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1 Introduction

Copulas have received considerable attention recently because they offer great flexibility to

model multivariate distributions and to characterize nonlinear dependence and tail depen-

dency. A copula function glues various types of marginal distributions, including symmetric,

skewed and heavy-tailed distributions, into a multivariate distribution, and by Sklar’s theo-

rem (1959) this is always possible. Copula functions are capable of capturing different types

of dependence: linear or nonlinear, symmetric or asymmetric, tail dependence or no-tail de-

pendence. These features are of great importance in financial or macroeconomic time series,

which lead to many applications, such as volatility clustering (Ning, Xu and Wirjanto, 2015),

real-time density forecasting (Smith and Vahey, 2016), non-stationarity (Wollschläger and

Schäfer, 2016), and systemic risk (Mensi, Hammoudeh, Shahzad and Shahbaz, 2016), among

others.

In the literature, time-varying copulas have been extensively used to model multiple fi-

nancial time series. For example, Patton (2006) uses a symmetrized Joe-Clayton copula

in which the dependence structure follows an autoregressive moving average (ARMA)-type

process to capture asymmetric dependence between mark-dollar and yen-dollar exchange

rates. Other time-varying copulas include dynamic stochastic copula models (Hafner and

Manner, 2012), stochastic copula autoregressive models (Almeida and Czado, 2012), gener-

alized autoregressive score models (Creal, Koopman and Lucas, 2013), and variational mode

decomposition methods (Mensi, Hammoudeh, Shahzad and Shahbaz, 2016), among others.

For a comprehensive survey of time-varying copulas and their applications in financial time

series analysis, see Manner and Reznikova (2012) and Patton (2012a).

Another line of research is using a nonparametric approach to characterize time-varying

copulas. Compared to above parametric approaches, the nonparametric approach can in-

crease the flexibility in modelling dynamic dependence among variables. For example, Hafner

and Reznikova (2010) assume that the dependence parameters in copulas are deterministic

functions of time, while Acar, Craiu and Yao (2011) specify the dependence parameters as

functions of explanatory variables. Both papers employ kernel smoothers to estimate the

dependence parameters in the context of known conditional marginal distributions. Re-

cently, Fermanian and Lopez (2018) introduce a single-index copula whose parameter is an
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unknown link function of a univariate index and propose estimates of this link function and

the parameters in the index part.

The third line of research is the mixture copula approach. For example, Garcia and Tsafack

(2011) study the dependence structure of international equity and bond markets by a regime

switching method, which models symmetric dependence in one regime and asymmetric de-

pendence in another regime. Their approach can also be regarded as a mixture copula. Liu,

Ji and Fan (2017) propose a time-varying optimal copula (TVOC) model to identify and

capture the optimal dependence structure of bivariate time series at every time point. Their

modelling procedures consist of two steps, i.e. time-varying modelling using rolling windows

and a distribution-free test to identify the optimal copula. Recently, Liu, Long, Zhang and

Li (2018) use a model averaging approach to estimate the dependence structure in a mixture

copula framework by assuming homogeneity of the weights and dependence parameters.

In this paper we propose a trending mixture copula model which allows both the weights

and dependence parameters to be time-varying in a purely nonparametric way. We do not

specify any parametric form for the weight and dependence parameters and use a data-driven

method for their specification. In this way, we alleviate typical misspecification problems

in copulas. Moreover, the proposed model can be considered as an ideal copula model, as

described in Patton (2012b), in the sense that it accommodates dependence of either positive

or negative sign, captures both symmetric and asymmetric dependence, and allows for the

possibility of non-zero tail dependence. The proposed model is different from prior studies

which focus exclusively on single copula models using a nonparametric approach (Hafner and

Reznikova, 2010; Acar et al., 2011). It also differs from previous mixture copula models that

assume homogeneity in either the weights or dependence parameters (Garcia and Tsafack,

2011; Liu et al., 2018). Finally, it generalizes the TVOC model of Liu et al. (2017) which

assumes a single copula at each time point.

An important issue is that the range of both copula dependence parameters and their

corresponding weights are restricted, e.g. θ ∈ (−1, 1) for a Gaussian copula, θ ∈ (0,∞) for

a Clayton copula, and the weights satisfying λk ∈ [0, 1] and
∑

k λk = 1. To overcome this

difficulty in the nonparametric estimation, Abegaz et al. (2012) and Acar et al. (2011) use

some known inverse functions to ensure that the copula parameters are properly defined and

employ a local polynomial framework to estimate the dependence parameters. However, in
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the asymptotic properties either the bias or variance depends on the choice of the inverse link

functions, see e.g. Theorem 2 of Abegaz et al. (2012) and Corollary 1 of Acar et al. (2011).

It is nontrivial to find an optimal inverse link function in a large functional space. In this

study, we employ a local constant (Nadaraya-Watson) kernel method without choosing any

inverse link function and show that the local constant estimators have the same asymptotic

behavior as the local linear estimators at the interior points: both have the same bias and

variance terms as well as the same convergence rate.

To reduce the risk of over-fitting and efficiency loss, we propose penalized trending mix-

ture copula models with group smoothly clipped absolute deviation (SCAD) penalty term

(Cai, Juhl and Yang, 2015) to do the estimation and copula selection simultaneously. The

functional norms of the weight functions are penalized so that we can shrink them to zeros

if contributions of corresponding copulas are small. To facilitate the estimation, we pro-

pose a nonparametric version of the expectation maximization (EM) algorithm to estimate

the weights and dependence parameters in the penalized local copula log-likelihood func-

tion. Other important practical issues including goodness-of-fit, the bandwidth and tuning

parameter selection, and confidence intervals are also discussed. When doing simulations,

we consider mixture copulas with both constant and time-varying weights and dependence

parameters. Simulation results show that the proposed method can correctly select the

appropriate copulas and accurately estimate the unknown parameters in both cases.

In the empirical section, we employ the proposed model and method to investigate the

evolution of the dependence structures among four international stock markets (the United

States, the United Kingdom, Hong Kong and South Korea), using 28 years of data on

weekly returns from the four economies’ equity indexes. We find that all pairs of markets

show lower tail dependence but no upper tail dependence, since the Clayton and Frank

copulas are always selected while the Gumbel is always filtered out. We also observe that

the dependence exhibits quite different levels and patterns during different periods, e.g., in

tranquil periods and in crisis periods.

The remainder of paper is organized as follows. Section 2 introduces the proposed trend-

ing mixture copula models. In the same section, we introduce penalized trending mixture

copula models. Four practical issues are discussed including a nonparametric EM algorithm,

goodness-of-fit tests, the bandwidth and tuning parameter selection, and the construction of
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pointwise confidence intervals. Section 3 reports the Monte Carlo simulation results. Section

4 applies the model and method to examine the evolution of the dependence among four

international stock markets. The final section provides some concluding comments, and the

mathematical proofs are gathered in the Appendix.

2 Trending mixture copula models

In this section, we model the time-varying mixture copula in a purely nonparametric way

so that the dynamics in both the weights and dependence parameters are simultaneously

captured. To simplify the presentation we will only consider bivariate copulas although the

extension to the multivariate case is straightforward.

First, we rescale time as ti by ti = i/T to provide the asymptotic justification for non-

parametric smoothing estimators. The underlying assumption is that there will be an in-

creasingly intense sampling of data points that can be used to derive consistent estimation,

see e.g. Robinson (1989, 1991). The trending mixture copula model is defined as

C(x1i, x2i, ψ, δ(ti)) =
d∑

k=1

λk(ti)Ck(F1(x1i;ψ1), F2(x2i;ψ2), θk(ti)), (1)

where copulas Ck are from different copula families, ψ = (ψᵀ1 , ψ
ᵀ
2)ᵀ is a parametric vector

with ψs being the qs-dimensional component for the marginal distribution Fs(xs;ψs), s = 1, 2.

Furthermore, δ(ti) = (θ(ti)
ᵀ, λ(ti)

ᵀ)ᵀ is a vector of (p1 + · · · + pd)-dimensional dependence

parameters θ(ti) = (θ1(ti)
ᵀ, ..., θd(ti)

ᵀ)ᵀ and d-dimensional weights λ(ti) = (λ1(ti), ..., λd(ti))
ᵀ.

For simplicity of presentation, we set p1 = · · · = pd = 1. The weight λk(ti) controls the

contribution of the copula Ck and satisfies both 0 ≤ λk(ti) ≤ 1 and
∑d

k=1 λk(ti) = 1 for all

ti ∈ [0, 1]. The parameter θk(ti) represents the level of the dependence corresponding to the

copula Ck at time ti. Since our main focus is on the dependence structure, we assume that

the mixture copula parameter vector δ(ti) is potentially time-varying, whereas the marginal

parameter vector ψ does not depend on ti. The above mixture copula model implies that

the joint cumulative distribution function of a bivariate random vector (x1i, x2i) is given by

a linear combination of Ck(F1(x1i, ψ1), F2(x2i, ψ2), θk(ti)) with time-varying weights λk(ti).

When d = 1, the above model reduces to the nonparametric dynamic copula model of
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Hafner and Reznikova (2010). It also reduces to the model of Acar et al. (2011) when the

conditioning variable is a single exogenous variable. Furthermore, if both λ(ti) and θ(ti) are

constant, the above model is a standard mixture copula model (Cai and Wang, 2014; Liu et

al., 2018).

To find estimators for the proposed trending mixture copula model, we take first derivatives

of the distribution function with respect to x1i and x2i sequentially, and its density function

can be written as

c(u1i, u2i, ψ, δ) = f1(x1i;ψ1)f2(x2i;ψ2)
d∑

k=1

λk(ti)ck(u1i, u2i, ψ, θk(ti)),

where usi = Fs(xsi;ψs), for s = 1, 2, ck(·) is the density function of copula Ck(·), and

fs(·;ψs) are the marginal densities. Then the log-likelihood function at time ti for a sequence

{x1i, x2i}Ti=1 is obtained as

L(u1, u2, ψ, δ(ti)) = Lm(ψ) + Lc(ψ, δ(ti)),

where Lm(ψ) =
∑T

i=1 log f1(x1i, ψ1)+
∑T

i=1 log f2(x2i, ψ2) and Lc(ψ, δ(ti)) =
∑T

i=1 `i(ψ, δ(ti))

with `i(ψ, δ(ti)) = log(
∑d

k=1 λk(ti)ck(u1i, u2i, ψ, θk(ti))).

In the following we propose a two-step procedure to estimate the parameters. First, we

estimate the parameters of the marginal distributions, (ψ1, ψ2), by maximizing the marginal

log-likelihood:

(ψ̂1, ψ̂2) = arg max
ψ1,ψ2

T∑
i=1

log f1(X1i, ψ1) +
T∑
i=1

log f2(X2i, ψ2).

This step uses the classical parametric estimation and is referred to as the inference func-

tion for margins (IFM) approach by Joe (2000). Under weak regularity conditions, the stan-

dard convergence rate of the parametric estimators is ‖ψ̂s − ψs‖ = Op(1/
√
T ) for s = 1, 2,

where ‖ · ‖ represents the Euclidean norm (L2−norm).

Second, given the estimators (ψ̂1, ψ̂2) obtained from the first step, we calculate the non-

parametric estimator δ̂(τ) at any grid point τ ∈ (0, 1) by maximizing the local copula
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log-likelihood function as:

δ̂(τ) = arg max
(θ(τ),λ(τ))

T∑
i=1

log(
d∑

k=1

λk(τ)ck(û1i, û2i, ψ̂, θk(τ)))Kh(ti − τ), (2)

where ûsi = Fs(xsi, ψ̂s), Kh(·) = K(·/h)/h with K being a kernel function and h a bandwidth

that tunes the smoothness of the kernel estimator. In our simulation and empirical study, the

commonly adopted Epanechnikov kernel function K(z) = 3/4(1−z2)I(|z| ≤ 1) is used, where

I(|z| ≤ 1) takes the value 1 if |z| ≤ 1 and 0 otherwise. In the following we make assumptions

and derive the asymptotic properties of the proposed estimators under α-mixing conditions.

2.1 Asymptotic properties

The above two-step procedure is motivated by the fact that the parametric estimators ψ̂

have little effect on the nonparametric estimators δ̂ in large samples since the convergence

rate
√
T in the parametric part of the model is faster than

√
Th in the nonparametric

component. The detailed proof for this argument can be found in Lemma 1 in Appendix

B. In the following, we present the asymptotic properties of the nonparametric estimators

without considering the errors from the marginal parametric estimation in the first step. For

this purpose, we introduce regularity conditions as below.

A1. The vector of functions δ(τ) is continuous, bounded and has second order continuous

derivatives on the support [0, 1].

A2. The local copula log-likelihood function Lc(ψ, δ(τ)) is three times differentiable with

respect to δ and twice differentiable with respect to ψ. The marginal log-likelihood

function Lm(ψ) is twice differentiable with respect to ψ.

A3. 0 ≤ λk(τ) ≤ 1 and
∑d

k=1 λk(τ) = 1 for all τ ∈ [0, 1].

A4. The kernel function K(z) is twice continuously differentiable on the support [0, 1],

and its second derivative satisfies a Lipschitz condition. Let v0 =
∫
K2(z)dz, v2 =∫

z2K2(z)dz and µ2 =
∫
z2K(z)dz.

A5. The bandwidth h satisfies that h→ 0 and Th→∞, as T →∞.

A6. Assume that {X1i, X2i}Ti=1 is a strictly stationary α-mixing sequence. Further, assume

that there exists some constant c > 0, E|X1i|2(2+c) < ∞, E|X2i|2(2+c) < ∞ and the
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mixing coefficient α(m) satisfying α(m) = O(m−ϑ) with ϑ = (2 + c)(1 + c)/c.

Remarks: The conditions in A1 and A2 are needed for deriving the asymptotic properties

of the nonparametric estimators. Moreover, by the conditions in A1, the continuity of

δ(τ) implies that ‖δ̂(ti) − δ̂(ti−1)‖ = Op(1/T ) which is of much smaller order than the

nonparametric convergence rate T−2/5. It suggests that we only need to estimate δ̂(ti) for

i = 1, · · · , T rather than δ̂(τ) for all values τ ∈ (0, 1). The conditions in A3 are mild

conditions for identification, while the conditions in A4 and A5 are commonly employed in

nonparametric estimation. The conditions in A6 are the common conditions with weakly

dependent data. Most financial models satisfy these conditions, such as ARMA and GARCH

models, see e.g. Cai (2007).

Theorem 1 Let {x1i, x2i}Ti=1 be a strictly stationary α-mixing sequence following the copula

model in (1). Assume that ‖ψ̂ − ψ‖ = Op(1/
√
T ), h → 0 and Th → ∞ as T → ∞. For a

fixed point τ ∈ (0, 1), under Conditions A1-A6, we have

√
Th(δ̂(τ)− δ(τ)− h2B(τ))→ N(0, v0Σ(τ)−1Ω(τ)Σ(τ)−1),

where Σ(τ) = −E{`′′i (δ(τ))|ti = τ}, Ω(τ) =
∑∞

`=−∞ Γ`(τ) with Γ`(τ) = E{`′i(δ(τ))`′i+`(δ(τ))ᵀ|ti =

τ} and the bias term h2B(τ) = h2

2
δ′′(τ)µ2.

Remark 1 The condition ‖ψ̂ − ψ‖ = Op(1/
√
T ) can be derived from the marginal log-

likelihood estimation. From Theorem 1, as expected, the initial estimators ψ̂ have little effect

on the estimation of δ̂(·) in large samples. In classical local constant estimation, the bias

term is usually written as h2B(τ) = h2

f(τ)
δ′(τ)f ′(τ)µ2 + h2

2
δ′′(τ)µ2, where f(τ) is the density

at the point τ . However, the first term on the right hand size disappears since f(τ) = 1 and

f ′(τ) = 0 for all τ ∈ (0, 1).

Theorem 1 suggests that the local constant estimators δ̂(τ) have the same asymptotic

behavior as the local linear estimators at the interior points: both have the same bias and

variance terms as well as the same convergence rate
√
Th.

To see whether the large sample properties of the local constant estimators still hold at the

boundary, we introduce Theorem 2 as below. For this purpose, we define v0,b =
∫ 1

−bK
2(z)dz,
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µ0,b =
∫ 1

−bK(z)dz and µ1,b =
∫ 1

−b zK(z)dz, for 0 < b < 1. Without loss of generality, we only

consider the left boundary point, τ = bh. Similar results hold for a right boundary point

τ = 1− bh.

Theorem 2 Let {x1i, x2i}Ti=1 be a strictly stationary α-mixing sequence following the copula

model in (1). Assume that ‖ψ̂ − ψ‖ = Op(1/
√
T ), h → 0 and Th → ∞ as T → ∞. For a

left boundary point τ = bh, under Conditions A1-A6, we have

√
Th(δ̂(bh)− δ(bh)− hB∗(0+))→ N(0,

v0,b
µ2
0,b

Σ(0+)−1Ω(0+)Σ(0+)−1),

where the bias term hB∗(0+) = h
µ0,b

δ′(0+)µ1,b.

Remark 2 The bias term is of order h for a boundary point τ = bh, which suggests that the

local constant estimator suffers from boundary effects.

2.2 Penalized trending mixture copula models

When many candidate copula families are included in the proposed trending mixture copula

model, there is a risk of overfitting and efficiency loss, which motivates us to do the esti-

mation and copula selection simultaneously. For this purpose, we define a T×(2d) matrix δ =

(δ(t1), · · · , δ(tT ))ᵀ = (θ·1, · · · , θ·d, λ·1, · · · , λ·d), where δ(tj) = (θ1(tj), · · · , θd(tj), λ1(tj), · · · , λd(tj))ᵀ

for j = 1, · · · , T , and θ·k = (θk(t1), · · · , θk(tT ))ᵀ and λ·k = (λk(t1), · · · , λk(tT ))ᵀ for k =

1, · · · , d. We follow the idea of the group LASSO (Yuan and Lin, 2006) and propose the

following penalized local log-likelihood function as

QP (δ) =
T∑
j=1

T∑
i=1

`i(δ(tj))Kh(ti − tj)− T
d∑

k=1

Pγk(‖λ·k‖) (3)

where `i(δ(tj)) ≡ `i(ψ, δ(tj)), Pγk(·) is a penalty function with tuning parameter γk and

‖λ·k‖=(λ2k(t1) + · · · + λ2k(tT ))1/2. The norm of λ·k, i.e. ‖λ·k‖, is penalized so that we can

shrink the weight function λk(·) to zero if the contribution of copula Ck(·) is small. We do

not penalize the dependence parameters θk(·) since our main focus is on the copula selection.

Clearly, the purpose of using the penalized locally weighted log-likelihood function is to select

important copula families.
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Various penalty functions have been proposed over the last decades. As pointed out

by Fan and Li (2001), a good penalty function should satisfy the following three properties:

unbiasedness for the non-zero coefficients, sparsity, and continuity of the resulting estimators

to avoid instability in model prediction. Here, we propose to use the SCAD penalty function

(Fan and Li, 2001; Cai et al., 2015) that enjoys all three properties, although many other

penalty functions are applicable including LASSO (Tibshirani, 1996) and adaptive LASSO

(Zou, 2006). The first-order derivative P ′γk(z) of the continuous SCAD penalty function

Pγk(z) is given by

P ′γk(z) = γkI(z ≤ γk) +
(%γk − z)+

(%− 1)
I(z > γk)

for some % > 2, where I(·) is the indicator function and (%γk − z)+ = max(%γk − z, 0).

For simplicity of presentation, we assume that the tuning parameters γk are the same for

all k = 1, · · · , d by taking γk = γT . We select % = 3.7 from a Bayesian risk point of view

as suggested by Fan and Li (2001). They note that this choice provides a good practical

performance for various model selection problems.

To find the asymptotic properties of the penalized estimator, we assume that the first

d0 functional weights are nonzero and the remaining d − d0 functional weights are zero.

That is, λ0(τ) = [λᵀ0a(τ), λᵀ0b(τ)]ᵀ, where λ0a(τ) = [λ01(τ), · · · , λ0d0(τ)]ᵀ with ‖λ0k‖ 6= 0

for 1 ≤ k ≤ d0 and λ0b(τ) = [λ0(d0+1)(τ), · · · , λ0d(τ)]ᵀ with ‖λ0k‖ = 0 for d0 + 1 ≤
k ≤ d. Similarly, we let θ0(τ) = [θᵀ0a(τ), θᵀ0b(τ)]ᵀ with θ0a(τ) = [θ01(τ), · · · , θ0d0(τ)]ᵀ and

θ0b(τ) = [θ0(d0+1)(τ), · · · , θ0d(τ)]ᵀ, in which θ0b(τ) can be arbitrary since the corresponding

weights are zeros. Moreover, we define δ0(τ) = [θᵀ0(τ), λᵀ0(τ)]ᵀ and δ0a(τ) = [θᵀ0a(τ), λᵀ0a(τ)]ᵀ,

and their corresponding penalized estimators δ̂γT (τ) = [θ̂ᵀγT (τ), λ̂ᵀγT (τ)]ᵀ and δ̂a,γT (τ) =

[θ̂ᵀa,γT (τ), λ̂ᵀa,γT (τ)]ᵀ, respectively. One can partition δ0(τ) into an identified subset [θᵀ0a(τ),

λᵀ0a(τ), λᵀ0b(τ)]ᵀ and an unidentified subset θ0b(τ) in which the former is unique and the latter

is a vector of arbitrary fixed points. Further, we include the following additional technical

conditions:

(B1) limT→∞ infz→0+ P
′
γT

(z)/γT > 0, h ∝ T−1/5, T−1/2γT → 0 and T−1/10γT → ∞, as

T →∞.

The regularity condition (B1) implies that the order of tuning parameter γT needs to be

greater than T 1/10 and smaller than T 1/2, which will be crucial for the consistency result in
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Theorem 3 and the oracle property in Theorem 4.

Theorem 3 Let {x1i, x2i}Ti=1 be a strictly stationary α-mixing sequence following the copula

model in (1). For a fixed point τ ∈ (0, 1), under Conditions A1-A6 and B1, h ∝ T−1/5 and

T−1/2γT → 0 as T →∞, there exists a
√
Th-consistent estimator δ̂γT (τ) that maximizes (3)

satisfying ‖δ̂γT (τ)− δ0(τ)‖ = Op(1/
√
Th).

Remark 3 Theorem 3 shows the consistency for the nonparametric kernel-based estimator

δ̂γT (τ) at a given point τ ∈ (0, 1).

Theorem 4 (Oracle Property). Let {x1i, x2i}Ti=1 be a strictly stationary α-mixing sequence

following the copula model in (1). For a fixed point τ ∈ (0, 1), under Conditions A1-A6 and

B1, h ∝ T−1/5, T−1/2γT → 0 and T−1/10γT →∞ as T →∞, we have

(a) Sparsity: ‖λ̂·k‖ = 0 for k = d0 + 1, · · · , d,

(b) Asymptotic normality:

√
Th(δ̂a,γT (τ)− δ0a(τ)− h2Ba(τ))→ N(0, v0Σa(τ)−1Ωa(τ)Σa(τ)−1).

where Σa(τ) = −E{`′′i (δ0a(τ))|ti = τ}, Ωa(τ) = E{`′i(δ0a(τ))`′i(δ0a(τ))ᵀ|ti = τ}, and the bias

term h2Ba(τ) = h2

2
δ′′0a(τ)µ2.

Sparsity is an important statistical property in high-dimensional statistics. By assuming

that only a small subset of copula families is important, it can reduce complexity so that it

improves interpretability and predictability of the model. The sparsity property from The-

orem 4 demonstrates that the penalized trending mixture copula model shrinks superfluous

components of the weight vector exactly to zero with probability one as the sample size T

goes to infinity.

2.3 Practical issues

A. A nonparametric EM algorithm. Clearly, it will be hard to obtain the nonparametric esti-

mators by maximizing the penalized local log-likelihood copula function in (3) if the number

of copulas is large. In this section, we propose a nonparametric version of the expectation

maximization (EM) algorithm to estimate the weights and dependence parameters, which
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dramatically reduces the computational complexity. It iteratively alternates between an ex-

pectation step and a maximization step. The E-step updates the weights of each copula

with given dependence parameters, and the M-step maximizes the local log-likelihood with

respect to the dependence parameters for given copula weights. For details of the EM algo-

rithm and its applications in parametric mixture copula models, see Dempster et al. (1977)

and Cai and Wang (2014).

To develop a nonparametric version of the EM algorithm for the proposed model, we add

constraints in the penalized objective function. The estimator δ̂(tj) at a given iteration step

can be obtained by maximizing the criterion function

QP (δ(tj)) =
T∑
i=1

`i(δ(tj))Kh(ti − tj)− T
d∑

k=1

P ′γk(‖λ̂
(0)
·k ‖)

2‖λ̂(0)·k ‖
λ2k(tj) + ρtj(1−

d∑
k=1

λk(tj)),

with λ̂
(0)
·k being the estimates from the previous iteration. At the first iteration, λ̂

(0)
·k is a set

of starting values for the weights. We take the first derivative of QP (δ(tj)) with respect to

λk(tj), and multiply both sides by λk(tj), which leads to

T∑
i=1

λk(tj)ck(u1i, u2i, ψ, θk(ti))

cc(u1i, u2i, ψ, δk(ti))
Kh(ti− tj)−T

P ′γk(‖λ̂
(0)
·k ‖)

‖λ̂(0)·k ‖
λ2k(tj)−ρtjλk(tj) = 0. k = 1, . . . , d,

where cc(u1i, u2i, ψ, δk(ti)) =
∑d

k=1 λk(ti)ck(u1i, u2i, ψ, θk(ti)). Taking sums of both sides of

the equation over all k’s, we obtain

ρtj =
T∑
i=1

Kh(ti − tj)− T
d∑

k=1

P ′γk(‖λ̂
(0)
·k ‖)

‖λ̂(0)·k ‖
λ2k(tj).

Next, we introduce the expectation and maximization steps.

Expectation step

Let λ
(0)
k (τ) and θ

(0)
k (τ) be the initial estimators in each iterative step. Given a grid point τ ,

we update the new weight parameters λ
(1)
k (τ) as

λ
(1)
k (τ) =

( T∑
i=1

λ
(0)
k (τ)ck(u1i, u2i, ψ, θ

(0)
k (τ))

cc(u1i, u2i, ψ, δ
(0)
k (τ))

Kh(ti − τ)− TD(0)
k

)
/ρ(0)τ , for k = 1, . . . , d,
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where ρ
(0)
τ =

∑T
i=1Kh(ti − τ)− T

∑d
k=1D

(0)
k with D

(0)
k =

P ′γk
(‖λ̂(0)·k ‖)

‖λ̂(0)·k ‖
λ
(0)2
k (τ).

Maximization step

After updating the weight λ
(0)
k (τ) with λ

(1)
k (τ) from the above E-step, we obtain the depen-

dence estimator θ(1)(τ) by maximizing the objective function QP (δ(τ)) with respect to the

dependence parameter θ. Note that the penalty and constraint terms of QP (δ(τ)) do not

depend on θ, so that it is equivalent to maximize Q(δ(τ)) =
∑T

i=1 `i(δ(τ))Kh(ti − τ). We

use a one-step Newton-Raphson method:

θ(1)(τ) = θ(0)(τ)− Q′θ(δ
(0)(τ))

Q′′θ(δ
(0)(τ))

,

where Q′θ(δ(τ)) and Q′′θ(δ(τ)) are the first and second derivatives of Qθ(δ(τ)) with respect

to θ, respectively. It may not be easy to find explicit expressions for Q′θ(δ(τ)) and Q′′θ(δ(τ)),

in which case one can use numerical derivatives as

Q′θk(δ(τ)) ≈ Q(δ(τ)+ειk)−Q(δ(τ)−ειk)
2ε

and Q′′θk(δ(τ)) ≈
Q′θk

(δ(τ)+ειk)−Q′θk (δ(τ)−ειk)
2ε

where ε is a small positive real number and ιk is a (2d)-dimensional vector with the k-th

element being one and the others being zero.

B. Goodness-of-fit. In the literature, various goodness-of-fit tests for the specification

of parametric copula functions have been proposed (Dobric and Schmid, 2007; Lin and

Wu, 2015; Zhang, Okhrin, Zhou and Song, 2016). However, to the best of our knowledge,

goodness-of-fit tests for nonparametric copula models have not been studied. To evaluate the

performance of the proposed mixture copula model, we use a Rosenblatt probability integral

transformation as in Dobric and Schmid (2007). We define the random variable

S(u1, u2) = [Φ−1(u1)]
2 + [Φ−1(C(u2|u1))]2, (4)

where C(u2|u1) = P (U2 ≤ u2|U1 = u1) and Φ(·) is the standard normal cumulative distri-

bution function. Note that C(u2|u1) = ∂C(u1, u2)/∂u1, which is available in analytical form

for most copulas. We consider the null hypothesis H0 : (u1, u2) follows copula C(u1, u2).

Under H0, u1 and C(u2|u1) are i.i.d. and mutually independent U(0, 1) distributed random
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variables. Thus, H0 implies that S(u1, u2) follows a χ2(2) distribution, and we can use a

random sample {u1i, u2i}Ti=1, to test this hypothesis.

We consider three tests including the Kolmogorov-Smirnov (KS) test, the Cramer-von

Mises (CM) test, and the Anderson-Darling (AD) test:

tKS = sup
S
|FT (S)− F (S)|,

tCM =

∫ ∞
−∞

[FT (S)− F (S)]2dF (S),

tAD = sup
S

√
T |FT (S)− F (S)|√
F (S)(1− F (S))

,

where FT (S) is the empirical cumulative distribution function for the random variable S,

and F (S) is the cumulative distribution function for the Chi-squared distribution with two

degrees of freedom. Standard critical values cannot be used to make inference since the

time series data are weakly dependent. Moreover, the parameters are time-varying and

the estimation error should not be ignored. To overcome these difficulties, we propose the

following bootstrap algorithm to compute p-values of these three test statistics:

1. Generate a sample sequence {x∗1,i, x∗2,i}Ti=1 from the original data {x1,i, x2,i}Ti=1 using a

stationary bootstrap technique as described in Appendix A.

2. Obtain û∗1i and û∗2i using the marginal distributions, respectively.

3. Calculate new local constant estimators δ̂∗(ti) by equation (3) with paired estimators

{û∗1i, û∗2i}Ti=1, and obtain S(û∗1i, û
∗
2i) by equation (4).

4. Use the values S(û∗1i, û
∗
2i) to construct the bootstrap statistics t∗KS, t∗CM , and t∗AD.

5. Repeat Steps 1-4 B times (say, B=1000) and get B values of the statistics t∗KS, t∗CM ,

and t∗AD respectively.

6. Calculate the values of tKS, tCM and tAD from the original sample {u1i, u2i}Ti=1 and

compute the p-value of the tests based on the relative frequency of the events {t∗KS ≥
tKS}, {t∗CM ≥ tCM}, {t∗AD ≥ tAD} in the replications of the bootstrap sampling.

C. Bandwidth and tuning parameter selection. The bandwidth h determines the trade-off

between the bias and variance of the nonparametric estimators, while the tuning parameter
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γT adjusts the weight for the penalty term. We need to choose suitable regularization pa-

rameters to do the nonparametric estimation and variable selection simultaneously. Various

methods for the selection of bandwidths and tuning parameters have been proposed in the

variable selection literature, such as cross-validation, AIC- and BIC-type criteria, among

others. Due to the time series nature of the sequence {x1i, x2i}Tt=1, we propose to use a

forward leave-one-out cross-validation to select both the bandwidth h and tuning parameter

γT in the penalty term simultaneously.

Define δ̂(h, γT ) as the nonparametric estimators for the penalized trending mixture copula

models in (3) with known bandwidth h and tuning parameter γT . For each data point

i0 + 1 ≤ i∗ ≤ T , we use the data {x1i, x2i, i < i∗} to construct the estimate δ̂t∗(h, γT ) at the

sample point {x1i∗ , x2i∗}, where i0 is the minimum window size used to estimate δ̂i0+1(h, γT ).

Under this forward recursive scheme, we obtain the sequential estimators {δ̂i∗(h, γT )}Ti∗=i0+1.

The optimal bandwidth h∗ and tuning parameter γ∗T can be obtained by maximizing the

objective function

(h∗, γ∗T ) = arg max
(h,γT )

T∑
i∗=i0+1

{`i∗(ψ̂, δ̂(t∗i ))|δ̂i∗(h, γT )},

and (h∗, γ∗T ) is the forward leave-one-out cross-validation estimator in terms of the log-

likehood.

D. Confidence intervals. For inference, i.i.d bootstrap approaches are not applicable here

since most of the financial/economic data are dependent. Patton (2012a) suggested a block

bootstrap to construct the pointwise confidence intervals on copula dependence parameters

for serially dependent data although its theoretical properties require formal justification.

The intuition behind this method is that, by dividing the data into several blocks, it can

preserve the original time series structure within a block. A simple block bootstrap for

calculating confidence intercals can be implemented as follows:

1. Generate a sample sequence {x∗1,i, x∗2,i}Ti=1 from the original data {x1,i, x2,i}Ti=1 using a

stationary bootstrap technique as described in Appendix A.

2. Obtain û∗1i and û∗2i using the marginal distributions, respectively.

3. Calculate new local constant estimators δ̂∗(τ) at the grid point τ by equation (3) with

paired estimators {û∗1i, û∗2i}Ti=1.
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4. Repeat Step 1-3 B times (say, B=1000), and get B values of the estimators δ̂∗(τ) as an

empirical sample at each grid point τ . Let the α/2-th and (1− α/2)-th percentiles of

the sample sequence {δ̂∗(τ)} be qα/2 and q1−α/2, respectively.

5. The empirical 100(1− α)% confidence interval for δ̂(τ) is [qα/2, q1−α/2].

3 Numerical studies

This section illustrates the finite-sample performance of the proposed estimation and selec-

tion method through a series of simulation studies. We consider the bivariate case where the

data are generated by AR(1)-GARCH(1,1) processes:

xsi = γsxs,i−1 + esi, s = 1, 2; i = 2, ..., T,

where γ1 = 0.1, γ2 = 0.05, esi = σsiεsi, and εsi has a t(3) marginal distribution. The depen-

dence structure between ε1i and ε2i is governed by a given copula function. Furthermore,

σ2
si = αs0 + αs1e

2
s,i−1 + βs1σ

2
s,i−1,

where α10 = 0.0001, α11 = 0.02, β11 = 0.93 for the first margin, and α20 = 0.0001, α21 =

0.03, β21 = 0.92 for the second margin. Our working mixture copula model consists of

three copulas: the Gumbel, Frank and Clayton copulas, which are widely used in empirical

studies. The Frank copula shows a symmetric dependence structure, while the Clayton and

Gumbel copulas are asymmetric. In particular, the Clayton copula displays strong lower

tail dependence, while the Gumbel copula exhibits strong upper tail dependence. Data are

generated from mixture copula models consisting of two of the three copulas. That is,

(ε1i, ε2i) ∼
3∑

k=1

λk(ti)Ck(F1(ε1i), F2(ε2i), θk(ti)),

where one of the three weight parameters (λ1, λ2 and λ3) is zero.

We consider two cases for the weights and dependence parameters. First, the weights and

dependence parameters are set to constants. Second, they are time-varying according to

some given functions. In each case, we simulate three mixture copulas with two components.

The sample size T = 400 and 800, and each simulation is repeated 500 times (M = 500).
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For each sample we calculate the estimated weights and dependence parameters on a grid of

50 equally spaced points τi = −0.01 + 0.02i for i ∈ {1, 2, ..., 50}.

3.1 Case I simulations

We first consider the scenario where data are generated from mixture copulas with constant

weights and dependence parameters. Let λ1, λ2 and λ3 denote the weights of the Gumbel,

Frank and Clayton copulas respectively, and θ1, θ2 and θ3 the corresponding dependence

parameters. We consider the following models for the weights and dependence parameters:

• Model 1: λ1 = 1/2, λ2 = 1/2, λ3= 0, θ1 = 6, θ2 = 4;

• Model 2: λ1 = 1/2, λ2 = 0, λ3= 1/2, θ1 = 6, θ3 = 5;

• Model 3: λ1 = 0, λ2 = 1/2, λ3= 1/2, θ2 = 4, θ3 = 5.

We summarize the estimation results for the weights and dependence parameters in the

Case I simulations in Tables 1-2, Panel A and Figures 1-31. Table 1, Panel A presents the

percentages corresponding to the correctly and incorrectly (in parentheses) selected copulas.

From Table 1, Panel A, the proposed method performs very well for selecting appropriate

copulas from mixture copula models with constant parameters, although our method is

designed for trending mixture copula models. For all three models, the correct component

copulas are selected with 100% probability. Moreover, the probability that the incorrect

copulas are chosen is small. There is zero probability of selecting the incorrect copulas for

the mixture of Gumbel and Frank, and the mixture of Clayton and Frank. For the mixture

model consisting of the Gumbel and Clayton copulas, the chance to incorrectly select the

Frank copula is also small and decreases with T .

[INSERT TABLE 1 ABOUT HERE]

To examine the performance of the proposed method in estimating the unknown parame-

ters, we calculate the mean square errors (MSEs) of the estimated weights and dependence

1We omit the results of the marginal parameters to save space.
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parameters for the mixture copula models under Case I simulations. The MSEs are calcu-

lated as

MSE(θ̂k) =
1

M

1

50

M∑
j=1

50∑
i=1

(
θ̂jk(τi)− θk

)2
, for k = 1, 2, 3,

MSE(λ̂k) =
1

M

1

50

M∑
j=1

50∑
i=1

(
λ̂jk(τi)− λk

)2
, for k = 1, 2, 3,

where 50 is the number of grid points and M = 500 is the replication time.

The results are shown in Table 2, Panel A. As expected, the MSEs decrease when the

sample size increases for all three models.

[INSERT TABLE 2 ABOUT HERE]

We further evaluate the quality of the estimators graphically. Figures 1-3 respectively

display simulation results of the weights and dependence parameters for Models 1-3 under

Case I simulations. In each figure, the black solid line denotes true parameters (the weight

or dependence parameter), and two curves respectively represent medians (blue) and means

(red) of the 500 simulation parameter function estimates at the grid points. The two green

dashed lines represent the 5% and 95% percentiles of the parameter estimates at the grid

points. To save space, we only present the results for T = 800. In all three models, the

median and mean curves are close to the true parameter paths, which are constant in this

case.

[INSERT FIGURES 1-3 ABOUT HERE]

3.2 Case II simulations

In the Case II simulations, the weights and dependence parameters are dynamic according

to the following functions:

• Model 1: λ1(τ) = 0.7 − 0.4 sin2(π
2
τ), λ2(τ) = 1−λ1(τ), λ3(τ) = 0, θ1(τ) = e2τ + 3,

θ2(τ) = 6τ 2 + 4;

• Model 2: λ1(τ) = 0.7 − 0.4 sin2(π
2
τ), λ2(τ) = 0, λ3(τ) = 1−λ1(τ), θ1(τ) = e2τ + 3,

θ3(τ) = ln(1 + τT ) + 3;

18



• Model 3: λ1(τ) = 0, λ2(τ) = 0.7 − 0.4 sin2(π
2
τ), λ3(τ) = 1−λ2(τ), θ2(τ) = 6τ 2 + 4,

θ3(τ) = ln(1 + τT ) + 3;

where λk(τ) and θk(τ), k = 1, 2, 3, respectively represent the weights and dependence pa-

rameters of the Gumbel, Frank and Clayton copulas.

Tables 1-2, Panel B and Figures 4-6 show the estimation results for this case. We use

Table 1, Panel B to examine whether the proposed method can efficiently select appropriate

copulas from different trending mixture copula models. As in Table 1, Panel A, the values

without parentheses correspond to the percentages that copulas in the mixture models are

selected correctly, and the values within parentheses are the percentages that copulas not in

the mixture models are selected incorrectly. For all three trending mixture copula models,

the correct copulas are selected in all replications. For the mixture of the Gumbel and

Frank, the probability of choosing the incorrect copula (Clayton) is zero. For the other two

mixtures, the chance to select incorrect copulas is also small. For example, when T = 800,

there is only 1.2% to choose Gumbel when the true model is a mixture of Clayton and Frank,

and 6% to select Frank when data are generated from a mixture of Gumbel and Clayton.

Therefore, Table 1, Panel B demonstrates the good performance of the proposed method in

copula selection for mixture copulas with dynamic parameters.

We now use Table 2, Panel B and Figures 4-6 to check whether the proposed method can

accurately estimate the unknown parameters under the Case II simulations. Again, we omit

the results of the marginal parameters to save space. In Table 2, Panel B, we calculate the

MSEs of the estimated weights and dependence parameters for the mixture copulas with

dynamic parameters. Similar to the Case I simulations, the MSEs are calculated as

MSE(θ̂k) =
1

M

1

50

M∑
j=1

50∑
i=1

(
θ̂jk(τi)− θk(τi)

)2
, for k = 1, 2, 3,

MSE(λ̂k) =
1

M

1

50

M∑
j=1

50∑
i=1

(
λ̂jk(τi)− λk(τi)

)2
, for k = 1, 2, 3.

We note two observations from Table 2, Panel B. First, as the sample size increases from

400 to 800, the MSEs decrease and the estimates become more accurate. Second, compared

to the results in Table 2, Panel A, the MSEs in Panel B are larger in most cases. This is
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not surprising because the models in Case II are trending mixture copulas with dynamic

parameters, which are more difficult to estimate than the models in Case I (mixture copulas

with constant parameters).

Finally, Figures 4-6 present the estimated and the true parameter paths for different

trending mixture copulas models (T = 800). Similar to Figures 1-3, we use a black solid line

to depict the true parameter function (the weight or dependence parameter), and two curves

to respectively represent medians (blue) and means (red) of the 500 simulation parameter

function estimates at the grid points. The two green dashed curves represent the 5% and

95% percentiles of the copula estimates at the grid points. From Figures 4-6, one can observe

that the median and mean paths are still close to the true parameter functions in all models.

[INSERT FIGURES 4-6 ABOUT HERE]

In sum, the simulation results obtained from the Case I and II simulations demonstrate

that the proposed method works reasonably well in selecting and estimating different mixture

copula models with both constant and dynamic parameters.

4 An empirical study

In this section, we apply the proposed model and method to analyze the co-movements of

returns among international stock markets during different periods. Specifically, we consider

weekly returns of the Morgan Stanley Capital International (MSCI) equity indexes of four

economies (in U.S. Dollars): the United States (US), the United Kingdom (UK), Hong Kong

(HK), and South Korea (KR). These four economies are much affected by the Asian crisis of

1997 and/or the global financial crisis of 2008. By analyzing the evolution of the dependence

structures among these four markets, we can examine how these markets are related, for

example, in tranquil periods and in crisis periods.

As is well known, correctly understanding and accurately measuring the co-movements

across international equity markets play important roles for portfolio allocation and asset

pricing. Because financial data are typically non-Gaussian (e.g. Ang and Chen, 2002, Longin

and Solnik, 2001), many researchers choose to use copula-based models to measure the

dependence structures among international stock markets. For example, Hu (2006), Cai
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and Wang (2014), and Liu et al. (2018) employ time-invariant mixture copula models and

find that international stock markets usually show lower tail dependence, which implies that

the markets are more likely to crash together than to boom together. The semiparametric

dynamic copula (SDC) model of Hafner and Reznikova (2010) is based on a single copula

whose parameter changes over time in a nonparametric way. We extend these approaches

by first noting that the dependence structures among international markets are likely to

change substantially over time. A time-invariant copula model is incapable of capturing the

evolution of the dependence structures. Second, not only the dependence parameter but

also the dependence pattern (the weight of each copula) may change over time and hence a

single copula model may not be adequate. Therefore, it is of particular interest to use the

trending mixture copula model with both time-varying dependence parameters and weights

to analyze the co-movements across international stock markets.

4.1 Data

The data we use span the period of over 28 years from January 1990 until July 2018, with

a total of 1488 observations for each economy. We first obtain the equity indexes from

Datastream and then calculate their log-returns by ri,t = log(Pi,t) − log(Pi,t−1), where Pi,t

is the stock index of the i-th market at time t. We use weekly data instead of daily data

to remove the effect of different trading hours for international stock markets (Chollete et

al., 2009, and Hafner and Reznikova, 2010). Descriptive statistics are presented in Table

3, Panel A. The United States market exhibits the highest mean and median returns. The

Korea market shows the largest volatility of returns. Negative skewness and excess kurtosis

are found in all series, suggesting that the observations should be filtered. We also employ

the Jarque-Bera test for normality and the test strongly rejects the null hypothesis for all

series.

[INSERT TABLE 3 ABOUT HERE]

Table 3, Panel B reports the unconditional correlation coefficients and Kendall’s τs (in

parentheses) across the four markets. We observe that the US and UK markets display

the highest correlation, based on both the correlation coefficient (0.681) and the Kendall’s

τ (0.451). The US-HK, UK-HK, and HK-KR pairs show similar dependence of moderate
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size (around 0.5 for the correlation coefficients and around 0.35 for Kendall’s τs). The least

dependent pairs are US-KR (0.389 for correlation and 0.249 for Kendall’s τ) and UK-KR

(0.409 for correlation and 0.280 for Kendall’s τ).

4.2 The models for the marginal distributions

First of all, we model the marginal distributions of the data. We employ AR(p)-GARCH(1,1)

models to capture possible autocorrelation and conditional heteroscedasticity in returns. The

Bayesian information criterion (BIC) is used to select the appropriate number of lags p of

the AR(p) models. Because the returns show conditional leptokurtosis properties, the error

terms are assumed to follow a standardized Student-t distribution. Specifically, we use the

following models for the marginal distributions:

Xit = γi0 +

p∑
j=1

γijXi,t−j + eit, eit = σitεit,

σ2
it = αi0 + αi1e

2
i,t−1 + βi1σ

2
i,t−1,

where Xit denotes the return of the i-th market at time t. The innovations εit are assumed to

be independently identically distributed (i.i.d.) with the distribution given by a standardized

student-t distribution with νi degrees of freedom.

The estimated parameters of the marginal models are presented in Table 4. AR(1) models

are selected for the US and UK markets. For Hong Kong and Korea, BIC and Ljung-Box

statistics show lack of autocorrelation. The degrees of freedom parameter of the t-distribution

is much lower for the United States than for other economies, implying that the US returns

have the fattest tails. As shown in Fermanian and Scaillet (2005), correctly specified marginal

models are critical for copula selection and estimation. Therefore, after filtering the data, we

employ the Ljung-Box (LB) tests for autocorrelation and the Kolmogorov-Smirnov (KS) tests

for density specification. The p-values of the tests are displayed in the last three columns of

Table 4. All models pass the LB and KS test at the 10% level, showing that the marginal

models are well-specified.

[INSERT TABLE 4 ABOUT HERE]
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4.3 The models for the copula

We focus on studying the dependence structures of four pairs (US-UK, US-HK, UK-HK, and

HK-KR) with higher correlations. Scatter plots (omitted here) of four pairs of standardized

returns show violations of elliptical multivariate distributions, because asymmetry and a

large number of outliers can be observed in all pairs. Therefore, we employ a mixture copula

model including the Clayton, Frank and Gumbel copulas to implement copula selection and

estimation. In such a way, we can capture various dependence structures in the data such as

a lower or upper tail dependence, or a symmetric but non-elliptical dependence structure.

We first fit the data to a time-invariant mixture copula model to examine the overall

dependence structures during the period of 28 years. The Cai and Wang (2014) penalized

likelihood method is employed to select and estimate the model. The results are reported in

Table 5. We have two findings from Table 5. First, the Gumbel copula is excluded from the

mixture model for all pairs of data, implying that no pairs exhibit upper tail dependence.

Second, the Clayton copula is selected and the weight and dependence parameters are statis-

tically significant away from zero for all pairs. This indicates that lower tail dependence can

be found for all pairs of markets. These two findings are similar to Cai and Wang (2014).

[INSERT TABLE 5 ABOUT HERE]

Although the time-invariant model can tell us that overall the pairs of markets show

lower tail dependence, it can neither capture the evolution of the dependence structures,

nor distinguish between the dependence structures in tranquil periods and those in crisis

periods. Therefore, we next employ the trending mixture copula model proposed in this

paper to analyze the dependence structures of the international stock markets. Figures 7-10

respectively present the estimation results and the 90% confidence intervals of all nonzero

weights and dependence parameters for the US-UK, US-HK, UK-HK, and HK-KR pairs.

In each figure, the path of the estimated parameter (the weight or dependence parameter)

is represented by a blue solid line. The two red dashed curves show the 90% confidence

intervals of each estimated parameter. The green two-dashed line (horizontal line) is the

estimate using the time-invariant mixture copula model. We have several interesting results

from these figures.
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First, for all pairs of markets, the Clayton and Frank copulas are selected at any time

period of the 28 years. The confidence intervals for the weights on Clayton and Frank do

not cover zeros, showing that they are always statistically significant. On the other hand,

the weight on Gumbel is always zero during the 28 years for all pairs. Therefore, the four

pairs of markets show significantly lower tail dependence, but no upper tail dependence from

1990 to 2018. Second, we observe notable fluctuations of both the weights and dependence

parameters during the 28-year period for all four pairs of markets, implying the limitation

of time-invariant copula models.

For the US-UK pair presented in Figure 7, the weight and dependence parameters of the

Clayton copula are both relatively small in the early 1990s. Meanwhile, the dependence

parameter of the Frank copula is also small during this period. These findings show that

both the lower tail dependence and the overall dependence are weak at the beginning of the

1990s. The dependence parameter of Clayton copula increases sharply after the events of

September 11, 2001. At the same time, the weight of Clayton copula also reaches a relatively

high value. During the financial crisis of 2008, weight and dependence parameters of the

Clayton copula, and the dependence parameter of the Frank copula all increase sharply,

reaching their maxima around 2010. This implies that the lower tail and general dependence

of the two markets attain high levels in crisis periods.

Turning to the US-HK and UK-HK pairs, the dependence structures display similar evo-

lution paths. Both pairs show relatively weak lower tail dependence and overall dependence

during the 1990s. A notable jump in the Clayton parameter took place in 2008 for both pairs

due to the financial crisis. An increase in the weight on Clayton can be observed during the

same time period.

The last figure exhibits the dependence structure of the HK-KR pair. These two markets

are strongly affected by the Asian crisis of 1997. Therefore, we can observe a relatively

high level of the Clayton parameter, and a quick increase in the weight on Clayton in 1997.

During the periods of the financial crisis of 2008, a significant increase and a remarkable

jump in the weight and dependence parameter of the Clayton copula are also detected for

this pair of markets.

[INSERT FIGURES 7-10 ABOUT HERE]
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Finally, we check the goodness-of-fit of the estimated trending mixture copula model with

the KS, CM, and AD tests for correct copula specification. The description of the three tests

can be found in Section 2.3. Table 6 reports the bootstrap p-values of the three tests. All

models pass these three tests with large p-values.

[INSERT TABLE 6 ABOUT HERE]

5 Conclusion

In this paper, we introduce a trending mixture copula model, in which both the weights

and dependence parameters are deterministic functions of time. To reduce the risk of over-

fitting and efficiency loss, we propose penalized trending mixture copula models with SCAD

penalty term to do the estimation and copula selection simultaneously. Based on α-mixing

conditions, asymptotic properties of the penalized and unpenalized estimators have been

established. Meanwhile, we propose a nonparametric EM algorithm for computational fea-

sibility to estimate the parameters. Three goodness-of-fit tests have been constructed to

assess the appropriateness of the trending mixture model for fitting the data. We study and

discuss the bandwidth selection and construction of pointwise confidence intervals. More-

over, we conduct Monte Carlo simulations which demonstrate the good performance of the

proposed method in copula selection and estimation for mixture copulas with both constant

and time-varying parameters. Furthermore, the proposed methodology has been applied to

study the evolution of the dependence among four international stock markets. All pairs of

markets present strong dependence at the lower tail that fluctuates significantly over time.

All pairs exhibit the highest levels of both the lower tail and overall dependence during the

financial crisis of 2008.
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Table 1: Percentages that the corresponding copulas are chosen correctly (incorrectly) for the mixture
copula models in Case I (Panel A) and Case II (Panel B) simulations

Model T Gumbel Frank Clayton
Panel A: Case I
Gumbel+Frank 400 1.000 1.000 (0.000)

800 1.000 1.000 (0.000)
Gumbel+Clayton 400 1.000 (0.118) 1.000

800 1.000 (0.078) 1.000
Clayton+Frank 400 (0.000) 1.000 1.000

800 (0.000) 1.000 1.000

Panel B: Case II
Gumbel+Frank 400 1.000 1.000 (0.000)

800 1.000 1.000 (0.000)
Gumbel+Clayton 400 1.000 (0.142) 1.000

800 1.000 (0.060) 1.000
Clayton+Frank 400 (0.000) 1.000 1.000

800 (0.012) 1.000 1.000
NOTE: Values without parentheses are the percentages that copulas in the mixture copulas are chosen
correctly. Values with parentheses are the percentages that copulas not in the mixture copulas are chosen
incorrectly.
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Table 2: Mean squared errors of the estimated weights and dependence parameters for the mixture copula
models in Case I (Panel A) and Case II (Panel B) simulations

Model T (λ1, θ1) (λ2, θ2) (λ3, θ3)
Panel A: Case I
Gumbel+Frank 400 (0.007, 0.516) (0.007, 0.857)

800 (0.003, 0.240) (0.003, 0.379)
Gumbel+Clayton 400 (0.006, 0.574) (0.008, 0.726)

800 (0.003, 0.328) (0.004, 0.365)
Clayton+Frank 400 (0.006, 0.825) (0.006, 0.655)

800 (0.001, 0.431) (0.001, 0.393)

Panel B: Case II
Gumbel+Frank 400 (0.009, 2.075) (0.009, 1.502)

800 (0.004, 0.627) (0.004, 0.498)
Gumbel+Clayton 400 (0.006, 0.918) (0.008, 2.957)

800 (0.002, 0.417) (0.003, 0.981)
Clayton+Frank 400 (0.009, 1.983) (0.009, 1.767)

800 (0.004, 0.720) (0.004, 0.858)
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Table 3: Summary statistics and correlations

US UK HK KR
Panel A: Summary statistics

Mean (%) 0.140 0.061 0.136 0.061
Median (%) 0.284 0.193 0.277 0.218

Min (%) -16.75 -15.21 -16.79 -40.25
Max (%) 10.34 11.56 14.03 30.02
Std. Dev. 0.022 0.026 0.032 0.047
Skewness -0.669 -0.425 -0.482 -0.515
Kurtosis 7.892 6.117 5.813 10.556

JB statistic 1595 647 548 3606
JB p-value 0.000 0.000 0.000 0.000

Panel B: Correlations
UK KR HK

US 0.681 (0.451) 0.389 (0.249) 0.487 (0.330)
UK 0.409 (0.280) 0.515 (0.351)
KR 0.495 (0.350)

NOTE: Panel A presents the summary statistics of weekly index returns for the United States (US), the
United Kingdom (UK), Hong Kong (HK) and South Korea (KR). All returns are expressed in U.S. dollars
from January, 1990 to July, 2018, which correspond to a sample of 1488 observations. JB statistic and JB
p-value refer to Jarque-Bera test of normality. Panel B reports the linear correlation coefficients and the
Kendall’s τs (Kendall’s τs are in parentheses) across the US, UK, HK and KR markets.

Table 4: Estimation results and tests of the marginal distribution models

AR(p) GARCH(1,1) d.o.f LB KS
γ1 α0 α1 β1 ν 4 16

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.)
US -0.118 0.007E-3 0.100 0.890 5.389 0.617 0.643 0.289

(0.026) (0.004E-3) (0.019) (0.019) (0.722)
UK -0.098 0.023E-3 0.127 0.840 9.034 0.892 0.577 0.383

(0.027) (0.009E-3) (0.028) (0.036) (1.878)
HK 0.020E-3 0.098 0.885 8.203 0.112 0.155 0.527

(0.008E-3) (0.020) (0.023) (1.482)
KR 0.045E-3 0.115 0.862 10.707 0.120 0.337 0.634

(0.015E-3) (0.020) (0.023) (2.340)
NOTE: The second to sixth columns report parameter estimates of AR(p)-GARCH(1,1) models with Student-
t error terms for the index returns of the four markets. Values in parentheses are corresponding standard
errors. The seventh and eighth columns report the p-values of the Ljung-Box (LB) tests for autocorrelation
of the residuals using 4 and 16 lags, respectively. The last column presents the p-values of the Kolmogorov-
Smirnov (KS) tests for evaluating the goodness-of-fit of the marginal distributions.

31



Table 5: Estimation results of the time-invariant mixture copula models for international markets

Markets Clayton Gumbel Frank
λ US-UK 0.285(0.241,0.329) 0 0.715(0.671,0.759)

US-HK 0.314(0.268,0.360) 0 0.686(0.640,0.732)
UK-HK 0.352(0.304,0.399) 0 0.648(0.601,0.696)
HK-KR 0.208(0.150,0.267) 0 0.792(0.733,0.850)

θ US-UK 0.836(0.781,0.890) 5.172(4.823,5.521)
US-HK 0.594(0.536,0.652) 3.761(3.565,3.956)
UK-HK 0.657(0.585,0.729) 4.148(3.862,4.433)
HK-KR 0.918(0.848,0.987) 3.208(2.923,3.493)

NOTE: This table presents estimates of the weights (λ) and dependence parameters (θ) of time-invariant
mixture copula models using Cai and Wang (2014) penalized likelihood method. Values in parentheses are
the 90% confidence interval of the estimates.

Table 6: Goodness-of-fit tests for the trending-mixture copula models

Markets KS CM AD
US-UK 0.256 0.244 0.250
US-HK 0.670 0.470 0.686
UK-HK 0.468 0.474 0.530
HK-KR 0.362 0.372 0.592

NOTE: This table reports the p-values from three goodness-of-fit tests including the Kolmogorov-Smirnov
(KS) test, the Cramer-von Mises (CM) test and the Anderson-Darling (AD) test.
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Figure 1: Simulation results of the weights and dependence parameters for Model 1 (500 repeats) in Case
I simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.
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Figure 2: Simulation results of the weights and dependence parameters for Model 2 (500 repeats) in Case
I simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.
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Figure 3: Simulation results of the weights and dependence parameters for Model 3 (500 repeats) in Case
I simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.
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Figure 4: Simulation results of the weights and dependence parameters for Model 1 (500 repeats) in Case
II simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.

36



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

τ

θ

(a) Dependence parameter (Gumbel)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

τ

θ

(b) Dependence parameter (Clayton)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(c) Weight (Gumbel)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

λ

(d) Weight (Clayton)

Figure 5: Simulation results of the weights and dependence parameters for Model 2 (500 repeats) in Case
II simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.
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Figure 6: Simulation results of the weights and dependence parameters for Model 3 (500 repeats) in Case
II simulations: true values (black solid lines), mean and median estimates (red and blue lines), and 5% and
95% percentile curves (green dashed lines). The sample size is 800.
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Figure 7: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the US-UK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.
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Figure 8: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the US-HK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.
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Figure 9: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the UK-HK pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.
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Figure 10: Estimation results of nonzero weights and dependence parameters (blue solid lines) along with
the 90% confidence intervals (red dashed curves) for the HK-KR pair. The green two-dashed lines (horizontal
lines) show the estimates using the time-invariant mixture copula model.
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Appendix

A: The stationary bootstrap resampling scheme

Suppose that {x1,i, x2,i}Ti=1 is a strictly stationary and weakly dependent time series. Let

Bi,b = {(x1,i, x2,i), (x1,i+1, x2,i+1), · · · , (x1,i+b−1, x2,i+b−1)}

be the block consisting of b observations starting from (x1,i, x2,i) to (x1,i+b−1, x2,i+b−1). In

the case j > T , (x1,j, x2,j) is defined to be (x1,i, x2,i), where i = j(modT ) and (x1,0, x2,0) =

(x1,T , x2,T ). Let p be a constant such that p ∈ [0, 1]. Independent of {x1,i, x2,i}Ti=1, let

L1, L2, · · · be a sequence of i.i.d. random variables having the geometric distribution, i.e.,

P{Lk = m} = (1− p)m−1p m = 1, 2, · · · .

where p = T−1/3. Independent of both {x1,i, x2,i}Ti=1 and Lk, let I1, I2, · · · be a sequence of

i.i.d variables which have the discrete uniform distribution on {1, · · · , T}.
A pseudo time series {x∗1,i, x∗2,i}Ti=1 is generated in the following way. Sample a sequence

of blocks of random length by the prescription BI1,L1 , BI2,L2 , · · · , where Ik is generated from

a uniform distribution on {1, · · · , T} and Lk is generated from the distribution as defined

earlier. The first L1 observations in the pseudo time series {x∗1,i, x∗2,i}Ti=1 are determined

by the first block BI1,L1 of observations (x1,I1 , x2,I1), · · · , (x1,I1+L1−1, x2,I1+L1−1), the next L2

observations in the pseudo time series are the observations in the second sampled block

BI2,L2 , namely (x1,I2 , x2,I2), · · · , (x1,I2+L2−1, x2,I2+L2−1). This process is not stopped until T

observations in the pseudo time series have been generated.

By randomly varying the block length, Politis and Romano (1994) show that the pseudo

time series {x∗1,i, x∗2,i}Ti=1, conditional on the original data {x1,i, x2,i}Ti=1, is actually stationary.

Hence, this resampling method is applicable for stationary and weekly dependent time series.

B: Mathematical proofs

In this Appendix, we prove the main results of Section 2. Let C be a constant and Rm be a

generic remainder term of small order, and they may take different values at different places.

Lemma 1 Assume that the parametric estimators ψ̂ and the local constant estimators δ̂(τ)
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are obtained from the two-step procedure in Section 2 and satisfy ‖ψ̂ − ψ‖ = Op(1/
√
T ) and

‖δ̂(τ)− δ(τ)‖ = Op(1/
√
Th). Define the local log likelihood function as

Lh(ψ, δ) =
1

T

T∑
i=1

`i(ψ, δ(τ))Kh(ti − τ)

where `i(ψ, δ(τ)) =log (
∑d

k=1 λk(τ)ck(F1(X1i, ψ1), F2(X2i, ψ2), θk(τ))). Under conditions A1-

A6, we have

Lh(ψ̂, δ̂)− Lh(ψ, δ) = Lh(ψ, δ̂)− Lh(ψ, δ) +Rm.

Proof :

Let

Lh(ψ̂, δ̂)− Lh(ψ, δ) = Lh(ψ̂, δ̂)− Lh(ψ, δ̂)︸ ︷︷ ︸
I1

+Lh(ψ, δ̂)− Lh(ψ, δ)︸ ︷︷ ︸
I2

By Taylor’s expansion and the conditions ‖ψ̂−ψ‖ = Op(1/
√
T ) and ‖δ̂−δ‖ = Op(1/

√
Th),

the first term on the right hand size can be written as

I1 = Lh(ψ̂, δ̂(ψ̂))− Lh(ψ, δ̂(ψ))

=

[
√
T
∂Lh(ψ, δ̂(ψ))

∂ψ

]
1√
T

(ψ̂ − ψ){1 + op(1)}

=

[√
T
∂Lh(ψ, δ(ψ))

∂ψ
{1 + op(1)}

]
1√
T

(ψ̂ − ψ){1 + op(1)}.

The term
√
T∂Lh(ψ, δ(ψ))/∂ψ is of order Op(1) since the first derivative for the marginal

maximum likelihood
√
T∂Lc(ψ)/∂ψ and the first derivative for the full maximum likelihood

√
T∂Lc(ψ)/∂ψ+

√
T∂Lh(ψ, δ(ψ))/∂ψ are of orderOp(1). This implies that Lh(ψ̂, δ̂)−Lh(ψ, δ̂)

is of order Op(1/T ).

Further, by Taylor’s expansion and the condition ‖δ̂ − δ‖ = Op(1/
√
Th), the term

I2 =

[√
Th

∂Lh(ψ, δ)

∂δ

]
1√
Th

(δ̂ − δ){1 + op(1)}

which is of order Op(1/(Th)), dominates I1. This completes the proof.

�
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Lemma 1 suggests that we can derive the asymptotic distribution of δ̂ without considering

the errors from parametric estimation. The parametric estimators ψ̂ in the marginal parts

have little effect on the estimation of δ̂ if the sample size T is large. This result is in line

with the fact that the convergence rate of the parametric part of the model is faster than

that of the nonparametric component.

Proof of Theorem 1 and Theorem 2:

Using Lemma 1 we can assume that ψ is known for simplicity. Let `i(δ(τ)) = `i(ψ, δ(τ)),

L(δ(τ)) = 1
T

∑T
i=1 `i(δ(τ))Kh(ti − τ), L′(δ(τ)) = 1

T

∑T
i=1 `

′
i(δ(τ))Kh(ti − τ) and L′′(δ(τ)) =

1
T

∑T
i=1 `

′′
i (δ(τ))Kh(ti − τ). For a fixed point τ ∈ (0, 1), the normal equation for the local

likelihood-based estimator is given by

L′(δ̂(τ)) = 0.

By Taylor’s expansion, it can be written as

L′(δ(τ)) + L′′(δ(τ))(δ̂(τ)− δ(τ)) + op(1/
√
Th) = 0,

which leads to

δ̂(τ)− δ(τ) = −[L′′(δ(τ))]−1L′(δ(τ)) + op(1/
√
Th).

By the moment condition, we have

0 = E{`′i(δ(ti))|ti = τ}

= E{`′i(δ(τ) + ri)|ti = τ}

= E{`′i(δ(τ))|ti = τ}+ riE{`′′i (δ(τ))|ti = τ}+ op(ri),

where ri = δ′(τ)(ti−τ)+ 1
2
δ′′(τ)(ti−τ)2+op(ti−τ)2. By construction, we have E{`′i(δ(τ))|ti =

τ} = −riE{`′′i (δ(τ))|ti = τ}+ op(ri). Thus

E{L′(δ(τ))|ti = τ} = − 1

T

T∑
i=1

riE{`′′i (δ(τ))|ti = τ}Kh(ti − τ)

=
1

T
Σ(τ)

T∑
i=1

riKh(ti − τ)
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where Σ(τ) = −E{`′′i (δ(τ))|ti = τ}. Note that

E{L′′(δ(τ))|ti = τ} =
1

T

T∑
i=1

E{`′′i (δ(τ))|ti = τ}kh(ti − τ)

=

{
−Σ(τ) + op(1), if τ ∈ (0, 1);

−µ0,bΣ(0+) + op(1), if τ = bh.

It follows by Taylor’s expansion and the Riemann sum approximation of an integral that

the bias term of δ̂(τ) can be expressed as

E(δ̂(τ)|ti = τ)− δ(τ)

= −[E(L′′(δ(τ))|ti = τ)]−1E(L′(δ(τ))|ti = τ)

=
1

T

T∑
i=1

[
δ′(τ)(ti − τ) +

1

2
δ′′(τ)(ti − τ)2

]
Kh(ti − τ) +Rm

=

∫
δ′(τ)(ti − τ)Kh(ti − τ)dti +

1

2

∫
δ′′(τ)(ti − τ)2Kh(ti − τ)dti +Rm

=

{
h2

2
δ′′(τ)µ2 + op(h

2), if τ ∈ (0, 1);
h
µ0,b

δ′(0+)µ1,b + op(h), if τ = bh.

To find the expression for V ar{L′(δ(τ))|ti = τ}, we let QT = 1
T

∑T
i=1 Zi, where Zi =

`′i(δ(τ))Kh(ti − τ). Using the same argument as in Cai (2007) , we can show that

V ar{L′(δ(τ))|ti = τ} = V ar(QT ) =


1
Th
v0

(
Γ0(τ) + 2

∑∞
`=1 Γ`(τ)

)
+ op(

1
Th

), if τ ∈ (0, 1);

1
Th
v0,b

(
Γ0(0+) + 2

∑∞
`=1 Γ`(0+)

)
+ op(

1
Th

), if τ = bh,

where Γ`(τ) = E{`′i(δ(τ))`′i+`(δ(τ))ᵀ|ti = τ}.
The variance term is given by

V ar{δ̂(τ)|ti = τ}

= E{L′′(δ(τ))|ti = τ}−1V ar{L′(δ(τ))|ti = τ}E{L′′(δ(τ))|ti = τ}−1

=

{
1
Th
v0Σ(τ)−1Ω(τ)Σ(τ)−1, if τ ∈ (0, 1);

1
Th

v0,b
µ20,b

Σ(0+)−1Ω(0+)Σ(0+)−1, if τ = bh.
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This completes the proof.

�

Proof of Theorem 3:

Let v = (vjk) ∈ RT×(2d) be an arbitrary T × (2d) matrix with rows vj· and columns v·k, i.e.

v = (v1·, v2·, · · · , vT ·)T = (v·1, v·2, · · · , v·(2d)). Define vλ·k = v·(d+k) and set ‖v‖ =
√∑

j,k v
2
j,k

to be the L2-norm for the matrix v = (vjk). The true value δ0 is defined in the same way

as δ. For any small ε > 0, if we can show that there is a large constant C such that

P{infT−1‖v‖2=C Q
P (δ0 +(Th)−1/2v) < QP (δ0)} > 1−ε, then the result is established. To this

end, define

D ≡ h

T

[
QP (δ0 + (Th)−1/2v)−QP (δ0)

]
=
h

T

[
T∑
j=1

T∑
i=1

`i(δ0(tj) + (Th)−1/2vj·)Kh(ti − tj)−
T∑
j=1

T∑
i=1

`i(δ0(tj))Kh(ti − tj)

]

−h
d∑

k=1

[
PγT (‖λ0k + (Th)−1/2vλ·k‖)− PγT (‖λ0k‖)

]
.
= D1 +D2,

where

D1 ≡ h

T

[
T∑
j=1

T∑
i=1

`i(δ0(tj) + (Th)−1/2vj·)Kh(ti − tj)−
T∑
j=1

T∑
i=1

`i(δ0(tj))Kh(ti − tj)

]

=
h

T

T∑
j=1

T∑
i=1

[
`i(δ0(tj) + (Th)−1/2vj·)− `i(δ0(tj))

]
Kh(ti − tj)

=
h

T

T∑
j=1

T∑
i=1

[
(Th)−1/2vᵀj·`

′
i(δ0(tj)) + (2Th)−1vᵀj·`

′′
i (δ0(tj))vj· + op(1/(Th))

]
Kh(ti − tj)

=
1

T

T∑
j=1

vᵀj·ej −
1

2T

T∑
j=1

vᵀj·{Σ(δ0(tj)) + op(1)}vj· + op(1)

where ej = h1/2T−1/2
∑T

i=1 `
′
i(δ0(tj))Kh(ti − tj) and Σ(δ0(τ)) = −E(`′′i (δ0(τ))|ti = τ).
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By the Cauchy-Schwarz inequality,

D1 ≤ 1

T

T∑
j=1

‖vj·‖‖ej‖ −
1

2T

T∑
j=1

λmintj
‖vj·‖2 + op(1)

≤
√
‖v‖2/T

√
‖e‖2/T − λmin

2
‖v‖2/T + op(1)

=
√
C
√
‖e‖2/T − Cλmin

2
+ op(1)

where λmintj
is the smallest eigenvalue of Σ(δ0(tj)) and λmin is the minimal value of the

sequence {λmintj
}Tj=1. By standard nonparametric arguments, we can show that E(ej|ti = tj)

is of order Op(1). Along with the law of large numbers and equation (a.1), we have E(e2j |ti =

tj) = V ar(ej|ti = tj) + (E(ej|ti = tj))
2 = Ω(tj)v0 + (E(ej|ti = tj))

2 + Rm which is of order

Op(1) and ‖e‖2/T = E(e2j) +Rm = E(E(e2j |ti = tj)) +Rm which is of order Op(1).

By the fact that ‖λ0k‖ = 0 for k = d0 + 1, · · · , d, Taylor’s expansion and the triangle

inequality, we have

D2 ≡ −h
d∑

k=1

(
PγT (‖λ0k + (Th)−1/2vλ·k‖)− PγT (‖λ0k‖)

)

≤ −h
d0∑
k=1

(
PγT (‖λ0k + (Th)−1/2vλ·k‖)− PγT (‖λ0k‖)

)

≤ −h
d0∑
k=1

P ′γT (‖λ0k‖)
(
‖λ0k + (Th)−1/2vλ·k‖ − ‖λ0k‖

)
+Rm

≤ h1/2T−1/2
d0∑
k=1

P ′γT (‖λ0k‖)‖vλ·k‖+Rm

.
= D21.

Define aT = max{P ′γT (‖λ0k‖) : ‖λ0k‖ 6= 0}, by Cauchy-Schwarz inequality, we have

D21 ≤ h1/2aT
√
d0

[
T−1

d0∑
k=1

‖vλ·k‖2
]1/2

+Rm

≤ h1/2aT
√
d0

[
T−1

d∑
k=1

‖v·k‖2
]1/2

+Rm

≤ h1/2aT
√
d0
√
C +Rm.
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It follows by the Riemann sum approximation of an integral and the condition (A1) that

‖λ0k‖2/T =
∫ 1

0
λ2k(τ)dτ + op(1) is a bounded constant. By choosing the SCAD penalty

function, as T → ∞, the condition T−1/2γT → 0 in (B1) implies γT < ‖λ0k‖. Therefore,

aT → 0 and D2 = 0. By choosing a sufficient large C, the second term in D1 dominates

other terms, which implies D < 0. This completes the proof.

�

Proof of Theorem 4:

(a) Firstly, we show the sparsity ‖λ̂·k‖ = 0 for all k = d0 + 1, · · · , d. We assume that

‖λ̂·k‖ 6= 0 and there exists a
√
Th-consistent penalized estimator δ̂ such that

∂QP (δ̂)

∂λ·k
= J1 + J2 = 0

where J1 = (J11, · · · , J1T )T with J1j =
∑T

i=1
∂`i(δ̂(tj))

∂λk(tj)
kh(ti − tj) and J2 = −TP ′γT (‖λ̂·k‖) λ̂·k

‖λ̂·k‖
.

By the law of large numbers, we have

‖J1‖ =
√
J2
11 + J2

12 + · · ·+ J2
1T =

√
T
√
EJ2

1j(1 + op(1)).

By the result ‖δ̂γT (τ)−δ0(τ)‖ = Op(1/
√
Th) in Theorem 3, similar to the proof for E(e2j |ti =

tj) which is of order Op(1), we can show V ar(J1j|ti = tj) = Op(T/h). Moreover, by Taylor’s

expansion, we have

J1j =
T∑
i=1

∂`i(δ̂(tj))

∂λk(tj)
Kh(ti − tj)

=
T∑
i=1

∂`i(δ0(tj))

∂λk(tj)
Kh(ti − tj)

+
T∑
i=1

[
2d∑
m=1

∂2`i(δ0(tj))

∂λk(tj)∂δm(tj)
(δ̂m(tj)− δ0m(tj))

]
Kh(ti − tj) +Rm

.
= A1 + A2 +Rm.

By standard nonparametric arguments, we can show that both A1 and A2 are of order

Op(
√
T/h), which suggests that (E(J1j|ti = tj))

2 is of order Op(T/h). It follows that

E(J2
1j|ti = tj) = V ar(J1j|ti = tj) + (E(J1j|ti = tj))

2 is of order Op(T/h) and ‖J1‖ =
√
T{EJ2

1j(1 + op(1))}1/2 =
√
T{E(E(J2

1j|ti = tj))(1 + op(1))}1/2 is of order Op(Th
−1/2). By
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the condition that P ′γT (‖λ̂·k‖)/γT > 0 and
√
hγT →∞, we can conclude that

‖J2‖ = TP ′γT (‖λ̂·k‖) =
P ′γT (‖λ̂·k‖)

γT
(
√
hγT )(Th−1/2)

dominates ‖J1‖ as T → ∞. Therefore, the assumption ‖λ̂·k‖ 6= 0 does not hold and we

conclude ‖λ̂·k‖ = 0.

(b) Secondly, we show the asymptotic normality.

By the sparsity ‖λ̂·k‖ = 0 for all k = d0 + 1, · · · , d, we rewrite equation (3) as

QP (δa) =
T∑
j=1

T∑
i=1

`i(δa(tj))Kh(ti − tj)− T
d0∑
k=1

Pγk(‖λ·k‖),

where δa is a T × (2d0) matrix as δa = (δa(t1), · · · , δa(tT ))ᵀ = (θ·1, · · · , θ·d0 , λ·1, · · · , λ·d0).
Taking the first derivative of the above equation with respect to δa(tj), we have

T∑
i=1

`′i(δ̂a,γT (tj))Kh(ti − tj)− TP ′ = 0.

where P ′ =
(
0, · · · , 0, P ′γ1(‖λ̂·1‖)

λ̂1(tj)

‖λ̂·1‖
, · · · , P ′γd0 (‖λ̂·d0‖)

λ̂d0 (tj)

‖λ̂·d0‖

)
.

By the result ‖δ̂γT (τ) − δ0(τ)‖ = Op(1/
√
Th) in Theorem 3, we have ‖λ̂k(τ) − λ0k(τ)‖ =

Op(1/
√
Th) which leads to ‖λ̂k‖2/T = ‖λ0k‖2/T + op(1) =

∫ 1

0
λ2k(τ)dτ + op(1). By choosing

the SCAD penalty function, as T → ∞, the condition T−1/2γT → 0 in (B1) implies γT <

‖λ̂0k‖. Therefore, as T →∞, aT → 0 and P ′ = 0. The asymptotic normality results directly

follows Theorem 1.

This completes the proof.

�
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