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1 Introduction

A long-term issue in financial statistics is to test whether or not a return process (say, asset return or
housing price return) is predictable by a set of lagged predictors (say, financial ratios or/and macroeconomic
variables). The typical method in previous studies is an ordinary least squares (OLS) approach, which is
applied to mean regressions, while conventional test statistics are used to test the significance of coefficients.
The conclusions are mixed despite an enormous amount of efforts devoted to this problem in the literature;
see, for example, the papers by Ang and Bekaert (2007), Campbell and Thompson (2008), Welch and
Goyal (2008), Rapach, Strauss and Zhou (2010), Sekkel (2011), and the references therein. The indefinite
conclusions are partially due to the statistical issues caused by those highly persistent regressors where
conventional test statistics are invalid with a serious size distortion. The problem is more serious if the
innovation in the predictor is highly correlated with the innovation in dependent variable, which is the so-
called embedded endogeneity, as studied by Campbell and Yogo (2006), Torous, Valkanov and Yan (2004),
Zhu, Cai and Peng (2014), Yang, Long, Peng and Cai (2019), and among others.! Another explanation is that
the predictability of asset returns might be heterogenous, relying on economic environment. For example, a
stronger prediction power is usually found in recession periods for stock markets; see Gonzalo and Pitarakis
(2012), which implies potentially greater predictability at lower quantiles. Because mean regressions reflect
the average predictability over all quantiles, they may fail to find evidence for the predictability of asset
returns at some quantiles, particularly in tails. That has motivated researchers to examine the predictability
of asset returns using quantile regressions, which reveal more information about the predicability under the
entire underlying conditional distribution; see, for example, the papers by Koenker (2005) and Xiao (2009)
for details.

Testing the predictability in a quantile setting is of importance in economics and statistics and also
of practical attractiveness. First, from economic perspective, empirical evidences have documented that in-
vestors’ interest in asset returns is beyond their mean and variance. For example, Harvey and Siddique (2000)
and Dittmar (2002) found that the higher order moments are helpful to explain cross-sectional variation in

US stock returns, whereas Cenesizoglu and Timmermann (2008) concluded that the entire distribution of

In the framework of mean regressions, several solutions were proposed in literature, such as the Bon-
ferroni’s method by Campbell and Yogo (2006), the conditional likelihood method by Jansson and Moreira
(2006), the linear projection method by Cai and Wang (2014), the instrumental variable (IVX) approach by
Magdalinos and Phillips (2009), Kostakis, Magdalinos and Stamatogiannis (2015), Phillips and Lee (2016),
and Yang et al. (2019), the weighted empirical likelihood approach by Zhu, Cai and Peng (2014), Liu, Yang,
Cai and Peng (2019), and Yang, Liu, Peng and Cai (2018), and the variable addition (VA) or augmented
regression or control function approach by Elliott (2011) and Breitung and Demetrescu (2015) and Yang et
al.(2018).



future stock returns is informative for investment decisions of risk averse investors. Second, from the sta-
tistical point of view, quantile regressions are more suitable when the distribution is skewed and/or heavy
tailed, which is a stylized fact in financial statistics, and consequently the quantile regression technique has
been applied widely in risk management operations. For example, the Value at Risk is defined by the un-
conditional /conditional quantile and is widely used to measure the tail risk in practice. Finally, predictive
quantile regressions avoid the order-imbalance issue, a well known theoretical challenge that arises for mean
regressions where the dependent variable commonly behaves as martingale differences, while the regressors,
fundamental variables, are highly persistent as argued in Phillips (2015).

Modeling predictive quantiles and examining their predictability with possible nonstationary regressors
is not a trivial task. The main challenging statistical issues in mean regressions causing the failure of tra-
ditionally statistical inferences of the predictive regression still exist for predictive quantile regressions. To
the best of our knowledge, the papers by Lee (2016) and Fan and Lee (2019) were the first to investigate the
asymptotic theory for predictive quantile regressions with both various degrees of persistency and embedded
endogeneity. Indeed, Lee (2016) extended the exogenous instrumental variable approach filtering method-
ology by Magdalinos and Phillips (2009), Kostakis et al.(2015) for mean regressions to quantile regression,
termed as IVX-QR approach. Further, Lee (2016) obtained the asymptotic distribution of test statistics that
are robust to the degree of persistency under the null hypothesis, which can be applied to the multiple pre-
dictors case. Recently, Fan and Lee (2019) extended the IVX-QR method in Lee (2016) to the situation with
conditionally heteroskedastic errors. However, the IVX-QR requires that the instrumental variable should
be less persistent than the predictors. Thus, it might lose some of its test power as illustrated in Kostakis et
al. (2015). Meanwhile, the performance of the test is sensitive to the choice of turning parameters involved
in the construction of mildly integrated instrumental variables, and it is difficult to extend to the case with
mixed persistent regressors, including both stationary and nonstationary predictors.

The main contribution of this paper is to propose a novel approach, termed as double weighted method,
to develop a uniform inferential theory for predictive quantile regressions with highly persistent variables.
Our method is based on a quantile regression with an auxiliary regressor, which is generated as a weighted
combination of an exogenous simulated nonstationary process and a bounded transformation of the original
regressor. The weight is well-selected through a data-driven approach, such that the auxiliary regressor
enjoys having the same persistency degree with the original predictor. Using the coefficients of both original
regressor and auxiliary regressor, with a similar idea of rotation, we construct a weighted estimator between
them to eliminate the impact of the embedded endogeneity. Under some mild conditions, it shows that

the self-normalized test statistics based on the weighted estimator converge to a standard normal or x?2-



distribution. Comparing to the IVX-QR approach, our method does not require a less persistent instrumental
variable, and it could reach the local power under the optimal convergence rate T' with nonstationary
predictors and /T with stationary predictors, respectively. More importantly, our method can easily be
generalized to multiple regressors with mixed persistence degrees and this generalization is seminal in the
literature. Simulations are conducted to demonstrate the effectiveness of our newly proposed approach. For
most cases, our method has better size control and power performance in a finite sample compared over
IVX-QR method.

Indeed, our motivation for this study is to implement the newly proposed approach for re-examining the
predictability of US stock market returns using eight popular financial ratios and macroeconomic indictors.
For the convenience of comparison, the same data set used by Lee (2016) is taken with the sample period
from 1927 to 2005. To view whether there is any change after the 2008 global crisis, the data set is updated to
December of 2018. The main empirical findings can be summarized as follows. First, the predictability for the
middle quantile levels is weaker than both lower and upper quantiles, which is consistent with the previous
findings. Second, in the multivariate prediction quantile regression, many variables lose their prediction
power after controlling other variables. Third, after the World War II, we do not find much evidence of
the prediction power for some well-known financial ratios, such as earnings to price (d/p) ratio, dividend
to price (d/p) ratio and book to market (b/m) ratio. However, the macroeconomic indicators, like T-bill
rate (tbl), default yield spread (dfy), term spread (tms), show some strong evidence of significant prediction
power, especially at lower and upper quantile levels. The detailed result of this empirical study is reported
in Section 6.

Our paper is closely related to the literature of predictive regression with highly persistent regressors.
Acknowledging the fact that the asymptotic distribution relies on the time series properties of the regressors
and errors, a series of research papers have aimed to developing a uniform inference theory on predictive mean
regressions in the sense that the testing procedure for testing predictability is robust to different persistence
categories, including, but not limited to, the papers by Campbell and Yogo (2006), Magdalinos and Phillips
(2009), Chen and Deo (2009), Chen, Deo and Yi (2013), Phillips and Lee (2013), Zhu et al. (2014), Kostakis
et al. (2015), Phillips and Lee (2016), Yang et al. (2018), Yang et al. (2019), and Liu et al. (2019), which
focused on predictive mean regression models.

Also, in some way, our paper is tied to the regression with auxiliary variables. Indeed, Toda and
Yamamoto (1995), and Dolado and Liitkepohl (1996) first proposed a robust testing strategy irrespective of
the persistency type of regressor through a regression with additional (redundant) variables, such that the

coefficients to be tested are attached to stationary variables, whereas Bauer and Maynard (2012) considered



the variable addition approach in the context of vector autoregressive processes with unknown persistence.
In particular, Breitung and Demetrescu (2015) argued that the traditional VA approaches suffer from a loss
of power and generalized VA approach by using instrumental variables that are constructed exogenously
or endogenously. Different from Breitung and Demetrescu (2015), our paper particularly constructs the
additional regressor in its own way and proposes a new test statistic.

The rest of this paper is organized as follows. Section 2 introduces the model framework and Section
3 provides the procedures to estimate parameters and to construct the test statistics and also presents
the asymptotic theories for the proposed estimators and the test statistics. An extension to the multiple
regressors with mixed persistence degrees is discussed in Section 4. Section 5 reports the Monte Carlo
simulation results. Section 6 presents the analysis results for the empirical applications. Finally, Section 7
concludes the paper. The detailed proofs of the main results are given in Appendix.

Throughout this paper, the standard notations =, LA and 5 are used to represent weak convergence
and convergence in distribution as well as convergence in probability, respectively. All limits are for T' — oo

in all theories, and Op(1) is stochastically asymptotically bounded while 0,(1) is asymptotically negligible.

2 Model Framework

Assume that y; is a dependent variable and its 7th quantile is Qy, (7|F;-1), defined by P(y; < Qy, (7| F-1)| Fi-1) =
7, where F;_; is the information set available at time ¢ — 1. For simplicity, a linear? predictive quantile re-

gression is given by

Qy, (71Ft-1) = Qy, (Tl1-1) = pir + Brves, (2.1)

where x;_1 is a predictor to be the presentative (proxy) of F;_1, such as dividend-price ratio, earnings-price
ratio or macroeconomic variable and so on, which is a time series, commonly modeled by an autoregressive
(AR) model as

Ty =pxig +o, p=1+¢/TY 1<t<T, (2.2)

where a = 0 or 1 and 2 = 0,(v/T). Of course, a higher order AR model can be considered for z; in (2.2).
For simplicity of exposition, we begin with the univariate predictive quantile regression to illustrate the main
idea in this paper. For x;, the following typical types of persistency with different values of ¢ and « are

considered in the literature:

(I0) stationary: a=0 and |1+ ¢| < 1;

20f course, it would be interesting to investigate a nonlinear predictive quantile regression and it would
be a future research topic.



(NI1) local to unit root: =1 and ¢ <0;
(I1) unit root: ¢=0;
(LE) local to unity on the explosive side: a =1 and ¢ > 0.

Of course, it is interesting to consider the other cases as 0 < a < 1, corresponding to the so-called mildly
integrated processes (¢ < 0) or mildly explosive processes (¢ > 0). The latter can be used to explore the
mild economic or financial bubbles and other applications, see Phillips, Shi and Yu (2015) and the references
therein.®> Here, following Lee (2016), a general weakly dependent innovation structure of the linear process
on {v;} in (2.2) is imposed and listed below.

Assumption 2.1. Assume that vy follows a linear process given by

vy =Y Fyieij,
§=0

where g; is a martingale difference sequence with E(e|Fi—1) = 0 and var(giel|Fi-1) = Xe for B > 0 and
E|ed|**" < oo for some v > 0. Here, Fyg = I, K is the dimension of x; and Y0l Fujl < oo and
F.(1) = Z;io F.; >0, where Fy(z) = Z;Zo Fm-zj, The wvariance matriz of vy can be expressed as Ly, =

55 Bl ) = Fa(1)ScFa(1)7.

Remark 2.1. Assumptions 2.1 allows for linear process dependence for v; and imposes a conditionally
homoskedastic martingale difference sequence (mds) condition for e;. Different from Lee (2016), here we
do not specify a linear predictive mean regression model and hence avoid to impose any assumption on the

innovation for the mean regression model. Note that, for the univariate case, K = 1.

Define u¢r = y; — Qy, (7|F¢-1), which is commonly called the quantile measurement error, similar to the
measurement error in the predictive mean regression model, and also, ¥, (u¢r) = 7 — 1(ugr < 0). Now, it is
easy to verify that P(ui <0|Fi_1) =7, E(Yr (ur )| Fio1) = 0, B2 (ur )| Fio1) = 7(1 = 7) and E[¢, (ugr)*] =
374 4+ 672 — 472 + 7 < 00. One may refer to Appendix for the details of proof. Further, define

Spov= . Elr(uir)ven] = Fo (1) E[Yr (ugr )e].
h=—o0
By Lemma A.2 in Appendix, one can show easily that ¥ _, < co. Then, similar to Lee (2016), the functional
central limit theorem (FCLT) for {t;(u¢r),v:} holds

|rT| w , (1 r
L S O e R G S 23)

30ur methods can be extended to allow for these two cases with some adjustment. To make the proof
easy to follow, our focus is on the simple setting.




where [By, (), By(r)]" is a vector of Brownian motions. Furthermore, the local to unity limit law implies
that z|,7/VT = JS(r), where JS(r) = [ e"")°dB, (s) with NI1, I1 and LE predictor; see Phillips (1987)
for details.

Define A, = Corr(¢,(u¢r),v¢) and assume that A;; = \. for simplicity. Then, similar to Campbell
and Yogo (2006) for the predictive mean regression model, Lee (2016) seminally showed that the conven-

tional t test statistic ¢ 4, of the predictive quantile regression with nonstationary predictor has the following

t, = V1-XZ+ A [ Ter)dBa(r)\[ Qo [ Te(r)2dr,

where Z represents the standard normal distributions. Clearly, A\; measures the degree for the so-called

asymptotic behavior

embedded endogeneity as in Campbell and Yogo (2006) for the predictive mean regression model. Therefore,
the conventional test statistics in predictive quantile regression with the NI1, I1 and LE predictor x; are
invalid if A\, # 0. Moreover, it is almost impossible to distinguish the difference between 10 and NI1, and/or
between NI1 and I1, and so on; see also Fan and Lee (2019) for more details, because it is extremely
challenging to estimate consistently the nuisance parameter ¢ and to test if the persistence a equals zero or
not or 0 < a < 1. Thus, it is necessary to develop a unified inference method to avoid the mistake of making
a false judgement about the persistence of predictors under a quantile framework.

Next, some regular assumptions on the conditional density of u;, are imposed, similar to Xiao (2009)

and Lee (2016).

Assumption 2.2. (7)The sequence of conditional stationary probability density functions {fu,.+-1(-)} of
{us.} given Fi_1 evaluated at zero satisfies a moment condition with a non-degenerate mean f, (0) =

E(fu,, +-1(0)) >0 and E(f2_,_1(0)) < 0o for some 9 > 1.

Utr,

/
Utr,

(ii) For each t and 7 € (0,1), f _,_1(x) is bounded with probability one around zero, i.e., +-1(€) < 00 and

Utr,

Jupr 1-1(€) < 00 almost surely for all |e| <n for some n > 0.

Remark 2.2. As shown by Xiao (2009), the above conditions in Assumption 2.2 are quite standard and not
restrictive. In particular, the part (i) in Assumption 2.2 is not as restrictive as the counterpart assumption

in Lee (2016), which assumes that f,,, ;—1(0) follows the FCLT.

3 Statistical Modeling Procedures

3.1 Estimation Approach

Motivated by the variable addition approach of predictive mean regression studied by Elliott (2011)

and Breitung and Demetrescu (2015), the following new approach is proposed for the predictive quantile



regression. That is, (2.1) is re-written as follows:

Qy, (Tlzt-1) = pir + Bre1 = pir + Brvy_y +Vr2e-1, (3.1)

where x}_; = x4-1 — z;-1 and z;-1 is an additional (auxiliary) variable which is chosen in Section 3.2 in detail.
Note that v, = 8, in (3.1), which will be used to construct weighted combined estimator for 3, later. Clearly,

tr, Br and v, in (3.1) can be estimated by running the following quantile regression

0. = (jir. fr,4,) " =arg min i pr (Y = pr = Brfy = Yr21)
BrsBrYr i

where p-(u) = u[7 — 1(u < 0)] is the so-called check function in the statistics literature. Note that Breitung
and Demetrescu (2015) only used 4., the estimator of the coefficient of the auxiliary variable z;, to construct
the test statistic in the predictive mean regression, and required z; to be an instrumental variable (IV) less
persistent than z; or an exogenous deterministic or stochastic trend process, in order to guarantee that
the asymptotic distribution of the test statistic is irrelevant to the nuisance parameter c. However, if z; is
generated as an IV less persistent than x;, the corresponding test statistic suffers from the loss of power for
the case with nonstationary x;, while if z; is generated as an exogenous deterministic or stochastic trend
process, the test is invalid for the case with stationary x;.

To avoid this problem, the variable addition approach is improved in the following two aspects. First,
a combined approach is used to construct the appropriate additional variable z;, such that its persistence
is always the same as that for the predictor z; while its key component is independent of z; for NI1, I1
and LE cases. Second, a weighted combined estimator is proposed by using the coeflicients of x;_; and the
additional variable z;. With these two improvements, one can show that the test statistic based on the
weighted estimator, after constructed by self-normalization to eliminate the nuisance parameter ¢, can avoid
not only the size distortion but also the loss of power with arbitrary persistence.

Next, it turns to the discussion on how to construct the weighted estimator for given z; and then,
elaborating the choice of z; which will be presented in Section 3.2. As mentioned earlier, v, = 5, so that it
should be better to combine 37 and 4, together to obtain a weighted estimation for 5,. Consequently, the
rotation idea in the principle component analysis is applied here to construct the estimator for 3., which is

the weighted sum of BT and #,, denoted by B;" ,

A Wi 5 Wo

R T A T A

Yrs (3.2)

where Wi and W5 are two weighting functions. By selecting some appropriate weights W7 and Wa, one can

w

" whose asymptotic distribution follows a mixture normal distribution* and is irrelevant to

construct a f3

4For the definition of mixture normal, the reader is referred to the paper by Phillips (1987). That is,
Y ~ MN(p,X) means Y ~ N(u,2) given u and X, which might be random.

7



the nuisance parameter ¢ after normalization. For this purpose, the weights WW; and W5 are taken to be

T T T
W1 = Z xf_lzt_l/TQ - Z I;—l Z Zt_l/Tg, (33)
t=2 t=2 t=2

and
2

T T
Wo=Y 2, /T% - (Z zt_l) /T3, (3.4)
t=2 t=2
Note that in Section 3.3, some arguments will be provided to explain the reason on why the above W and

Wy are used.

3.2 Choice of Auxiliary Variable

This section is devoted to how to construct the additional regressor z;_1, such that our method is
valid for both stationary and nonstationary predictor without sacrificing any convergence rate. To achieve
this target, a three-step approach is proposed to construct z,-;. First, an exogenous unit root process
Cio1 = Y16, is generated, where 5 ~ iid(0,1). Therefore, We r(-) = B(:) based on the FCLT, where
Wer(r) = C[rTJ/\/T for 0 < r < 1 and B(-) is the standard Brownian motion. In the second step, the

coefficient 71 is obtained by estimating the following regression
Ty-1 =m0 + T1Cp-1 + €. (3.5)

Finally, we define z;_1 as a linear combination of (;_; and one bounded transformation of x;_; as follows

zp-1 = T1Geo1 + 21 [\ 1+ 27 (3.6)

Note that the second term in the above equation z¢_1/\/1+ 22 | is always bounded with probability 1 for

any stationary and nonstationary x; ;.

Remark 3.1. Indeed, the idea of using an independent random walk process as the instrumental variable is
similar to that in Breitung and Demetrescu (2015) under the framework of predictive mean regressions, by
considering two types of instruments: Type-I and Type II instruments. Type I instruments are generated
from the original predictor x;_; but are required to be less persistent than xz;_;. A special case of Type I
instruments is the mild integrated instrument variable adopted in the IVX approach in Phillips and Mag-
dalinos (2009). Type II instruments include strictly exogenous nonstationary variables, deterministic terms
and Cauchy type instrument. Therefore, in a certain sense, both ;-1 and x4/ W can be regraded
as Type II instruments, as x;_1/ m converges to the Cauchy instrument sign(x;_1) for nonstationary
x¢-1. However, the random walk instrument (;_; does not work for stationary cases, while z;_;/ m

can not handle the predictive regression with intercept term for nonstationary cases without some necessary



adjustments.5 Here, we take a weighted combination of (;—1 and z;_1/y/1+ xf_l, with the weight 7 esti-
mated from (3.5). By doing so, our method is robust to both nonstationary and stationary cases, and can

be easily extended to the multivariate case with mixed persistence.
The following proposition can be established for the asymptotic properties of 7.

Proposition 3.1. It follows that

T
. 71 +0,(1), NI, I1 and LE;
T = Z t—1T¢— 1/Z<t 1= {O (Tpl) 10 (3.7)
D ’ )

i=2
where Z;1 = 241 - Yo 41T, Coo1 = Cio1 = Dion o1 /T, and 7y = [ B(r)JE(r)dr] [ B(r)%dr with B(r) =
B(r) - [ B(r)dr and JE(r) = JS(r) = [ JS(r)dr

Remark 3.2. The proof is standard and thus, details are skipped here. Clearly, (3.7) implies that the
coefficient 7; plays a role of filtering such that the auxiliary variable z;_; has the same persistency as
-1 does. Particularly, if z;_; is nonstationary, including NI1, I1 and LE, #; converges to a nonzero
random variable due to the spurious correlation between x;_1 and ¢;—; (Phillips, 2014), and the second term
xt_l/m is dominated by the first term 71(;—1. If x;_1 is stationary, then 7; converges to zero with

the convergence rate T and the first term in z;_; is dominated by the second term x;_q1/+/1 + w?_l.

Moreover, given the above construction of z;_1, the asymptotic property of Wy + W5 can be established

easily for the cases with stationary and nonstationary x;, respectively.

Proposition 3.2. It is easy to show that

T(Wy +Wa) = E[27(1+23) 2] +0,(1), 10;
Wi+ Wa =72 +0,(1), NI1, I1 and LE,

where 7. = [ B(r)JE(r)dr [ [ B%r)dr]fl/z with 7; defined in Proposition 3.1.
Remark 3.3. The basic idea for showing the above proposition is as follows. If x;_; is nonstationary, by
plugging (3.6) into (3.3) and (3.4), one can show easily that

Wi+ Wy = th 124 1/T = th 1Gee 1/T +0p(1) = me(r)Jc(r)dr+op(1)

t=2
where Z;_1 = z4_1— 22;2 zt-1/T. On the other hand, if z;_; is stationary, z;_1 is determined by x;_1/y/1 + 22,
and then,

T(Wy +Ws) = — Zzt |+ 0,(1) = B[z} (1 +2}) ?] + 0,(1).

\/1+ :z:t_l

°In predictive mean regressions with intercept term, Zhu et al.(2014) and Liu et al.(2019) applied the
sample splitting approach to remove the impact of intercept, with a loss of information. However, the sample
splitting approach does not work in the quantile regression framework and loses the power of test.




3.3 Large Sample Theory

To obtain the asymptotic distribution of B;", we will first establish the so-called Bahadur representation®
for éT; that is, use the first order approximation to get an explicit expression for 0.. To this end, define éﬁ =
Dr(fir — iy, Br = Bry 47 — B2)T, where Dy = diag(v/T, T, T) for NI1, I1 and LE and Dy = diag(v/T,VT,V/T)
for 10. Then, the Bahadur representation for éﬁ is given as follows with its mathematical proof given in
Appendix. Note that this result is new in the literature when regressors might be nonstationary and is of

own interest.
Theorem 3.1. (Bahadur Representation) Under Assumptions 2.1 and 2.2,

T
02 = fu.r (O)_lN’J_‘lD’}l Z At—ll/)‘r(utr) + Op(l)a (39)
i=2
where Ay_y = (1,27_1,21)", Np = D' L, A 1A} D7, and f,.(0) is defined in Assumption 2.2 (i).

Remark 3.4. From Theorem 3.1, one can see clearly that the second and the third components of the vector
on the right-hand side of (3.9) involves x;_;. To construct a pivotal test statistic free of nuisance parameter
¢, the weighted estimator Bf is constructed as in (3.2), with a similar idea of rotation in factor analysis, to
get rid of x;_;. It will then be shown by Lemma A.5 in Appendix that the following result holds true for

N
w
T

R B T 1 T
(W1+W2)T(ﬁ;u—57)=fu7(0) IZ—T zt_l—Zzt_l/T ’(/J-,—(uh—)/\/f+0p(1). (310)

t=2 t=2
Evidently, in contrast from the second or the third components of the vector on the right-hand side of (3.9),

the right-hand side of (3.10) involves only z;-; but not z;—; or z; ; so that it makes the asymptotic (or

mixture) normality of Bf only depends on z;_1.

Next, one of the main results in this paper is stated in the following theorem with its proof given in

Appendix.

Theorem 3.2. Under Assumptions 2.1 and 2.2, for 10, NI1, I1 and LE cases, the asymptotic distribution

of B;" 1s given below,

{ﬁ(ﬁ:’ -8:) S N(0,03), 10, (3.11)

T, (B - 8,) S N(0,02), NI1, I1 and LE,

where with o2 = (1 - 1)/ f2 (0), CT;T = o2 {E [xf(lJr:E?)’l/Q]}_Q Var [xt(1+xf)’1/2] and m. is given in

Proposition 3.2

6See, for example, Cai and Xu (2008) for stationary quantile regression.

10



Remark 3.5. Clearly, Theorem 3.2 shows the convergence rate of the estimator of B;f’ with N1, I1 and LE

x¢ is faster than that for the IVX-QR method proposed in Lee (2016).

Although the asymptotic distribution of B;" with NI1, I1 and LE x; still contains the nuisance parameter
¢, we can construct the t-test statistic t* by self normalization because the asymptotic distribution of B;“ is

mixture normal, as follows:
£ = Fu, (0) [War (1= 7)] /2 (W + W) T,

where f, (0) is a consistent estimator of f, (0), while the detailed construction of f, (0) can be found in
Lee (2016). The following theorem states the asymptotic behavior of the proposed t-test statistic t* under

both the null hypothesis and the local alternative hypothesis with its detailed proof delegated to Appendix.
Theorem 3.3. (1) Under the null hypothesis Hy : 5, =0,
% N(0,1).
(2)(a) Under the local alternative hypothesis Hy : By = by [N/T for any by, if x4y is 10,
w d
£ L N (b fos, 1),

where o, is defined in Theorem 3.2.

(b) Under the local alternative hypothesis H, : B = b [T for any b, if x4y is NI1, I1 or LE,
% N(0,1) + belmel for,
where w. is given in Proposition 3.2 and o, is defined in Theorem 3.2.

Remark 3.6. From Theorem 3.3, one can conclude that the test statistic ¢t* reaches the optimal convergence
rate T for NI1, I1 and LE predictor z;_; and /T for 10 predictor x;_;. In particular, for nonstationary case,
the quantity b, |m.|/o-, the deviation from the standard normality, varies between (—o0,0) or (0, +00), relying
on the sign of b, only. Thus, t* enjoys an additional increase of local power compared to the t-test statistic
in Breitung and Demetrescu (2015), where its local lower relies on a deviation varying between (—oo,+00),

see Part 1 of Corollary 3 and Remark 4 in Breitung and Demetrescu (2015).

4 Multiple Predictive Quantile Regressions

When some of regressors are nonstationary and some are stationary in a multiple regression, it is

well known in the literature that the convergence rates for estimators of coefficients are totally different for
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nonstationary and stationary; see, for example, Cai and Wang (2014). When regressors are nonstationary,
as pointed out by Phillips and Lee (2013), the Bonferroni’s method in Campbell and Yogo (2006) and the
weighted empirical likelihood approach in Zhu, at al. (2014), Liu et al. (2019), and Yang et al. (2019) can
not be easily extended to a multiple regression. However, the proposed method in previous section can be

easily extended to the following multivariate predictive quantile regression with mixed persistencies

Qyt (T|Xt—1) =yt IBIXt—ly (41)

where B; = (B1r, B2+, Bk-)" is a K x 1 vector and X; 1 is a K x 1 vector of predictors, which might
contain both stationary and nonstationary predictors. For the purpose of exposition, X; 1 is written
as Xy = (XlT’t_l,XzT)t_l)T with X741 = (#14-1,%24-1, %Kk, t-1)" being nonstationary and Xo, 1 =
(Tr,+1,4-1, Ty 42,0-1, " Tk ,1—1) | being stationary. It is assumed there is no cointegration relationship among
Xi.-1. Note that 0 < K; < K and K; = 0 means all elements in X;_; are 10, while K; = K means all
elements in X;_; are NI1, I1 or LE. Now, z;; can be modeled by an AR(1) as

1+¢/T, i=1, Ky

. (42)
1+¢;, where [1+¢|<1, i=K;+1,- K

Tit = Pi%it-1t Vi, pPi= {

for all 1 < ¢t < T. Thus, different predictors in multivariate predictive quantile regression are allowed to
have different degrees of persistency. Similar to the univariate case, the local to unity limit law holds for all
nonstationary predictors and for ¢ = 1,---, K7, xi,L,,.TJ/\/T = JS(r) and JS (r) = [, e(=9)%dB, (s), where

By, (s) is the i-th element of B, (s), which is a vector of Brownian motions defined in (2.3).

Remark 4.1. It is clear that the model in (4.1) is new and it covers some known models in mean models
in the literature. For example, if there is nonstationary part (K7 =0), (4.1) reduces to the model studied by

Amihud, Hurvich and Wang (2009) for mean regression models.

To estimate p, and 3, in (4.1), let X;"; = X;-1 — Z;—1 and Z;_; be the vector of additional variables.

Then, p, and B, can be estimated based on the variable addition as follows:

T
([)’7'7167'7;5/7')1— = arg min ZPT (yt_/'d‘r _ﬂ-/T—Xt*—l _'\/:—Zt—l),
Hor B Yr =2

where Z; = (zlyt,zztu-,z;(’t)T is constructed by three steps similar to the univariate case as in Section 3.2;
that is, first, for each 4, (; 41 = Zf;i Si.s, whereg; o ~ 19d(0, 1) generated by simulation and thus, independent
of y, and X;. Therefore, W, . r(-) = B;(-) based on the FCLT, where W, ¢ r(r) = CMT/\/T forO0<r<i1

and B;(-) is the standard Brownian motion. Secondly, we run the following quantile regression:

T = Mo+ 15 Go-1 + €

12



for all 1 <4 < K. Similarly, one can show that 7 ; 4 F15 = [ Bi(r)JS (r)dr/ [ Bi(r)*dr, where B;(r) =
Bi(r) - [ Bi(r)dr for nonstationary x; , while #1; = O,(T™!) for stationary z; ;. Thirdly, we define z; ;-1 as

a linear combination of (; ;-1 and one bounded transformation of z; ;-1 as follows

_ A / 2
Zig1 = T1,iGie1 + Tig1/y/1+ Tit-1-

Since the procedure could be implemented one predictor by one predictor and each step does not rely
on others, then our proposed method is valid in multivariate predictive quantile regression with mixed
persistence.

Similar to the univariate case, the weighted estimator ﬁ;" in the multivariate predictive quantile re-

gression is given as follows:

BY = (Wi + W) H (Wi, + Wa¥,)

where

T T T
W, = Z Zt—l(Xt*—l)T/TQ - Z Zi Z(Xt*—l)T/Tgv
t=2 t=2 t=2

and

T T T
Wo=3Z 1 Z] | JT* - 2, Y, Z] TP
t=2 t=2 t=2

Without loss of generalization, the asymptotic property of Bf is presented for the special case with K =2 in

the following theorem. For different mixed persistence cases, we define the following weighting matrix Dy

accordingly
dlag(\/T7 \/T)v K= 0;
Dr ={diag(T,V/T), K;=1;
diag(T,T), K, =2.

Furthermore, to describe the asymptotic properties for 3%, we define the following two matrices Vi and V;

for three cases as follows:

Case 1 (K, =0):

and

5 2
1.t _ T1,t T1,t T2, _ Tt T2t
Vi - E(Hw?,t) E(,/lﬂvf’t) E(\/fo’t ¢1+z§t) E(\/Hxit)i(\/ugc;t)
2
1.t T2t _ 1.t T2t Lot | _ Z2,t
E(,/1+mit \/1+w§t) E(\/1+T%t)E(\/1+T§t) E(lJrzg,t) E(,/1+mg=t)




Case 2 (K1 =1):

( 77'1,1[31 (’I") J;i (’I")d?“ 0
‘/1 = Ig t ) (45)
0 E :
‘/1+zg,t)
and
72, [ By (r)*dr 0
Vs = | E @3, E T2t ’ (46)
0 (1+cc§7t) - \/@
Case 3 (K;=2):
V- 77'1,1[.@1(7");];1 (T)dT ﬁl’ljél(T)Jgg(T‘)dT’ (4 7)
! ﬁlyngg(T)J;i (’I“)d’l“ 77'12[32(7“){]53(7“)6” ’ ’
and
‘/2 _ 7?%71[731(7’)%d7" 7}1’17}172_[31(7“)32(1")(17" ) (48)
77'17177'1)2f32(7“)31(7“)d7“ ﬁ%’2f32(7“)2d7“

Then, the asymptotic distribution for Bﬁj is stated in the following theorem with its proof delegated to

Appendix.

Theorem 4.1. Under Assumptions 2.1 and 2.2, the asymptotic distribution of ,@ﬁ” is given by

DT(ﬁg -B-)
1 O [ 3 (21 1 320 | X0 B0 L (2= 1 0 el 0,0

% Fur (0)VTTMN(0,7(1 - 7)Va), (4.9)
where Vi and Va are defined in (4.3)-(4.8), respectively.

To test Hy : RB; =, where R is a r x K matrix with the rank r, a Wald type test statistic @}, can

be easily constructed as follows:

w o _ fur (0)2

@ = 7(1-7)

T2(RBY ~ )" {R(W, + Wa) W [RW, + W) ']} (RBY ),

where f,_(0) is a consistent estimator of f, (0). The limiting distribution of Q¥ under the null hypothesis

is stated in the following theorem with its proof given in Appendix.

Theorem 4.2. Under Assumptions 2.1 and 2.2 and the null hypothesis Hy: RB; = 1., one has
Qu 52

where X2 is a x2-distribution with r degrees of freedom.
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5 Monte Carlo Simulation Studies

To demonstrate the effectiveness of the proposed method, two Monte Carlo simulation experiments are
considered. The first experiment considers a data generating process (DGP) with a univariate predictor,
while the second experiment is devoted to a bivariate case with mixed persistence which is not studied by

Lee (2016). For the first simulations, a comparison with the IVX-QR approach in Lee (2016) is reported.
Example 1. In this example, the following DGP is set up for the univariate quantile regression:

ye=(1+8 -z-1)(ug +3), and x4 = pry_1 + vy,

where p = 1+ ¢/T“. To create the embedded endogeneity among innovations, the innovation processes are

1 -0.95
-0.95 1

Lima, Linton and Smith (2011), it is easy to see that the conditional quantile of y; given x;_1 at the quantile

generated as (ug,vy)" ~ 4id N(Ogx1, Xax2), where X = ( ) By Proposition 1 of Gaglianone,

level 7 is given by

Qyt (T|ft*1) = Qut (T) +3+ ﬁ[QUt (T) + 3:|xt—1 = M+ ﬁrxt—la

where i = Qu, (7) +3, Br = B[Qu, (7) + 3] and Q, (7) is the 7-th quantile of u;.

First, the results for the comparison of the size performances of our method with IVX-QR for two
cases, &« = 1 and « = 0, are shown in Tables 1 for @« = 1 and 2 for a = 0, respectively, with sample sizes of
T = 150, 300 and 700, the different values of 7 as 7 = 0.05, 0.1, ---, 0.90, and 0.95, and the nominal size
at 5%. Simulation is repeated 100 times for each setting and the rejection rate is computed based on 500
simulations. The mean and the standard error in parenthesis of 100 rejection rates are given in Tables 1 for
a =1 and 2 for a =0, respectively. For each setting, four values of ¢ are considered further as ¢=1.5, 0, -5
and —25, corresponding to the cases: LE, I1, NI1 and NI1 (with large deviation from unit root). Clearly, the
following findings can be evidently observed from Table 1 for a = 1. First, for quantile level 7 close to 0.5,
the size of the proposed method is very close to the nominal size at 0.05, while IVX-QR still suffers from
somehow size distortion, where there is a over-rejection for the case of LE predictors, and an under-rejection
for the some case of NI1 predictors (¢ = —=5). Second, it is not surprising to see that due to less data points
in tails, both methods might have size distortions for the extreme quantile levels, but for most cases, the
newly proposed method performs better. Similar findings can be summarized for the stationary case, i.e.,
a =0 from Table 2, and for most cases, the IVX-QR has an under-rejection problem, because it invalids the

requirement for a less persistent instrumental variable.
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Table 1: Size performances of t* and IVX-QR for « = 1 with the nominal size 5%.

t'lL'

0.05 0.1 0.2 0.3 04 05 0.6 0.7 08 09 095

T=150 c=15 0.114 0081 0066 0060 0059 0059 0057 0061 0065 008 0.108
(0.014) (0.013) (0.011) (0.012) (0.011) (0.011) (0.010) (0.010) (0.011) (0.013) (0.013)

¢c=0 0110 0082 0063 0.057 0055 0054 0056 0.059 0062 0080 0.111
(0.014) (0.011) (0.012) (0.010) (0.012) (0.010) (0.011) (0.010) (0.011) (0.011) (0.014)

¢=5 0108 0075 0057 0.051 0050 0050 0.050 0052 0.059 0078 0.107
(0.013) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.010) (0.012) (0.013)

¢=25 0109 0077 0058 0.054 0051 0049 0051 0.055 0059 0.078 0.111
(0.013) (0.012) (0.010) (0.011) (0.010) (0.010) (0.010) (0.011) (0.012) (0.011) (0.015)

T=300 c=15 0086 0071 0060 0056 0055 0055 0056 0057 0062 0067 0.087
(0.013) (0.012) (0.010) (0.010) (0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)

c=0 0085 0069 0057 0055 0053 0053 0052 0053 0058 0.067 0.084
(0.013) (0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011) (0.011) (0.012)

c=5 0084 0065 0053 0.048 0048 0048 0.048 0.050 0052 0063 0.083
(0.011) (0.011) (0.010) (0.010) (0.009) (0.009) (0.008) (0.009) (0.009) (0.011) (0.012)

¢=-25 0.089 0069 0056 0.052 0051 0051 0050 0.054 0056 0.069 0.089
(0.015) (0.011) (0.009) (0.010) (0.011) (0.009) (0.010) (0.011) (0.009) (0.010) (0.013)

T=700 c=15 0070 0062 0055 0.053 0052 0052 0052 0.053 0056 0062 0.073
(0.011) (0.011) (0.009) (0.010) (0.010) (0.010) (0.008) (0.011) (0.011) (0.013) (0.012)

¢=0 0070 0059 0.053 0051 0049 0049 0.050 0.051  0.050 0.062  0.071
(0.013) (0.011) (0.010) (0.011) (0.010) (0.010) (0.011) (0.010) (0.009) (0.010) (0.010)

c=5 0069 0057 0049 0049 0046 0.048 0.047 0.049 0052 0.058  0.069
(0.012) (0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.011) (0.011)

¢=25 0071 0060 0055 0.054 0052 0049 0052 0.052 0056 0062 0.073
(0.011)  (0.009) (0.011) (0.009) (0.011) (0.010) (0.010) (0.011) (0.009) (0.011) (0.012)

IVX-QR

0.05 0.1 0.2 0.3 04 05 0.6 0.7 08 09 095

T=150 c¢=15 0.175 0.30 0113 0155 0.102 0.090 0101 0.152 0.114 0129 0.179
(0.017) (0.016) (0.014) (0.017) (0.014) (0.014) (0.015) (0.017) (0.013) (0.014) (0.016)

=0 0138 0096 0074 0109 0071 0059 0069 0105 0074 0093 0.136
(0.015) (0.013) (0.012) (0.017) (0.012) (0.011) (0.013) (0.015) (0.012) (0.012) (0.015)

c=5  0.098 0063 0043 0.047 0038 0035 0038 0047 0044 0061  0.095
(0.012) (0.012) (0.011) (0.010) (0.009) (0.008) (0.008) (0.010) (0.010) (0.010) (0.013)

c=25 0.115 0085 0063 0058 0054 0051 0052 0056 0064 0.085 0.114
(0.015) (0.010) (0.011) (0.010) (0.011) (0.009) (0.009) (0.011) (0.011) (0.011) (0.013)

T=300 c=15 0162 0.135 0119 0164 0097 0093 0.096 0162 0.118 0134 0.166
(0.017) (0.015) (0.013) (0.016) (0.014) (0.013) (0.012) (0.016) (0.015) (0.015) (0.017)

¢c=0 0119 0093 0074 0108 0056 0054 0058 0110 0072 0088 0.119
(0.015) (0.013) (0.011) (0.015) (0.010) (0.010) (0.011) (0.014) (0.012) (0.012) (0.013)

=5 0080 0057 0.046 0051 0037 0036 0038 0051 0043 0.058 0.081
(0.013) (0.011) (0.010) (0.009) (0.008) (0.008) (0.008) (0.008) (0.010) (0.011) (0.011)

¢=25 0.103 0080 0061 0.056 0053 0052 0052 0.055 0.061 0081 0.100
(0.013) (0.012) (0.011) (0.011) (0.009) (0.009) (0.009) (0.010) (0.011) (0.011) (0.013)

T=700 c=15 0147 0.142 0117 0146 0104 0.103 0104 0143 0.115 0.140 0.146
(0.015) (0.015) (0.015) (0.015) (0.014) (0.013) (0.014) (0.014) (0.015) (0.015) (0.014)

¢=0 0103 0094 0070 0.093 0059 0059 0059 0092 0070 0094 0.102
(0.012) (0.012) (0.011) (0.013) (0.009) (0.010) (0.011) (0.012) (0.011) (0.012) (0.013)

=5 0071 0059 0046 0.050 0041 0041 0.042 0.049 0.044 0.057  0.069
(0.011) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.012)

=25 0088 0073 0059 0056 0055 0054 0054 0057 0060 0073  0.089
(0.012) (0.012) (0.011) (0.011) (0.011) (0.010) (0.008) (0.010) (0.011) (0.012) (0.012)
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Table 2: Size performances of t* and IVX-QR for « = 0 with the nominal size 5%.
t’UJ

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 ¢=-0.05 0.107 0.076 0.058 0.051 0.049 0.048 0.050 0.051 0.059 0.075 0.105
(0.014) (0.012) (0.012) (0.010) (0.010) (0.009) (0.011) (0.011) (0.011) (0.012) (0.014)

c=-0.1 0.108 0.075 0.058 0.052 0.050 0.049 0.050 0.053 0.058 0.077 0.110
(0.014) (0.012) (0.010) (0.010) (0.011) (0.009) (0.009) (0.009) (0.010) (0.012) (0.014)

c=-0.15 0.109 0.080 0.058 0.054 0.050 0.050 0.050 0.053 0.061 0.077 0.112
(0.013) (0.013) (0.010) (0.010) (0.010) (0.009) (0.010) (0.011) (0.010) (0.012) (0.014)

c=-0.2 0.110 0.077  0.060 0.054 0.053 0.050 0.050 0.052 0.059 0.079 0.109
(0.015) (0.012) (0.012) (0.010) (0.010) (0.008) (0.009) (0.010) (0.010) (0.012) (0.014)

T=300 c¢=-0.05 0.089 0.069 0.055 0.050 0.049 0.049 0.050 0.050 0.055 0.067 0.085
(0.013) (0.010) (0.011) (0.011) (0.009) (0.009) (0.010) (0.009) (0.009) (0.011) (0.012)

c=-0.1 0.089 0.067  0.057 0.054 0.050 0.051 0.051 0.054 0.058 0.068 0.088
(0.012) (0.012) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.012) (0.011) (0.011)

c=-0.15  0.090 0.069 0.058 0.054 0.052 0.051 0.052 0.055 0.056 0.070 0.090
(0.011) (0.012) (0.010) (0.010) (0.010) (0.011) (0.011) (0.009) (0.010) (0.010) (0.012)

c=-0.2 0.086 0.071 0.056 0.053 0.051 0.050 0.050 0.052 0.058 0.070 0.088
(0.011) (0.011) (0.011) (0.009) (0.010) (0.008) (0.009) (0.011) (0.010) (0.012) (0.014)

T=700 c¢=-0.05 0.073 0.064 0.058 0.055 0.050 0.052 0.051 0.054 0.055 0.063 0.074
(0.013) (0.010) (0.012) (0.010) (0.010) (0.011) (0.010) (0.009) (0.010) (0.012) (0.011)

c=-0.1 0.075 0.064 0.056 0.055 0.052 0.051 0.052 0.054 0.056 0.064 0.073
(0.011) (0.011) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.013)

c=-0.15 0.074 0.063 0.055 0.053 0.052 0.051 0.053 0.052 0.053 0.062 0.073
(0.013) (0.011) (0.010) (0.011) (0.010) (0.010) (0.010) (0.008) (0.009) (0.012) (0.011)

c=-0.2 0.075 0.063 0.055 0.053 0.051 0.052 0.052 0.051 0.054 0.060 0.074
(0.013) (0.010) (0.009) (0.010) (0.011) (0.010) (0.009) (0.009) (0.011) (0.011) (0.012)

IVX-QR

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
T=150 ¢=-0.05 0.094 0.061 0.042 0.044 0.036 0.033 0.036 0.043 0.042 0.059 0.092
(0.014) (0.010) (0.009) (0.009) (0.008) (0.009) (0.007) (0.009) (0.010) (0.009) (0.013)

c=-0.1 0.091 0.060 0.040 0.041 0.034 0.032 0.034  0.041 0.040 0.059 0.091
(0.014) (0.012) (0.009) (0.011) (0.009) (0.009) (0.007) (0.009) (0.008) (0.011) (0.011)

c=-0.15 0.092 0.060 0.041 0.040 0.034 0.032 0.033 0.040 0.040 0.058 0.091
(0.014) (0.011) (0.008) (0.010) (0.009) (0.008) (0.007) (0.008) (0.009) (0.012) (0.014)

c=-0.2 0.092 0.060 0.041 0.040 0.034 0.033 0.034 0.040 0.040 0.060 0.091
(0.015) (0.011) (0.008) (0.009) (0.008) (0.008) (0.008) (0.008) (0.009) (0.011) (0.013)

T=300 ¢=-0.05 0.075 0.055 0.042 0.043 0.036 0.036 0.037  0.043 0.041 0.055 0.079
(0.011) (0.012) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.009) (0.010) (0.011)

c=-0.1 0.077 0.058 0.043 0.042 0.037 0.036 0.037  0.043 0.043 0.056 0.080
(0.012) (0.010) (0.009) (0.010) (0.008) (0.007) (0.008) (0.009) (0.009) (0.010) (0.012)

c=-0.15 0.078 0.058 0.043 0.043 0.037 0.036 0.038 0.043 0.042 0.056 0.080
(0.010) (0.010) (0.009) (0.009) (0.009) (0.007) (0.009) (0.009) (0.009) (0.011) (0.013)

c=-0.2 0.078 0.058 0.042 0.043 0.038 0.036 0.039 0.043 0.043 0.059 0.081
(0.011) (0.011) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.009) (0.011) (0.013)

T=700 c¢=-0.05 0.067 0.054 0.045 0.044 0.040 0.040 0.040 0.043 0.044 0.051 0.066
(0.010) (0.010) (0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.011)

c=-0.1 0.067 0.053 0.046 0.044 0.042 0.042 0.040 0.043 0.045 0.053 0.067
(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.008) (0.010) (0.009) (0.010) (0.010)

c=-0.15  0.069 0.055 0.047 0.045 0.042 0.042 0.042 0.043 0.045 0.054 0.068
(0.011) (0.010) (0.010) (0.010) (0.009) (0.010) (0.009) (0.009) (0.010) (0.011) (0.011)

c=-0.2 0.070 0.056 0.047 0.045 0.042 0.042 0.042 0.044 0.046 0.054 0.070
(0.013) (0.011) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.008) (0.009) (0.011)

Next, a comparison of the power of the proposed method with that for the IVX-QR method is made. To

this end, at the nominal size 5%, Figures 1 and 2 display the results for o = 1 and « = 0 with different ¢, given
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7= 0.5 and the sample size T' = 300, while Figures 3 and 4 display the results for the lower quantile 7 = 0.05,
and Figures 5 and 6 for the upper quantile 7 = 0.95. To see the local power, we set 3 = b/T(“O‘)/2 and thus,
Br = by /T2 = p[Q,, (1) +3]/T /2, Evidently, our method performs better than the IVX-QR method
in terms of power for all cases. This finding confirms Theorem 3.3 which states that the convergence rate of
the newly proposed method is faster than that for the IVX-QR method. We also replicate the simulations

with sample size T = 700, and obtain similar conclusions.
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Figure 1: Local power performances of ¥ and IVX-QR for a =1, 8, = b, /T = 3b/T, 7 =0.5
and T = 300.
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Figure 2: Local power performances of t* and IVX-QR for a = 0, §, = b,/\/T = 3b/\/T,
7=0.5and T = 300.
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Figure 3: Local power performances of t¥ and IVX-QR for a = 1, 8, = b,/T = 1.355b/T,
7=0.05 and T = 300.
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Figure 4: Local power performances of t* and IVX-QR for a =0, 3, = b,/\/T = 1.355b/\/T,
7=0.05 and T = 300.
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7=0.95 and T = 300.
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Figure 6: Local power performances of t* and IVX-QR for a =0, 3, = b,/\/T = 4.644b/\/T,
7=0.95 and T = 300.

Example 2. In this example, the model includes two predictors with different persistence types (one is NI1

and the other one is 10). The DGP is set up as follows:

Yr = (p+ Bray -1 + Powa-1) (ue +3), (5.1)

where 214 = (1 +¢1/T)x1,-1 + V1, and xo g = (1 + c2)za -1 + V2 ¢ With

0 1 -0.78 0.4
(’ULt,'UQ’t,’LLt)T ~ 1td N 0 s -0.78 1 0.21 s
0 0.4 0.21 1

=10, c; = -1 and cp = -0.2. Therefore, x;; is NI1 and x5 is I0. The true conditional quantile of y; given
Z1,4-1 and xgq is
Qy, (T Fi-1) = p[Qu,(7) + 3] + B1[Qu, (T) + 3]w14-1 + Bo[Qu, (T) + 3]T2s 1
= fbr + BrrT14-1 + BorToi-1,
where pir = u[Qu, (7) + 3], Bir = S1[Qu, (T) + 3], B2r = B2[Qu,(7) + 3], and Q,,, () is the 7-th quantile of wu;.
We set the sample size T as 150, 300, or 700, the nominal size as 5% and the quantile level 7 as 0.05,

0.5, or 0.95. Similar to Example 1, simulation is repeated 100 times for each setting and the reject rate is

computed based on 500 simulations. Table 3 shows the sizes and power performances of testing Hy : 51+ = 0,

21



while keeping (B2, = 0, Table 4 depicts the sizes and power performances of testing Hy : B2, = 0 while keeping
B1- = 0, and Table 5 displays the joint testing results for the null hypothesis Hy : 81+ = B2 = 0. The first
column in Tables 3-5 (Table 3 for 3, = 0, Table 4 for 85 = 0, and Table 5 for 3; =0 and 33 = 0) reports the
empirical sizes of the proposed test, and the rest columns are for the empirical powers of the proposed test.
Evidently, these tables show the proposed method works well in bivariate regression model in (5.1) which
contains both stationary and nonstationary predictors. The proposed method is free of size distortion in
those tests when the quantile level 7 is 0.5 and also performs well in terms of power too. When our method
is applied to the bivariate predictive model, it suffers from a little size distortion when the quantile level
7 =0.05 or 7 = 0.95; however, its degree of size distortion decreases as the sample size grows. In summary,
the proposed method works reasonably well in both univariate and bivariate predictive quantile models.
Therefore, when compared to existing methods in the literature, our method works reasonably well and is

quite competitive.

Table 3: Test results for 3y, for the nonstationary predictor z;; with a nominal size of 5%.

B 0 15 3 45 6 75 9 105 12 135 15
T=150 r=005 0.121 0134 0161 0212 0277 0351 0424 0497 0560 0613  0.653
(0.015) (0.016) (0.018) (0.018) (0.02) (0.021) (0.021) (0.021) (0.023) (0.021) (0.021)

7=05 0048 0110 0292 0478 0642 0748 0827 0875 0907 0930  0.945

(0.009) (0.013) (0.017) (0.023) (0.021) (0.017) (0.018) (0.015) (0.013) (0.012) (0.011)

=095 0126 0201 038 0569 0.710 0805 0.865 0904 0930 0945  0.956

(0.015)  (0.017) (0.022) (0.023) (0.019) (0.017) (0.015) (0.013) (0.010) (0.008) (0.008)

T=300 7=005 0095 0102 0125 0159 0213 0277 0349 0417 0483 0546  0.597
(0.013) (0.014) (0.014) (0.015) (0.019) (0.016) (0.021) (0.017) (0.025) (0.021) (0.024)

7=05 0048 0112 0280 0479 0638 0754 0833 0882 0916 0936  0.953

(0.009) (0.013) (0.021) (0.023) (0.022) (0.018) (0.015) (0.015) (0.011) (0.011) (0.009)

7=095 0094 0167 0348 0530 0682 0785 0854 0893 0927 0945  0.958

(0.015) (0.017) (0.022) (0.023) (0.02) (0.017) (0.015) (0.015) (0.010) (0.009) (0.008)

T=700 r=005 0074 0079 0097 0128 0170 0221 0277 0337 0397 0451  0.509
(0.011) (0.013) (0.013) (0.014) (0.016) (0.019) (0.02) (0.019) (0.021) (0.023) (0.022)

7=05 0047 0109 0272 0455 0613 0731 0810 0868 0906 0931  0.948

(0.010) (0.013) (0.021) (0.023) (0.021) (0.02) (0.018) (0.015) (0.016) (0.011) (0.009)

72095 0076 0140 0304 0484 0632 0741  0.820 0875 0909 0932  0.949

(0.010) (0.015) (0.02) (0.022) (0.024) (0.022) (0.018) (0.016) (0.014) (0.011) (0.010)
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Table 4: Test results for Sy, for the stationary predictor z5; with a nominal size of 5%.

B 0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
T=150 r=005 0129 0.126 0140 0.63 0197 0237 0290 0349 0413 0482 0.548
(0.015) (0.014) (0.016) (0.017) (0.016) (0.019) (0.021) (0.022) (0.023) (0.019) (0.021)

7=05 0050 0075 0181 0349 0549 0718 0835 0904 0945 0964  0.976

(0.011) (0.013) (0.017) (0.023) (0.022) (0.021) (0.017) (0.012) (0.01) (0.008) (0.007)

7=095 0129 0164 0288 0464 0643 0769 0865 0920 0952 0970  0.979

(0.014) (0.015)  (0.02) (0.021) (0.02) (0.019) (0.016) (0.012) (0.011) (0.008) (0.007)

T=300 r=005 0099 0101 0116 0137 0169 0214 0266 0326 0391 0459  0.530
(0.015) (0.015) (0.014) (0.014) (0.017) (0.021) (0.022) (0.023) (0.021) (0.024)  (0.02)

7=05 0048 0084 0211 0427 0645 0813 0910 0958 0980 0989  0.992

(0.009) (0.013) (0.017) (0.022) (0.018) (0.016) (0.011) (0.009) (0.006) (0.005) (0.004)

72095 0097 0143 0285 048 0689 0829 0917 0959 0980 0988  0.993

(0.012) (0.016) (0.021) (0.021) (0.022) (0.017) (0.013) (0.009) (0.007) (0.005) (0.004)

T=700 r=005 0077 008 0095 0118 0152 0197 0245 0313 0376 0448  0.523
(0.012) (0.013) (0.014) (0.017) (0.017) (0.017) (0.021) (0.019) (0.021) (0.022)  (0.02)

7=05 0048 0091 0246 0480 0726  0.882 0956 0985 0993 0996  0.998

(0.009) (0.013) (0.019)  (0.02) (0.018) (0.014)  (0.01) (0.005) (0.004) (0.002) (0.002)

=095 0078 0129 0288 0509 0725 0870 0951 0981 0992 0996  0.998

(0.011) (0.017) (0.018)  (0.02) (0.019) (0.014)  (0.01) (0.007) (0.004) (0.003) (0.002)

Table 5: Joint test results with a nominal size of 5%.

B 0 15 3 45 6 75 9 105 12 135 15

B 0 0.2 04 0.6 0.8 1 1.2 14 1.6 18 2
T=150 r=005 0164 0.170 0201 0250 0321 0398 0489 0563 0629 0688  0.734
(0.015) (0.019) (0.019)  (0.02)  (0.02) (0.021) (0.021) (0.022) (0.021) (0.021) (0.019)

7=05 0050 0109 0297 0516 0695 0811 0884 0926 0952 0964  0.975

(0.009) (0.014) (0.022) (0.023) (0.022) (0.017) (0.013) (0.013) (0.01) (0.008) (0.007)

72095 0162 0240 0436 0632 0777 0865 0917 0948 0965 0975  0.982

(0.017) (0.018) (0.023) (0.021) (0.019) (0.016) (0.012)  (0.01) (0.008) (0.006) (0.006)

T=300 r=005 0116 0126 0147 0195 0252 0331 0413 0496 0570  0.642  0.706
(0.014) (0.015) (0.015) (0.018) (0.019)  (0.02) (0.019) (0.022) (0.023) (0.024) (0.022)

7=05 0047 0111 0314 0550 0744 0866 0930 0962 0979 0988  0.991

(0.01) (0.012) (0.018) (0.023) (0.02) (0.015) (0.012) (0.008) (0.006) (0.006) (0.004)

7=0095 0118 0198 0408 0627 0788 088 0941 0967 0981 0989  0.992

(0.015) (0.019)  (0.02) (0.022) (0.017) (0.014) (0.01) (0.008) (0.006) (0.005) (0.005)

T=700 r=005 0087 0095 0117 0.156 0209 0272 0349 0427 0506 0587  0.663
(0.012) (0.012) (0.014) (0.015) (0.016) (0.018) (0.02) (0.022) (0.021) (0.023) (0.022)

7=05 0046 0114 0327 0591 0793 0909 0962 0985 0994 0997  0.998

(0.009) (0.014) (0.019) (0.022) (0.021) (0.012) (0.008) (0.006) (0.004) (0.003) (0.002)

7=095 0086 0167 0376 0619 0800 0909 0960 0983 0991 0996  0.998

(0.013) (0.015) (0.022) (0.021) (0.014) (0.014) (0.008) (0.006) (0.004) (0.003) (0.002)

6 An Empirical Application

6.1 Data

This section applies the newly proposed method to revisit the question of whether or not stock market
index returns are predictable by a set of macroeconomic indicators and financial ratios. For the convenience

of comparison, our main results are based on the same dataset (monthly data) in Lee (2016), with a sample
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period from January 1927 to December 2005. An updated dataset until December 2018 is considered too to
see whether there is any change after the 2008 global crisis.”. The dependent variable is stock market excess
returns, which is computed as the difference between S&P 500 index (including dividends) monthly returns
and the one-month Treasury bill rate. Following the literature, eight popular predictors are considered,
including dividend-price (d/p), earnings-price (e/p), book to market ratios (b/m), net equity expansion
(ntis), dividend-payout ratio (d/e), T-bill rate (tbl), default yield spread (dfy), term spread (tms).® These
predictors are standard in the predictive regression literature, and could be further classified into three
categories: valuation ratios (d/p, e/p and b/m), corporate finance variables (ntis and d/e) and bond yield
measures (tbl, tms and dfy), see Cenesizoglu and Timmermann (2008) and Lee (2016).

Table 6 reports the 95% confidence interval of the first-order autocorrelation coefficient p for the eight
predicting variables during different sample periods. All predictors show strong evidence of high persistence
for all periods, but we are still unable to identify the persistence category for each variable, see Fan and Lee

(2019). Given that our new method is robust to all persistence categories, it is expected to provide more

reliable conclusions than traditional approaches developed under a specific type of persistence.

Table 6: 95% confidence intervals for p in different sample periods.

Predictor | 1927-2002  1927-2005  1927-2018  1052-2002  1952-2005  1952-2018
d/p | [0.983,1.000] [0.985,1.000] [0.986,1.000] [0.988,1.003] [0.989,1.002] [0.989,1.002]
e/p | [0.979,0.999] [0.978,0.997] [0.978,0.996] [0.986,1.003] [0.984,1.001] [0.980,0.999]
b/m | [0.971,0.994] [0.973,0.995] [0.976,0.995] [0.985,1.001] [0.985,1.001] [0.987,1.001]
ntis | [0.957,0.987] [0.957,0.987] [0.971,0.993] [0.954,0.990] [0.954,0.989] [0.970,0.995]
d/e | [0.991,1.001] [0.993,1.002] [0.983,0.998] [0.989,1.001] [0.993,1.003] [0.975,0.997]
thl | [0.984,0.999] [0.984,0.999] [0.986,0.999] [0.976,1.000] [0.976,0.999] [0.982,0.999]
dfy | [0.962,0.989] [0.962,0.989] [0.961,0.987] [0.954,0.990] [0.954,0.989] [0.953,0.986]
tms | [0.936,0.974] [0.938,0.975] [0.925,0.964] [0.921,0.972] [0.926,0.973] [0.914,0.961]

6.2 Main Results

We first investigate the quantile predictability of stock returns for each individual predictor using the
univariate model, and then analyze the predictability of individual predictor and different combinations of
predictors in the framework of multivariate quantile regressions.

Table 7 reports the univariate regression results given the sample period from Jan.1927 to Dec. 2005.
The p-values (%) shown in bold imply the rejection of the null hypothesis of no predictablity at the 5% level.

The main findings can be summarized as follows. For the group of valuation ratios, we find significant lower

"The wupdated dataset is available from the website of Professor Amit

http://www.hec.unil.ch/agoyal
80ne may refer to Goyal and Welch (2008) for detailed constructions and economic foundations of all
variables.

Goyal at
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and upper quantiles predictability for both d/p and e/p ratios, but only upper quantiles predictability for the
b/m ratio. For the group of corporate finance predictors, the d/e, which represents the corporation dividend
payment policy, has strong predictability at both lower and upper quantiles, while the ntis, measuring the
corporate issuing activity, has predictive ability at lower quantiles only. For the group of bond yield measures,
the dfy shows significant predictability at most quantiles except at median level, and the tbl is significant
at upper quantiles. However, we do not find any evidence of the significant predictability for the tms at
all quantiles. Compared to Lee(2016), we obtain similar testing results for d/p, d/e, ntis, tbl and dfy, but
different results for the other three. For the b/m ratio, Lee (2016) finds significant predictability for both
lower and upper quantiles, while only upper quantiles predictability for our method. For the e/p, we find
both lower and upper quantiles predictability, but Lee (2016) only reports a significant predictability at the
80% quantile level. Meanwhile, Lee (2016) finds significant predictability at upper quantiles (0.9 and 0.95)
for the tms, for which we do not find any significant predictive ability. The difference is reasonable as our
method corrects the size distortion and enjoys improve the power due to a faster convergence rate of the
estimator, compared to IVX-QR approach. Meanwhile, our testing results show smoother changes across

different quantiles, demonstrating a better performance on robustness and stability .

Table 7: p-values (%) of quantile prediction tests using the univariate model (1927:01-
2005:12)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p |02 03 27 221 232 252 135 13 0.3 05 0.2
e/p | 0.1 0.7 6.0 259 260 229 172 3.6 1.0 0.8 1.0
b/m | 8.4 13,5 40.6 448 50.1 682 187 4.2 0.6 0.3 0.0
ntis | 29 04 0.1 99 14.1 10.0 45.8 56.5 64.8 581 573
d/e | 0.0 0.0 0.0 0.3 3838 452 338 2.3 0.0 0.0 0.0
thl | 7.7 10.1 413 271 2.3 0.8 59 7.0 0.6 1.0 2.1
dfy | 0.0 0.0 00 00 45 573 07 00 0.0 0.0 0.0
tms | 36.8 42.6 334 614 356 499 795 66.0 54.1 155 13.3

Note: p-values are in bold if less than or equal to the significant level 5%.

Next, we conduct the quantile prediction tests for the post-1952 data until Dec. 2005, and report the
results in Table 8. Compared with Table 7 , in general, there are fewer variables with significant predicting
power, implying that the market efficiency is improved after World War II, see Campbell and Yogo (2006).
Especially, we do not find any significant predictability for value ratios (d/p, e/p and b/m) and the d/e
ratio. For lower quantiles, only tbl and tms still have significant predictive ability, while ntis and dfy are
significant for upper quantiles. For middle quantiles, only tbl has significant predicting power. Compared to
Lee(2016), we share a similar finding that the bond yield measures, especially the tbl and dfy, maintain the

significant quantile predictability, but we find a weaker predicting power of value ratios during the sample
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period 1952:01-2005:12.

Table 8: p-values (%) of quantile prediction tests using the univariate model (1952:01-
2005:12)

T 0.06 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 0.95
d/p | 186 28.6 36.7 272 228 31.1 36.6 280 397 104 9.5
e/p | 186 30.7 40.1 274 202 316 39.0 30.1 36.0 16.2 12.3
b/m | 53.7 64.2 64.6 59.6 16.4 328 725 438 481 50.7 22.1
ntis | 39.4 387 186 415 276 231 247 60 43 0.7 0.5
d/e | 12.2 31.0 434 172 123 469 486 681 47.3 13.6 28.3
thl {58 34 25 1.1 04 26 220 723 719 404 43
dfy | 50.9 716 65.9 46.0 30.2 70.5 229 173 2.9 0.4 0.0
tms | 85 1.7 6.7 26.6 177 36.8 775 449 76.6 52.0 48.2

Note: p-values are in bold if less than or equal to the significant level 5%.

Because the stock returns might be affected by multiple variables, the univariate model may exaggerate
the prediction power for each variable. Therefore, we re-examine the stock market predictability in the
framework of multivariate predictive quantile regression. Following Kostakis et al.(2015), we consider five
popular prediction models in the literature and a full model with seven predictors (d/e is excluded due to
the multiple collinearity). For each model, we report the single test results for each individual predictor and
the joint test results for the combination of all predictors.

Table 9 depicts the test results during the sample period from Jan. 1927 to Dec. 2005. Interest-
ingly, both single tests and joint tests based on the first five predictive models do not find any significant
predictability at middle quantile levels, confirming the existing findings about a weak predictability at the
mean/median of stock returns. However, all five models show evidence of significant predictability at lower
and upper quantiles, suggesting a stronger predictability in the extreme market status. For the full model,
after controlling other variables, some predictors lose their prediction power, though the joint tests suggest
that the full model has prediction power at all quantiles. It worths to be mentioned that the bond yield
measures, including tbl, dfy and tms, maintain the significant predictability at either lower quantiles or up-
per quantiles or both. The persistence of the predictive ability for these macroeconomic variables is further
confirmed in Table 10, where only the predictive models containing bond yield measures keep prediction
power in the post-1952 sample period. Because Lee (2016) only considered a bivariate case, a comparison

with the results is not provided here.
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Table 9: p-values (%) for the test using the multivariate model (1927:01-2005:12)

Ang and Bekaert (2007)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 09 08 42 119 240 336 227 73 3.2 0.6 1.0
tbl 0.1 0.1 1.3 9.0 189 208 196 109 1.9 0.1 04

Joint Test | 0.1 0.0 1.0 109 264 173 55 06 0.1 0.0 0.1
Ferson and Schadt (1996)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 0.1 0.2 27 1.1 7.9 9.0 270 189 26.1 145 9.2
tbl 03 04 30 3.7 114 114 145 87 2.3 0.7 0.3
dfy 00 00 03 0.4 5.7 11.2 280 171 1.6 0.1 0.0

tms 0.0 0.1 0.6 0.6 4.7 49 248 206 310 16.2 84
Joint Test | 0.0 0.0 0.0 06 11.7 72 21 00 0.0 0.0 0.0
Kothari and Shanken (1997)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 0.1 0.1 0.7 139 154 172 158 3.3 0.5 0.1 0.0
b/m 0.2 0.1 1.3 10.8 173 202 244 87 11 03 0.0

Joint Test | 0.0 0.0 1.0 16.9 225 246 142 0.7 0.1 0.1 0.0
Lamont (1998)

T 0.06 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 095
d/p 5.2 3.7 8.8 180 17.0 254 288 129 95 2.0 1.0
d/e 0.4 0.1 0.7 9.2 185 227 253 107 1.5 0.1 0.0

Joint Test | 0.2 0.0 0.8 19.2 200 282 170 0.7 0.1 0.0 0.0
Campbell and Vuolteenaho (2004)

T 0.05 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 095

e/p 0.0 00 03 101 157 19.7 137 1.8 0.2 0.0 0.0

b/m 0.0 0.0 o0.1 7 137 193 152 2.3 0.2 0.0 0.0

tms 0.0 01 0.7 301 242 268 159 26 0.2 0.1 0.0

Joint Test | 0.0 0.0 0.0 6.5 140 366 134 0.7 0.0 0.0 0.0

Full Model
T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 79 149 16.1 142 175 186 21.7 208 10.1 2.3 2.1
e/p 62 50 1.5 1.0 14 4.6 7.2 107 13.0 6.5 5.3
b/m 98 181 206 132 165 156 17.1 163 88 24 2.1
ntis 1.3 5.3 88 3.5 11.8 119 245 167 75 1.8 1.6
tbl 126 24.3 220 10.0 7.5 7.3 63 43 3.1 1.5 1.6

dfy 0.0 0.0 1.0 63 273 219 28 0.1 0.0 0.0 0.0
tms 3.0 106 148 13.7 194 184 189 175 93 1.9 1.1
Joint Test | 0.0 0.0 00 00 01 08 01 0.0 00 0.0 0.0

Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.
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Table 10: p-values (%) for the test using the multivariate model (1952:01-2005:12)

Ang and Bekaert (2007)

T 0.05 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 095
d/p 223 320 406 27.8 355 33.7 29.1 232 331 9.5 9.0
tbl 134 311 214 153 131 172 225 242 281 107 24

Joint Test | 18.0 375 351 21.0 199 26.8 32.0 26.8 42.7 11.2 2.1
Ferson and Schadt (1996)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 186 173 11.1 7.6 9.7 128 9.6 7.2 5.8 2.1 7.0
tbl 21.0 158 74 5.6 76 11.2 54 4.5 6.2 24 5.0
dfy 189 170 7.5 5.5 83 104 73 5.0 5.2 2.0 4.7

tms 23.0 166 8.9 7.0 75 122 6.9 5.3 6.3 2.2 6.3
Joint Test | 24.7 277 232 135 169 299 152 11.7 64 04 0.7
Kothari and Shanken (1997)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 13.3 184 26.1 170 14.0 20.1 21.0 234 255 10.3 5.8
b/m 129 203 232 163 12.1 184 203 23.1 247 8.6 5.2

Joint Test | 16.8 27.6 36.2 252 16.2 232 28.7 26.6 36.1 11.9 5.2
Lamont (1998)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 229 258 31.6 305 231 222 282 233 291 185 11.7
d/e 16.2 219 237 175 131 20.7 266 23.6 255 108 5.1

Joint Test | 20.2 284 41.1 276 204 33.0 386 29.0 393 9.7 6.2
Campbell and Vuolteenaho (2004)

T 0.05 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 095

e/p 14.3 151 171 128 10.7 149 181 16.8 23.0 11.3 11.7

b/m 10.1 224 149 93 11.0 14.8 176 169 248 14.8 152

tms 176 298 284 191 16,5 29.0 273 277 276 7.1 6.9

Joint Test | 18.5 374 357 184 13.0 299 375 279 30.7 53 1.5

Full Model
T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 16.3 19.6 187 13.7 115 11.7 156 234 270 164 10.9
e/p 146 184 176 19.8 189 252 216 163 150 7.8 4.4

b/m 115 18.7 147 132 157 152 147 134 155 89 7.9
ntis 194 181 88 129 147 199 165 178 160 7.2 105

tbl 1.5 4.8 85 49 42 45 5.0 4.9 6.7 5.8 4.9
dfy 7.2 152 198 16.7 134 125 94 5.6 5.3 1.7 24
tms 177 164 162 216 19.1 232 228 223 21.7 115 83

Joint Test | 0.1 06 03 04 03 11 1.8 11 1.2 0.0 0.0

Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.

6.3 Test Results for the Updated Dataset

To see whether there is any change on the market predictability in the recent years, we apply our
method to the most updated data set. For simplicity, we only consider the multivariate quantile regression
because it avoids the risk of model misidentification of univariate case. Table 11 reports the results in

multivariate predictive quantile regression using the updated sample period (1927:01-2018:12), while Table
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12 for the post-1952 sample period (1952:01-2018:12). The main conclusions are roughly consistent with

those using the sample period until Dec. 2005.

Table 11: p-values (%) for the test using the multivariate model for the period from (1927:01-
2018:12)

Ang and Bekaert (2007)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 0.7 07 28 113 295 421 162 1.2 0.3 0.6 0.5
tbl 0.1 01 2.0 105 160 149 167 88 1.8 0.2 04

Joint Test | 0.0 0.0 0.8 10,5 280 242 68 0.1 0.0 0.0 0.0
Ferson and Schadt (1996)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 06 1.2 3.8 4.2 158 176 340 200 158 79 103
tbl 0.3 0.7 3.1 5.6 16.7 147 212 115 44 1.2 23
dfy 00 02 13 22 129 179 441 212 29 0.2 0.1

tms 0.1 03 11 1.5 129 148 428 314 209 5.8 9.3
Joint Test | 0.0 0.0 0.0 14 137 177 41 0.0 0.0 0.0 0.0
Kothari and Shanken (1997)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
d/p 0.1 0.2 1.8 124 194 171 142 34 04 0.1 0.0
b/m 0.2 04 26 121 155 180 198 95 2.2 0.2 0.1

Joint Test | 0.0 0.1 0.6 12.0 243 318 140 0.6 0.0 0.0 0.0
Lamont (1998)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
d/p 44 3.7 120 19.0 182 255 315 168 70 2.5 0.5
d/e 04 01 1.5 119 1v.0 202 181 120 1.6 0.1 0.0

Joint Test | 0.1 0.0 0.7 104 254 321 140 0.5 0.0 0.0 0.0
Campbell and Vuolteenaho (2004)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
e/p 0.0 0.2 0.3 126 139 189 156 2.5 04 0.1 0.0
b/m 0.0 0.1 0.2 8.6 95 200 155 2.2 03 0.0 0.0
tms 0.0 0.5 0.7 248 235 240 188 3.3 04 0.2 0.0

Joint Test | 0.0 0.0 0.0 4.6 100 36.7 130 0.2 0.0 0.0 0.0

Full Model

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 173 349 323 31.3 285 264 255 153 7.1 4.3 5.4
e/p 9.2 165 6.8 2.7 84 159 19.7 249 159 104 5.5
b/m 14.2 349 33.1 265 227 262 241 189 9.7 5.7 4.8
ntis 1.4 4.8 73 4.9 123 162 32.0 28.1 21.7 113 12.1
tbl 16.6 32.6 34.2 254 250 19.7 159 105 7.6 6.4 6.8
dfy 0.0 00 01 1.0 141 352 64 0.2 0.0 0.0 0.0

tms 3.0 143 21.8 199 2v9 273 280 21.3 10.1 5.7 5.2
Joint Test | 0.0 0.0 00 00 0.2 50 0.1 0.0 00 0.0 0.0

Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is
excluded due to the multiple collinearity among d/e, d/p and e/p ratios.
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Table 12: p-values (%) for the test using the multivariate model (1952:01-2018:12)

Ang and Bekaert (2007)

T 0.05 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 095
d/p 15.8 282 433 323 376 36.5 335 220 360 114 139
tbl 20.2 237 269 128 140 177 254 286 31.1 9.3 7.1

Joint Test | 21.1 32.7 389 165 14.6 232 40.0 28.0 383 120 11.5
Ferson and Schadt (1996)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 15.6 225 216 159 193 156 20.0 17.1 16.6 11.1 8.6
tbl 36.2 255 127 76 119 64 133 137 216 114 109

dfy 4.4 46.6 16.0 16.2 325 11,5 226 168 104 99 11.1

tms 16.1 228 178 183 20.2 16.0 209 196 203 8.7 7.8
Joint Test | 4.4 390 30.2 17.8 226 154 288 209 81 3.8 0.6
Kothari and Shanken (1997)

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 14.6  25.1 223 172 226 242 223 255 298 11.0 7.9
b/m 19.5 264 208 128 133 181 204 26.7 29.2 8.1 8.3

Joint Test | 189 36.0 276 182 104 17.6 33.2 31.7 32.0 146 99
Lamont (1998)

T 0.06 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 095
d/p 221 258 233 164 122 203 296 28.0 269 123 11.3
d/e 149 237 242 141 154 25.0 28.0 285 284 8.1 6.7

Joint Test | 19.9 284 31.8 20.5 174 253 43.8 392 36.7 121 7.1
Campbell and Vuolteenaho (2004)

T 0.05 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 095

e/p 16.7 212 187 12,7 1v.3 20.5 222 189 19.7 133 143

b/m 153 238 200 96 126 179 225 20.7 295 163 19.1

tms 19.8 321 305 176 242 32.0 319 327 287 7.7 8.5

Joint Test | 23.3 39.7 378 126 6.4 233 454 33.7 214 59 2.6

Full Model

T 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095
d/p 172 28.7 189 16.2 157 11.0 9.7 9.6 8.2 9.1 7.2
e/p 89 129 9.8 238 249 296 321 219 172 9.5 5.9
b/m 13.7 251 228 221 19.5 181 186 16.0 109 10.0 5.7
ntis 12.0 293 16.0 309 37.5 40.1 36.2 254 223 16.7 13.5
tbl 21.6 309 225 139 143 104 8.8 9.8 16.1 184 11.7
dfy 221 195 202 329 31.0 211 147 83 4.1 2.1 1.8

tms 18.6 16.0 13.8 281 288 334 283 232 16.1 125 10.1
Joint Test { 1.1 1.9 14 20 35 05 03 04 01 0.1 0.0

Note that p-value is in bold if it is less than or equal to the significant level 0.05, and d/e is ignored due
to the multiple collinearity among d/e, d/p and e/p ratios.

7 Conclusion

This paper investigates the inferential theory for predictive quantile regression with highly persistent
predictors, containing both the stationary case and the nonstationary case. A weighted estimator based
on variable addition approach is proposed to construct the pivotal test statistic. By introducing a new

additional variable whose key component is independent of z; in NI1, I1 and LE cases and persistence is
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the same as that for x;, our method is not only free of the size distortion but it can also achieve the local
power under the optimal rate 7' with nonstationary predictors and /7T with stationary predictors. The
numerical performance of the proposed tests is checked by simulation studies which show that the proposed
method outperforms the IVX-QR approach proposed by Lee (2016) in a finite sample. In the empirical
application, we apply the new method to test the predictability of US stock returns at different quantile
levels. Interestingly, after the World War II, we do not find much evidence for the prediction power for
some well-known financial ratios, such as e/p ratio, d/p ratio and b/m ratio. However, the macroeconomic
indictors, such as dfy, tms and tbl show strong evidence of significant prediction power, especially at lower

and upper quantile levels.
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Appendix: Mathematical Proofs

In this appendix, due to the limitation of space, only the brief derivations of the main results with
some lemmas are offered. First, we prove the following two lemmas to show that the assumption for FCLT

in (2.3) is reasonable since it is coincident with the model setting in (2.1) and Assumption 2.1.
Lemma A.1. . (us) is a martingale difference sequence with
B () Fet) =0, B (ur)2iFr) = 7(1-7)
and B[, (ugr)*] = =374+ 673 — 472 + 7 for all t.
Proof of Lemma A.1. Since
E(1(ugr < 0)|Fio1) = P(uir <O01Fi21) = Pyt < Qu, (7| Fi1)|Fion) = 7,

then,

E(wT(utT)|ft_1) = E(T - 1(utT < O)|.7:t_1) = T—E(l(ut.,- < O)|.7:t_1) =7—-7=0

and

E(pr(ur )| Fil) = F [7'2 =271 (ugr <0) + 1(ugr < O)\}}_l] =22+ 7=7(1-7).
Similarly, E[¢; (usr )4 Fi-1] = =374 + 67° =472 + 7. Then, by the iterative law of expectation,
E[¢; (ugr)*] = =37% + 67° — 472 + 1.
The proof is complete. u
Lemma A.2. Under Assumption 2.1, then, ¥_, < 0o.
Proof of Lemma (A.2). For h <0, by the iterative law of expectation and Lemma A.1,
Elr (uer )veen] = E[E(r (uer Jveen|Fio1)] = E [vern E(Yr (w7 )| Fi-1)] = E[vn - 0] = 0,
Thus,

Ew., Z E ’(/}‘r UtT Ut+h Z E w‘r(utr)vt+h]

h=-— h=

For h >0, by the iterative law of expectation and Assumption 2.1,

E[wT(utT)vt+h] = E[d’-r(“t*r) Z(:)szst+h g Z wT(utT)Et-Fh j] IhE[wT(utT)st]'
j= j=0
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The last step holds since E[t);(utr)ersin—j] = E [teh—i E(¥r (utr )| Fio1)] = E [e41n-j0[Fi-1)] =0 for 0 < h < j

and E[w‘r(utr)gﬁh—j] =F WT(UtT)E(EHh—ﬂft—l)] = E'[¢7(ut7)0] = 0 for h > j. Then
Sy = gE[wT<utT)vt+h] - }i FonE[r (uer)ee] = Fo (1) E[br (uer ).

Then by Holder’s inequality, |E[v¥-(usr )e]| < [ [Vr(ugr) ]]1/2 [ [sf]]l/Q =7(1-7)X., and by Assumption
2.1, |F;(1)| < 0o. Then,

o] < [Fo (D)7 (1= 7)%c < co.

This completes the proof. [ |

Next, we prove Theorem 3.1, i.e., the Bahadur representation theorem for nonstationary case. For this

purpose, it needs to establish the following proposition and Lemmas.

Proposition A.1. Let Vp(v) be a vector function that satisfies
(i) —=v"Vp(Av) 2 —v"Vp(v) for any A > 1.
(ii) sup |Vr(v)+ Dv-Ar| =o0,(1) where |[Ar| = O,(1), 0 < M < co. And D is a positive-definite random

lvll<M
matrix. Suppose that vp is a vector such that |[Vr(vr)| = 0,(1), then

(1) Jlor| = Op(1).
(2) vr = D_lAT + Op(l)'

Proof of Proposition A.1. Proposition A.l is similar to Lemma A.1 of Cai and Xu (2008), but here
the matrix D is relaxed to allow for a positive-definite random matrix. First, it shows that |vr| = O,(1).
Following Koenker and Zhao (1996), for any given € >0 and ¢ > 0, one has

P(H Tf [-v"Vr(v)] < €M)

<P(‘ 1‘n_f [-vTVr(v)] < €M, 1|n [-v"(-Dv+ Ar)] > 2¢M)
+ P( 1rif [0 Vr(v)] < M, ”1an”[ o' (-Dv+ Ar)] < 20M)
<P(H 1‘|I£f [-vTVr(v)] < €M, ‘ 1|r£f [-v"(-Dv+ Ar)] > 2¢M)
+P(”U1”ILM[ o' (-Dv+ Ar)] < 2¢M)
<P(sup [v'Vr(v)]> KM 1 [TDU vT Ar] > 20M)
lvll=21
[

" (~Dv + AT)] < 2£M). (A1)

Since sup [v"Vr(v)] > €M, | 1”11f [vTDv—v"Ar] > 2(M implies sup [v"Vr(v)]+ | 1anM [vVTDv-vTArp] >
[v]=0 [v]= vl=
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M, then,

P( sup [v'Vr(v)] > —£M, | 1anM [v"Dv-v"Ar] > QEM)
Jol=M vl=

< P( sup [v Vr(v)]+ H 1ilfM [v'Dv-v"Ar] > KM) . (A.2)
lvl= vi=

Define Mg =v"Vr(v) and My =v"Dv —v" Ap. Then,

sup [v'Vr(v)]+ inf [v'Dv-v"Ar]|= sup [Ms+M;-M]+ inf [M;]
lvll=M lvll=p lol=M lvl=M

< sup [Ms+ M;]+ sup [-M;]+ inf [My]
[v]|=M Jwll=M [vll=0

= sup [Mg+M;]- inf M;+ inf [M;]
[vll=M [vll=p |v|=M

= sup [Mg+ M]
[v]=M

= sup [v'Vr(v)+v Dv-v"Ar].
lvl=M

Thus, sup [vTVT(v)]+H IFfM [vTDv-v"Ar] > 4M implies sup [v"Vr(v)+v"Dv—-v"Ar] > M. Therefore,
[vll=n vii= |vl=M

Pl sup [UTVT(U)]+ inf [UTDU—UTAT]ZEM
lvl=M [v]=M

< P( sup [v"Vr(v) +v ' Dv-v"Ar] > EM) : (A.3)
[vll=M

Moreover, sup [v"Vy(v)+v"Dv—v" Ar] > €M implies that
o=

£< sup |v"Vr(v)+v'Dv-v"Ap||/M < sup |vT| - |Vr(v) + Dv - Ar|/M

[vl=0 [v]=M
< sup |v"|/M sup |Vr(v)+ Dv-Ar| < sup |Vr(v)+ Dv - Arl.
[vl=p1 [v]=M [v]=M
Then,
P( sup [v"Vr(v) +v"Dv—v"Ar] > KM) <P (ﬁ < sup |Vr(v)+Dov - AT|) . (A.4)
[v]=M [vl=M

By (A.2), (A.3) and (A.4), it follows that

P( sup [’UTVT(’U)] > —(M, |

i‘nf [’UTD’U - ’UTAT] > QZM) <P (€ < sup ||[Vr(v)+Dv-Arp ||) . (A.5)
lvl|=p

vl|=M vl =0

On the other hand, | liﬁ;\/[ [-v"(-Dv+ Arp)] < 2¢M implies that

. T . _ T
20M > HvIHILfM (’U Dv) + ”Ul”IifM( v AT)

and thus,

inf (v"Dv)/M?<2¢/M - inf (—v"Ar)/M?*=2¢/M+ sup (v A7) /M.
[vll=p [vl|=0 [v]|=M
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It follows that
inf (v'Dv)/M?<2¢/M + sup o™ Ag|/M? < 20/ M + Sup [T || Az | /M? = 20/ M + | Ar| /M.

lvll=M lvll=p vl =0

Since D is the positive-definite random matrix, then, | i”nf;w (v"Dv) /M? >0, so that
vl=

-1
(2€+|AT||)( inf (TDU)/Mz) > M.

-1
To sum up, inf [-v"(-Dv+ Ar)]<2¢M implies that (2¢+ |AT|)( mf (v"Dv) /MZ) > M. Therefore,

lvll=p
P(| i”rifM[— v (- DU+AT)]<2€M)<P((2é+|AT||)( inf ( TDU)/M2) >M) (A.6)
Since |Ar| = 0,(1) and \|q)i\|rifM (v Dv) /M? >0, then
-1
(2€+|AT||)( inf ( TD’U)/Mz) = 0,(1). (A7)

Thus, it follows by (A.6) and (A.7) that for large 0 < M < oo,
P (I lﬁlfM [-v(-Dv+Ar)] < QEM) <eld. (A.8)
vl=
An application of (A.1), (A.5) and (A.8) concludes that

P (I 1anM [-vTVr(v)] < (M) < P( sup [Vr(v)+Dv-Ar]> Z) +e/4. (A.9)
vl= lvl=p
Moreover, it follows from Assumption (ii) that,
P( sup [Vr(v)+Dv-Arp]>¥)<eld. (A.10)
|ol=M

By the inequality in (A.9) and the result in (A.10), it is straightforward to see that for any given € > 0 and

£ >0 there exist Ty and 0 < M < oo such that

P( inf [-v"Vp(v)] < €M) <e/2 (A.11)

[vll=21

for T'> Ty. Next, for any v, |v| > M, denote v = A3, where A > 1 and o] = M. Assumption (i) implies
Ve ()| 2 [0V (AD)]/M 2 [-0V(2)]/ M
Therefore,

( i V@l < E) <P (ij{fM[—W(ﬁ)] < EM) <ef2

The last inequality holds by (A.11). For enough large T, since |V (vr)| = 0p(1), then

P(lor| 2 M) < P(Jor| 2 M, [Vr(vr)| <€) + P([Vr (vr)] 2 £) SP( Jnf, [V (vr)] <f) +ef2<e.
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Thus, we conclude that
[vr ] = Op(1). (A.12)
From this result and Assumption (ii), it follows that

Hsrp |Vr(v) + Dv - Ap| = 0,(1). (A.13)
v||<M

By (A.12) and (A.13),
VT(UT) + D’UT - AT = Op(].).

Since v is a vector such that |V (vr)| = 0p(1), we have

vr = D A+ 0,(1).
This is the end of proof. [ |
Lemma A.3. When x; is NI1, I1 and LE,

T
Nr=D7" Y A A]_ D7 = N +0,(1), (A.14)
t=2

and

D7 éAt_le(u”)i( [ 4B, (), [ 1) -mBGaB,, ()7 [ B(r)dBwT(r))7 (A.15)

where
1 [ JE(r)dr =71 [ B(r)dr 71 [ B(r)dr
Ny =| [JS(r)dr -7, [ B(r)dr [1JS(r) =71 B(r))?dr 71 [ JE(r)B(r)dr - 7% [ B(r)%dr
71 [ B(r)dr [ Jaf(r)B(r)dr—ﬁ%fB(r)er ﬁ'%fB(r)er.

Proof of Lemma A.3. Since z|,7)/VT = JS(r) and z),7/NT = #1(G-1/vVT = B(r)&1, then, by the

continuous mapping theorem, the following convergence results hold true

1 &, 1 & 1 & d . ~
= th_lzt_l == th_lzt_l - sz_l — 7 f JS(r)B(r)dr —77% [ B(r)?dr, (A.16)
1% = 1° = T° =
1 Z d _
T3/2 D %1 _’”1[3(7")617"7 (A.17)
t=2
1 &, 1 & 1 & d . R A
32 ;xt—l = T2 ;xt—l T t;zt,l — f Jo(r)dr -7, / B(r)dr, (A.18)
1 4 * 2 d c ~ 2
= @) > [ ) - B Pr, (A.19)
t=2
1 2 d -2 2
A A f B(r)2dr. (A.20)
t=2

Thus, (A.14) holds. For (A.15), it is similar to show the followings

by (ugr) S N0, 7(1 - 7)),

M=

1
VT {

2
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and
1 & d . 2 2
= Yt () S 7 [ B(r).dB, (1) =MN(O,7(1-1)7 [ B(r)%dr).
t=1
Here, the above step is guaranteed by independence between (;—1 and us,. Therefore, (A.15) holds. The

ends the proof. [ |

Lemma A.4. For any vector v = O,(1) with dimension 2K +1, Y1y VT| D7 As_1|v" D7 Ay 1 A} D7l =
0, (1) always holds.

Proof of Lemma A.4. If x; is NI1, I1 and LE, by (A.16) — (A.20), the following statements holds ture

v’ TD}lA[TTJA[rTJD}l\/TU = v N,v, (A.21)

where

1 .];(’I")d’l”—fljB(T) 77'13(’/‘)

Ny =| Jy(r)mB(r) [Jo(r) -7 B(r)]? mJg(r)B(r) -7 B(r)* |,
71 B(r) mJg(r)B(r) - 71 B(r)? 71 B(r)?,

and

VT|DF Ay | = \/1+ (Ju(r) - B(r))? + B(r)2.
Therefore,

T T

_ _ _ _ _ L1
S VT | D7 Ay |[o" D7 Ao AL Do = S VT | DF Ay \|UT\/TDT1At_1A;_1\/TDTlvT
t=2 t=2

< / 1+ (Ja(r) = B(r))? + B(r)" N,vdr.

Thus, Z?:z \/TD}lAt_l|vTD}1At_1AI_1D}lv = 0,(1) with NI1, I1 and LE cases. When x; is 10, the proof

is almost the same and omitted. Therefore, this finishes the proof. [ ]
Now, it is ready for proving Theorem 3.1.

Proof of Theorem 3.1. To prove Theorem 3.1, it only needs to verify that the conditions listed in Propo-
sition A.1 hold true. The proof for 10 case is standard, so omitted. Then, it suffice to prove Theorem 3.1 for

NI1, I1 and LE cases. To this end, define the convex object function as follows.

T

Zr(v) = Y. {pr [wr —v"DF Aa ] - pr(uir) }

=2

Using the Knight identity in Knight (1989),
pr(u =) = pr(v) = —vtby (1) + / [1(u<l)-1(u<0)]dl
0
Then,
T T1-1 T v D7 A
Zr(v) = = Yo 0" DF Ay tpr (ugr ) + 4o [ [1(uer <1) = 1(ugr <0)]dl. (A.22)
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_ 8ZT(U)

By (A.22), Zr(v) is derivable. Then, define a new object function as Vr(v) = 5o - It is easy to prove

that
T T
Vr(v) =Y. DF' Aator(uer) = . D7 Ay [1(ugr <0 D7 A1) = 1(ur < 0)]. (A.23)
t=2 t=2

The next step is to prove that Vr(v) satisfies Condition (i) of Proposition A.1. Since 1(u < z)-1(u < 0)
is the non-decreasing function of x, then, 1(us < A"D7'Ay—1) = 1(ur < 0) is non-decreasing function of A

if vT D7 Ay_1 > 0. Therefore,
’UTD}lAt,l [1(ut7- < )\’UTD%lAt,l) - 1(’th¢ < 0)]

is always non-decreasing function of . Similarly, 1(us; < A" D7 Ay_1) - 1(ug, < 0) is decreasing function of

A if vT D7 Ay < 0. Hence,
vT D7 Ay [1(ut7 <M D7 A1) - 1w € 0)]
is always non-decreasing function of A in this case. Thus,

T T
—vVr(M) = —v Z D7 A b (ur) + Z vD Ay [1(ut7 <MD A1) = 1(ugr < 0)]
t=2 t=2

is non-decreasing function of A. As a result, for A > 1, one has

—oVr(Av) 2 —vVp(v).

Thus, Condition (1) in Proposition A.1 is verified.

It still needs to prove that Vr(v) satisfies Condition (ii) in Proposition A.1. From (A.23),

Vr(v) = ZDT Ap1r (uer) ZDT Aoy [1(ugr <0"DF A1) = 1(wir < 0)]

ZDTlAt 197 (uer) ZEt 1(me) = Z Nt = Ei-1(nt)]
t=2 t=2 t=2

T
Ar ‘éEt—l(”t) ‘;2[7% - Era(ne)], (A.24)

where Ap = ZtT=2 D7 Ay19, (ugr) and 1, = DZPA, 4 [1(utT <vTDF A1) = T(uyr < 0)] Therefore, to verify
Condition (ii) of Proposition A.1, i.e. supy,jcas [Vr(v) + fu, (0)Nv = Ar| = 0,(1) for 0 < M < oo, it suffices

to show Y7y Ey_1(1:) = Npv +0,(1) and £, [7: = Er—1(1:)] = 0,(1). By Taylor expansion,

!

ZEf 1(ne) = ZDT Aoy [Fu,, 41 (v"DF A1) = Fyy o 1-1(0) ]

P”ﬂq i

_ _ 1 " _ _
TlAt—l [fuﬁ,t—l(o)AtTADTl” + _fvit,.,t—l(l )UTDTlAt—lAtTADTlU]

~+
I
M

R

fumt 1(O)DT1At 1At 1Dr U*ZDTlAt 15 fut.,t 1(1*)UTD}1At—1AtT-1D}1Ua

2

Il
EJ il
+
&

(A.25)
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where [* € (0,v" D7 Ay—1) if vT D7 A1 > 0 while I* € (vT D7'A4—1,0) if v D7 A1 < 0. So, it needs to verify

B = fu.(0)Npv +0,(1) and By = 0,(1). To this end, By is decomposed into two parts as follows.

T T
Bi =Y [fur, 4-1(0) = fu, (0)] D7 Ay Al Dl w + Y fu (0) D7 Ay Al D7l (A.26)
t=2 t=2

To verify By = fu.(0)Nzv + 0,(1), it is to show that 7o [fu,. .r-1(0) = fu, (0)] D71 A;1A]  D7'v = 0,(1)
for any |v| < M and 0 < M < co. By Assumption 2.2 and stationarity of f,,. :-1(0), it is easy to see that
1 LT
s |5 32 e a0 £ 0] = 0,(1)

for some § > 0 (Xiao, 2009). Moreover, from the proof of Lemma A.4, D7'A;_1A] | D7' = O,(1) by (A.21).
Then, following the idea in Xiao (2009, p.258), one has

T
Z; [furrt-1(0) = fu, (0)] D7' A1 Af_ D7 (A.27)

151
= 75 2, 715 uer-1(0) - fur (O)]VTD7 A AL DFIVT

rT|
L [ VEDR A AL DAVE| S L (fur 10 - £ (0)

252]"15
1

- 5001 = 0,(1).

Then, by (A.26), (A.27) and (A.14) in Lemma A.3,
T
= Z fuer t-1(0) = fu, (0)] DTlAt 1A 1DT v+ quT(O)DTlAt 1A 1D}1“
= fu.(0)Npv + 0py(1). (A.28)

To prove By = 0,(1), we first have

T
ZD%lAt—l u”,t (7 )UTDTlAt lAt 1DT v

| Bz =

< gl 1] S VTIDF sl D AcsAlL D7
By Part (2) of Assumption 2.2, sup,g|f,. ;-1(z)| = Op(1), and by Lemma A.4,
Z\/_HDTlAt IHUTDTlAt 1] 1DT v=0,(1)
for any ||v| < M, 0 < M < co. Then, |Bs| < %Op(l)Op(l) = 0p(1). Thus,
By = 0,(1). (A.29)
It yields by combining the results in (A.25), (A.28) and (A.29) that

Yo Ero1(ne) = fu, (0)Nzv + 0p(1). (A.30)
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Next, it is to verify the fact that X1 [17: - Er-1(n:)] = 0,(1). Note that

( Yo [t — Ee-1(me)] )

T [
Yol - Eia(me)] = I F?zt —Ei1(n2t)]

t=2 Stoo (3t = Ero1(n31)]
where
1 T -1
meos = [1(uer <" D' A1) = 1(uer <0)],
Ty _
et = itTl [1(ut7' < UTDTlAt—l) - 1(ut7' < 0)] )
and
Zi_ _
N3t = % [1(ur <v" D7 Ap1) = 1(uer <0)].

To prove Y [1: — Er-1(n:)] = 0,(1), it suffices to prove that Y7 [ — Er_1(mi¢)] = 0,(1), i = 1, 2, and 3.
We take the proof for n1; as an illustration, and skip the details for 79, and ns;. For some 2 <t < T satisfying

vTDZ A1 >0, 1w <0TDZF A1) = 1(ugr <0) = 1(0 < wgr <v"DZ A1) €[0,1], one can show that

_ 2
T- Etfl(n%t) = Et—l I:].(ut'r < ’UTDTlAt,l) - 1(’th¢ < 0)] (A?)l)
< FEiq [I(UtT < UTD%lAt_l) - 1(ut7- < 0)]
= Pri(ur <v"D7 Agoq) = Pioi (ugr <0)
= Fu, (v' D3 M| Fir) = Fu,, (01 F-1)
= fut-,—,tfl(lt) ’UTDQ_}At,l
1,e(0,0T D7} Ay 1)
<

sup | fuer -1 (2)[0" DT Ay
= sup | furr -1 ()] [0 DF Ay .
The last step is holds by Taylor expansion. On the other hand, for any 2 <t < T satisfying v" D7'A;_1 <0,
L(utr <0) = 1(ugr <vTDFMA41) = 1(v" D7 A1 < ugr <0) € [0,1], one can obtain the following:
T-Eyy(n?) = e [-1(ur <0TD7 A ) + 1(ugy <0)]° (A.32)
<FE, [—1(utT <o TDFA) + 1(ur < O)]
= Piq(ugr <0) = Py (ugr < 0" D7 A1)
= Fy,, (01F-1) = Fu,, (0" D7 Ay 1| Fi)

Ty-1
== futr,tfl(lt) UDT Ay
lee(vT D7 Ay-1,0)

< =sup|fu,, -1 (z) 0" D' Ay
xeR

=sup| fu,, t-1(2)] - |UTD}1A1‘,—1|-
zeR

43



Then, it follows by (A.31) and (A.32) that
1 _
Be1(n1) € 75D | fuy, -1 (2)] - 0" DF Aga |-
T zeR

Therefore,
ZEt 1(77) < ZSUP|fu,T,t 1(2)] - [T D7 Ay <Sup|futf,t 1 $)|— Z|UTDT1At 1,
i
which implies, together with Part (2) of Assumption 2.2, that sup|f,, , ;(z)|=O,(1). Similarly,
zeR
1 T T Zt 1
— Y "D Ay =
7L D bl = £ 2+ U e T
= / |1 +vo[Jg(r) =1 B(r)] +vsmi B(r)|dr + op(1),

V1 +’l)2

where v = (v1,vg,v3)". Then, for any |v| < M, 0< M < oo,

1z Ty-1
— v Dy Ayq| = Op(1),
\/T1;| T 4t 1| ;D( )
so that
& 2 V=
ZEt—l(nlt) < Op(l)Op(l/ T)= Op(l)-
t=2
As a result,

t:Z;EH(ni) = 0p(1). (A.33)

By the same token, one can obtain that

[Et 1(m)]? = 0p(1). (A.34)

TMq

By the fact that [91: — Et—1(m¢)] is MDS and (A.33) and (A.34), it is easy calculate that

T T
Var (Z:z (11t = By (Ult)]) = z Var[me — Ee-1(me)]

=S Elme - Era(mo)] {ZEt 1[me = Ei-1(me)] }

t=2

Ngl

T T
= E{t_ZzEtl(n%t) - t; [Et1(771t)]2} = E(0,(1) - 0,(1)) = 0,(1).
Thus,
T
t_ZQ [me = Er-1(me)] = 0p(1).

Similarly, one can show that 3/, [72: — Fr_1(12:)] = 0,(1) and Y15 [13: — Es—1(13¢)] = 0,(1). Therefore,

T
> [t = Eeea(me)] = 0p(1). (A.35)

t=2
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By (A.24), (A.30) and (A.35), for any ||v]| < M, 0 < M < oo,
Vr(v) = Ap — fu, (0)Npv + 0,(1).
By Lemma A.3, Ny = N +0,(1). Thus,
Vr(v) = Ap — fu. (0)Nv + 0,(1).
Therefore, for 0 < M < oo,
Sup, [Vr(v) + fu, (0)Nv = Ar| = 0p(1). (A.36)
By Lemma A.3, it is straightforward to show that

[ Az | = Op(1). (A.37)

Since % is the minimizer of the convex function Zz(v) by the loss function, then,

0Zr(ir)

62)) -
Vi (62)] H o

‘ = 01 =0 = 0,(1). (A.38)

By (A.36), (A.37) and (A.38), we conclude that Condition (ii) of Proposition A.1 is verified. As so far, all

conditions of Proposition A.1 are verified. Thus,
0% = f. (0)"'N"TAr +0,(1).
Now, by Lemma A.3, Ny = N +0,(1) and Ay = Op(1). Then, we have
) T
07 = fu, (0)'NF'D7' 3" Aoatpr (uer) + 0y (1).
t=2
Theorem 3.1 is proved. n
To prove Theorem 3.2, we need to establish the following lemma.

Lemma A.5.
T

Lz zi-1 \ Ur (uer
O WD - 6.) = 1 0 3 (22 - L3 ) i) )

Proof of Lemma A.5. By the Bahadur representation in Theorem 3.1,

1 ﬁ Yo Ty ﬁ I ( VT (fir = ir) )

1 T 1 T 2 1 T A
T ZtT=2 T, 72 ijfz(l’f-ﬂ 7= Zt:ZTZt—laj;—l T(B--B7)
1 1 1 2 2
T3/2 Y2 Zt-1 Tz Y2 i 121 Tz Yt=2 %1 T(%r - Br)
T  tr(uer)
t=2 " /T

= fur ()] Tyl Lo (1), (A.39)
2312 241 Yr(uir)

VT

3

3
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Define
1

0 0
S = 0 10
s Yiaa1 01

Pre-multiply S on both sides of (A.39), then,

1 T 1 T N
]’i“ T3/2 7Z:t=2 CE;71 T3/2T2t=2 Zt-1 \/T(MT - [LT)
1 1 2 1 A
S 372 Zthz T Tz Zj@:2($§—1) = Zt:2th—1$§—1 T(Br - B-)
1 1 1 2
T3/2 Yioo Zt-1 Tz P2 Th 12t-1 Tz P Zt2_1 T4 - Br)

ZT Pr (ut'r)

= fu,(O)fls Zt 5 fvt 1 wf(uﬁ) +S-op(1)

= fu (0)7'S| 2, T teGusd 1 0,(1).

The last step holds as S = Op(1). Then, we have,

1 T Ty
L 777 2t=2 Ti-1 Ta75 D=2 Zt-1
1 T 1T 2 1T
777 Lt=2 Ti-1 T2 Yia(xiiy) 77 D=2 Ft-1T¢_1 )
1 T 1 T 1 T 1 T 2 1 T
0 77 T2 T} 121 — 7 Liea H-17977 Li2 Tio1 77 Liea Fe1 — | 7977 Lite2 21 ]
T ’l/JT(’U«t—r)
VT (fir = pir) L 22 M ( )
'\ _ z r(uer
T(/BT_ﬂT) :fuf(o) Zt:Z \}Tl \/j—f +OP(1)'

TG -5) B (i - e o) 5

The third row in the above equation is

1 & 1 1 .
(T2 D Tia -1 T3/2 £ Z “-1ap £ th 1) T(5r - br)

2
1 9 1 Z
= - 03 - T A7'_ T
+lT2 gzt—1 (Tg/Qt;Zt 1) ] (- = Br)

i2\VT t= VT
Thus,
T T
A - zier 1oz \ e (wer)
WD - 5= £, 07 3 (2 - L ) ) )
Wy s W) T2 = ) = £ 0) (2 - 3 2 ) B 1)
This completes the proof of the lemma. ]

Proof of Theorem 3.2. For simplicity, we only offer the proof for the NI1, I1 and LE cases, because the

proof for the case 10 case is standard. For the NI1, I1 and LE cases, quJ/\/T = B(r), M1 4 71 and

T /y/1+ 22, = O0py(1), one has,
2o /NT = 71 B(r). (A.40)
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Recall that |7 |/VT = J<(r), ZLZ?J Yy (usr)|NT = By, (1), and
Wy +Wo S 7, f B(r)JE(r)dr, (A.41)

where B(r) is the standard Brownian motion, B(r) = B(r) - [ B(r)dr, JS(r) = JS(r) = [ JS(r)dr, and

71 = [ B(r)JE(r)dr/ [ B(r)%dr. By the continuous mapping theorem, one obtains that

(W1+W2)T(B;”—BT)=fuT(O)‘1§:(£— i—)wmp(l)
=2 \VT = VT
& p 7 [ [B@) - [ B e, (A.42)
1
Combining the results of (A.41) and (A.42), and using the independence between (; and wu¢,, one can show
that
Aw d -1 f B(T)er ]
T -B:) = fu.(0)"7"MN|0,7(1 -7 = = .
(87 = B-) = fu.(0) [ ( )[fB(r)J;;(r)dr]?
This ends the proof of the theorem. [ |

Proof of Theorem 3.3. For simplicity, we only offer the proof for NI1, I1 and LE case since the proof for

the 10 case is standard. For NI1, I1 and LE case, leTJ/\/T = 71 B(r) from (A.40). It follows that

T T 2 .
W2:t_222'152—1/T2—(t_222t_1) / Z(Zt 1__2215 1) /T —>\/B(7«) dr.

t=2

By the continuous mapping theorem and Slutsky Theorem,

= fur (0) [War (1= 7)]7/ (W1 + Wo)T(BY - ;)

-1/2
< £ (0) [T(1 - [ B(r)2dr] Fu. (0) MN(O r(1-7) [ B dr) 4N (0,1).
Moreover, under the local alternative hypothesis H, : 8, = bTT, it follows that

Fur (0) [Wor(1=7)]72 (W + Wo) T8,
fu (0) 71 [ B(r)Jg(r)dr
T\/T(l_T) \/ﬁ%fB(T)Qd’I’
fu. (0) 7r1[B (r)JE(r)dr b fu, (0) sign(#) [ B(r)JS(r)dr
\/7'(1 ) |7/ [ B(r)2dr VT(1-7) \/ [ B(r)2dr
fu. (0) Slgn(m)Slgn(m)U B(r)(]fc(r)dr‘

T\/T(l—T) \/ [ B(r)2dr

fu (0) sign(71)?|f B(r)JS(r)dr|

=b,
VT(1-7) \/ [ B(r)2dr

= fu, (0) [War (1 =) 2 (W + Wa)br S

=D

=b|me| /o
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Therefore,

£ = fu, (0) [Wor(1- )]/ (Wi + Wa)TBY
= fu (0) [War(1 =) (W1 + W) T(BY = Br) + fu. (0) [War(1 = 7)]* (W1 + W) TB,

L bolmel o + B(1).
This concludes the proof the theorem. [ |

Proof of Theorem 4.1. Similar to the proof of the Bahadur representation theorem for the univariate case,
one can establish easily the Bahadur representation for multivariate quantile regressions. To save a space,
the details are omitted. Now,

DT(mU _ﬂ‘r)

T 1T -1 T 1T
= fu, (0)7* [(DT)_1 Zz (Zt—l -7 ZQZt—l) XtT—l(DT)_l] (Dr)™ 22 (Zt—l -7 ;Zt—l) V7 (uir) +0p(1).
(A.43)

Note that for all predictors x; ¢, i = 1,2,

VT
Zip =it/ \J1+ 22, +0,(1), if a;, is 10.

For Case 1, K7 =0, i.e., all predictors are stationary, then,

{M =#1.4Cleo1 [1+0,(1)], if 2y, is NI1, 11 and LE;

.
2= (210, 224)" = (fﬂl,t/\/l +22,woa\f1+ x%,t) +op(1),

and the weighting matrix Dy = diag(v/T,V/T). By the central limit theorem, it is easy to show that

L& 1 & d
(DT)7 t:Z; (Zt—l - f ;;Zt_l) ¢T(utT) - N(O,T(l - T)‘/Q) 5 (A44)

where

[t

S E )

T i )

2
Iit )_ T1,t Tt T2t _ Ty ¢ To
E(1+zf7t E m E Vet Vixes, B Jlmtit E Vi3,
2
1, T2 _ Tt T2t i _ _ ®at
E(Fw) E(\/l)E(w) E(l) E(\/l)

Combining (A.43) and (A.44), together with the continuous mapping theorem, leads to

Dr(BY - B,) 3 fu (07" VIIN(0,7(1-7)V3),
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where

Vi =plim(Dr)~ Z (Zf 1= ZZt 1) X/, (Dr)™

T—oo

.
- gnm(DT)*1 Z Ziq (Xt_1 - fo 1) (D)~
—o0 t=2

T T . .
?Zj(x“ 1/\/1+$1t 1> L2,t— 1/\/1+x2t 1) (xu 1——2%%,5 1,T24— 1‘?295% 1

t=2

5751 t T1,6%2,¢
1+:1:1 + N /1+a:f_t
2
T1,6T2,¢ E Lo ¢
,/1+w2,, 1/1‘”5%4,
For Case 2, K1 =1, i.e., x1; is nonstationary while xo; is stationary, then,

VT (Dr) " Zy = (21T, 22,4)" = (ﬁ17141,t—1/ﬁ7 To-1/y/1+ x%,t_l) +0p(1),

and the weighting matrix Dp = diag(T,~/T). Define

hi1=(P1i-1,hoe1)"

.
— (Dp)! 1,1C1,0-1 — \/Tﬁ'l,lfBl(T)dT T2¢-1 _ Tgp1l
711\ [ Bi(r)%dr Vit 33216 1 VIt 95%,7%1
Thus,
— -1
|diag (71.0/] Ba(r)2dr1) | (D) £Ls (Zi1 - 4 500 Zect) ()
= Yo hatpr (uir ) + 0p(1). (A.45)

Next, it is to verify that the Lindeberg condition for A;_19, (1) holds true. That is, for any & > 0,

M=

B[ [hiatr (wn) [P 1 ([t (uir) | > )| Foa ] 5 0. (A.46)

t=2

Since [ (uer )| = [T=1(ugr < 0)| € 7+1(ugr < 0) <2, then, |Ai-1| > E/|¢)r (uir )|, which implies that |h_1| > &/2,

so that
L(lheatpr (uir) | > €) = 1([hea] > €/1ibr (uer)[) <1 ([Rua] > €/2). (A.47)
Since |hy 1| < 2/7/T, then, |hi_1| > £/2, which implies that h3, ., >&%[4—4/T. Then, by (A.47), one has

L(lhe1tpr (uer) | > &) < T([heea | > €/2) <1 (AT 1y > €%/4-4/T). (A.48)
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It follows by the facts that |1, (us,)| < 2 and |hy 41| < 2//T and (A.48) that

T
3 B Iestre ()l 1 (Thesior ()] > )] Fica
7T
<A [Iheal” 1(A oy > /- 4/T)| 7o
<43 B[(W oy +4/T) 1(82 oy > 4 41T)| 7]
t=2
A B[R (> -4y T)| Fia] ¢ 2 B[L( > - 41T i
12
= AR B[h ey (il > VEAAT)| Fa [+ 5 S B[4 (Il > VR A]T)| i
:4;2 [hit_l1(|h17t_1|>\/§2/4—4/T)] ;iE[ (|h1,t_1|>\/52/4—4/T)] (A.49)

for T > 4/€. Since (1,4-1 and F;_; are independent, then, hq ;-1 and F;_; are independent too, so that the
last step in (A.49) holds. By Chebychev’s Inequality,

éE[l(mLtﬂ > \/m)]
- éP(mM_ﬂ > \/M)

E%

E(hi, )/ (%/4-4/T)
G Z(m Cia 1—\/_m1[Bl(r)dr)z/(ﬁil[Bl(r)2dr)]/(gz/4_4/:r)

=F [(m 1B1(r) - ﬂllfBl(r)dr) dr/(ﬂ'llfBl(r) dr)+0p(1)]/(~2/4 4/T)
:E[ Bl(r)2dr/fBl(r)zerrop(l)]/(52/4—4/T)

=4/8% + o(1), (A.50)

-~
U
[\v]

I
=

and

i E I:hit—l 1 (lhl,t—1| > \/éQ/ZlT/T)]

- E| 31 (Il > VETT7T)|

<E 1(11;S [ 1|>\/W)Zh“ 1] (A.51)
-5 1(ma<x 1] > VAT (14 0,(1)) |

- 21 (g b oea| > VEL=A]T) |+ 0(1) = P sua o | > VI 4] ) + o(0), (A.52)

where the inequality in (A.51) holds since |hq 1| > \/&2/4 —4/T, which implies that maxocicr|h1 -1] >

20



€2/4-4/T. Now,

p (Qm% ] > /224 4/T)
<t<

= P| max

_ZStST

7AT1,1C1,:5—1—\/T7~T1,1f31(7’)dr

/(T|fn,1|\/W) . VW]
VIl [ Ba) (1 [ 0z > e
(k[ [ Brceyar) > Va7 |

[l ol (Tl [ Brcoyar) > VAT

<P (|ﬁ1,1|21§g§|C1,t—1| +

<P ‘\/T|ﬁ1)1|[Bl(T)dT

(A.53)

Then, it is straightforward to show that since [#1.1 [ By (r)dr|/ (|7~r171| i Bl(r)er) ~|f Bi(r)drl N[ Bi(r)2dr =

0,(1),
P[‘ﬁﬁl,lf&(r}dr /(T|ﬁ1,1|\/m) >\/m]
- PU/ By (r)dr /(\/W) > \/m] -0, (A.54)
and
Pt psgles ol (man/ [ Bio2ar) > V=7 |
<P [g&glﬁ,t—ll > T0'75\/W]
P [w/ (wW) . TJW] . (A.55)
Then,

P[|ﬁ1,1|/(|ﬁ1,1|\// Bl(r)er) >T0'25\/52/4—4/T] -0 (A.56)
since |7Ar171\/(|7~r171|\/f Bl(r)zdr) = (\/f Bl(r)2dr)_1 +0p(1) = Op(1). Thus, it follows by the fact that

Cit-1 = Zij Gi,s and (§1,s)§j is independent random variables and the generalized Kolmogorov inequality

(see Section 6.4 in Lin and Bai (2010)) that

P [212% (Cro-a| > TOT5\/22]4 = 4/T] <E(Cr.)/ [T0‘75\/52/4 - 4/T]2 = (T-1)/[T"*(£2/4-4)T)] 0.
(A.57)

It is easy to show by (A.55), (A.56) and (A.57) that

P [|7AT1,1|2%?2§|C1¢—1|/(T|7~71,1|\/ f Bl(T)QdT) >\e4- 4/T] - 0. (A.58)
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Clearly, an application of (A.53), (A.54) and (A.58) implies that

P (2@% o] > /224 - 4/T) -0, (A.59)

Therefore, a combination of (A.52) and (A.59) leads to

i E [hit_l 1(|p1ea] > V224 - 4/T)] - 0. (A.60)
t=2

Hence, by an application of (A.49), (A.50) and (A.60), the following statement holds true. For any & > 0,

M=

E [[he1tor () P 1 (et (uer) | > )| Foa ] 2 0. (A.61)

t=2

Thus, the Lindeberg condition for h;_11,(us,) is verified.

Next, we show the asymptotic variance of ZtT=2 hi—197 (ugr ). First, since hy 41 is independent of Fy_q

and ¥, (ug, ), then,

M=

T
E[hT ¥ (uer )| Fiaa ]| = Z;E (A3 1| Fee1 | E [90r (uer ) ? | Fia ]

t=2

T
=(1-7)r Z E [/’lit_ﬂ}—t,l]
=2

T
=(1-7)r Y. E(h,)

t=2
T
=(1-7)rE (Z hit_l) —(1-7)TE(1+0,(1)) 5 (1-7)7, (A.62)
t=2
so that
z 2 2 a 2 2
Z E [h2,t—1¢r(ut7) |-7:t—1] = Z h2,t—1E [¢T(“tr) |-7:t—1]
t=2 t=2
T
=(1-7)7 A3, 1 5 (1-7)7 Var (2,1 /y/T+ Z24-1).- (A.63)
t=2
Furthermore,

M=

T
E [hl,t—1h2,t—1wr(utr)2|ft—1:| = Z hat 1 E [hl,t—1|ft71] E [¢T(Utr)2|-7'—t71]
i t=2

2

T
= (1 - T)T Z hg,t_lE (hl,t—l)
t=2

T T
= (1 - 7')7' Z h27t_1 [E (hl,t—l) — hl,t—l] + (1 - T)T Z h27t_1h17t_1. (A64)
t=2 t=2
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By the independence between hy ;1 and (h2 -1, F—2)", we have

E{hg1[E(h1i-1) = hi-1][Fi-a} = E (ho 1| Fe2) E{[E (h14-1) = h14-1]|Fi2}
= E (hg1|Fi2) E{[E (h1,4-1) = h1e-1]1F-2}
= E(hat1|Fi2) E{[E (h14t1) —h1t1]}
= E (hap-1|Fe-2) [E (h1,-1) = E (h1¢-1)]

=F (}’Lgyt_1|ft_2) 0 = 0
That is, {ho-1[E (h1t-1) — h14-1]}15 is martingale difference sequence. Therefore,

T
Var {Z hoi-1 [E (h14-1) - hl,t—l]}
2

E'@

Var{hg 1 [E(h1t-1) = h1-1]}

~+
||
N

E{ho i1 [E(h1-1) - hl,t—l]}2

oE

~+
U
[\

E(h2, ) E[E (hi-1) —hiea)’

oE

% (Thztl)iE [E (h14-1) = b1 ]
- wVar (e T a3 ) | [ B GG - )P dr 0, (1)
=0,(1),

-1

where Hy(r) = (Bi(r) - [ Bi(r)dr) (\/f Bl(r)er) . Therefore

Zthl (h1,6-1) = h1e-1] _’E{ZthlE(hlt 1) = hie 1]} 0. (A.65)
t=2
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Moreover,

T
Z hot-1h1 41
t=2

_1 i 2,t-1 (ﬁ1,1C1,t—1_\/Tﬁl’lfBl(r)dT) (ﬁlwlm)l

T
%if’mtl(glt 1—\/_[31 T)dr)(fBl(T) dr) +0p(1)

f 1(7’)2d7") féhlt—lCl,t—l + ([ By (r)?dr

( fBl(r)dr%éﬁhz,t_l +o,(1)
( Bi(r)2d )_1/2%22@’“(1,“ N (f By (r)2dr
(

)
)"

f By (r)dr E(VTha, 1) +0,(1)

. N2 T
= By (r)“dr T Y hoi1Ci-1+0+0p(1)
=

_ ) -1/2 1 T
= (f Bl(’f’) d?") ? Z h2,t—1<1,t—1 + Op(].). (A66)
t=2

Due to the equation E (hg,-1C1,t-11F-2) = E (ho-1|Fi-2) £ (C1-1|Fe-2) = E (hoi-1|Fi-2) E (Cre-1) = E (ho, -1/ F4-2) 0 =

0, h2,t-1C1,¢-1 is the martingale difference sequence. So
T T
Var (Z hz,t—lﬁ,t—l) = Z Var (kg -11,6-1)
t=2 t=2
T
= Z E (hQ,t—ICI,t—l)z

t=2

E( 2,t— 1) (Clt 1)

~+
U

2

E(Ths, 1)ZE(<U 1)

_ lm(m W B[ [ B E?) o )] = 0p1),

The equation holds by the independence between hg ;1 and (; ;—1. Therefore,

’ﬂlH

T
Zh2t 1Gree1 = E(Z hot-1C1 - 1) =Y E(hat1) E(Ci1) =0. (A.67)
=

t=2

By equation (A.64), (A.65), (A.66) and (A.67), it follows that

E [y g-1h2-10- (uer )| Fia ] 2 0. (A.68)

M=

2

~+
|

It follows by (A.62), (A.63) and (A.68) that

iE[ht_lhT e (ugr)?| Foma | = iE Ma Mthac )y 2E,
t-1V7 (Utr his-1hos 1 ha 1 o

t=2 t=2

P(1 1 0
T( _T)( 0 Var($2’t,1/\/1+$27t,1) )

(A.69)
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and E [hi-19: (usr )| Fe-1] is martingale difference sequence, since

E[hi-197 (ugr )| Fe1]
= (B [h1t1%r (uir )| Fio1], E [hat19r (uir )| Fior])"
= (E [ 1| Fi-1) E [¥7 (uer )| Fir]  hog E [ (uer )| Fia])'

= (E[h14-1|1Fi-1]0, h24-10)" = (0,0)". (A.70)

Therefore, it follows by (A.61), (A.69) and (A.70) and the Corollary 3.1 in Hall and Heyde (1980) that

ght 1¢r(utr)—>N[0 (1~ 7’)( 0 Var (22, 1/m) )] (A.71)

It is easy to see by (A.45) and (A.71) that

T T
(D7) (Zt—l - % > Zt—l) r(ugr) 4 MN 0, 7(1-7)V3), (A.72)
t=2 t=2
where
ﬁf’ljgl (r)zdr 0

‘/2: xgt T2,¢ ’
o e()-n( e

An application of (A.43) and (A.72) as well as the continuous mapping theorem implies that
S d e
Dr(BY = B-) = fu, (0) VI MN(0,7(1 = 7)V2),
where

Vi = plim(Dr)~ Z (Zt 1—- = ZZt 1) X/, (Dp)™!

T —oc0

=plim(Dr)~ ZZt 1(Xt 1——2Xt 1) (D)™

T—oo t=2
\/— T1,t-1 L 1 &
—gl_lg Z(WllClt 1/VT, z9,- 1/\/1+$2t 1) _TZ: $27t—1—f;l‘2,t—1
711 [ Bi(r) JEH(r)dr 0
= x3 . .

For Case 3, K1 =2, i.e, all predictors are nonstationary, it is clear to see that
_ . . T
\/T(DT) ' Z; = (Z1,t/\/i Z2,t/\/T)T = (7T1,1C1,t71/\/i 7Tl,2<2,t—1/ﬁ) + Op(]-),
and the weighting matrix Dr = diag(T,T). Similar to the univariate model, one can show easily that

T 1 T d
(DT)1§(Zt_1—ft2;zt_1)z/z7(u”)—»[(mlBl(r),mgBQ(r)) dBy.(r) = MN (0,7(1 - 7)V2) ,(A.73)
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where

T 1 X 1T T
V, = plim(D7p)™" Z (Zt—l - = Z Zt—l) (Zt—l - = Z Zt—l) (Dr)™!
T—oo t=2 T = T =

:( 7?%,1_[_31(7“)%d7’ 77'17177'172fB_1(7")BQ(7“)dT‘ )
7?17177'1?2[.32(7")31(7')(17' 77'%_’2[32(7")2617’ ’

The asymptotic mixture normality holds by the independence between ((14,¢2+)" and ;- (u;r). Again, it

follows by combining (A.43) and (A.73) together with the continuous mapping theorem that

Dr(BY - B:) S fu, (0) V7 MN (0,7(1-7)V5),

where
1y 1< T -1
Vi = plim(Dr) Z (Zt—l - — Z Zt—l) X, .(Dr)
T—o0 t=2 T t=2
1 a 1 & ! 1
= plim(DT)f Z Zt—l (Xt—l - = Z Xt—l) (DT)7
T—00 =2 Ti=
1L N T(21-1 1 & wgo o1 1 TﬂUzt—l)
= plim— s _ \/Tﬂr _ \/T (’—__ > , ’ = >
IT)_mTt:ZQ( 1,161,6-1/ 1,262,¢-1/ ) Nia ThZQ NN Tt; T
_ ﬁl,lj@l(T)Jgi (’]”)d?" ﬁl,lf@l(T)Jg?;(T)dT
7?172132(T)J£i (T)d?“ ﬁl,ngQ(T‘)JIcg(’l“)dT ’
This concludes the proof the theorem. [ |

Proof of Theorem 4.2. By the results in Theorem 4.1, the proof of Theorem 4.2 is straightforward and the

details are omitted here to save space. [ |
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