
Two Stage 2× 2 Games With Strategic Substitutes and

Strategic Heterogeneity

By

Tarun Sabarwal∗ and Hoa VuXuan†

Abstract

Feng and Sabarwal (2018) show that there is additional scope to study strategic comple-
ments in extensive form games, by investigating in detail the case of two stage, 2× 2 games.
We show the same for two stage, 2 × 2 games with strategic substitutes and with strate-
gic heterogeneity. We characterize strategic substitutes and strategic heterogeneity in such
games, and show that the set of each class of games has infinite Lebesgue measure. Our
conditions are easy to apply and yield uncountably many examples of such games, indicat-
ing greater possibilities for the manifestation and study of these types of interactions. In
contrast to the case for strategic complements, we show that generically, the set of subgame
perfect Nash equilibria in both classes of games is totally unordered (no two equilibria are
comparable). Consequently, with multiple equilibria, some nice features of strategic comple-
ments that depend on the complete lattice structure of the equilibrium set may not transfer
to the case of strategic substitutes or strategic heterogeneity.

JEL Numbers: C60, C70
Keywords: Strategic substitutes, strategic complements, strategic heterogeneity, two
stage game, extensive form game

First Draft: July 2018
This Version: December 19, 2018

∗Department of Economics, University of Kansas, Lawrence KS 66045. Email: sabarwal@ku.edu.
†Department of Economics, University of Kansas, Lawrence KS 66045. Email: hoavu@ku.edu



1 Introduction

Extensive form games with strategic complements have been viewed as a restrictive

class of games, as shown by Echenique (2004). In a recent paper, Feng and Sabarwal

(2018) investigate two stage, 2× 2 games and show that there is additional scope to

study strategic complements in such games. In particular, they show that the set of

two stage, 2 × 2 games with subgame strategic complements has infinite Lebesgue

measure (in the space of payoffs), as compared to previous definitions that yielded

strategic complements on a set of measure zero. Moreover, they show that Echenique

(2004)’s result on the complete lattice structure of subgame perfect Nash equlibria

continues to hold for this larger class of games. Their work has expanded the scope

of strategic complements in extensive form games.

This raises the question whether cases with strategic substitutes and with strate-

gic heterogeneity occur more generally than what was believed previously. We show

this to be true for two stage, 2 × 2 games. In particular, we characterize strategic

substitutes and strategic heterogeneity in such games, and show that the set of each

class of such games has infinite Lebesgue measure. Our conditions are easy to apply

and yield infinitely many examples of such games. This expands the class of games

in which such strategic interactions may arise.

In contrast to Feng and Sabarwal (2018), we show that generically (on an open,

dense, and full Lebesgue measure set), the set of subgame perfect Nash equilibria in

both classes of games (strategic substitutes and strategic heterogeneity) considered

here is totally unordered (no two equilibria are comparable). This contrasts the case

for strategic complements where the set of SPNE is always a nonempty complete

lattice, as shown in Echenique (2004).

Our results highlight some similarities and differences when considering strate-

gic complements and strategic substitutes in extensive form games. There are some

similarities in what drives the monotone behavior of best responses in both cases.

There is a considerable difference in the structure of the equilibrium set. Conse-
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quently, some of the nice features of strategic complements may not transfer to the

case of strategic substitutes or strategic heterogeneity.

The problem of characterizing strategic complements, substitutes, and hetero-

geneity in general extensive form games remains intractable. The results here, com-

bined with those in Feng and Sabarwal (2018), may provide other researchers with

some resources in this regard.

The paper proceeds as follows. The next section presents a motivating example.

The section after that lays out the general framework and results. The last section

concludes.

2 Motivating Example

Consider the following two stage, 2×2 game. In the first stage, a 2×2 game (denoted

game 0) is played in which player 1 can take actions in
{

A0

1
, A0

2

}

and player 2 can

take actions in
{

B0
1
, B0

2

}

. For each player, assume action 1 is lower than action 2,

that is A0
1
≺ A0

2
and B0

1
≺ B0

2
. The normal form is given in figure 1.

B0
1

B0
2

A0
1

3, 3 1,−2

A0
2

−2, 1 −4,−4

Figure 1: Stage One Game

In the second stage, another 2 × 2 game is played depending on first stage

outcome. If first state outcome is (A0
1
, B0

1
), then game 1 (top left game in figure 2)

is played, if outcome is (A0
1
, B0

2
), (A0

2
, B0

1
), or (A0

2
, B0

2
) then game 2, 3, or 4 is played,

respectively. In each game n = 1, 2, 3, 4, suppose action 1 is lower than action 2,

that is An
1
≺ An

2
and Bn

1
≺ Bn

2
.
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B1
1

B1
2

A1
1

4, 8 0, 0

A1
2

12, 12 8, 4

(a) Game 1

B2
1

B2
2

A2
1

12, 0 8, 8

A2
2

4, 4 0, 12

(b) Game 2

B3
1

B3
2

A3
1

0, 0 4, 12

A3
2

12, 4 8, 8

(c) Game 3

B4
1

B4
2

A4
1

8, 8 4, 12

A4
2

12, 4 0, 0

(d) Game 4

Figure 2: Stage Two Games

The extensive form of the overall two stage game is depicted in figure 3 (assuming

a discount factor of δ = 3

4
)

A0

1
A0

2

B0

1
B0

2
B0

1
B0

2

A1

1
A1

2
A2

1
A2

2
A3

1
A3

2
A4

1
A4

2

6, 9

B1

1

3, 3

B1

2

12, 12

B1

1

9, 6

B1

2

10,−2

B2

1

7, 4

B2

2

4, 1

B2

1

1, 7

B2

2

−2, 1

B3

1

1, 10

B3

2

7, 4

B3

1

4, 7

B3

2

2, 2

B4

1

−1, 5

B4

2

5,−1

B4

1

−4,−4

B4

2

Figure 3: Extensive Form of Two Stage Game

In this game, a strategy for player 1 is a 5-tuple s = (s0, s1, s2, s3, s4), where for

each n = 0, 1, 2, 3, 4, sn ∈ {An
1
, An

2
}. The strategy space for player 1 is the collection

of all strategies, denoted S, and is endowed with the product order. Notice that S is
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a complete lattice in the product order.3 Similarly, a strategy for player 2 is a 5-tuple

t = (t0, t1, t2, t3, t4), where for each n = 0, 1, 2, 3, 4, tn ∈ {Bn
1
, Bn

2
}. The strategy

space for player 2 is the collection of all strategies, denoted T , and is endowed with

the product order. Notice that T is also a complete lattice in the product order as

well.

This makes the game into a lattice game (each player’s strategy space is a lattice),

and we can inquire if this is a game with strategic substitutes. In other words, is

the best response of one player decreasing (in the lattice set order)4 in the strategy

of the other player?

Notice that the component games are very well behaved in terms of best re-

sponses. Each of the games 0, 1, 2, and 3 has a strictly dominant action for each

player, and game 4 is a classic Dove-Hawk game with two strict Nash equilibria.

Therefore, we may expect that this is a game with strategic substitutes.

Indeed, as shown below in more generality, this is an example of a large class of

two stage, 2 × 2 games with strategic substitutes. Moreover, it is straightforward

to check that this game has two subgame perfect Nash equilibria, one given by

ŝ∗ = (A0

1
, A1

2
, A2

1
, A3

2
, A4

1
) and t̂∗ = (B0

1
, B1

1
, B2

2
, B3

2
, B4

2
), and the other given by

s̃∗ = (A0
1
, A1

2
, A2

1
, A3

2
, A4

2
) and t̃∗ = (B0

1
, B1

1
, B2

2
, B3

2
, B4

1
). The set of SPNE is totally

unordered.

3 General Framework and Results

Consider a general two stage, 2× 2 game. In the first stage, a 2× 2 game (denoted

game 0) is played in which player 1 can take actions in
{

A0
1
, A0

2

}

and player 2

can take actions in
{

B0

1
, B0

2

}

. In the second stage, another 2 × 2 game is played

depending on first stage outcome. If first stage outcome is (A0
1
, B0

1
), then game 1 is

played, in which player 1 can take actions in
{

A1
1
, A1

2

}

and player 2 can take actions

3We use standard lattice theoretic concepts. Useful reference are Milgrom and Shannon (1994)
and Topkis (1998).

4See next section for the (standard) definition.
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in
{

B1

1
, B1

2

}

. Similarly, if first stage outcome is (A0

1
, B0

2
), (A0

2
, B0

1
), or (A0

2
, B0

2
) then

game 2, 3, or 4 is played, respectively, in which player 1 can take actions in {An
1
, An

2
}

and player 2 can take actions in {Bn
1
, Bn

2
}, respectively, for n = 2, 3, 4.

The extensive form is depicted in figure 4, with general payoffs at terminal nodes.

When there is no confusion, we use the term game for such a two stage, 2× 2 game.

The set of all such games is identified naturally with R
16 × R

16. Throughout the

paper, we view Euclidean space as a standard measure space with the Borel sigma-

algebra and Lebesgue measure.

A0

1
A0

2

B0

1
B0

2
B0

1
B0

2

A1

1
A1

2
A2

1
A2

2
A3

1
A3

2
A4

1
A4

2

a
1

1

b
1

1

B1

1

a
1

2

b
1

2

B1

2

a
1

3

b
1

3

B1

1

a
1

4

b
1

4

B1

2

a
2

1

b
2

1

B2

1

a
2

2

b
2

2

B2

2

a
2

3

b
2

3

B2

1

a
2

4

b
2

4

B2

2

a
3

1

b
3

1

B3

1

a
3

2

b
3

2

B3

2

a
3

3

b
3

3

B3

1

a
3

4

b
3

4

B3

2

a
4

1

b
4

1

B4

1

a
4

2

b
4

2

B4

2

a
4

3

b
4

3

B4

1

a
4

4

b
4

4

B4

2

Figure 4: General Two Stage, 2× 2 Game

In each component game of a two stage, 2×2 game, suppose action 1 is lower than

action 2, that is, for n = 0, 1, 2, 3, 4, An
1
≺ An

2
and Bn

1
≺ Bn

2
. A strategy for player

1 is a 5-tuple s = (s0, s1, s2, s3, s4), where for each n = 0, 1, 2, 3, 4, sn ∈ {An
1
, An

2
}.

The strategy space for player 1 is the collection of all strategies, denoted S, and is

endowed with the product order. Notice that S is a complete lattice in the product

order.

Similarly, a strategy for player 2 is a 5-tuple t = (t0, t1, t2, t3, t4), where for each

n = 0, 1, 2, 3, 4, tn ∈ {Bn
1
, Bn

2
}. The strategy space for player 2 is the collection of
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all strategies, denoted T , and is endowed with the product order. Notice that T

is also a complete lattice in the product order as well. This makes Γ into a lattice

game (each player’s strategy space is a lattice).

Strategic substitutes and complements are defined in terms of decreasing or

increasing best responses, as usual. Player 1 exhibits strategic substitutes,

if best response of player 1, denoted BR1(t), is (weakly) decreasing in t in the

lattice set order (denoted ⊑).5 That is, ∀t̂, t̃ ∈ T , t̂ � t̃ =⇒ BR1(t̃) ⊑ BR1(t̂).

Similarly, player 1 exhibits strategic complements, if best response of player

1, denoted BR1(t), is (weakly) increasing in t in the lattice set order. That is,

∀t̂, t̃ ∈ T , t̂ � t̃ =⇒ BR1(t̂) ⊑ BR1(t̃). Similarly, we may define player 2 exhibits

strategic substitutes and player 2 exhibits strategic complements. The game

is a game with strategic substitutes, if both players exhibit strategic substitutes.

It is a game with strategic heterogeneity , if player 1 exhibits strategic substitutes

and player 2 exhibits strategic complements.6

As in Feng and Sabarwal (2018), it is useful to assume that payoffs to different

final outcomes are different. Such a two stage, 2 × 2 game is termed a game

with differential payoffs to outcomes. This assumption is sufficient to prove

the results in this paper. Theoretically, the set of two stage, 2 × 2 games with

differential payoffs to outcomes is open, dense, and has full (Lebesgue) measure in

R
16 ×R

16 (the set of all such games).

The next three lemmas are strategic substitutes analogues of related lemmas in

Feng and Sabarwal (2018) for strategic complements. For completeness, proofs are

included in the appendix.

Lemma 1 Consider a game with differential payoffs to outcomes and suppose player

1 exhibits strategic substitutes.

5The lattice set order is the standard set order on lattices: A ⊑ B means that ∀a ∈ A,∀b ∈ B,
a ∧ b ∈ A and a ∨ b ∈ B. It is sometimes termed the Veinott set order, or the strong set order.

6The results do not depend on which player has strategic substitutes or complements. Moreover,
notice that strategic substitutes and complements are defined for best responses in the overall game.
We shall add subgame strategic substitutes and complements later.
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∀t̂, t̃ ∈ T, ∀ŝ ∈ BR1(t̂), and ∀s̃ ∈ BR1(t̃), if t̂0 = t̃0, then ŝ0 = s̃0

Lemma 2 Consider a game with differential payoffs to outcomes and suppose player

1 exhibits strategic substitutes.

(1) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0
1
and ŝ0 = A0

1
, then

∀t ∈ T, ∀s ∈ BR1(t), s0 = A0

1

(2) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0
2
and ŝ0 = A0

2
, then

∀t ∈ T, ∀s ∈ BR1(t), s0 = A0
2

Lemma 3 Consider a game with differential payoffs to outcomes and suppose player

1 exhibits strategic substitutes.

(1) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0
1
and ŝ0 = A0

1
then

∀t ∈ T , ∀s ∈ BR1(t), if t0 = B0

1
then s1 = A1

2
.

(2) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0
1
and ŝ0 = A0

2
then

∀t ∈ T , ∀s ∈ BR1(t), if t0 = B0
1
then s3 = A3

2
.

(3) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

2
and ŝ0 = A0

2
then

∀t ∈ T , ∀s ∈ BR1(t), if t0 = B0
2
then s4 = A4

1
.

(4) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0
2
and ŝ0 = A0

1
then

∀t ∈ T , ∀s ∈ BR1(t), if t0 = B0

2
then s2 = A2

1
.

These lemmas have the same flavor as in Feng and Sabarwal (2018) but adjusted

for the case of strategic substitutes. For example, lemma 1 shows that strategic

substitutes for player 1 implies that for a fixed first stage action of player 2, every

best of player 1 has the same first stage action, and therefore, leads to the same

subgame in stage two. Lemma 3 shows that whenever a particular subgame is

reached on the best response path, there is a unique action chosen in that subgame.

For example, statement (1) says that if subgame 1 is ever on the best response path,

then whenever there is a chance to reach subgame 1 (that is, t0 = B0
1
), player 1 must

play A1

2
in subgame 1. This helps to characterize strategic substitues in theorem 4

below.
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In order to characterize strategic substitutes, it is useful to define when an action

dominates another action, not just in a given subgame, but across subgames as well.

For m,n ∈ {1, 2, 3, 4}, and for k, ℓ ∈ {1, 2}, action Am
k dominates action An

ℓ ,

if subgames m and n can be reached under the same stage one action for player 2,

and regardless of which action player 2 plays in subgame n, action Am
k in subgame

m gives player 1 a higher payoff than An
ℓ .

This definition allows comparison of actions within the same subgame, or be-

tween subgames 1 and 3, or between subgames 2 and 4. It does not apply to

comparisons between subgames 1 and 4, or subgames 2 and 3, because these can-

not be reached under the same stage one action by player 2, and therefore, those

comparisons are irrelevant. In particular, a statement of the form A1
2
dominates A1

1

means that player 1 payoffs satisfy a1
3
> a1

1
and a1

4
> a1

2
, a statement of the form

A1
2
dominates A3

1
means that min{a1

3
, a1

4
} > max{a3

1
, a3

2
}, and a statement of the

form A1
2
dominates A3

2
means that min{a1

3
, a1

4
} > max{a3

3
, a3

4
}. Consequently, the

statement A1

2
dominates A1

1
, A3

1
, and A3

2
is equivalent to a1

3
> a1

1
, a1

4
> a1

2
, and

min{a1
3
, a1

4
} > max{a3

1
, a3

2
, a3

3
, a3

4
}.

Theorem 4 Consider a game with differential payoffs to outcomes.

The following are equivalent.

1. Player 1 has strategic substitutes

2. Exactly one of the following holds

(a) A1

2
dominates A1

1
, A3

1
, A3

2
; and A2

1
dominates A2

2
, A4

1
, A4

2

(b) A3
2
dominates A3

1
, A1

1
, A1

2
; and A4

1
dominates A4

2
, A2

1
, A2

2

(c) A3
2
dominates A3

1
, A1

1
, A1

2
; and A2

1
dominates A2

2
, A4

1
, A4

2

Proof. Let T =
{

t ∈ T : t0 = B0
1

}

and T̄ =
{

t ∈ T : t0 = B0
2

}

(⇒): Suppose player 1 has strategic substitutes
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Case 1: suppose ∃t̂ ∈ T , ∃ŝ ∈ BR1(t̂) such that ŝ0 = A0

1
. Then lemma 3(1)

implies that A1
2
dominates A1

1
for player 1 in subgame 1. Moreover, by lemma 1 and

lemma 3(1), whenever player 2 plays B0
1
in the first-stage game, player 1 chooses to

reach subgame 1 over subgame 3 and then to play A1

2
in subgame 1, regardless of

player 2 choice in the second-stage game. Therefore, A1
2
dominates A3

1
, A3

2
.

Now consider T̄ . Suppose ∃t̃ ∈ T̄ , ∃s̃ ∈ BR1(t̃), s̃ = A0

1
. Then lemma 3(4) implies

that A2
1
dominates A2

2
, and that dominates A4

1
and A4

2
in subgame 4. Therefore,

statement 2(a) holds.

Case 2: Suppose ∀t̂ ∈ T , ∀ŝ ∈ BR1(t̂), ŝ = A0

2
Then lemma 3(2) implies that A3

2

dominates A3
1
for player 1 in subgame 3. And as reasoning as above, it follows that

A3
1
dominates A1

1
, A1

2
in subgame 1. Now consider T̄

Subcase 1: Suppose ∃t̃ ∈ T̄ , ∃s̃ ∈ BR1(t̃) such that s̃0 = A0

2
. Then lemma 3(3)

implies that A4
1
dominates A4

2
for player 1 subgame 4 and that A4

1
dominates A2

1
,

A2
2
. Therefore, statement 2(b) holds.

Subcase 2: Suppose ∀t̃ ∈ T̄ , ∀s̃ ∈ BR1(t̃) such that s̃0 = A0

1
. Then lemma 3(4)

implies that A2
1
dominates A2

2
for player 1 subgame 2 and that A2

1
dominates A4

1
,

A4

2
. Therefore, statement 2(c) holds.

The reasoning above shows that one of the statement 2(a), 2(b), or 2(c) holds.

It is easy to check that no more than one statement holds, because statements are

mutually exclusive. In particular, A1

2
dominates A1

2
⇒ A1

1
does not dominate A1

2
.

A2
1
dominates A2

2
⇒ A2

2
does not dominate A2

1
.

(⇐): Suppose exactly one of 2(a), 2(b), or 2(c) holds . Suppose 2(a) holds. In

this case, A1

2
dominates A1

1
, A3

1
, A3

2
implies that ∀t ∈ T , player 1 chooses to reach

subgame 1 over subgame 3 and to play A1
2
in subgame 1. In other words, ∀t ∈ T ,

player 1’s best response is given by

BR1(t) =
{

(A0

1, A
1

2, s
2, s3, s4) ∈ S : sn ∈ {An

1 , A
n
2} , n = 2, 3, 4

}

Notice that this is a sublattice of S. Similarly, A2
1
dominates A2

2
, A4

1
, A4

2
implies
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that ∀t ∈ T̄ , player 1’s best response is given by

BR1(t) =
{

(A0

1, s
1, A2

1, s
3, s4) ∈ S : sn ∈ {An

1 , A
n
2} , n = 1, 3, 4

}

Notice that this is a sublattice of S as well.

Now consider arbitrary t̂, t̃ ∈ T such that t̂ � t̃. If t̂0 = t̃0, then BR1(t̂) =

BR1(t̃), and therefore, BR1(t̃) ⊑ BR1(t̂). And if t̂0 = B0
1
and t̃0 = B0

2
, then it is

easy to check that BR1(t̃) ⊑ BR1(t̂). Thus player 1 exhibits strategic substitutes.

The cases where statement 2(b) or 2(c) holds are proved similarly.

The characterization in theorem 4 is useful to show that the strategic substitutes

property holds on sets of infinite measure, as shown in Theorem 5. Indeed, this holds

for subgame strategic substitutes and subgame strategic heterogeneity as well, as

follows. A player exhibits subgame strategic substitutes, if in every subgame,

best response of the player is (weakly) decreasing (in the lattice set order) in the

other player’s strategy. A player exhibits subgame strategic complements, if

in every subgame, best response of the player is (weakly) increasing (in the lattice set

order) in the other player’s strategy. A game is a game with subgame strategic

substitutes, denoted GSSS, if both players exhibit subgame strategic substitutes.

It is a game with subgame strategic heterogeneity , denoted GSSH, if player

1 exhibits subgame strategic substitutes and player 2 exhibits subgame strategic

complements.

Theorem 5 In the set of all two stage, 2× 2 games,

1. The set of GSSS has infinite (Lebesgue) measure.

2. The set of GSSH has infinite (Lebesgue) measure.

Proof. To prove the first statement, we first show that the strategic substitutes

property holds on a set of infinite measure. Indeed, each of the conditions 2(a), 2(b),

and 2(c) in theorem 4 holds on a set of infinite (Lebesgue) measure. For example,
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in condition 2(a), A1

2
dominates A1

1
, A3

1
, A3

2
is equivalent to a1

3
> a1

1
, a1

4
> a1

2
,

and min{a1
3
, a1

4
} > max{a3

1
, a3

2
, a3

3
, a3

4
}, and A2

1
dominates A2

2
, A4

1
, A4

2
is equivalent

to a2
1
> a2

3
, a2

2
> a2

4
, and min{a2

1
, a2

2
} > max{a4

1
, a4

2
, a4

3
, a4

4
}. Therefore, the set of

payoffs satisfying condition 2(a) includes the following set:

(a11, a
1

2, a
1

3, a
1

4) ∈ (13, 14) × (10, 11) × (20,+∞) × (15, 16) ⊂ R
4

(a21, a
2

2, a
2

3, a
2

4) ∈ (15, 16) × (20,+∞) × (10, 11) × (13, 14) ⊂ R
4

(a31, a
3

2, a
3

3, a
3

4) ∈ (0, 1) × (2, 3) × (5, 6) × (8, 9) ⊂ R
4

(a41, a
4

2, a
4

3, a
4

4) ∈ (0, 1) × (2, 3) × (5, 6) × (8, 9) ⊂ R
4

The product of these sets has infinite Lebesgue measure in R
16. Therefore, the prop-

erty player 1 exhibits strategic substitutes holds on a set of infinite measure. Observe

that the set above is constructed to also satisfy subgame strategic substitutes. In

particular, games with payoffs in that set have the property that for player 1, action

A1

2
, A2

1
, A3

2
, and A4

2
are dominant in stage two subgames 1, 2, 3, and 4, respectively.

Therefore, the property player 1 exhibits subgame strategic substitutes holds on a

set of infinite measure. Similarly, the property player 2 exhibits subgame strategic

substitutes holds on a set of infinite measure, and consequently, the set of GSSS has

infinite measure.

The second statement follows immediately from statement 1 for player 1 and

applying corollary 1(3) in Feng and Sabarwal (2018) for player 2.

Notice that the measurable rectangle constructed in the proof above has a min-

imum side length of one unit. It is easy to see that the proof can be modified to

construct a measurable rectangle with minimum side length that is arbitrarily large.

Finally, we show that the set of SPNE in GSSS and GSSH are totally unordered

(that is, no two equilibria are comparable).

Theorem 6 Consider two stage 2× 2 games with differential payoffs to outcomes.

1. The set of SPNE in every GSSS is totally unordered

11



2. The set of SPNE in every GSSH is totally unordered

Proof. For statement (1), suppose (ŝ, t̂) and (s̃, t̃) are two distinct SPNE and

suppose (ŝ, t̂) < (s̃, t̃). As case 1, suppose ŝ < s̃. As subcase 1, suppose there is

n ∈ {1, 2, 3, 4} such that ŝn < s̃n. Differential payoffs to outcomes implies that

t̂n 6= t̃n, and then subgame strategic substitutes implies that t̂n = Bn
2
and t̃n = Bn

1
,

contradicting t̂ ≤ t̃. As subcase 2, suppose ŝ0 < s̃0. Then ŝ0 = A0
1
and s̃0 = A0

2
.

Moreover, differential payoffs to outcomes implies that t̂0 6= t̃0. Notice that if

t̂0 = B0
1
, then lemma 2 implies that s̃0 = A0

1
, a contradiction. Therefore, t̂0 = B0

2

and t̃0 = B0
1
, contradicting t̂ ≤ t̃. The case where t̂ < t̃ is proved similarly, because

both players exhibit subgame strategic substitutes.

For statement (2), again consider distinct SPNE (ŝ, t̂) and (s̃, t̃) with (ŝ, t̂) <

(s̃, t̃). The case where ŝ < s̃ is the same as above. So suppose ŝ = s̃ and t̂ < t̃. As

subcase 1, suppose there is n ∈ {1, 2, 3, 4} such that t̂n < t̃n. Differential payoffs to

outcomes implies that ŝn 6= s̃n, contradicting ŝ = s̃. As subcase 2, suppose t̂0 < t̃0.

Then t̂0 = B0
1
and t̃0 = B0

2
. By lemma 2 in Feng and Sabarwal (2018), ŝ0 6= s̃0,

contradicting ŝ = s̃.

This theorem contrasts the case for games with subgame strategic complements,

in which the set of SPNE is always a nonempty, complete lattice, applying a result

due to Echenique (2004). On the other hand, it is similar to results for simultaneous

move games with strategic substitutes and strategic heterogeneity, as in Roy and

Sabarwal (2008) and in Monaco and Sabarwal (2016).

Notice that we cannot apply the result in Roy and Sabarwal (2008), because the

best response correspondence here does not satisfy their never-increasing property,

and we cannot apply the result in Monaco and Sabarwal (2016), because the best

response correspondence here does not satisfy their strictly decreasing property. In-

tuitively, both properties are violated because off the best response path, all actions

are admissible in the best response correspondence.

12



4 Conclusion

For some time now, extensive form games with strategic complements have been

viewed as a restrictive class of games. Feng and Sabarwal (2018) show that there

is additional scope to study strategic complements in such games, at least in the

basic and foundational case of two stage, 2 × 2 games, which are a building block

for multi-stage games. We show the same for two stage, 2 × 2 games with strate-

gic substitutes and strategic heterogeneity. Taken together, these results indicate

greater possibilities for the manifestation and study of these types of interactions in

extensive form games.

The results here highlight some similarities and differences between strategic

complements and strategic substitutes in extensive form games. There are some

similarities in what drives the monotone behavior of best responses in both cases.

There is a considerable difference in the structure of the equilibrium set. Con-

sequently, with multiple equilibria, some of nice features of strategic complements

that depend on the complete lattice structure of the equilbrium set may not transfer

to the case of strategic substitutes or strategic heterogeneity.

The problem of characterizing strategic complements, substitutes, and hetero-

geneity in general extensive form games remains open. Hopefully, the results here,

combined with those in Feng and Sabarwal (2018), may spur additional research in

this regard.
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Appendix

Proof. (of lemma 1) Pick t̂, t̃ ∈ T, ŝ ∈ BR1(t̂), and s̃ ∈ BR1(t̃) arbitrary. Suppose
t̂0 = t̃0 = B0

1
, suppose ŝ0 = A0

1
, s̃0 = A0

2
. As subgame 1 is reached on the path

of play for profile (ŝ, t̂), it follows that ŝ′ = (A0
1
, ŝ1, A2

1
, A3

1
, A4

1
) ∈ BR1(t̂). Form

t̄ = (B0
2
, t̂1, t̂2, t̂3, t̂4) and consider s̄ ∈ BR1(t̄). Then t̂ � t̄, and using strategic

substitutes of player 1, it follows that ŝ′ ∧ s̄ ∈ BR1(t̄). In particular, subgame 2
is reached with profile (ŝ′ ∧ s̄, t̄). Therefore, s̄′ = (A0

1
, A1

2
, A2

1
, A3

2
, A4

2
) ∈ BR1(t̄).

Moreover, t̂ � t̄ implies s̄′ ∨ ŝ′ ∈ BR1(t̂). Notice that on path of play for profile
(s̄′ ∨ ŝ′, t̄), subgame 1 is reached and the action played by player 1 in subgame 1 is
A1

2
.
Consider s̃ ∈ BR1(t̃) and notice that the structure of best response of player 1

implies s̃′ = (A0

2
, A1

1
, A2

1
, s̃3, A4

1
) ∈ BR1(t̃). Let t = t̂ ∧ t̃ and consider s ∈ BR1(t).

As t � t̃, strategic substitutes of player 1 implies that s ∨ s̃′ ∈ BR1(t). Notice that
on path of play for profile (s ∨ s̃′, t), subgame 3 is reached, therefore, the structure
of best response for player 1 implies s′ = (A0

2
, A1

1
, A2

1
, s3 ∨ s̃′3, A4

1
) ∈ BR1(t). Using

t � t̂ and strategic substitutes for player 1 imply s′ ∧ ŝ′ ∈ BR1(t̂). Notice that on
path of play for profile (s′ ∧ ŝ′, t̂), subgame 1 is reached, and the action played by
player 1 in subgame 1 is A1

1
. This is different from the action played by player 1 on

path of play for profile (s̄′ ∨ ŝ′, t̂), contradicting that both (s′ ∧ ŝ′) and (s̄′ ∨ ŝ′) are
best responses of player 1 to t̂.

The case where ŝ0 = A0
2
and s̃0 = A0

1
is proved similarly.

Now suppose t̂0 = t̃0 = B0

2
, suppose ŝ0 = A0

1
, s̃0 = A0

2
. As subgame 4 is reached

on the path of play for profile (s̃, t̃), it follows that s̃′ = (A0

2
, A1

2
, A2

2
, A3

1
, s̃4) ∈ BR1(t̃).

Form t = (B0

1
, t̃1, t̃2, t̃3, t̃4) and consider s ∈ BR1(t). Then t � t̃, and using strategic

substitutes of player 1, it follows that s̃′ ∨ s ∈ BR1(t). In particular, subgame 3 is
reached with profile (s̃′ ∨ s, t). Therefore, s′ = (A0

2
, A1

2
, A2

2
, s̃′3 ∨ s3, A4

1
) ∈ BR1(t).

Moreover, t � t̃ implies s′ ∧ s̃′ ∈ BR1(t̃). Notice that on path of play for profile
(s′ ∧ s̃′, t̃), subgame 4 is reached and the action played by player 1 in subgame 4 is
A4

1
.
Consider ŝ ∈ BR1(t̂) and notice that the structure of best response of player 1

implies ŝ′ = (A0
1
, A1

1
, ŝ2, A3

1
, A4

2
) ∈ BR1(t̂). Let t̄ = t̂ ∨ t̃ and consider s̄ ∈ BR1(t̄).

As t̂ � t̄, strategic substitutes of player 1 implies that s̄ ∧ ŝ′ ∈ BR1(t̄). Notice that
on path of play for profile (s̄ ∧ ŝ′, t̄), subgame 2 is reached, therefore, the structure
of best response for player 1 implies s̄′ = (A0

1
, A1

1
, s̄2 ∧ ŝ

′2, A3

1
, A4

2
) ∈ BR1(t̄). Using

t̃ � t̄ and strategic substitutes for player 1 imply s̃′ ∨ s̄′ ∈ BR1(t̃). Notice that on
path of play for profile (s̃′ ∨ s̄′, t̃), subgame 4 is reached, and the action played by
player 1 in subgame 4 is A4

2
. This is different from the action played by player 1 on

path of play for profile (s′ ∧ s̃′, t̃), contradicting that both (s̃′ ∨ s̄′) and (s′ ∧ s̃′) are
best responses of player 1 to t̃.

The case where ŝ0 = A0
2
and s̃0 = A0

1
is proved similarly.
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Proof. (of lemma 2) To prove statement (1), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that
t̂0 = B0

1
and ŝ0 = A0

1
. Form t = (B0

1
, B1

1
, B2

1
, B3

1
, B4

1
) ∈ T and let s ∈ BR1(t). Then

by lemma 1, s0 = ŝ0 = A0

1
. Fix t ∈ T , s ∈ BR1(t). As t � t, strategic substitutes

implies that s ∧ s ∈ BR1(t). As s0 = A0
1
, it follows that (s ∧ s)0 = A0

1
. Notice that

the assumption of differential payoffs to outcomes implies: ∀t ∈ T , ∀ŝ, s̃ ∈ BR1(t),
ŝ0 = s̃0. Thus, differential payoffs implies that s0 = (s ∧ s)0 = A0

1
as desired.

Statement (2) is proved similarly.

Proof. (of lemma 3) To prove statement (1), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that
t̂0 = B0

1
and ŝ0 = A0

1
. Fix t ∈ T and s ∈ BR1(t) such that t0 = B0

1
. [Want to show:

s1 = A1
2
] By lemma 1, s0 = ŝ0 = A0

1
. Therefore, s′ = (A0

1
, s1, A2

1
, A3

1
, A4

1
) ∈ BR1(t).

Let t̄ = (B0

2
, t1, t2, t3, t4) ∈ T and s̄ ∈ BR1(t̄). By lemma 2(1), s̄0 = A0

1
. Structure

of best responses implies s̄′ = (A0

1
, A1

2
, s̄2, A3

2
, A4

2
) ∈ BR1(t̄). Moreover, t � t̄ and

strategic substitutes imply s′ ∨ s̄′ ∈ BR1(t). Structure of best responses implies
s1 = (s′ ∨ s̄′)1 = A1

2
. To prove statement (2), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that

t̂0 = B0
1
and ŝ0 = A0

2
. Fix t ∈ T and s ∈ BR1(t) such that t0 = B0

1
. [Want to show:

s3 = A3
2
] By lemma 1, s0 = ŝ0 = A0

2
. Therefore, s′ = (A0

2
, A1

2
, A2

2
, s3, A4

2
) ∈ BR1(t).

Let t̄ = (B0
2
, t1, t2, t3, t4) ∈ T and s̄ ∈ BR1(t̄). Structure of best responses implies

that s̄′ = (s̄0, A1
2
, s̄2, A3

2
, s̄4) ∈ BR1(t̄). Moreover, t � t̄ and strategic substitutes

imply that s′ ∨ s̄′ ∈ BR1(t). Finally, structure of best responses implies s3 =
(s′ ∨ s̄′)3 = A3

2
as desired. (since both s and (s′ ∨ s̄′) ∈ BR1(t))

Statement (3) and (4) are proved similarly.
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