1.001] [0.993, 1.003] [0.975, 0.997]
tbl [0.984, 0.999] [0.984, 0.999] [0.986, 0.999] [0.976, 1.000] [0.976, 0.999] [0.982, 0.999]
dfy [0.962, 0.989] [0.962, 0.989] [0.961, 0.987] [0.954, 0.990] [0.954, 0.989] [0.953, 0.986]
tms [0.936, 0.974] [0.938, 0.975] [0.925, 0.964] [0.921, 0.972] [0.926, 0.973] [0.914, 0.961]

6.2 Main Results

We first investigate the quantile predictability of stock returns for each individual predictor using the

univariate model, and then analyze the predictability of individual predictor and different combinations of

predictors in the framework of multivariate quantile regressions.

Table 7 reports the univariate regression results given the sample period from Jan.1927 to Dec. 2005.

The p-values (%) shown in bold imply the rejection of the null hypothesis of no predictablity at the 5% level.

The main findings can be summarized as follows. For the group of valuation ratios, we find significant lower
7The updated dataset is available from the website of Professor Amit Goyal at

http://www.hec.unil.ch/agoyal
8One may refer to Goyal and Welch (2008) for detailed constructions and economic foundations of all

variables.
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and upper quantiles predictability for both d󳆋p and e󳆋p ratios, but only upper quantiles predictability for the

b󳆋m ratio. For the group of corporate finance predictors, the d󳆋e, which represents the corporation dividend

payment policy, has strong predictability at both lower and upper quantiles, while the ntis, measuring the

corporate issuing activity, has predictive ability at lower quantiles only. For the group of bond yield measures,

the dfy shows significant predictability at most quantiles except at median level, and the tbl is significant

at upper quantiles. However, we do not find any evidence of the significant predictability for the tms at

all quantiles. Compared to Lee(2016), we obtain similar testing results for d󳆋p, d󳆋e, ntis, tbl and dfy, but

different results for the other three. For the b󳆋m ratio, Lee (2016) finds significant predictability for both

lower and upper quantiles, while only upper quantiles predictability for our method. For the e󳆋p, we find

both lower and upper quantiles predictability, but Lee (2016) only reports a significant predictability at the

80% quantile level. Meanwhile, Lee (2016) finds significant predictability at upper quantiles (0.9 and 0.95)

for the tms, for which we do not find any significant predictive ability. The difference is reasonable as our

method corrects the size distortion and enjoys improve the power due to a faster convergence rate of the

estimator, compared to IVX-QR approach. Meanwhile, our testing results show smoother changes across

different quantiles, demonstrating a better performance on robustness and stability .

Table 7: p-values (%) of quantile prediction tests using the univariate model (1927:01-
2005:12)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.2 0.3 2.7 22.1 23.2 25.2 13.5 1.3 0.3 0.5 0.2
e/p 0.1 0.7 6.0 25.9 26.0 22.9 17.2 3.6 1.0 0.8 1.0
b/m 8.4 13.5 40.6 44.8 50.1 68.2 18.7 4.2 0.6 0.3 0.0
ntis 2.9 0.4 0.1 9.9 14.1 10.0 45.8 56.5 64.8 58.1 57.3
d/e 0.0 0.0 0.0 0.3 8.8 45.2 33.8 2.3 0.0 0.0 0.0
tbl 7.7 10.1 41.3 27.1 2.3 0.8 5.9 7.0 0.6 1.0 2.1
dfy 0.0 0.0 0.0 0.0 4.5 57.3 0.7 0.0 0.0 0.0 0.0
tms 36.8 42.6 33.4 61.4 35.6 49.9 79.5 66.0 54.1 15.5 13.3

Note: p-values are in bold if less than or equal to the significant level 5%.

Next, we conduct the quantile prediction tests for the post-1952 data until Dec. 2005, and report the

results in Table 8. Compared with Table 7 , in general, there are fewer variables with significant predicting

power, implying that the market efficiency is improved after World War II, see Campbell and Yogo (2006).

Especially, we do not find any significant predictability for value ratios (d󳆋p, e󳆋p and b󳆋m) and the d󳆋e

ratio. For lower quantiles, only tbl and tms still have significant predictive ability, while ntis and dfy are

significant for upper quantiles. For middle quantiles, only tbl has significant predicting power. Compared to

Lee(2016), we share a similar finding that the bond yield measures, especially the tbl and dfy, maintain the

significant quantile predictability, but we find a weaker predicting power of value ratios during the sample
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period 1952:01-2005:12.

Table 8: p-values (%) of quantile prediction tests using the univariate model (1952:01-
2005:12)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 18.6 28.6 36.7 27.2 22.8 31.1 36.6 28.0 39.7 10.4 9.5
e/p 18.6 30.7 40.1 27.4 20.2 31.6 39.0 30.1 36.0 16.2 12.3
b/m 53.7 64.2 64.6 59.6 16.4 32.8 72.5 43.8 48.1 50.7 22.1
ntis 39.4 38.7 18.6 41.5 27.6 23.1 24.7 6.0 4.3 0.7 0.5
d/e 12.2 31.0 43.4 17.2 12.3 46.9 48.6 68.1 47.3 13.6 28.3
tbl 5.8 3.4 2.5 1.1 0.4 2.6 22.0 72.3 71.9 40.4 4.3
dfy 50.9 71.6 65.9 46.0 30.2 70.5 22.9 17.3 2.9 0.4 0.0
tms 8.5 1.7 6.7 26.6 17.7 36.8 77.5 44.9 76.6 52.0 48.2

Note: p-values are in bold if less than or equal to the significant level 5%.

Because the stock returns might be affected by multiple variables, the univariate model may exaggerate

the prediction power for each variable. Therefore, we re-examine the stock market predictability in the

framework of multivariate predictive quantile regression. Following Kostakis et al.(2015), we consider five

popular prediction models in the literature and a full model with seven predictors (d󳆋e is excluded due to

the multiple collinearity). For each model, we report the single test results for each individual predictor and

the joint test results for the combination of all predictors.

Table 9 depicts the test results during the sample period from Jan. 1927 to Dec. 2005. Interest-

ingly, both single tests and joint tests based on the first five predictive models do not find any significant

predictability at middle quantile levels, confirming the existing findings about a weak predictability at the

mean/median of stock returns. However, all five models show evidence of significant predictability at lower

and upper quantiles, suggesting a stronger predictability in the extreme market status. For the full model,

after controlling other variables, some predictors lose their prediction power, though the joint tests suggest

that the full model has prediction power at all quantiles. It worths to be mentioned that the bond yield

measures, including tbl, dfy and tms, maintain the significant predictability at either lower quantiles or up-

per quantiles or both. The persistence of the predictive ability for these macroeconomic variables is further

confirmed in Table 10, where only the predictive models containing bond yield measures keep prediction

power in the post-1952 sample period. Because Lee (2016) only considered a bivariate case, a comparison

with the results is not provided here.
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Table 9: p-values (%) for the test using the multivariate model (1927:01-2005:12)

Ang and Bekaert (2007)
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.9 0.8 4.2 11.9 24.0 33.6 22.7 7.3 3.2 0.6 1.0
tbl 0.1 0.1 1.3 9.0 18.9 20.8 19.6 10.9 1.9 0.1 0.4

Joint Test 0.1 0.0 1.0 10.9 26.4 17.3 5.5 0.6 0.1 0.0 0.1
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.1 0.2 2.7 1.1 7.9 9.0 27.0 18.9 26.1 14.5 9.2
tbl 0.3 0.4 3.0 3.7 11.4 11.4 14.5 8.7 2.3 0.7 0.3
dfy 0.0 0.0 0.3 0.4 5.7 11.2 28.0 17.1 1.6 0.1 0.0
tms 0.0 0.1 0.6 0.6 4.7 4.9 24.8 20.6 31.0 16.2 8.4

Joint Test 0.0 0.0 0.0 0.6 11.7 7.2 2.1 0.0 0.0 0.0 0.0
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.1 0.1 0.7 13.9 15.4 17.2 15.8 3.3 0.5 0.1 0.0
b/m 0.2 0.1 1.3 10.8 17.3 20.2 24.4 8.7 1.1 0.3 0.0

Joint Test 0.0 0.0 1.0 16.9 22.5 24.6 14.2 0.7 0.1 0.1 0.0
Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 5.2 3.7 8.8 18.0 17.0 25.4 28.8 12.9 9.5 2.0 1.0
d/e 0.4 0.1 0.7 9.2 18.5 22.7 25.3 10.7 1.5 0.1 0.0

Joint Test 0.2 0.0 0.8 19.2 20.0 28.2 17.0 0.7 0.1 0.0 0.0
Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
e/p 0.0 0.0 0.3 10.1 15.7 19.7 13.7 1.8 0.2 0.0 0.0
b/m 0.0 0.0 0.1 7.7 13.7 19.3 15.2 2.3 0.2 0.0 0.0
tms 0.0 0.1 0.7 30.1 24.2 26.8 15.9 2.6 0.2 0.1 0.0

Joint Test 0.0 0.0 0.0 6.5 14.0 36.6 13.4 0.7 0.0 0.0 0.0
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 7.9 14.9 16.1 14.2 17.5 18.6 21.7 20.8 10.1 2.3 2.1
e/p 6.2 5.0 1.5 1.0 1.4 4.6 7.2 10.7 13.0 6.5 5.3
b/m 9.8 18.1 20.6 13.2 16.5 15.6 17.1 16.3 8.8 2.4 2.1
ntis 1.3 5.3 8.8 3.5 11.8 11.9 24.5 16.7 7.5 1.8 1.6
tbl 12.6 24.3 22.0 10.0 7.5 7.3 6.3 4.3 3.1 1.5 1.6
dfy 0.0 0.0 1.0 6.3 27.3 21.9 2.8 0.1 0.0 0.0 0.0
tms 3.0 10.6 14.8 13.7 19.4 18.4 18.9 17.5 9.3 1.9 1.1

Joint Test 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.0 0.0 0.0 0.0
Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.
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Table 10: p-values (%) for the test using the multivariate model (1952:01-2005:12)

Ang and Bekaert (2007)
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 22.3 32.0 40.6 27.8 35.5 33.7 29.1 23.2 33.1 9.5 9.0
tbl 13.4 31.1 21.4 15.3 13.1 17.2 22.5 24.2 28.1 10.7 2.4

Joint Test 18.0 37.5 35.1 21.0 19.9 26.8 32.0 26.8 42.7 11.2 2.1
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 18.6 17.3 11.1 7.6 9.7 12.8 9.6 7.2 5.8 2.1 7.0
tbl 21.0 15.8 7.4 5.6 7.6 11.2 5.4 4.5 6.2 2.4 5.0
dfy 18.9 17.0 7.5 5.5 8.3 10.4 7.3 5.0 5.2 2.0 4.7
tms 23.0 16.6 8.9 7.0 7.5 12.2 6.9 5.3 6.3 2.2 6.3

Joint Test 24.7 27.7 23.2 13.5 16.9 29.9 15.2 11.7 6.4 0.4 0.7
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 13.3 18.4 26.1 17.0 14.0 20.1 21.0 23.4 25.5 10.3 5.8
b/m 12.9 20.3 23.2 16.3 12.1 18.4 20.3 23.1 24.7 8.6 5.2

Joint Test 16.8 27.6 36.2 25.2 16.2 23.2 28.7 26.6 36.1 11.9 5.2
Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 22.9 25.8 31.6 30.5 23.1 22.2 28.2 23.3 29.1 18.5 11.7
d/e 16.2 21.9 23.7 17.5 13.1 20.7 26.6 23.6 25.5 10.8 5.1

Joint Test 20.2 28.4 41.1 27.6 20.4 33.0 38.6 29.0 39.3 9.7 6.2
Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
e/p 14.3 15.1 17.1 12.8 10.7 14.9 18.1 16.8 23.0 11.3 11.7
b/m 10.1 22.4 14.9 9.3 11.0 14.8 17.6 16.9 24.8 14.8 15.2
tms 17.6 29.8 28.4 19.1 16.5 29.0 27.3 27.7 27.6 7.1 6.9

Joint Test 18.5 37.4 35.7 18.4 13.0 29.9 37.5 27.9 30.7 5.3 1.5
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 16.3 19.6 18.7 13.7 11.5 11.7 15.6 23.4 27.0 16.4 10.9
e/p 14.6 18.4 17.6 19.8 18.9 25.2 21.6 16.3 15.0 7.8 4.4
b/m 11.5 18.7 14.7 13.2 15.7 15.2 14.7 13.4 15.5 8.9 7.9
ntis 19.4 18.1 8.8 12.9 14.7 19.9 16.5 17.8 16.0 7.2 10.5
tbl 1.5 4.8 8.5 4.9 4.2 4.5 5.0 4.9 6.7 5.8 4.9
dfy 7.2 15.2 19.8 16.7 13.4 12.5 9.4 5.6 5.3 1.7 2.4
tms 17.7 16.4 16.2 21.6 19.1 23.2 22.8 22.3 21.7 11.5 8.3

Joint Test 0.1 0.6 0.3 0.4 0.3 1.1 1.8 1.1 1.2 0.0 0.0
Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.

6.3 Test Results for the Updated Dataset

To see whether there is any change on the market predictability in the recent years, we apply our

method to the most updated data set. For simplicity, we only consider the multivariate quantile regression

because it avoids the risk of model misidentification of univariate case. Table 11 reports the results in

multivariate predictive quantile regression using the updated sample period (1927:01-2018:12), while Table
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12 for the post-1952 sample period (1952:01-2018:12). The main conclusions are roughly consistent with

those using the sample period until Dec. 2005.

Table 11: p-values (%) for the test using the multivariate model for the period from (1927:01-
2018:12)

Ang and Bekaert (2007)
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.7 0.7 2.8 11.3 29.5 42.1 16.2 1.2 0.3 0.6 0.5
tbl 0.1 0.1 2.0 10.5 16.0 14.9 16.7 8.8 1.8 0.2 0.4

Joint Test 0.0 0.0 0.8 10.5 28.0 24.2 6.8 0.1 0.0 0.0 0.0
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.6 1.2 3.8 4.2 15.8 17.6 34.0 20.0 15.8 7.9 10.3
tbl 0.3 0.7 3.1 5.6 16.7 14.7 21.2 11.5 4.4 1.2 2.3
dfy 0.0 0.2 1.3 2.2 12.9 17.9 44.1 21.2 2.9 0.2 0.1
tms 0.1 0.3 1.1 1.5 12.9 14.8 42.8 31.4 20.9 5.8 9.3

Joint Test 0.0 0.0 0.0 1.4 13.7 17.7 4.1 0.0 0.0 0.0 0.0
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.1 0.2 1.8 12.4 19.4 17.1 14.2 3.4 0.4 0.1 0.0
b/m 0.2 0.4 2.6 12.1 15.5 18.0 19.8 9.5 2.2 0.2 0.1

Joint Test 0.0 0.1 0.6 12.0 24.3 31.8 14.0 0.6 0.0 0.0 0.0
Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 4.4 3.7 12.0 19.0 18.2 25.5 31.5 16.8 7.0 2.5 0.5
d/e 0.4 0.1 1.5 11.9 17.0 20.2 18.1 12.0 1.6 0.1 0.0

Joint Test 0.1 0.0 0.7 10.4 25.4 32.1 14.0 0.5 0.0 0.0 0.0
Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
e/p 0.0 0.2 0.3 12.6 13.9 18.9 15.6 2.5 0.4 0.1 0.0
b/m 0.0 0.1 0.2 8.6 9.5 20.0 15.5 2.2 0.3 0.0 0.0
tms 0.0 0.5 0.7 24.8 23.5 24.0 18.8 3.3 0.4 0.2 0.0

Joint Test 0.0 0.0 0.0 4.6 10.0 36.7 13.0 0.2 0.0 0.0 0.0
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 17.3 34.9 32.3 31.3 28.5 26.4 25.5 15.3 7.1 4.3 5.4
e/p 9.2 16.5 6.8 2.7 8.4 15.9 19.7 24.9 15.9 10.4 5.5
b/m 14.2 34.9 33.1 26.5 22.7 26.2 24.1 18.9 9.7 5.7 4.8
ntis 1.4 4.8 7.3 4.9 12.3 16.2 32.0 28.1 21.7 11.3 12.1
tbl 16.6 32.6 34.2 25.4 25.0 19.7 15.9 10.5 7.6 6.4 6.8
dfy 0.0 0.0 0.1 1.0 14.1 35.2 6.4 0.2 0.0 0.0 0.0
tms 3.0 14.3 21.8 19.9 27.9 27.3 28.0 21.3 10.1 5.7 5.2

Joint Test 0.0 0.0 0.0 0.0 0.2 5.0 0.1 0.0 0.0 0.0 0.0
Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.
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Table 12: p-values (%) for the test using the multivariate model (1952:01-2018:12)

Ang and Bekaert (2007)
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 15.8 28.2 43.3 32.3 37.6 36.5 33.5 22.0 36.0 11.4 13.9
tbl 20.2 23.7 26.9 12.8 14.0 17.7 25.4 28.6 31.1 9.3 7.1

Joint Test 21.1 32.7 38.9 16.5 14.6 23.2 40.0 28.0 38.3 12.0 11.5
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 15.6 22.5 21.6 15.9 19.3 15.6 20.0 17.1 16.6 11.1 8.6
tbl 36.2 25.5 12.7 7.6 11.9 6.4 13.3 13.7 21.6 11.4 10.9
dfy 4.4 46.6 16.0 16.2 32.5 11.5 22.6 16.8 10.4 9.9 11.1
tms 16.1 22.8 17.8 18.3 20.2 16.0 20.9 19.6 20.3 8.7 7.8

Joint Test 4.4 39.0 30.2 17.8 22.6 15.4 28.8 20.9 8.1 3.8 0.6
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 14.6 25.1 22.3 17.2 22.6 24.2 22.3 25.5 29.8 11.0 7.9
b/m 19.5 26.4 20.8 12.8 13.3 18.1 20.4 26.7 29.2 8.1 8.3

Joint Test 18.9 36.0 27.6 18.2 10.4 17.6 33.2 31.7 32.0 14.6 9.9
Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 22.1 25.8 23.3 16.4 12.2 20.3 29.6 28.0 26.9 12.3 11.3
d/e 14.9 23.7 24.2 14.1 15.4 25.0 28.0 28.5 28.4 8.1 6.7

Joint Test 19.9 28.4 31.8 20.5 17.4 25.3 43.8 39.2 36.7 12.1 7.1
Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
e/p 16.7 21.2 18.7 12.7 17.3 20.5 22.2 18.9 19.7 13.3 14.3
b/m 15.3 23.8 20.0 9.6 12.6 17.9 22.5 20.7 29.5 16.3 19.1
tms 19.8 32.1 30.5 17.6 24.2 32.0 31.9 32.7 28.7 7.7 8.5

Joint Test 23.3 39.7 37.8 12.6 6.4 23.3 45.4 33.7 21.4 5.9 2.6
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 17.2 28.7 18.9 16.2 15.7 11.0 9.7 9.6 8.2 9.1 7.2
e/p 8.9 12.9 9.8 23.8 24.9 29.6 32.1 21.9 17.2 9.5 5.9
b/m 13.7 25.1 22.8 22.1 19.5 18.1 18.6 16.0 10.9 10.0 5.7
ntis 12.0 29.3 16.0 30.9 37.5 40.1 36.2 25.4 22.3 16.7 13.5
tbl 21.6 30.9 22.5 13.9 14.3 10.4 8.8 9.8 16.1 18.4 11.7
dfy 22.1 19.5 20.2 32.9 31.0 21.1 14.7 8.3 4.1 2.1 1.8
tms 18.6 16.0 13.8 28.1 28.8 33.4 28.3 23.2 16.1 12.5 10.1

Joint Test 1.1 1.9 1.4 2.0 3.5 0.5 0.3 0.4 0.1 0.1 0.0
Note that p-value is in bold if it is less than or equal to the significant level 0.05, and d/e is ignored due
to the multiple collinearity among d/e, d/p and e/p ratios.

7 Conclusion

This paper investigates the inferential theory for predictive quantile regression with highly persistent

predictors, containing both the stationary case and the nonstationary case. A weighted estimator based

on variable addition approach is proposed to construct the pivotal test statistic. By introducing a new

additional variable whose key component is independent of xt in NI1, I1 and LE cases and persistence is
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the same as that for xt, our method is not only free of the size distortion but it can also achieve the local

power under the optimal rate T with nonstationary predictors and
√

T with stationary predictors. The

numerical performance of the proposed tests is checked by simulation studies which show that the proposed

method outperforms the IVX-QR approach proposed by Lee (2016) in a finite sample. In the empirical

application, we apply the new method to test the predictability of US stock returns at different quantile

levels. Interestingly, after the World War II, we do not find much evidence for the prediction power for

some well-known financial ratios, such as e/p ratio, d/p ratio and b/m ratio. However, the macroeconomic

indictors, such as dfy, tms and tbl show strong evidence of significant prediction power, especially at lower

and upper quantile levels.
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Appendix: Mathematical Proofs

In this appendix, due to the limitation of space, only the brief derivations of the main results with

some lemmas are offered. First, we prove the following two lemmas to show that the assumption for FCLT

in (2.3) is reasonable since it is coincident with the model setting in (2.1) and Assumption 2.1.

Lemma A.1. ψτ(utτ) is a martingale difference sequence with

E(ψτ(utτ)󳈌Ft−1) = 0, E(ψτ(utτ)2󳈌Ft−1) = τ(1 − τ)

and E[ψτ(utτ)4] = −3τ4 + 6τ3 − 4τ2 + τ for all t.

Proof of Lemma A.1. Since

E(1(utτ < 0)󳈌Ft−1) = P (utτ < 0󳈌Ft−1) = P (yt < Qyt(τ 󳈌Ft−1)󳈌Ft−1) = τ,

then,

E(ψτ(utτ)󳈌Ft−1) = E(τ − 1(utτ < 0)󳈌Ft−1) = τ −E(1(utτ < 0)󳈌Ft−1) = τ − τ = 0

and

E(ψτ(utτ)2󳈌Ft−1) = E 󳅱τ2 − 2τ1(utτ < 0) + 1(utτ < 0)󳈌Ft−1󳇺 = τ2 − 2τ2 + τ = τ(1 − τ).

Similarly, E[ψτ(utτ)4󳈌Ft−1] = −3τ4 + 6τ3 − 4τ2 + τ . Then, by the iterative law of expectation,

E[ψτ(utτ)4] = −3τ4 + 6τ3 − 4τ2 + τ.

The proof is complete. ∎

Lemma A.2. Under Assumption 2.1, then, Σψτ v <∞.

Proof of Lemma (A.2). For h < 0, by the iterative law of expectation and Lemma A.1,

E[ψτ(utτ)vt+h] = E [E(ψτ(utτ)vt+h󳈌Ft−1)] = E [vt+hE(ψτ(utτ)󳈌Ft−1)] = E [vt+h ⋅ 0] = 0.

Thus,

Σψτ v =
∞
󱮦

h=−∞
E[ψτ(utτ)vt+h] =

∞
󱮦
h=0

E[ψτ(utτ)vt+h].

For h ≥ 0, by the iterative law of expectation and Assumption 2.1,

E[ψτ(utτ)vt+h] = E[ψτ(utτ)
∞
󱮦
j=0

Fxjεt+h−j] =
∞
󱮦
j=0

FxjE[ψτ(utτ)εt+h−j] = FxhE[ψτ(utτ)εt].
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The last step holds since E[ψτ(utτ)εt+h−j] = E [εt+h−jE(ψτ(utτ)󳈌Ft−1)] = E [εt+h−j0󳈌Ft−1)] = 0 for 0 ≤ h < j

and E[ψτ(utτ)εt+h−j] = E [ψτ(utτ)E(εt+h−j 󳈌Ft−1)] = E [ψτ(utτ)0] = 0 for h > j. Then

Σψτ v =
∞
󱮦
h=0

E[ψτ(utτ)vt+h] =
∞
󱮦
h=0

FxhE[ψτ(utτ)εt] = Fx(1)E[ψτ(utτ)εt].

Then by Hölder’s inequality, 󳈌E[ψτ(utτ)εt]󳈌 ≤ 󳅱E[ψτ(utτ)2]󳇺
1󳆋2 󳅱E[ε2

t ]󳇺
1󳆋2 = τ(1 − τ)Σε, and by Assumption

2.1, 󳈌Fx(1)󳈌 <∞. Then,

󳈌Σψτ v 󳈌 ≤ 󳈌Fx(1)󳈌τ(1 − τ)Σε <∞.

This completes the proof. ∎

Next, we prove Theorem 3.1, i.e., the Bahadur representation theorem for nonstationary case. For this

purpose, it needs to establish the following proposition and Lemmas.

Proposition A.1. Let VT (v) be a vector function that satisfies

(i) −v⊺VT (λv) ≥ −v⊺VT (v) for any λ ≥ 1.

(ii) sup
󳈒v󳈒<M

󳈒VT (v) +Dv −AT 󳈒 = op(1) where 󳈒AT 󳈒 = Op(1), 0 <M <∞. And D is a positive-definite random

matrix. Suppose that vT is a vector such that 󳈒VT (vT )󳈒 = op(1), then

(1) 󳈒vT 󳈒 = Op(1).

(2) vT =D−1AT + op(1).

Proof of Proposition A.1. Proposition A.1 is similar to Lemma A.1 of Cai and Xu (2008), but here

the matrix D is relaxed to allow for a positive-definite random matrix. First, it shows that 󳈒vT 󳈒 = Op(1).

Following Koenker and Zhao (1996), for any given ε > 0 and ℓ > 0, one has

P ( inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM)

≤ P ( inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM, inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≥ 2ℓM)

+ P ( inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM, inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≤ 2ℓM)

≤ P ( inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM, inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≥ 2ℓM)

+ P ( inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≤ 2ℓM)

≤ P ( sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 > −ℓM, inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 ≥ 2ℓM)

+ P ( inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≤ 2ℓM). (A.1)

Since sup
󳈒v󳈒=M

[v⊺VT (v)] > −ℓM , inf
󳈒v󳈒=M

[v⊺Dv − v⊺AT ] ≥ 2ℓM implies sup
󳈒v󳈒=M

[v⊺VT (v)] + inf
󳈒v󳈒=M

[v⊺Dv − v⊺AT ] ≥
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ℓM , then,

P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 > −ℓM, inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 ≥ 2ℓM
⎞
⎠

≤ P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 + inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 ≥ ℓM
⎞
⎠

. (A.2)

Define MS = v⊺VT (v) and MI = v⊺Dv − v⊺AT . Then,

sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 + inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 = sup
󳈒v󳈒=M

[MS +MI −MI] + inf
󳈒v󳈒=M

[MI]

≤ sup
󳈒v󳈒=M

[MS +MI] + sup
󳈒v󳈒=M

[−MI] + inf
󳈒v󳈒=M

[MI]

= sup
󳈒v󳈒=M

[MS +MI] − inf
󳈒v󳈒=M

MI + inf
󳈒v󳈒=M

[MI]

= sup
󳈒v󳈒=M

[MS +MI]

= sup
󳈒v󳈒=M

󳅱v⊺VT (v) + v⊺Dv − v⊺AT 󳇺 .

Thus, sup
󳈒v󳈒=M

[v⊺VT (v)]+ inf
󳈒v󳈒=M

[v⊺Dv − v⊺AT ] ≥ ℓM implies sup
󳈒v󳈒=M

[v⊺VT (v) + v⊺Dv − v⊺AT ] ≥ ℓM . Therefore,

P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 + inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 ≥ ℓM
⎞
⎠

≤ P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v) + v⊺Dv − v⊺AT 󳇺 ≥ ℓM
⎞
⎠

. (A.3)

Moreover, sup
󳈒v󳈒=M

[v⊺VT (v) + v⊺Dv − v⊺AT ] ≥ ℓM implies that

ℓ ≤ sup
󳈒v󳈒=M

󳈒v⊺VT (v) + v⊺Dv − v⊺AT 󳈒󳆋M ≤ sup
󳈒v󳈒=M

󳈒v⊺󳈒 ⋅ 󳈒VT (v) +Dv −AT 󳈒󳆋M

≤ sup
󳈒v󳈒=M

󳈒v⊺󳈒󳆋M sup
󳈒v󳈒=M

󳈒VT (v) +Dv −AT 󳈒 ≤ sup
󳈒v󳈒=M

󳈒VT (v) +Dv −AT 󳈒.

Then,

P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v) + v⊺Dv − v⊺AT 󳇺 ≥ ℓM
⎞
⎠
≤ P
⎛
⎝

ℓ ≤ sup
󳈒v󳈒=M

󳈒VT (v) +Dv −AT 󳈒
⎞
⎠

. (A.4)

By (A.2), (A.3) and (A.4), it follows that

P
⎛
⎝

sup
󳈒v󳈒=M

󳅱v⊺VT (v)󳇺 > −ℓM, inf
󳈒v󳈒=M

󳅱v⊺Dv − v⊺AT 󳇺 ≥ 2ℓM
⎞
⎠
≤ P
⎛
⎝

ℓ ≤ sup
󳈒v󳈒=M

󳈒VT (v) +Dv −AT 󳈒
⎞
⎠

. (A.5)

On the other hand, inf
󳈒v󳈒=M

[−v⊺(−Dv +AT )] ≤ 2ℓM implies that

2ℓM ≥ inf
󳈒v󳈒=M

󳆖v⊺Dv󳆛 + inf
󳈒v󳈒=M

󳆖−v⊺AT 󳆛

and thus,

inf
󳈒v󳈒=M

󳆖v⊺Dv󳆛 󳆋M2 ≤ 2ℓ󳆋M − inf
󳈒v󳈒=M

󳆖−v⊺AT 󳆛 󳆋M2 = 2ℓ󳆋M + sup
󳈒v󳈒=M

󳆖v⊺AT 󳆛 󳆋M2.
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It follows that

inf
󳈒v󳈒=M

󳆖v⊺Dv󳆛 󳆋M2 ≤ 2ℓ󳆋M + sup
󳈒v󳈒=M

󳈒v⊺AT 󳈒󳆋M2 ≤ 2ℓ󳆋M + sup
󳈒v󳈒=M

󳈒v⊺󳈒󳈒AT 󳈒󳆋M2 = 2ℓ󳆋M + 󳈒AT 󳈒󳆋M.

Since D is the positive-definite random matrix, then, inf
󳈒v󳈒=M

(v⊺Dv) 󳆋M2 > 0, so that

(2ℓ + 󳈒AT 󳈒)󳆚 inf
󳈒v󳈒=M

󳆖v⊺Dv󳆛 󳆋M2󳆞
−1

>M.

To sum up, inf
󳈒v󳈒=M

[−v⊺(−Dv +AT )] ≤ 2ℓM implies that (2ℓ + 󳈒AT 󳈒)󳆚 inf
󳈒v󳈒=M

(v⊺Dv) 󳆋M2󳆞
−1

>M . Therefore,

P 󳆚 inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≤ 2ℓM󳆞 ≤ P
⎛
⎝
(2ℓ + 󳈒AT 󳈒)󳆚 inf

󳈒v󳈒=M
󳆖v⊺Dv󳆛 󳆋M2󳆞

−1

>M
⎞
⎠

(A.6)

Since 󳈒AT 󳈒 = Op(1) and inf
󳈒v󳈒=M

(v⊺Dv) 󳆋M2 > 0, then

(2ℓ + 󳈒AT 󳈒)󳆚 inf
󳈒v󳈒=M

󳆖v⊺Dv󳆛 󳆋M2󳆞
−1

= Op(1). (A.7)

Thus, it follows by (A.6) and (A.7) that for large 0 <M <∞,

P 󳆚 inf
󳈒v󳈒=M

󳅱−v⊺(−Dv +AT )󳇺 ≤ 2ℓM󳆞 ≤ ε󳆋4. (A.8)

An application of (A.1), (A.5) and (A.8) concludes that

P 󳆚 inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM󳆞 ≤ P
⎛
⎝

sup
󳈒v󳈒=M

[VT (v) +Dv −AT ] ≥ ℓ
⎞
⎠
+ ε󳆋4. (A.9)

Moreover, it follows from Assumption (ii) that,

P ( sup
󳈒v󳈒=M

[VT (v) +Dv −AT ] ≥ ℓ) < ε󳆋4. (A.10)

By the inequality in (A.9) and the result in (A.10), it is straightforward to see that for any given ε > 0 and

ℓ > 0 there exist T0 and 0 <M <∞ such that

P ( inf
󳈒v󳈒=M

󳅱−v⊺VT (v)󳇺 < ℓM) ≤ ε󳆋2 (A.11)

for T > T0. Next, for any v, 󳈒v󳈒 ≥M , denote v = λṽ, where λ ≥ 1 and 󳈒ṽ󳈒 =M . Assumption (i) implies

󳈒VT (v)󳈒 ≥ [−ṽV (λṽ)]󳆋M ≥ [−ṽV (ṽ)]󳆋M.

Therefore,

P 󳆚 inf
󳈒v󳈒≥M

󳈒VT (v)󳈒 < ℓ󳆞 ≤ P 󳆚 inf
󳈒v󳈒=M

[−ṽV (ṽ)] < ℓM󳆞 < ε󳆋2.

The last inequality holds by (A.11). For enough large T , since 󳈒VT (vT )󳈒 = op(1), then

P (󳈒vT 󳈒 ≥M) ≤ P (󳈒vT 󳈒 ≥M, 󳈒VT (vT )󳈒 < ℓ) + P (󳈒VT (vT )󳈒 ≥ ℓ) ≤ P 󳆚 inf
󳈒v󳈒≥M

󳈒VT (vT )󳈒 < ℓ󳆞 + ε󳆋2 ≤ ε.
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Thus, we conclude that

󳈒vT 󳈒 = Op(1). (A.12)

From this result and Assumption (ii), it follows that

sup
󳈒v󳈒<M

󳈒VT (v) +Dv −AT 󳈒 = op(1). (A.13)

By (A.12) and (A.13),

VT (vT ) +DvT −AT = op(1).

Since vT is a vector such that 󳈒VT (vT )󳈒 = op(1), we have

vT =D−1AT + op(1).

This is the end of proof. ∎

Lemma A.3. When xt is NI1, I1 and LE,

NT =D−1
T

T

󱮦
t=2

Λt−1Λ⊺t−1D
−1
T = N + op(1), (A.14)

and

D−1
T

T

󱮦
t=2

Λt−1ψτ(utτ)
d󲿋→ 󳆘󱮬 dBψτ (r),󱮬 [Jc

x(r) − π̃1B(r)]dBψτ (r), π̃1 󱮬 B(r)dBψτ (r)󳆝 , (A.15)

where

NT =
⎛
⎜
⎝

1 ∫ Jc
x(r)dr − π̃1 ∫ B(r)dr π̃1 ∫ B(r)dr

∫ Jc
x(r)dr − π̃1 ∫ B(r)dr ∫ [Jc

x(r) − π̃1B(r)]2dr π̃1 ∫ Jc
x(r)B(r)dr − π̃2

1 ∫ B(r)2dr
π̃1 ∫ B(r)dr π̃1 ∫ Jc

x(r)B(r)dr − π̃2
1 ∫ B(r)2dr π̃2

1 ∫ B(r)2dr.

⎞
⎟
⎠

.

Proof of Lemma A.3. Since x⌊rT ⌋󳆋
√

T ⇒ Jc
x(r) and z⌊rT ⌋󳆋

√
T = π̂1ζt−1󳆋

√
T ⇒ B(r)π̃1, then, by the

continuous mapping theorem, the following convergence results hold true

1
T 2

T

󱮦
t=2

x∗t−1zt−1 =
1

T 2

T

󱮦
t=2

xt−1zt−1 −
1

T 2

T

󱮦
t=2

z2
t−1

d󲿋→ π̃1 󱮬 Jc
x(r)B(r)dr − π̃2

1 󱮬 B(r)2dr, (A.16)

1
T 3󳆋2

T

󱮦
t=2

zt−1
d󲿋→ π̃1 󱮬 B(r)dr, (A.17)

1
T 3󳆋2

T

󱮦
t=2

x∗t−1 =
1

T 3󳆋2

T

󱮦
t=2

xt−1 −
1

T 3󳆋2

T

󱮦
t=2

zt−1
d󲿋→ 󱮬 Jc

x(r)dr − π̃1 󱮬 B(r)dr, (A.18)

1
T 3󳆋2

T

󱮦
t=2
(x∗t−1)2

d󲿋→ 󱮬 [Jc
x(r) − π̃1B(r)]2dr, (A.19)

1
T 2

T

󱮦
t=2

z2
t−1

d󲿋→ π̃2
1 󱮬 B(r)2dr. (A.20)

Thus, (A.14) holds. For (A.15), it is similar to show the followings

1√
T

T

󱮦
t=2

ψτ(utτ)
d󲿋→ N(0, τ(1 − τ)),

39



and
1
T

T

󱮦
t=1

zt−1ψτ(utτ)
d󲿋→ π̃1 󱮬 B(r)⊥dBψτ (r) =MN(0, τ(1 − τ)π̃2

1 󱮬 B(r)2dr).

Here, the above step is guaranteed by independence between ζt−1 and utτ . Therefore, (A.15) holds. The

ends the proof. ∎

Lemma A.4. For any vector v = Op(1) with dimension 2K + 1, ∑T
t=2
√

T 󳈒D−1
T Λt−1󳈒v⊺D−1

T Λt−1Λ⊺t−1D
−1
T v =

Op(1) always holds.

Proof of Lemma A.4. If xt is NI1, I1 and LE, by (A.16) – (A.20), the following statements holds ture

v⊺
√

TD−1
T Λ⌊rT ⌋Λ⊺⌊rT ⌋D

−1
T

√
Tv ⇒ v⊺Nvv, (A.21)

where

Nv =
⎛
⎜
⎝

1 Jc
x(r)dr − π̃1B(r) π̃1B(r)

Jc
x(r)π̃1B(r) [Jc

x(r) − π̃1B(r)]2 π̃1Jc
x(r)B(r) − π̃2

1B(r)2
π̃1B(r) π̃1Jc

x(r)B(r) − π̃2
1B(r)2 π̃2

1B(r)2,

⎞
⎟
⎠

,

and
√

T 󳈒D−1
T Λ⌊rT ⌋󳈒 ⇒

󳆼
1 + (Jx(r) −B(r))2 +B(r)2.

Therefore,

T

󱮦
t=2

√
T 󳈒D−1

T Λt−1󳈒v⊺D−1
T Λt−1Λ⊺t−1D

−1
T v =

T

󱮦
t=2

√
T 󳈒D−1

T Λt−1󳈒v⊺
√

TD−1
T Λt−1Λ⊺t−1

√
TD−1

T v
1
T

d󲿋→ 󱮬
󳆼

1 + (Jx(r) −B(r))2 +B(r)2v⊺Nvvdr.

Thus, ∑T
t=2
√

TD−1
T Λt−1󳈌v⊺D−1

T Λt−1Λ⊺t−1D
−1
T v = Op(1) with NI1, I1 and LE cases. When xt is I0, the proof

is almost the same and omitted. Therefore, this finishes the proof. ∎

Now, it is ready for proving Theorem 3.1.

Proof of Theorem 3.1. To prove Theorem 3.1, it only needs to verify that the conditions listed in Propo-

sition A.1 hold true. The proof for I0 case is standard, so omitted. Then, it suffice to prove Theorem 3.1 for

NI1, I1 and LE cases. To this end, define the convex object function as follows.

ZT (v) =
T

󱮦
t=2
󳆟ρτ 󳅱utτ − v⊺D−1

T Λt−1󳇺 − ρτ(utτ)󳆣 .

Using the Knight identity in Knight (1989),

ρτ(u − v) − ρτ(v) = −vψτ(u) +󱮬
v

0
[1(u ≤ l) − 1(u ≤ 0)]dl.

Then,

ZT (v) = −∑T
t=2 v⊺D−1

T Λt−1ψτ(utτ) +∑T
t=2 ∫

v⊺D−1
T Λt−1

0 [1(utτ ≤ l) − 1(utτ ≤ 0)]dl. (A.22)
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By (A.22), ZT (v) is derivable. Then, define a new object function as VT (v) = −∂ZT (v)
∂v

. It is easy to prove

that

VT (v) =
T

󱮦
t=2

D−1
T Λt−1ψτ(utτ) −

T

󱮦
t=2

D−1
T Λt−1 󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺 . (A.23)

The next step is to prove that VT (v) satisfies Condition (i) of Proposition A.1. Since 1(u ≤ x)−1(u < 0)

is the non-decreasing function of x, then, 1(utτ ≤ λv⊺D−1
T Λt−1) − 1(utτ ≤ 0) is non-decreasing function of λ

if v⊺D−1
T Λt−1 > 0. Therefore,

v⊺D−1
T Λt−1 󳅱1(utτ ≤ λv⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺

is always non-decreasing function of λ. Similarly, 1(utτ ≤ λv⊺D−1
T Λt−1)− 1(utτ ≤ 0) is decreasing function of

λ if v⊺D−1
T Λt−1 < 0. Hence,

v⊺D−1
T Λt−1 󳅱1(utτ ≤ λv⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺

is always non-decreasing function of λ in this case. Thus,

−vVT (λv) = −v
T

󱮦
t=2

D−1
T Λt−1ψτ(utτ) +

T

󱮦
t=2

vD−1
T Λt−1 󳅱1(utτ ≤ λv⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺

is non-decreasing function of λ. As a result, for λ ≥ 1, one has

−vVT (λv) ≥ −vVT (v).

Thus, Condition (1) in Proposition A.1 is verified.

It still needs to prove that VT (v) satisfies Condition (ii) in Proposition A.1. From (A.23),

VT (v) =
T

󱮦
t=2

D−1
T Λt−1ψτ(utτ) −

T

󱮦
t=2

D−1
T Λt−1 󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺

=
T

󱮦
t=2

D−1
T Λt−1ψτ(utτ) −

T

󱮦
t=2

Et−1(ηt) −
T

󱮦
t=2
[ηt −Et−1(ηt)]

= AT −
T

󱮦
t=2

Et−1(ηt) −
T

󱮦
t=2
[ηt −Et−1(ηt)] , (A.24)

where AT = ∑T
t=2 D

−1
T Λt−1ψτ(utτ) and ηt = D−1

T Λt−1 󳅱1(utτ ≤ v⊺D−1
T Λt−1) − 1(utτ ≤ 0)󳇺. Therefore, to verify

Condition (ii) of Proposition A.1 , i.e. sup󳈒v󳈒<M 󳈒VT (v) + fuτ (0)Nv −AT 󳈒 = op(1) for 0 <M <∞, it suffices

to show ∑T
t=2 Et−1(ηt) = NT v + op(1) and ∑T

t=2 [ηt −Et−1(ηt)] = op(1). By Taylor expansion,
T

󱮦
t=2

Et−1(ηt) =
T

󱮦
t=2

D−1
T Λt−1 󳅱Futτ ,t−1(v⊺D−1

T Λt−1) − Futτ ,t−1(0)󳇺

=
T

󱮦
t=2

D−1
T Λt−1 󳇚futτ ,t−1(0)Λ⊺t−1D

−1
T v + 1

2
f 󰐞utτ ,t−1(l∗)v⊺D−1

T Λt−1Λ⊺t−1D
−1
T v󳈈

=
T

󱮦
t=2

futτ ,t−1(0)D−1
T Λt−1Λ⊺t−1D

−1
T v +

T

󱮦
t=2

D−1
T Λt−1

1
2

f 󰐞utτ ,t−1(l∗)v⊺D−1
T Λt−1Λ⊺t−1D

−1
T v,

= B1 +B2, (A.25)
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where l∗ ∈ (0, v⊺D−1
T Λt−1) if v⊺D−1

T Λt−1 > 0 while l∗ ∈ (v⊺D−1
T Λt−1, 0) if v⊺D−1

T Λt−1 < 0. So, it needs to verify

B1 = fuτ (0)NT v + op(1) and B2 = op(1). To this end, B1 is decomposed into two parts as follows.

B1 =
T

󱮦
t=2
[futτ ,t−1(0) − fuτ (0)]D−1

T Λt−1Λ⊺t−1D
−1
T v +

T

󱮦
t=2

fuτ (0)D−1
T Λt−1Λ⊺t−1D

−1
T v. (A.26)

To verify B1 = fuτ (0)NT v + op(1), it is to show that ∑T
t=2 [futτ ,t−1(0) − fuτ (0)]D−1

T Λt−1Λ⊺t−1D
−1
T v = op(1)

for any 󳈒v󳈒 <M and 0 <M <∞. By Assumption 2.2 and stationarity of futτ ,t−1(0), it is easy to see that

sup
0≤r≤1

󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋

1
T 1−δ

⌊rT ⌋
󱮦
t=2
[futτ ,t−1(0) − fuτ (0)]

󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋󳈋
= op(1)

for some δ > 0 (Xiao, 2009). Moreover, from the proof of Lemma A.4, D−1
T Λt−1Λ⊺t−1D

−1
T = Op(1) by (A.21).

Then, following the idea in Xiao (2009, p.258), one has

T

󱮦
t=2
[futτ ,t−1(0) − fuτ (0)]D−1

T Λt−1Λ⊺t−1D
−1
T (A.27)

= 1
T δ

T

󱮦
t=2

1
T 1−δ

[futτ ,t−1(0) − fuτ (0)]
√

TD−1
T Λt−1Λ⊺t−1D

−1
T

√
T

= 1
T δ 󱮬

√
TD−1

T Λ⌊rT ⌋Λ⊺⌊rT ⌋D
−1
T

√
Td

⎡⎢⎢⎢⎢⎣

⌊rT ⌋
󱮦
t=2

1
T 1−δ

(futτ ,t−1(0) − fuτ (0))
⎤⎥⎥⎥⎥⎦

= 1
T δ

op(1) = op(1).

Then, by (A.26), (A.27) and (A.14) in Lemma A.3,

B1 =
T

󱮦
t=2
[futτ ,t−1(0) − fuτ (0)]D−1

T Λt−1Λ⊺t−1D
−1
T v +

T

󱮦
t=2

fuτ (0)D−1
T Λt−1Λ⊺t−1D

−1
T v

= fuτ (0)NT v + op(1). (A.28)

To prove B2 = op(1), we first have

󳈒B2󳈒 = 󳈗
T

󱮦
t=2

D−1
T Λt−1

1
2

f 󰐞utτ ,t−1(l∗)v⊺D−1
T Λt−1Λ⊺t−1D

−1
T v󳈗

≤ 1√
T

1
2

sup
x∈R
󳈌f 󰐞utτ ,t−1(x)󳈌

T

󱮦
t=2

√
T 󳈒D−1

T Λt−1󳈒v⊺D−1
T Λt−1Λ⊺t−1D

−1
T v.

By Part (2) of Assumption 2.2, supx∈R 󳈌f 󰐞utτ ,t−1(x)󳈌 = Op(1), and by Lemma A.4,

T

󱮦
t=2

√
T 󳈒D−1

T Λt−1󳈒v⊺D−1
T Λt−1Λ⊺t−1D

−1
T v = Op(1)

for any 󳈒v󳈒 <M , 0 <M <∞. Then, 󳈒B2󳈒 ≤ 1√
T

Op(1)Op(1) = op(1). Thus,

B2 = op(1). (A.29)

It yields by combining the results in (A.25), (A.28) and (A.29) that

∑T
t=2 Et−1(ηt) = fuτ (0)NT v + op(1). (A.30)
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Next, it is to verify the fact that ∑T
t=2 [ηt −Et−1(ηt)] = op(1). Note that

T

󱮦
t=2
[ηt −Et−1(ηt)] =

⎛
⎜
⎝

∑T
t=2 [η1t −Et−1(η1t)]
∑T

t=2 [η2t −Et−1(η2t)]
∑T

t=2 [η3t −Et−1(η3t)]

⎞
⎟
⎠

,

where

η1t = 1√
T
󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺 ,

η2t = x∗t−1
T
󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺 ,

and

η3t =
zt−1

T
󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺 .

To prove ∑T
t=2 [ηt −Et−1(ηt)] = op(1), it suffices to prove that ∑T

t=2 [ηit −Et−1(ηit)] = op(1), i = 1, 2, and 3.

We take the proof for η1t as an illustration, and skip the details for η2t and η3t. For some 2 ≤ t ≤ T satisfying

v⊺D−1
T Λt−1 > 0, 1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0) = 1(0 < utτ ≤ v⊺D−1
T Λt−1) ∈ [0, 1], one can show that

T ⋅Et−1(η2
1t) = Et−1 󳅱1(utτ ≤ v⊺D−1

T Λt−1) − 1(utτ ≤ 0)󳇺2 (A.31)

≤ Et−1 󳅱1(utτ ≤ v⊺D−1
T Λt−1) − 1(utτ ≤ 0)󳇺

= Pt−1(utτ ≤ v⊺D−1
T Λt−1) − Pt−1(utτ ≤ 0)

= Futτ (v⊺D−1
T Λt−1󳈌Ft−1) − Futτ (0󳈌Ft−1)

= futτ ,t−1(lt)
lt∈(0,v⊺D−1

T
Λt−1)

v⊺D−1
T Λt−1

≤ sup
x∈R
󳈌futτ ,t−1(x)󳈌v⊺D−1

T Λt−1

= sup
x∈R
󳈌futτ ,t−1(x)󳈌 ⋅ 󳈌v⊺D−1

T Λt−1󳈌.

The last step is holds by Taylor expansion. On the other hand, for any 2 ≤ t ≤ T satisfying v⊺D−1
T Λt−1 ≤ 0,

1(utτ ≤ 0) − 1(utτ ≤ v⊺D−1
T Λt−1) = 1(v⊺D−1

T Λt−1 < utτ ≤ 0) ∈ [0, 1], one can obtain the following:

T ⋅Et−1(η2
1t) = Et−1 󳅱−1(utτ ≤ v⊺D−1

T Λt−1) + 1(utτ ≤ 0)󳇺2 (A.32)

≤ Et−1 󳅱−1(utτ ≤ v⊺D−1
T Λt−1) + 1(utτ ≤ 0)󳇺

= Pt−1(utτ ≤ 0) − Pt−1(utτ ≤ v⊺D−1
T Λt−1)

= Futτ (0󳈌Ft−1) − Futτ (v⊺D−1
T Λt−1󳈌Ft−1)

= − futτ ,t−1(lt)
lt∈(v⊺D−1

T
Λt−1,0)

v⊺D−1
T Λt−1

≤ − sup
x∈R
󳈌futτ ,t−1(x)󳈌v⊺D−1

T Λt−1󳈌

= sup
x∈R
󳈌futτ ,t−1(x)󳈌 ⋅ 󳈌v⊺D−1

T Λt−1󳈌.

43



Then, it follows by (A.31) and (A.32) that

Et−1(η2
1t) ≤

1
T

sup
x∈R
󳈌futτ ,t−1(x)󳈌 ⋅ 󳈌v⊺D−1

T Λt−1󳈌.

Therefore,

T

󱮦
t=2

Et−1(η2
1t) ≤

1
T

T

󱮦
t=2

sup
x∈R
󳈌futτ ,t−1(x)󳈌 ⋅ 󳈌v⊺D−1

T Λt−1󳈌 ≤ sup
x∈R
󳈌futτ ,t−1(x)󳈌

1
T

T

󱮦
t=2
󳈌v⊺D−1

T Λt−1󳈌,

which implies, together with Part (2) of Assumption 2.2, that sup
x∈R
󳈌f 󰐞utτ ,t−1(x)󳈌 = Op(1). Similarly,

1√
T

T

󱮦
t=2
󳈌v⊺D−1

T Λt−1󳈌 =
1
T

T

󱮦
t=2
󳈐v1 + v2

x∗t−1√
T
+ v3

zt−1√
T
󳈐

= 󱮬 󳈌v1 + v2[Jc
x(r) − π̃1B(r)] + v3π̃1B(r)󳈌dr + op(1),

where v = (v1, v2, v3)⊺. Then, for any 󳈒v󳈒 <M , 0 <M <∞,

1√
T

T

󱮦
t=2
󳈌v⊺D−1

T Λt−1󳈌 = Op(1),

so that
T

󱮦
t=2

Et−1(η2
1t) ≤ Op(1)Op(1󳆋

√
T ) = op(1).

As a result,

T

󱮦
t=2

Et−1(η2
1t) = op(1). (A.33)

By the same token, one can obtain that

T

󱮦
t=2
[Et−1(η1t)]2 = op(1). (A.34)

By the fact that [η1t −Et−1(η1t)] is MDS and (A.33) and (A.34), it is easy calculate that

V ar 󳆚
T

󱮦
t=2
[η1t −Et−1(η1t)]󳆞 =

T

󱮦
t=2

V ar [η1t −Et−1(η1t)]

=
T

󱮦
t=2

E [η1t −Et−1(η1t)]2 = E 󳆢
T

󱮦
t=2

Et−1 [η1t −Et−1(η1t)]2󳆧

= E 󳆢
T

󱮦
t=2

Et−1(η2
1t) −

T

󱮦
t=2
[Et−1(η1t)]2󳆧 = E(op(1) − op(1)) = op(1).

Thus,
T

󱮦
t=2
[η1t −Et−1(η1t)] = op(1).

Similarly, one can show that ∑T
t=2 [η2t −Et−1(η2t)] = op(1) and ∑T

t=2 [η3t −Et−1(η3t)] = op(1). Therefore,

T

󱮦
t=2
[ηt −Et−1(ηt)] = op(1). (A.35)
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By (A.24), (A.30) and (A.35), for any 󳈒v󳈒 <M , 0 <M <∞,

VT (v) = AT − fuτ (0)NT v + op(1).

By Lemma A.3, NT = N + op(1). Thus,

VT (v) = AT − fuτ (0)Nv + op(1).

Therefore, for 0 <M <∞,

sup
󳈒v󳈒<M

󳈒VT (v) + fuτ (0)Nv −AT 󳈒 = op(1). (A.36)

By Lemma A.3, it is straightforward to show that

󳈒AT 󳈒 = Op(1). (A.37)

Since θ̂a
τ is the minimizer of the convex function ZT (v) by the loss function, then,

󳈒VT (θ̂a
τ )󳈒 = 󳈗−

∂ZT (v̂T )
∂v

󳈗 = 󳈒0󳈒 = 0 = op(1). (A.38)

By (A.36), (A.37) and (A.38), we conclude that Condition (ii) of Proposition A.1 is verified. As so far, all

conditions of Proposition A.1 are verified. Thus,

θ̂a
τ = fuτ (0)−1N−1AT + op(1).

Now, by Lemma A.3, NT = N + op(1) and AT = Op(1). Then, we have

θ̂a
τ = fuτ (0)−1N−1

T D−1
T

T

󱮦
t=2

Λt−1ψτ(utτ) + op(1).

Theorem 3.1 is proved. ∎

To prove Theorem 3.2, we need to establish the following lemma.

Lemma A.5.

(W1 +W2)T (β̂w
τ − βτ) = fuτ (0)−1

T

󱮦
t=2
󳆚zt−1√

T
− 1

T

T

󱮦
t=2

zt−1√
T
󳆞 ψτ(utτ)√

T
+ op(1).

Proof of Lemma A.5. By the Bahadur representation in Theorem 3.1,

⎛
⎜⎜
⎝

1 1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 3󳆋2 ∑T
t=2 zt−1

1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 2 ∑T
t=2(x∗t−1)2 1

T 2 ∑T
t=2 zt−1x∗t−1

1
T 3󳆋2 ∑T

t=2 zt−1
1

T 2 ∑T
t=2 x∗t−1zt−1

1
T 2 ∑T

t=2 z2
t−1

⎞
⎟⎟
⎠

⎛
⎜
⎝

√
T (µ̂τ − µτ)

T (β̂τ − βτ)
T (γ̂τ − βτ)

⎞
⎟
⎠

= fuτ (0)−1
⎛
⎜⎜⎜
⎝

∑T
t=2

ψτ (utτ )√
T

∑T
t=2

x∗t−1√
T

ψτ (utτ )√
T

∑T
t=2

zt−1√
T

ψτ (utτ )√
T

⎞
⎟⎟⎟
⎠
+ op(1). (A.39)
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Define

S ≡
⎛
⎜
⎝

1 0 0
0 1 0

− 1
T 3󳆋2 ∑T

t=2 zt−1 0 1

⎞
⎟
⎠

.

Pre-multiply S on both sides of (A.39), then,

S

⎛
⎜⎜
⎝

1 1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 3󳆋2 ∑T
t=2 zt−1

1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 2 ∑T
t=2(x∗t−1)2 1

T 2 ∑T
t=2 zt−1x∗t−1

1
T 3󳆋2 ∑T

t=2 zt−1
1

T 2 ∑T
t=2 x∗t−1zt−1

1
T 2 ∑T

t=2 z2
t−1

⎞
⎟⎟
⎠

⎛
⎜
⎝

√
T (µ̂τ − µτ)

T (β̂τ − βτ)
T (γ̂τ − βτ)

⎞
⎟
⎠

= fuτ (0)−1S

⎛
⎜⎜⎜
⎝

∑T
t=2

ψτ (utτ )√
T

∑T
t=2

x∗t−1√
T

ψτ (utτ )√
T

∑T
t=2

zt−1√
T

ψτ (utτ )√
T

⎞
⎟⎟⎟
⎠
+ S ⋅ op(1)

= fuτ (0)−1S

⎛
⎜⎜⎜
⎝

∑T
t=2

ψτ (utτ )√
T

∑T
t=2

x∗t−1√
T

ψτ (utτ )√
T

∑T
t=2

zt−1√
T

ψτ (utτ )√
T

⎞
⎟⎟⎟
⎠
+ op(1).

The last step holds as S = Op(1). Then, we have,

⎛
⎜⎜
⎝

1 1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 3󳆋2 ∑T
t=2 zt−1

1
T 3󳆋2 ∑T

t=2 x∗t−1
1

T 2 ∑T
t=2(x∗t−1)2 1

T 2 ∑T
t=2 zt−1x∗t−1

0 1
T 2 ∑T

t=2 x∗t−1zt−1 − 1
T 3󳆋2 ∑T

t=2 zt−1
1

T 3󳆋2 ∑T
t=2 x∗t−1

1
T 2 ∑T

t=2 z2
t−1 − 󳅱 1

T 3󳆋2 ∑T
t=2 zt−1󳇺

2

⎞
⎟⎟
⎠

⎛
⎜
⎝

√
T (µ̂τ − µτ)

T (β̂τ − βτ)
T (γ̂τ − βτ)

⎞
⎟
⎠
= fuτ (0)−1

⎛
⎜⎜⎜
⎝

∑T
t=2

ψτ (utτ )√
T

∑T
t=2

x∗t−1√
T

ψτ (utτ )√
T

∑T
t=2 󳆗 zt−1√

T
− 1

T 3󳆋2 ∑T
t=2 zt−1󳆜 ψτ (utτ )√

T

⎞
⎟⎟⎟
⎠
+ op(1).

The third row in the above equation is

󳆚 1
T 2

T

󱮦
t=2

x∗t−1zt−1 −
1

T 3󳆋2

T

󱮦
t=2

zt−1
1

T 3󳆋2

T

󱮦
t=2

x∗t−1󳆞T (β̂τ − βτ)

+
⎡⎢⎢⎢⎢⎣

1
T 2

T

󱮦
t=2

z2
t−1 − 󳆚

1
T 3󳆋2

T

󱮦
t=2

zt−1󳆞
2⎤⎥⎥⎥⎥⎦

T (γ̂τ − βτ)

= fuτ (0)−1
T

󱮦
t=2
󳆚zt−1√

T
− 1

T 3󳆋2

T

󱮦
t=2

zt−1󳆞
ψτ(utτ)√

T
+ op(1).

Thus,

(W1 +W2)T (β̂w
τ − βτ) = fuτ (0)−1

T

󱮦
t=2
󳆚zt−1√

T
− 1

T

T

󱮦
t=2

zt−1√
T
󳆞 ψτ(utτ)√

T
+ op(1).

This completes the proof of the lemma. ∎

Proof of Theorem 3.2. For simplicity, we only offer the proof for the NI1, I1 and LE cases, because the

proof for the case I0 case is standard. For the NI1, I1 and LE cases, ζ⌊rT ⌋󳆋
√

T ⇒ B(r), π̂1
d󲿋→ π̃1 and

xt−1󳆋
󳆻

1 + x2
t−1 = Op(1), one has,

z⌊rT ⌋󳆋
√

T ⇒ π̃1B(r). (A.40)
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Recall that x⌊rT ⌋󳆋
√

T ⇒ Jc
x(r), ∑

⌊rT ⌋
t=2 ψτ(utτ)󳆋

√
T ⇒ Bψτ (r), and

W1 +W2
d󲿋→ π̃1 󱮬 B̄(r)J̄c

x(r)dr, (A.41)

where B(r) is the standard Brownian motion, B̄(r) = B(r) − ∫ B(r)dr, J̄c
x(r) = Jc

x(r) − ∫ Jc
x(r)dr, and

π̃1 = ∫ B̄(r)J̄c
x(r)dr󳆋∫ B̄(r)2dr. By the continuous mapping theorem, one obtains that

(W1 +W2)T (β̂w
τ − βτ) = fuτ (0)−1

T

󱮦
t=2
󳆚zt−1√

T
− 1

T

T

󱮦
t=2

zt−1√
T
󳆞 ψτ(utτ)√

T
+ op(1)

d󲿋→ fuτ (0)−1π̃1 󱮬 󳇚B(r) − 󱮬 B(r)dr󳈈
󳃞

dBψτ (r) (A.42)

Combining the results of (A.41) and (A.42), and using the independence between ζt and utτ , one can show

that

T (β̂w
τ − βτ)

d󲿋→ fuτ (0)−1 MN 󳇥0, τ(1 − τ) ∫ B̄(r)2dr

[∫ B̄(r)J̄c
x(r)dr]2

󳈓 .

This ends the proof of the theorem. ∎

Proof of Theorem 3.3. For simplicity, we only offer the proof for NI1, I1 and LE case since the proof for

the I0 case is standard. For NI1, I1 and LE case, z⌊rT ⌋󳆋
√

T ⇒ π̃1B(r) from (A.40). It follows that

W2 =
T

󱮦
t=2

z2
t−1󳆋T 2 − 󳆚

T

󱮦
t=2

zt−1󳆞
2

󳆋T 3 =
T

󱮦
t=2
󳆚zt−1 −

1
T

T

󱮦
t=2

zt−1󳆞
2

󳆋T 2 d󲿋→ 󱮬 B̄(r)2dr.

By the continuous mapping theorem and Slutsky Theorem,

tw = f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)T (β̂w
τ − βτ)

d󲿋→ fuτ (0) 󳇚τ(1 − τ)󱮬 B̄(r)2dr󳈈
−1󳆋2

fuτ (0)−1 MN󳆘0, τ(1 − τ)󱮬 B̄(r)2dr󳆝 d= N (0, 1) .

Moreover, under the local alternative hypothesis Ha ∶ βτ = bτ

T
, it follows that

f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)Tβτ

= f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)bτ
d󲿋→ bτ

fuτ (0)󳆻
τ(1 − τ)

π̃1 ∫ B̄(r)Jc
x(r)dr

󳆼
π̃2

1 ∫ B̄(r)2dr

= bτ
fuτ (0)󳆻
τ(1 − τ)

π̃1 ∫ B̄(r)Jc
x(r)dr

󳈌π̃1󳈌
󳆼
∫ B̄(r)2dr

= bτ
fuτ (0)󳆻
τ(1 − τ)

sign(π̃1) ∫ B̄(r)Jc
x(r)dr

󳆼
∫ B̄(r)2dr

= bτ
fuτ (0)󳆻
τ(1 − τ)

sign(π̃1) sign(π̃1) 󳈍∫ B̄(r)Jc
x(r)dr󳈍

󳆼
∫ B̄(r)2dr

= bτ
fuτ (0)󳆻
τ(1 − τ)

sign(π̃1)2 󳈍∫ B̄(r)Jc
x(r)dr󳈍

󳆼
∫ B̄(r)2dr

= bτ 󳈌πc󳈌󳆋στ .
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Therefore,

tw = f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)T β̂w
τ

= f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)T (β̂w
τ − βτ) + f̂uτ (0) [W2τ(1 − τ)]−1󳆋2 (W1 +W2)Tβτ

d󲿋→ bτ 󳈌πc󳈌󳆋στ +B(1).

This concludes the proof the theorem. ∎

Proof of Theorem 4.1. Similar to the proof of the Bahadur representation theorem for the univariate case,

one can establish easily the Bahadur representation for multivariate quantile regressions. To save a space,

the details are omitted. Now,

DT (β̂w
τ −βτ)

= fuτ (0)−1 󳇥(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞X⊺
t−1(DT )−1󳈓

−1

(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞ψτ(utτ) + op(1).

(A.43)

Note that for all predictors xi,t, i = 1, 2,

⎧⎪⎪⎨⎪⎪⎩

zi,⌊rT ⌋√
T
= π̂1,iζ1,t−1 [1 + op(1)] , if xi,t is NI1, I1 and LE;

zi,t = xi,t󳆋
󳆼

1 + x2
i,t + op(1), if xi,t is I0.

For Case 1, K1 = 0, i.e., all predictors are stationary, then,

zt = (z1,t, z2,t)⊺ = 󳆘x1,t󳆋
󳆼

1 + x2
1,t, x2,t󳆋

󳆼
1 + x2

2,t󳆝
⊺
+ op(1),

and the weighting matrix DT = diag(
√

T ,
√

T ). By the central limit theorem, it is easy to show that

(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞ψτ(utτ)
d󲿋→ N (0, τ(1 − τ)V2) , (A.44)

where

V2 = var 󳇥 1√
T

T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞󳈓

=

⎛
⎜⎜⎜⎜
⎝

E 󳆘 x2
1,t

1+x2
1,t
󳆝 −E 󳆚 x1,t󳆼

1+x2
1,t

󳆞
2

E 󳆚 x1,t󳆼
1+x2

1,t

x2,t󳆻
1+x2

2t

󳆞 −E 󳆚 x1,t󳆼
1+x2

1,t

󳆞E 󳆚 x2,t󳆼
1+x2

2,t

󳆞

E 󳆚 x1,t󳆼
1+x2

1,t

x2,t󳆻
1+x2

2t

󳆞 −E 󳆚 x1,t󳆼
1+x2

1,t

󳆞E 󳆚 x2,t󳆼
1+x2

2,t

󳆞 E 󳆘 x2
2,t

1+x2
2,t
󳆝 −E 󳆚 x2,t󳆼

1+x2
2,t

󳆞
2

⎞
⎟⎟⎟⎟
⎠

.

Combining (A.43) and (A.44), together with the continuous mapping theorem, leads to

DT (β̂w
τ −βτ)

d󲿋→ fuτ (0)−1V −1
1 N (0, τ(1 − τ)V2) ,
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where

V1 = plim
T→∞
(DT )−1

T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞X⊺
t−1(DT )−1

= plim
T→∞
(DT )−1

T

󱮦
t=2

Zt−1 󳆚Xt−1 −
1
T

T

󱮦
t=2

Xt−1󳆞
⊺

(DT )−1

= plim
T→∞

1
T

T

󱮦
t=2
󳆘x1,t−1󳆋

󳆼
1 + x2

1,t−1, x2,t−1󳆋
󳆼

1 + x2
2,t−1󳆝

⊺
󳆚x1,t−1 −

1
T

T

󱮦
t=2

x1,t−1, x2,t−1 −
1
T

T

󱮦
t=2

x2,t−1󳆞

=

⎛
⎜⎜⎜⎜
⎝

E 󳆚 x2
1,t󳆼

1+x2
1,t

󳆞 E 󳆚 x1,tx2,t󳆼
1+x2

1,t

󳆞

E 󳆚 x1,tx2,t󳆼
1+x2

2,t

󳆞 E 󳆚 x2
2,t󳆼

1+x2
2,t

󳆞

⎞
⎟⎟⎟⎟
⎠

.

For Case 2, K1 = 1, i.e., x1t is nonstationary while x2t is stationary, then,

√
T (DT )−1

Zt = (z1,t󳆋
√

T , z2,t)⊺ = 󳆘π̂1,1ζ1,t−1󳆋
√

T , x2,t−1󳆋
󳆼

1 + x2
2,t−1󳆝

⊺
+ op(1),

and the weighting matrix DT = diag(T,
√

T ). Define

h̵t−1 = (h̵1,t−1, h̵2,t−1)⊺

= (DT )−1
⎡⎢⎢⎢⎢⎢⎣

π̂1,1ζ1,t−1 −
√

T π̃1,1 ∫ B1(r)dr

π̃1,1

󳆼
∫ B̄1(r)2dr

,
x2,t−1󳆼
1 + x2

2,t−1

−E
⎛
⎜
⎝

x2,t−1󳆼
1 + x2

2,t−1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

⊺

.

Thus,

󳇚diag 󳆘π̃1,1

󳆼
∫ B̄1(r)2dr, 1󳆝󳈈

−1
(DT )−1∑T

t=2 󳆖Zt−1 − 1
T ∑

T
t=2 Zt−1󳆛ψτ(utτ)

= ∑T
t=2 h̵t−1ψτ(utτ) + op(1). (A.45)

Next, it is to verify that the Lindeberg condition for h̵t−1ψτ(utτ) holds true. That is, for any ε̃ > 0,

T

󱮦
t=2

E 󳇇󳈒h̵t−1ψτ(utτ)󳈒2 1 (󳈒h̵t−1ψτ(utτ)󳈒 > ε̃)󳈎Ft−1󳇾
p󲿋→ 0. (A.46)

Since 󳈌ψτ(utτ)󳈌 = 󳈌τ−1(utτ < 0)󳈌 ≤ τ+1(utτ < 0) ≤ 2, then, 󳈒h̵t−1󳈒 > ε̃󳆋󳈌ψτ(utτ)󳈌, which implies that 󳈒h̵t−1󳈒 > ε̃󳆋2,

so that

1 (󳈒h̵t−1ψτ(utτ)󳈒 > ε̃) = 1 (󳈒h̵t−1󳈒 > ε̃󳆋󳈌ψτ(utτ)󳈌) ≤ 1 (󳈒h̵t−1󳈒 > ε̃󳆋2) . (A.47)

Since 󳈌h̵1,t−1󳈌 ≤ 2󳆋
√

T , then, 󳈒h̵t−1󳈒 > ε̃󳆋2, which implies that h̵2
1,t−1 > ε̃2󳆋4 − 4󳆋T . Then, by (A.47), one has

1 (󳈒h̵t−1ψτ(utτ)󳈒 > ε̃) ≤ 1 (󳈒h̵t−1󳈒 > ε̃󳆋2) ≤ 1 󳆖h̵2
1,t−1 > ε̃2󳆋4 − 4󳆋T󳆛 . (A.48)

49



It follows by the facts that 󳈌ψτ(utτ)󳈌 ≤ 2 and 󳈌h̵1,t−1󳈌 ≤ 2󳆋
√

T and (A.48) that

T

󱮦
t=2

E 󳇇󳈒h̵t−1ψτ(utτ)󳈒2 1 (󳈒h̵t−1ψτ(utτ)󳈒 > ε̃)󳈎Ft−1󳇾

≤
T

󱮦
t=2

4E 󳇇󳈒h̵t−1󳈒2 1 󳆖h̵2
1,t−1 > ε̃2󳆋4 − 4󳆋T󳆛󳈎Ft−1󳇾

≤ 4
T

󱮦
t=2

E 󳅱󳆖h̵2
1,t−1 + 4󳆋T󳆛 1 󳆖h̵2

1,t−1 > ε̃2󳆋4 − 4󳆋T󳆛󳈍Ft−1󳇺

= 4
T

󱮦
t=2

E 󳅱 h̵2
1,t−1 1 󳆖h̵2

1,t−1 > ε̃2󳆋4 − 4󳆋T󳆛󳈍Ft−1󳇺 +
16
T

T

󱮦
t=2

E 󳅱1 󳆖h̵2
1,t−1 > ε̃2󳆋4 − 4󳆋T󳆛󳈍Ft−1󳇺

= 4
T

󱮦
t=2

E 󳇇 h̵2
1,t−1 1󳆗󳈌h̵1,t−1󳈌 >

󳆻
ε̃2󳆋4 − 4󳆋T󳆜󳈎Ft−1󳇾 +

16
T

T

󱮦
t=2

E 󳇇1󳆗󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆜󳈎Ft−1󳇾

= 4
T

󱮦
t=2

E 󳇇h̵2
1,t−1 1󳆗󳈌h̵1,t−1󳈌 >

󳆻
ε̃2󳆋4 − 4󳆋T󳆜󳇾 + 16

T

T

󱮦
t=2

E 󳇇1󳆗󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆜󳇾 (A.49)

for T > 4󳆋ε̃. Since ζ1,t−1 and Ft−1 are independent, then, h̵1,t−1 and Ft−1 are independent too, so that the

last step in (A.49) holds. By Chebychev’s Inequality,

T

󱮦
t=2

E 󳇇1󳆗󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆜󳇾

=
T

󱮦
t=2

P 󳆗󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆜

≤
T

󱮦
t=2

E 󳆖h̵2
1,t−1󳆛 󳆋 󳆖ε̃2󳆋4 − 4󳆋T󳆛

= E 󳇥 1
T 2

T

󱮦
t=2
󳆘π̂1,1ζ1,t−1 −

√
T π̃1,1 󱮬 B1(r)dr󳆝

2
󳆋 󳆘π̃2

1,1 󱮬 B̄1(r)2dr󳆝󳈓 󳆋 󳆖ε̃2󳆋4 − 4󳆋T󳆛

= E 󳇥󱮬 󳆘π̃1,1B1(r) − π̃1,1 󱮬 B1(r)dr󳆝
2

dr󳆋 󳆘π̃2
1,1 󱮬 B̄1(r)2dr󳆝 + op(1)󳈓 󳆋 󳆖ε̃2󳆋4 − 4󳆋T󳆛

= E 󳇚󱮬 B̄1(r)2dr󳆋󱮬 B̄1(r)2dr + op(1)󳈈 󳆋 󳆖ε̃2󳆋4 − 4󳆋T󳆛

= 4󳆋ε̃2 + o(1), (A.50)

and

T

󱮦
t=2

E 󳇇h̵2
1,t−1 1󳆗󳈌h̵1,t−1󳈌 >

󳆻
ε̃2󳆋4 − 4󳆋T󳆜󳇾

= E 󳇥
T

󱮦
t=2

h̵2
1,t−1 1󳆗󳈌h̵1,t−1󳈌 >

󳆻
ε̃2󳆋4 − 4󳆋T󳆜󳈓

≤ E 󳇥1󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝
T

󱮦
t=2

h̵2
1,t−1󳈓 (A.51)

= E 󳇚1󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝 (1 + op(1))󳈈

= E 󳇚1󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝󳈈 + o(1) = P 󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝 + o(1), (A.52)

where the inequality in (A.51) holds since 󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T , which implies that max2≤t≤T 󳈌h̵1,t−1󳈌 >
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󳆻
ε̃2󳆋4 − 4󳆋T . Now,

P 󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝

= P 󳇥max
2≤t≤T

󳈏π̂1,1ζ1,t−1 −
√

T π̃1,1 󱮬 B1(r)dr󳈏 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓

≤ P 󳇥󳆘󳈌π̂1,1󳈌 max
2≤t≤T

󳈌ζ1,t−1󳈌 + 󳈏
√

T 󳈌π̃1,1󳈌 󱮬 B1(r)dr󳈏󳆝 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓

≤ P 󳇥󳈏
√

T 󳈌π̃1,1󳈌 󱮬 B1(r)dr󳈏 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓

+ P 󳇥󳈌π̂1,1󳈌 max
2≤t≤T

󳈌ζ1,t−1󳈌 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓 .

(A.53)

Then, it is straightforward to show that since 󳈌π̃1,1 ∫ B1(r)dr󳈌 󳆋 󳆘󳈌π̃1,1󳈌
󳆼
∫ B̄1(r)2dr󳆝 = 󳈌∫ B1(r)dr󳈌 󳆋

󳆼
∫ B̄1(r)2dr =

Op(1),

P 󳇥󳈏
√

T π̃1,1 󱮬 B1(r)dr󳈏 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓

= P 󳇥󳈏󱮬 B1(r)dr󳈏 󳆋 󳆚
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
T ε̃2󳆋4 − 4󳈓 → 0, (A.54)

and

P 󳇥󳈌π̂1,1󳈌 max
2≤t≤T

󳈌ζ1,t−1󳈌 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓

≤ P 󳇚max
2≤t≤T

󳈌ζ1,t−1󳈌 > T 0.75
󳆻

ε̃2󳆋4 − 4󳆋T 󳈈

+ P 󳇥󳈌π̂1,1󳈌󳆋 󳆚󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 > T 0.25

󳆻
ε̃2󳆋4 − 4󳆋T󳈓 . (A.55)

Then,

P 󳇥󳈌π̂1,1󳈌󳆋 󳆚󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 > T 0.25

󳆻
ε̃2󳆋4 − 4󳆋T󳈓 → 0 (A.56)

since 󳈌π̂1,1󳈌󳆋 󳆘󳈌π̃1,1󳈌
󳆼
∫ B̄1(r)2dr󳆝 = 󳆘

󳆼
∫ B̄1(r)2dr󳆝

−1
+ op(1) = Op(1). Thus, it follows by the fact that

ζi,t−1 = ∑t−1
s=1 ςi,s and (ς1,s)t−1

t=1 is independent random variables and the generalized Kolmogorov inequality

(see Section 6.4 in Lin and Bai (2010)) that

P 󳇚max
2≤t≤T

󳈌ζ1,t−1󳈌 > T 0.75
󳆻

ε̃2󳆋4 − 4󳆋T 󳈈 ≤ E 󳆖ζ2
1,T−1󳆛 󳆋 󳇇T 0.75

󳆻
ε̃2󳆋4 − 4󳆋T 󳇾

2
= (T − 1)󳆋 󳅱T 1.5(ε̃2󳆋4 − 4󳆋T )󳇺 → 0.

(A.57)

It is easy to show by (A.55), (A.56) and (A.57) that

P 󳇥󳈌π̂1,1󳈌 max
2≤t≤T

󳈌ζ1,t−1󳈌 󳆋 󳆚T 󳈌π̃1,1󳈌
󳆽
󱮬 B̄1(r)2dr󳆞 >

󳆻
ε̃2󳆋4 − 4󳆋T󳈓 → 0. (A.58)
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Clearly, an application of (A.53), (A.54) and (A.58) implies that

P 󳆘max
2≤t≤T

󳈌h̵1,t−1󳈌 >
󳆻

ε̃2󳆋4 − 4󳆋T󳆝 → 0. (A.59)

Therefore, a combination of (A.52) and (A.59) leads to

T

󱮦
t=2

E 󳇇h̵2
1,t−1 1󳆗󳈌h̵1,t−1󳈌 >

󳆻
ε̃2󳆋4 − 4󳆋T󳆜󳇾 → 0. (A.60)

Hence, by an application of (A.49), (A.50) and (A.60), the following statement holds true. For any ε̃ > 0,

T

󱮦
t=2

E 󳇇󳈒h̵t−1ψτ(utτ)󳈒2 1 (󳈒h̵t−1ψτ(utτ)󳈒 > ε̃)󳈎Ft−1󳇾
p󲿋→ 0. (A.61)

Thus, the Lindeberg condition for h̵t−1ψτ(utτ) is verified.

Next, we show the asymptotic variance of ∑T
t=2 h̵t−1ψτ(utτ). First, since h̵1,t−1 is independent of Ft−1

and ψτ(utτ), then,

T

󱮦
t=2

E 󳅱h̵2
1,t−1ψτ(utτ)2󳈌Ft−1󳇺 =

T

󱮦
t=2

E 󳅱h̵2
1,t−1󳈌Ft−1󳇺E 󳅱ψτ(utτ)2󳈌Ft−1󳇺

= (1 − τ)τ
T

󱮦
t=2

E 󳅱h̵2
1,t−1󳈌Ft−1󳇺

= (1 − τ)τ
T

󱮦
t=2

E 󳆖h̵2
1,t−1󳆛

= (1 − τ)τE 󳆚
T

󱮦
t=2

h̵2
1,t−1󳆞 = (1 − τ)τE (1 + op(1))

p󲿋→ (1 − τ)τ, (A.62)

so that

T

󱮦
t=2

E 󳅱h̵2
2,t−1ψτ(utτ)2󳈌Ft−1󳇺 =

T

󱮦
t=2

h̵2
2,t−1E 󳅱ψτ(utτ)2󳈌Ft−1󳇺

= (1 − τ)τ
T

󱮦
t=2

h̵2
2,t−1

p󲿋→ (1 − τ)τ Var 󳆖x2,t−1󳆋
󳆻

1 + x2,t−1󳆛 . (A.63)

Furthermore,

T

󱮦
t=2

E 󳅱h̵1,t−1h̵2,t−1ψτ(utτ)2󳈌Ft−1󳇺 =
T

󱮦
t=2

h̵2,t−1E [h̵1,t−1󳈌Ft−1]E 󳅱ψτ(utτ)2󳈌Ft−1󳇺

= (1 − τ)τ
T

󱮦
t=2

h̵2,t−1E (h̵1,t−1)

= (1 − τ)τ
T

󱮦
t=2

h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1] + (1 − τ)τ
T

󱮦
t=2

h̵2,t−1h̵1,t−1. (A.64)
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By the independence between h1,t−1 and (h2,t−1,Ft−2)⊺, we have

E {h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1] 󳈌Ft−2} = E (h̵2,t−1󳈌Ft−2)E {[E (h̵1,t−1) − h̵1,t−1] 󳈌Ft−2}

= E (h̵2,t−1󳈌Ft−2)E {[E (h̵1,t−1) − h̵1,t−1] 󳈌Ft−2}

= E (h̵2,t−1󳈌Ft−2)E {[E (h̵1,t−1) − h̵1,t−1]}

= E (h̵2,t−1󳈌Ft−2) [E (h̵1,t−1) −E (h̵1,t−1)]

= E (h̵2,t−1󳈌Ft−2)0 = 0.

That is, {h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]}T
t=2 is martingale difference sequence. Therefore,

V ar󳆢
T

󱮦
t=2

h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]󳆧

=
T

󱮦
t=2

V ar {h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]}

=
T

󱮦
t=2

E {h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]}2

=
T

󱮦
t=2

E 󳆖h̵2
2,t−1󳆛E [E (h̵1,t−1) − h̵1,t−1]2

= 1
T

E 󳆖T h̵2
2,t−1󳆛

T

󱮦
t=2

E [E (h̵1,t−1) − h̵1,t−1]2

= 1
T

V ar 󳆘x2,t−1󳆋
󳆼

1 + x2
2,t−1󳆝󳇚󱮬 E [E (H1(r)) −H1(r)]2 dr + op(1)󳈈

= op(1),

where H1(r) = (B1(r) − ∫ B1(r)dr)󳆘
󳆼
∫ B̄1(r)2dr󳆝

−1
. Therefore

T

󱮦
t=2

h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]
p󲿋→ E 󳆢

T

󱮦
t=2

h̵2,t−1 [E (h̵1,t−1) − h̵1,t−1]󳆧 = 0. (A.65)
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Moreover,

T

󱮦
t=2

h̵2,t−1h̵1,t−1

= 1
T

T

󱮦
t=2

h̵2,t−1 󳆘π̂1,1ζ1,t−1 −
√

T π̃1,1 󱮬 B1(r)dr󳆝󳆚π̃1,1

󳆽
󱮬 B̄1(r)2dr󳆞

−1

= 1
T

T

󱮦
t=2

h̵2,t−1 󳆘ζ1,t−1 −
√

T 󱮬 B1(r)dr󳆝󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2
+ op(1)

= 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2 1

T

T

󱮦
t=2

h̵2,t−1ζ1,t−1 + 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2

󱮬 B1(r)dr
1
T

T

󱮦
t=2

√
T h̵2,t−1 + op(1)

= 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2 1

T

T

󱮦
t=2

h̵2,t−1ζ1,t−1 + 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2

󱮬 B1(r)dr E 󳆗
√

T h̵2,t−1󳆜 + op(1)

= 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2 1

T

T

󱮦
t=2

h̵2,t−1ζ1,t−1 + 0 + op(1)

= 󳆘󱮬 B̄1(r)2dr󳆝
−1󳆋2 1

T

T

󱮦
t=2

h̵2,t−1ζ1,t−1 + op(1). (A.66)

Due to the equation E (h̵2,t−1ζ1,t−1󳈌Ft−2) = E (h̵2,t−1󳈌Ft−2)E (ζ1,t−1󳈌Ft−2) = E (h̵2,t−1󳈌Ft−2)E (ζ1,t−1) = E (h̵2,t−1󳈌Ft−2)0 =

0, h̵2,t−1ζ1,t−1 is the martingale difference sequence. So

V ar 󳆚
T

󱮦
t=2

h̵2,t−1ζ1,t−1󳆞 =
T

󱮦
t=2

V ar (h̵2,t−1ζ1,t−1)

=
T

󱮦
t=2

E (h̵2,t−1ζ1,t−1)2

=
T

󱮦
t=2

E 󳆖h̵2
2,t−1󳆛E 󳆖ζ2

1,t−1󳆛

= 1
T

E 󳆖T h̵2
2,t−1󳆛

T

󱮦
t=2

E 󳆖ζ2
1,t−1󳆛

= 1
T

V ar 󳆘x2,t−1󳆋
󳆼

1 + x2
2,t−1󳆝󳇚󱮬 E 󳆖H1(r)2󳆛dr + op(1)󳈈 = op(1).

The equation holds by the independence between h̵2,t−1 and ζ1,t−1. Therefore,

T

󱮦
t=2

h̵2,t−1ζ1,t−1
p󲿋→ E 󳆚

T

󱮦
t=2

h̵2,t−1ζ1,t−1󳆞 =
T

󱮦
t=2

E (h̵2,t−1)E (ζ1,t−1) = 0. (A.67)

By equation (A.64), (A.65), (A.66) and (A.67), it follows that

T

󱮦
t=2

E 󳅱h̵1,t−1h̵2,t−1ψτ(utτ)2󳈌Ft−1󳇺
p󲿋→ 0. (A.68)

It follows by (A.62), (A.63) and (A.68) that

T

󱮦
t=2

E 󳅱h̵t−1h̵⊺t−1ψτ(utτ)2󳈌Ft−1󳇺 =
T

󱮦
t=2

E 󳇥󳆚 h̵2
1,t−1 h̵1,t−1h̵2,t−1

h̵1,t−1h̵2,t−1 h̵2
2,t−1

󳆞ψτ(utτ)2󳈌Ft−1󳈓

p󲿋→ τ(1 − τ)󳆚 1 0
0 Var 󳆖x2,t−1󳆋

󳆻
1 + x2,t−1󳆛

󳆞 (A.69)
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and E [h̵t−1ψτ(utτ)󳈌Ft−1] is martingale difference sequence, since

E [h̵t−1ψτ(utτ)󳈌Ft−1]

= (E [h̵1,t−1ψτ(utτ)󳈌Ft−1] , E [h̵2,t−1ψτ(utτ)󳈌Ft−1])⊺

= (E [h̵1,t−1󳈌Ft−1]E [ψτ(utτ)󳈌Ft−1] , h̵2,t−1E [ψτ(utτ)󳈌Ft−1])⊺

= (E [h̵1,t−1󳈌Ft−1]0, h̵2,t−10)⊺ = (0, 0)⊺. (A.70)

Therefore, it follows by (A.61), (A.69) and (A.70) and the Corollary 3.1 in Hall and Heyde (1980) that

T

󱮦
t=2

h̵t−1ψτ(utτ)
d󲿋→ N 󳇥0, τ(1 − τ)󳆚 1 0

0 Var 󳆖x2,t−1󳆋
󳆻

1 + x2,t−1󳆛
󳆞󳈓 . (A.71)

It is easy to see by (A.45) and (A.71) that

(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞ψτ(utτ)
d󲿋→MN (0, τ(1 − τ)V2) , (A.72)

where

V2 =
⎛
⎜⎜
⎝

π̃2
1,1 ∫ B̄1 (r)2 dr 0

0 E 󳆘 x2
2,t

1+x2
2,t
󳆝 −E 󳆚 x2,t󳆼

1+x2
2,t

󳆞
2
⎞
⎟⎟
⎠

.

An application of (A.43) and (A.72) as well as the continuous mapping theorem implies that

DT (β̂w
τ −βτ)

d󲿋→ fuτ (0)−1V −1
1 MN (0, τ(1 − τ)V2) ,

where

V1 = plim
T→∞
(DT )−1

T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞X⊺
t−1(DT )−1

= plim
T→∞
(DT )−1

T

󱮦
t=2

Zt−1 󳆚Xt−1 −
1
T

T

󱮦
t=2

Xt−1󳆞
⊺

(DT )−1

= plim
T→∞

1
T

T

󱮦
t=2
󳆘π̂1,1ζ1,t−1󳆋

√
T , x2,t−1󳆋

󳆼
1 + x2

2,t−1󳆝
⊺
󳆚

x1,t−1√
T
− 1

T

T

󱮦
t=2

x1,t−1√
T

, x2,t−1 −
1
T

T

󱮦
t=2

x2,t−1󳆞

=
⎛
⎜
⎝

π̃1,1 ∫ B̄1 (r)Jc1
x1
(r)dr 0

0 E 󳆚 x2
2,t󳆼

1+x2
2,t

󳆞
⎞
⎟
⎠

.

For Case 3, K1 = 2, i.e, all predictors are nonstationary, it is clear to see that

√
T (DT )−1

Zt = (z1,t󳆋
√

T , z2,t󳆋
√

T )⊺ = 󳆗π̂1,1ζ1,t−1󳆋
√

T , π̂1,2ζ2,t−1󳆋
√

T󳆜
⊺
+ op(1),

and the weighting matrix DT = diag(T, T ). Similar to the univariate model, one can show easily that

(DT )−1
T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞ψτ(utτ)
d󲿋→ 󱮬 󳆖π̃1,1B̄1(r), π̃1,2B̄2(r)󳆛

⊺
󳃞 dBψτ (r) =MN (0, τ(1 − τ)V2) ,(A.73)
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where

V2 = plim
T→∞
(DT )−1

T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞󳆚Zt−1 −
1
T

T

󱮦
t=2

Zt−1󳆞
⊺

(DT )−1

= 󳆚 π̃2
1,1 ∫ B̄1(r)2dr π̃1,1π̃1,2 ∫ B̄1(r)B̄2(r)dr

π̃1,1π̃1,2 ∫ B̄2(r)B̄1(r)dr π̃2
1,2 ∫ B̄2(r)2dr

󳆞 .

The asymptotic mixture normality holds by the independence between (ζ1,t, ζ2,t)⊺ and ψτ(utτ). Again, it

follows by combining (A.43) and (A.73) together with the continuous mapping theorem that

DT (β̂w
τ −βτ)

d󲿋→ fuτ (0)−1V −1
1 MN (0, τ(1 − τ)V2) ,

where

V1 = plim
T→∞
(DT )−1

T

󱮦
t=2
󳆚Zt−1 −

1
T

T

󱮦
t=2

Zt−1󳆞X⊺
t−1(DT )−1

= plim
T→∞
(DT )−1

T

󱮦
t=2

Zt−1 󳆚Xt−1 −
1
T

T

󱮦
t=2

Xt−1󳆞
⊺

(DT )−1

= plim
T→∞

1
T

T

󱮦
t=2
󳆗π̃1,1ζ1,t−1󳆋

√
T , π̃1,2ζ2,t−1󳆋

√
T󳆜
⊺
󳆚

x1,t−1√
T
− 1

T

T

󱮦
t=2

x1,t−1√
T

,
x2,t−1√

T
− 1

T

T

󱮦
t=2

x2,t−1√
T
󳆞

= 󳆚 π̃1,1 ∫ B̄1(r)Jc1
x1
(r)dr π̃1,1 ∫ B̄1(r)Jc2

x2
(r)dr

π̃1,2 ∫ B̄2(r)Jc1
x1
(r)dr π̃1,2 ∫ B̄2(r)Jc2

x2
(r)dr

󳆞 .

This concludes the proof the theorem. ∎

Proof of Theorem 4.2. By the results in Theorem 4.1, the proof of Theorem 4.2 is straightforward and the

details are omitted here to save space. ∎
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