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Abstract: Testing for predictability of asset returns has been a long history in economics

and finance. Recently, based on a simple predictive regression, Kostakis, Magdalinos and Stam-

atogiannis (2015, Review of Financial Studies) derived a Wald type test based on the context of

the extended instrumental variable (IVX) methodology for testing predictability of stock returns

and Demetrescu (2014) showed that the local power of the standard IVX-based test could be

improved in some cases when a lagged predicted variable is added to the predictive regression

on purpose, which poses a general important question on whether a lagged predicted variable

should be included in the model or not. This paper proposes novel robust procedures for testing

both the existence of a lagged predicted variable and the predictability of asset returns in a

predictive regression regardless of regressors being stationary or nearly integrated or unit root

and the AR model for regressors with or without intercept. A simulation study confirms the

good finite sample performance of the proposed tests before applying the proposed tests to some

real datasets in finance to illustrate their practical usefulness.
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1 Introduction

The introduction to the 2013 Nobel for Economic Sciences states: “There is no way to predict

whether the prices of stocks and bonds will go up or down over the next few days or weeks. But it

is quite possible to foresee the broad course of the prices of these assets over longer time periods,

such as the next three to five years...”. Testing for predictability of asset returns has been a

long history and is of importance in economics and finance, and such a test is often built on a

simple linear structural regression model between a predicted variable and some regressors; see,

for example, the excellent survey papers by Campbell (2008) and Phillips (2015). Typically,

some predicted variables employed in the literature are low frequency data, such as the annual,

quarterly and monthly CRSP value-weighted index in Campbell and Yogo (2006); the monthly

S&P 500 excess returns in Cai and Wang (2014) and in Kostakis et al. (2015). Some commonly

employed regressors (financial predictors or predicting variables) are dividend payout ratio, long-

term yield, dividend yield, dividend-price yield, T-bill rate, earnings-price ratio, book-to-market

value ratio, default yield spread, net equity expansion and term spread; see Kostakis et al.

(2015) for a detailed description of these variables.

Since empirical studies suggest that those regressors may be persistent, such as near unit root

(nearly integrated) or unit root (integrated), classical tests for predictability built upon a linear

regression model are no longer valid. For example, Campbell and Yogo (2006) and Demetrescu

and Rodrigues (2016) pointed out that the usual asymptotic approximation of the t-test statistic

by employing the (standard) normal distribution performs particularly bad when regressors are

persistent with the largest autoregressive roots of the typical regressor candidate being usually

smaller than one but close to one. Therefore, one may employ the nearly integrated asymptotics

as an alternative framework for statistical inference. However, in the context of nearly inte-

grated regressors, as addressed by Demetrescu and Rodrigues (2016), the limiting distribution

of the slope parameter estimator is not centered at zero, and this bias depends on the mean

reversion parameter of the nearly integrated regressor. Although nearly integrated asymptotics

approximates the finite sample behavior of the t-statistic for no predictability considerably bet-

ter when regressors are persistent, the exact degree of persistence of a given regressor, and thus

the correct critical values for a predictability test, are unknown in practice. To overcome these

difficulties, a number of alternative (robust) approaches have been proposed in the literature to

test predictability without characterizing the stochastic properties of regressors (i.e., whether

they are stationary or nearly integrated or unit root); see, for instance, Cavanagh et al. (1995),
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Campbell and Yogo (2006), Jansson and Moreira (2006), Phillips and Lee (2013), Cai and Wang

(2014), Breitung and Demetrescu (2015), Kostakis, et al. (2015), Demetrescu and Rodrigues

(2016), and references therein.

Consider the following simple predictive regression model:

Yt = α+ βXt−1 + Ut, Xt = θ + φXt−1 + Vt. (1)

Due to the dependence between Ut and Vt, researchers have found that the least squares estimator

for β based on the first equation in (1) is biased in finite samples when the regressor {Xt} is

nearly integrated (see Stambaugh, 1999), and some bias-corrected inferences have been proposed

in the literature such as the linear projection method in Amihud and Hurvich (2004) and Chen

and Deo (2009). A comprehensive summary of research for model (1) can be found in Phillips

and Lee (2013). Using the linear projection of Ut onto Vt as Ut = ρ0Vt + ηt, Cai and Wang

(2014) derived the asymptotic distribution of an estimator for β when Xt is nearly integrated,

which depends on whether θ is zero or nonzero. Also, the asymptotic nonnormal distribution

depends on the degree of persistence, which can not be estimated consistently, if Xt is nearly

integrated. When (Ut, Vt)
T has a bivariate normal distribution with AT denoting the transpose

of the matrix or vector of A throughout, Campbell and Yogo (2006) proposed a Bonferroni Q-

test, based on the infeasible uniform most powerful test, and showed that this new test is more

powerful than the Bonferroni t-test of Cavanagh et al. (1995) in the sense of Pitman efficiency.

Implementing this Bonferroni Q-test is nontrivial at all as it requires additional estimators and

tables in an unpublished technic report written by them. Under the normality assumption, Chen

et al. (2013) proposed a weighted least squares approximated likelihood inference with a limit

depending on whether regressors are stationary or nearly integrated or unit root. Without the

normality assumption, Zhu et al. (2014) proposed a robust empirical likelihood inference for β

with a chi-squared limit regardless of {Xt} being stationary or nearly integrated or unit root,

and Choi et al. (2016) proposed a unified test based on a so-called Cauchy estimation regardless

of {Xt} being nearly integrated or unit root. Without using the information on the persistence

level of the predicting variable, the key idea in Zhu et al. (2014) is to employ the property that

|Xt|
p→ ∞ as t → ∞ when {Xt} is either nearly integrated or unit root. Therefore, the unified

method in Zhu et al. (2014) is robust with respect to the stochastic properties of the predicting

variable.
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On the other hand, it is known in the econometrics literature that an extended instrumental

variable (dubbed as IVX) based inference is attractive in handling the dependence between Ut

and Vt and avoiding a nonstandard asymptotic limit; see Phillips and Magdalinos (2007) for

details. In particular, the IVX estimation approach proposed by Magdalinos and Phillips (2009)

is becoming increasingly popular in predictive regressions because the relevant test statistic has

the same limiting distribution in both stationary and nonstationary cases. The key idea behind

this method is to construct instrumental variables (IV) by explicitly controlling the degree of the

regressor’s persistence in the case of near integration. As illustrated by Kostakis et al. (2015),

the IVX methodology offers a good balance between size control and power loss. The power of

the proposed test depends on some tuning parameters in constructing the IVX instruments with

a sacrifice for the nonstationary case; see the parameters Cz < 0 and β ∈ (0, 1) defined in (4)

and the rates of convergence in Kostakis et al. (2015). Based on some Monte Carlo simulation

studies, Kostakis et al. (2015) recommended taking Cz = −I and β ∈ (0.9, 0.95)1. As Kostakis

et al. (2015) assumed zero intercept in modeling regressors, i.e., no θ in the second equation of

(1), and it is known that the divergent rate of a nearly integrated regressor depends on whether

a nonzero intercept exists in the AR model for the regressor, it remains open whether the IVX

method could unify the cases of zero and nonzero intercept θ. In summary, the IVX method in

Kostakis et al. (2015) has a difficulty in choosing tuning parameters, sacrifices the test power

in the nonstationary case, and may not be able to unify the cases of zero and nonzero intercept.

To improve the local power of the IVX based tests, Demetrescu (2014) proposed adding

the lagged predicted variable into the model so that the model becomes dynamic. Specifically,

Demetrescu (2014) considered the following dynamic model with γ = 0 but the restriction is not

imposed in estimating parameters (termed as variable addition approach):

Yt = α+ γYt−1 + βXt−1 + Ut, Xt = θ + φXt−1 + Vt; (2)

see Demetrescu (2014) and Breitung and Demetrescu (2015) for more details on this model and

the variable addition approach. Hence, an interesting question is whether the lagged variables

are really econometrically needed in real applications, i.e., how to test the existence of a lagged

predicted variable in a predictive regression, which apparently has not been formally addressed

in predictive regressions when regressors may be nearly integrated. This paper addresses this

1Note that the β in Kostakis et al. (2015) is different from the β in models (1) above and (2) below.
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issue by proposing novel robust procedures for testing the existence of the lagged predicted

variables (H0 : γ = 0) in a predictive regression in addition to testing predictability (H0 : β = 0)

regardless of regressors being stationary or nearly integrated or unit root and the AR model for

the regressors with or without intercept.

Although many tests for predictability have been proposed in the literature, conclusions on

predictability are unfortunately quite contradictory for different data sets, data periods and

methods. For example, Kostakis et al. (2015) reported significant predictability with respect

to dividend yield, dividend-price ratio, T-bill rate, earnings-price ratio, book-to-market value

ratio, default yield spread, net equity expansion for the period 1/1927–12/1994, which is in line

with the findings in Campbell and Yogo (2006), and reported predictability only with respect

to term spread for the period 1/1952–12/2008 while the method in Campbell and Yogo (2006)

showed predictability for dividend payout ratio, dividend yield, T-bill rate and term spread;

see Table 6 in Kostakis et al. (2015). Implementing these tests assumes that Ut’s in (1) are

uncorrelated errors, but this assumption has not been examined in both Campbell and Yogo

(2006) and Kostakis et al. (2015). To this end, we plot the autocorrelation function (ACF) of

Ût = Yt − α̂ − β̂Xt−1 from model (1) with α̂ and β̂ being the least squares estimators and Yt

being the CRSP value-weighted excess return in Figures 1 – 3 for the periods 1/1927–12/1994,

1/1952–12/2015, and 1/1982–12/2015, respectively. Clearly, Figures 1 – 3 indicate that the

assumption of uncorrelated Ut’s is doubtful for the period 1/1927–12/1994, may be fine for

the period 1/1952–12/2015, and is quite reasonable for the period 1/1982–12/2015. Therefore,

conclusions on predictability in the literature for the period from 1/1927 to 12/1994 may be

misleading due to the violation of the model assumption of uncorrelated errors.

When we plot the ACF of Ût = Yt − α̂ − β̂Xt−1 for Yt being the S&P 500 excess return

in Figures 4 – 6, it is easy to conclude that the assumption of uncorrelated Ut’s does not

hold for either of the aforementioned three periods. On the other hand, the ACF of Ût =

Yt− α̂− γ̂Yt−1− β̂Xt−1 from (2) in Figure 7 suggests that the assumption of uncorrelated Ut’s is

reasonable for the period 1/1982–12/2015 with Yt being the S&P 500 excess return. Similarly,

Figure 8 suggests that the assumption of uncorrelated Ut’s in (2) is valid for the period 1/1982–

12/2015 with Yt being the CRSP value-weighted excess return too. Therefore, our conducted

data analyses will be focused on the period 1/1982–12/2015 as suggested by the above ACF

analyses and detailed findings will be reported in Section 3.

The main contribution of this paper is to propose novel procedures for testing H0 : γ0 = 0
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and/or H0 : β0 = 0 without characterizing the stochastic properties of the regressor under

model (2). Specifically, we investigate the possibility of applying the idea of the robust empirical

likelihood inference in Zhu et al. (2014). Readers are referred to Owen (2001) for an overview on

empirical likelihood method, which has been proved to be quite effective in interval estimations

and hypothesis tests.

The rest of this paper is organized as follows. Section 2 presents the methodologies and

main asymptotic results. A simulation study and real data analysis are given in Section 3.

Some concluding remarks are depicted in Section 4. All proofs are relegated to the Appendix.

2 Methodologies and Main Asymptotic Results

In order to model the regressor reasonably well, we fit an ARMA(1,15) to the listed regressors

in the introduction for the period 1/1982–12/2015 and plot the ACF in Figure 9, which shows

evidently that the fitting is good. Hence, motivated by the aforementioned real examples, we

consider the following general dynamic predictive regression model

Yt = α+ γYt−1 + βXt−1 + Ut, Xt = θ + φXt−1 +
∞∑
j=0

ψjVt−j , 1 ≤ t ≤ n, (3)

where {
∑∞

j=0 ψjVt−j} is a strictly stationary sequence and {(Ut, Vt)T } is a sequence of indepen-

dent and identically distributed (iid) random vectors with zero means and finite variances. Of

our interest is to test H0 : γ0 = 0 and/or H0 : β0 = 0 regardless of {Xt} being stationary (i.e.,

|φ0| < 1) or nearly integrated (i.e., φ0 = 1− ρ/n with ρ 6= 0) or unit root (i.e., φ0 = 1).

2.1 Model with a Known Intercept

To better appreciate the methodology, we first consider the case by assuming that α = α0 is

known, which may have an independent interest too. In this case, to find the least squares

estimator for (γ, β)T based on the first equation in (3), one shall solve the following score

equations

n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)Yt−1 = 0 and

n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)Xt−1 = 0,
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which are equivalent to
n∑
t=1

(Yt − α0 − γYt−1 − βXt−1) (Yt−1 − βXt−1) = 0,

n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)Xt−1 = 0.
(4)

The reason to use Yt−1−βXt−1 instead of Yt−1 is that {Yt−1−βXt−1} becomes stationary when

{Xt} is a unit root process. To make an inference about γ and/or β, one may directly apply the

empirical likelihood method based on estimating equations in Qin and Lawless (1994) to (4) but

it is easy to show that this does not lead to a chi-squared limit in case of nearly integrated {Xt},

that is, the Wilks theorem2 does not hold; see Zhu et al. (2014) for details. To fix this issue,

following the idea in Zhu et al. (2014), we replace the second equation in (4) by the following

weighted score equation

n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)
Xt−1√

1 +X2
t−1

= 0. (5)

The purpose of adding a weight into (5) is to ensure that

{
n∑
t=1

(Yt − α0 − γ0Yt−1 − β0Xt−1) Xt−1√
1+X2

t−1

}2

n∑
t=1

(Yt − α0 − γ0Yt−1 − β0Xt−1)2 X2
t−1

1+X2
t−1

d→ χ2(1)

as n→∞ by noting that |Xt−1|/
√

1 +X2
t−1

p→ 1 as t→∞ when {Xt} is a nearly integrated or

unit root process.

To describe the proposed empirical likelihood tests, we introduce the following notation. For

t = 1, 2, · · · , n, define
Zt1(γ, β) = (Yt − α0 − γYt−1 − βXt−1)(Yt−1 − βXt−1),

Zt2(γ, β) = (Yt − α0 − γYt−1 − βXt−1) Xt−1√
1+X2

t−1

.

Based on {Zt(γ, β)}nt=1 with Zt(γ, β) = (Zt1(γ, β), Zt2(γ, β))T , the empirical likelihood function

2The Wilks theorem says that the asymptotic limit is independent of the true parameters; see Bickel and
Doksum (2001) for details.
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for γ and β is given by

L(γ, β) = sup

{
n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptZt(γ, β) = 0

}
.

Then it follows from the Lagrange multiplier technique that

−2 logL(γ, β) = 2

n∑
t=1

log{1 + λTZt(γ, β)},

where λ = λ(γ, β) satisfies the following equation

n∑
t=1

Zt(γ, β)

1 + λTZt(γ, β)
= 0.

If we are interested in testing H0 : γ0 = 0, then we consider the profile empirical likelihood

function LP1(γ) = maxβ L(γ, β). On the other hand, if the interest is in testing H0 : β0 = 0, then

one considers the profile empirical likelihood function LP2(β) = maxγ L(γ, β). The following

theorem shows that the Wilks theorem holds for the above proposed empirical likelihood method.

Theorem 1. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0, and α = α0 is known. Further assume either (i) |φ0| < 1 independent of n (stationary

case), or (ii) φ0 = 1 − ρ/n for some ρ 6= 0 (nearly integrated case), or (iii) φ0 = 1 (unit root

case). Then, as n → ∞, −2 logLP1(0)
d→ χ2(1) under H0 : γ0 = 0, −2 logLP2(0)

d→ χ2(1)

under H0 : β0 = 0, and −2 logL(0, 0)
d→ χ2(2) under H0 : γ0 = 0 & β0 = 0.

Based on the above theorem, a robust empirical likelihood test for testing H0 : γ0 = 0 or

H0 : β0 = 0 or H0 : γ0 = 0 & β0 = 0 at level ξ is to reject H0 if −2 logLP1(0) > χ2
1,1−ξ or

−2 logLP2(0) > χ2
1,1−ξ or −2 logL(0, 0) > χ2

2,1−ξ, respectively, where χ2
1,1−ξ and χ2

2,1−ξ denote

the (1− ξ)-th quantile of a chi-squared limit with one degree of freedom and with two degrees of

freedom, respectively. Clearly the proposed robust tests above do not need a prior on whether

{Xt} is stationary or nearly integrated or unit root, and whether θ0 = 0 or θ0 6= 0.

Remark 1. When {Ut} follows an autoregressive model rather than independent random vari-

ables, the above theorem does not hold. Instead one should take the error structure into account

like the studies in Xiao et al. (2003) and Liu et al. (2010) for nonparametric regression models.

Here, for the purpose of unifying the cases of stationary, nearly integrated and unit root, one can

follow the idea in Li et al. (2017) to take the model structure of {Ut} into account by employing
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either empirical likelihood method or jackknife empirical likelihood method in Jing et al. (2009).

The following theorems analyze the test power of the above empirical likelihood test sepa-

rately for the cases of {Xt} being stationary, nonstationary with zero intercept and nonstationary

with nonzero intercept.

Theorem 2. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0, and α = α0 is known. Further assume |φ0| < 1 independent of n.

(i) Under Ha : γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/

√
n for some d2 ∈ R, we have

−2 logL(0, 0) = (W 1 +D1)TΣ−1
1 (W 1 +D1) + op(1),

which has a non-central chi-squared limit with two degrees of freedom and non-centrality param-

eter DT
1 Σ−1

1 D1 > 0 when d2
1 + d2

2 > 0, where W 1 ∼ N(0,Σ1),

D1 =

d1{E(U2
1 ) + α2

0}+ d2E{X1(U1 + α0)}

d1E( (α0+U1)X1√
1+X2

1

) + d2E(
X2

1√
1+X2

1

)

 , Σ1 = E(U2
1 )

 E(U2
1 ) + α2

0 E( (U1+α0)X1√
1+X2

1

)

E( (U1+α0)X1√
1+X2

1

) E(
X2

1

1+X2
1
)

 .

(ii) Under Ha : γ0 = d1/
√
n for some d1 ∈ R and β0 is a nonzero constant, we have

−2 logLP1(0) = (W 2 +D2)TΣ−1
2 (W 2 +D2) + op(1),

which has a non-central chi-squared limit with one degree of freedom and non-centrality parameter

DT
2 Σ−1

2 D2 > 0 when d1 6= 0, where W 2 ∼ N(0,Σ2),

D2 =

 d1E{(α0 + β0X1 + U2)(α0 + U2 + β0X1 − β0X2)}

d1E( (α0+β0X1+U2)X2√
1+X2

2

)

 ,

Σ2 = E(U2
1 )

E(α0 + U2 + β0X1 − β0X2)2 E( (α0+U2+β0X1−β0X2)X2√
1+X2

2

)

E( (α0+U2+β0X1−β0X2)X2√
1+X2

2

) E(
X2

1

1+X2
1
)

 .

(iii) Under Ha : β0 = d2/
√
n for some d2 ∈ R and γ0 is a nonzero constant, we have

−2 logLP2(0) = (W 3 +D3)TΣ−1
3 (W 3 +D3) + op(1),

which has a non-central chi-squared limit with one degree of freedom and non-centrality parameter
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DT
3 Σ−1

3 D3 > 0 when d2 6= 0, where W 3 ∼ N(0,Σ3),

D3 = lim
t→∞

 d2E{Xt−1( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)}

d2E(
X2

1√
1+X2

1

)

 ,

Σ3 = E(U2
1 ) lim

t→∞

 E( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)

2 E{ Xt−1√
1+X2

t−1

( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)}

E{ Xt−1√
1+X2

t−1

( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)} E(

X2
1

1+X2
1
)

 .

Theorem 3. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0, and α = α0 is known. Further assume φ0 = 1− ρ/n for some ρ ∈ R and θ0 = 0.

(i) Under Ha : γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/n for some d2 ∈ R, we have

−2 logL(0, 0) = (W̃ 1 + D̃1)T Σ̃−1
1 (W̃ 1 + D̃1) + op(1),

which has a non-central chi-squared limit with two degrees of freedom and non-centrality param-

eter D̃
T
1 Σ̃−1

1 D̃1 > 0 when d2
1 + d2

2 > 0, where W̃ 1 ∼ N(0, Σ̃1),

D̃1 =

d1{E(U2
1 ) + α2

0}+ d2α0

∫ 1
0 JV,ρ(s) ds

d1α0 + d2

∫ 1
0 JV,ρ(s) ds

 , Σ̃1 = E(U2
1 )

E(U2
1 ) + α2

0 α0

α0 1

 ,

JV,ρ(r) =
∫ r

0 e
−(r−s)ρ dWV (s) and WV (s) = limn→∞

1√
n

∑[ns]
t=1

∑∞
j=0 ψjVt−j for s ∈ [0, 1].

(ii) Under Ha : γ0 = d1/n for some d1 ∈ R and β0 is a nonzero constant, we have

−2 logLP1(0) = (W̃ 2 + D̃2)T {Σ̃−1
2 −

Σ̃−1
2 S̃2S̃

T
2 Σ̃−1

2

S̃T2 Σ̃−1
2 S̃2

}(W̃ 2 + D̃2) + op(1),

which has a central chi-squared limit with one degree of freedom even when d1 6= 0, where

S̃2 = −(α0, 1)T , W̃ 2 ∼ N(0, Σ̃2),

D̃2 = −S̃2d1β0

∫ 1

0
JV,ρ(s) ds, Σ̃2 = E(U2

1 )

E(U1 − β0
∑∞

j=0 ψjV1−j)
2 + α2

0 α0

α0 1

 .

(iii) Under Ha : β0 = d2/n for some d2 ∈ R and γ0 is a nonzero constant, we have

−2 logLP2(0) = (W̃ 3 + D̃3)T {Σ̃−1
3 −

Σ̃−1
3 S̃3S̃

T
3 Σ̃−1

3

S̃T3 Σ̃−1
3 S̃3

}(W̃ 3 + D̃3) + op(1),
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which has a non-central chi-squared limit with one degree of freedom and non-central parameter

D̃3{Σ̃−1
3 −

Σ̃−1
3 S̃3S̃T3 Σ̃−1

3

S̃T3 Σ̃−1
3 S̃3

}D̃3 > 0 when d2 6= 0, where

S̃3 = −

 lim
t→∞

E(
t∑

j=1

γt−j0 Uj)
2 + (

α0

1− γ0
)2,

α0

1− γ0

T

, W̃ 3 ∼ N(0, Σ̃3),

D̃3 =

d2
α0

1−γ0

∫ 1
0 JV,ρ(s) ds

d2

∫ 1
0 JV,ρ(s) ds

 , Σ̃3 = E(U2
1 ) lim

t→∞

E(
∑t

j=1 γ
t−j
0 Uj)

2 + ( α0
1−γ0 )2 α0

1−γ0
α0

1−γ0 1

 .

Theorem 4. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0, and α = α0 is known. Further assume φ0 = 1− ρ/n for some ρ ∈ R and θ0 6= 0.

(i) Under Ha : γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/n

3/2 for some d2 ∈ R, we have

−2 logL(0, 0) = (W̄ 1 + D̄1)T Σ̄−1
1 (W̄ 1 + D̄1) + op(1),

which has a non-central chi-squared limit with two degrees of freedom and non-central parameter

D̄1Σ̄−1
1 D̄1 > 0 when d2

1 + d2
2 > 0, where W̄ 1 ∼ N(0, Σ̄1),

D̄1 =

d1{E(U2
1 ) + α2

0}+ d2α0θ0

∫ 1
0

1−e−ρs
ρ ds

d1α0sgn(θ0) + d2|θ0|
∫ 1

0
1−e−ρs

ρ ds

 , Σ̄1 = E(U2
1 )

E(U2
1 ) + α2

0 α0

α0 1

 ,

and sgn(x) denotes the sign function.

(ii) Under Ha : γ0 = d1/n
3/2 for some d1 ∈ R and β0 is a nonzero constant, we have

−2 logLP1(0) = (W̄ 2 + D̄2)T {Σ̄−1
2 −

Σ̄−1
2 S̄2S̄

T
2 Σ̄−1

2

S̄T2 Σ̄−1
2 S̄2

}(W̄ 2 + D̄2) + op(1),

which has a central chi-squared limit with one degree of freedom even when d1 6= 0, where

S̄2 = −
(
θ0(α0 − β0θ0), |θ0|

)T ∫ 1
0

1−e−ρs
ρ ds, W̄ 2 ∼ N(0, Σ̄2), D̄2 = −S̄2d1β0,

Σ̄2 = E(U2
1 )

E(α0 + U1 − β0θ0 − β0
∑∞

j=0 ψjV1−j)
2 (α0 − β0θ0)sgn(θ0)

(α0 − β0θ0)sgn(θ0) 1

 .

(iii) Under Ha : β0 = d2/n
3/2 for some d2 ∈ R and γ0 is a nonzero constant, we have

−2 logLP2(0) = (W̄ 3 + D̄3)T {Σ̄−1
3 −

Σ̄−1
3 S̄3S̄

T
3 Σ̄−1

3

S̄T3 Σ̄−1
3 S̄3

}(W̄ 3 + D̄3) + op(1),
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which has a non-central chi-squared limit with one degree of freedom and non-central parameter

D̄3{Σ̄−1
3 −

Σ̄−1
3 S̄3S̄T3 Σ̄−1

3

S̄T3 Σ̄−1
3 S̄3

}D̄3 > 0 when d2 6= 0, where

S̄3 = −

 lim
t→∞

E(
t∑

j=1

γt−j0 Uj)
2 + (

α0

1− γ0
)2,

α0sgn(θ0)

1− γ0

T

, W̄ 3 ∼ N(0, Σ̄3),

D̄3 =

d2θ0
α0

1−γ0

∫ 1
0

1−e−ρs
ρ ds

d2|θ0|
∫ 1

0
1−e−ρs

ρ ds

 , Σ̄3 = E(U2
1 ) lim

t→∞

E(
∑t−1

j=1 γ
t−1−j
0 Uj)

2 + ( α0
1−γ0 )2 α0

1−γ0 sgn(θ0)

α0
1−γ0 sgn(θ0) 1

 .

Remark 2. Theorems 3(ii) and 4(ii) show that testing for H0 : β0 = 0 is more powerful than

that for H0 : γ0 = 0 when {Xt} is a nearly integrated or unit root process. The reason is that

D̃2 and D̄2 become a multiplier of S̃2 and S̄2, respectively in these two cases.

2.2 Model with an Unknown Intercept

Next, we consider the case that α in model (3) is unknown. Again, our interest is to test

H0 : γ0 = 0 and/or H0 : β0 = 0 without knowing whether {Xt} is stationary or nearly integrated

or unit root.

As before, one may simply apply the empirical likelihood method to the following weighted

score equations:



∑n
t=1{Yt − α− γYt−1 − βXt−1} = 0

∑n
t=1{Yt − α− γYt−1 − βXt−1}{Yt−1 − βXt−1} = 0

∑n
t=1{Yt − α− γYt−1 − βXt−1} Xt−1√

1+X2
t−1

= 0.

(6)

However, this does not work by noting that the joint normalized limit of the first and third

equations in (6) is degenerate in the near unit root and unit root cases. Moreover, by re-

expressing the first two equations in (6) as



n∑
t=1

(Yt − α− γYt−1 − βXt−1) =
n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)− n(α− α0),

n∑
t=1

(Yt − α− γYt−1 − βXt−1)(Yt−1 − βXt−1) =
n∑
t=1

(Yt − α0 − γYt−1 − βXt−1)×

(Yt−1 − βXt−1)− (α− α0)
n∑
t=1

(Yt−1 − βXt−1),

11



it is clear that the term (α − α0)
∑n

t=1(Yt−1 − β0Xt−1) in the above second equation becomes

a smaller order than the term n(α − α0) in the above first equation when θ0 = 0 and α0 = 0

by noting that 1
n

∑n
t=1(Yt−1 − β0Xt−1)

p→ 0 in this case. Hence, when we profile the nuisance

parameter α later, a solution for α in the first equation of (6) may not be a solution for α in the

second equation of (6), which causes a problem in the minimization. These problems are not

surprising since it is known in the literature that an inference for a unit root or nearly integrated

process has a different asymptotic distribution when the model has zero or nonzero intercept,

and unifying the cases with and without intercept requires a careful effort.

To overcome these issues and unify the cases with and without intercept, we follow the idea

in Zhu et al. (2014) by splitting the data into two parts and using the difference with a big lag

to get rid of the intercept first so as to still keep the differences of regressor as a nonstationary

process. This is important as inference with nonstationarity has a faster rate of convergence

than that in the stationary case. More specifically, put m = [n/2] with [·] denoting the ceiling

function, and define X̃t = Xt+m −Xt, Ỹt = Yt+m − Yt, Ũt = Ut+m − Ut and Ṽt = Vt+m − Vt for

t = 1, · · · ,m. Then, model (3) implies the following model

Ỹt = γỸt−1 + βX̃t−1 + Ũt

without intercept, which is the same as model (3) with known α = 0. Clearly, if {Ut} is

independent, then is {Ũt}. Furthermore, |X̃t|
p→ ∞ and |X̃t|/

√
1 + X̃2

t
p→ 1 as t → ∞ when

{Xt} is nearly integrated or unit root. As discussed before, this property is the key to ensure

that the Wilks theorem holds for the proposed empirical likelihood test.

Therefore, similar to the model with known intercept in (3), we define

Z̃t(γ, β) = (Z̃t1(γ, β), Z̃t2(γ, β))T ,

where 
Z̃t1(γ, β) = (Ỹt − γỸt−1 − βX̃t−1)(Ỹt−1 − βX̃t−1),

Z̃t2(γ, β) = (Ỹt − γỸt−1 − βX̃t−1) X̃t−1√
1+X̃2

t−1

.

Then, based on {Z̃t(γ, β)}mt=1, the empirical likelihood function for γ and β is defined as

L̃(γ, β) = sup

{
m∏
t=1

(mpt) : p1 ≥ 0, · · · , pm ≥ 0,

m∑
t=1

pt = 1,

m∑
t=1

ptZ̃t(γ, β) = 0

}
.
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If we are interested in testing H0 : γ0 = 0, then we consider the profile empirical likelihood

function L̃P1(γ) = maxβ L̃(γ, β). On the other hand, if the interest is in testing H0 : β0 = 0,

then one considers the profile empirical likelihood function L̃P2(β) = maxγ L̃(γ, β). The following

theorem shows that the Wilks theorem holds for this empirical likelihood test.

Theorem 5. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0. Further assume either (i) |φ0| < 1 independent of n, or (ii) φ0 = 1−ρ/n for some ρ 6= 0,

or (iii) φ0 = 1. Then, as n → ∞, −2 log L̃P1(0)
d→ χ2(1) under H0 : γ0 = 0, −2 log L̃P2(0)

d→

χ2(1) under H0 : β0 = 0, and −2 log L̃(0, 0)
d→ χ2(2) under H0 : γ0 = 0 & β0 = 0.

Again, based on the above theorem, a robust empirical likelihood test for H0 : γ0 = 0 or

H0 : β0 = 0 or H0 : γ0 = 0 & β0 = 0 under model (3) is to reject H0 at level ξ whenever

−2 log L̃P1(0) > χ2
1,1−ξ or −2 log L̃P2(0) > χ2

1,1−ξ or −2 log L̃(0, 0) > χ2
2,1−ξ, respectively. These

tests are robust without knowing whether {Xt} is stationary or nearly integrated or unit root

and has a zero or nonzero intercept. Similar power analyses like Theorems 2–4 can be done.

3 Finite Sample Analysis

3.1 Monte Carlo Simulation Study

In this subsection, we investigate the performance of the proposed robust tests in terms of size

and power. Note that all simulations are implemented in the statistical software R.

Consider model (3) with α0 = 1, θ0 = 0, ψ0 = 1, ψj = 0 for j ≥ 1, φ = 0.9 or 1 − 2/n or

1, where the sample size n = 200 or 2000 or 5000. For testing H0 : γ0 = 0, we take β0 = 0.5

and consider γ0 = 0,± 1√
n
,± 2√

n
,± 3√

n
,± 4√

n
. Hence, the results for γ0 = 0 represent the size

of the proposed test and the results for nonzero γ’s represent the power of the proposed test.

The reason for considering these scaled γ’s with the order of 1/
√
n instead of 1/n even for

the nonstationary case is given in Remark 2. For testing H0 : β0 = 0, we take γ0 = 0.5 and

consider β0 = 0,± 1√
n
,± 2√

n
,± 3√

n
,± 4√

n
in case of φ0 = 0.9, and β0 = 0,± 2

n ,±
4
n ,±

6
n ,±

8
n in case

of φ0 = 1− 2/n and φ0 = 1.

We generate 1, 000 random samples from model (3) with the above settings and (Ut, Vt)
T

having a normal copula with correlation ρ = −0.5 and marginal distributions t(5) and t(4). We

compute the sizes and powers of the proposed tests with the significance levels 5% and 10%

based on either Theorem 1 (i.e., α is assumed to be known) or Theorem 5 (i.e., α is unknown)
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by employing the package ’emplik’ in the R software. Empirical sizes and powers are reported

in Tables 1–4, respectively, for testing H0 : γ0 = 0 with known α or unknown α, for testing

H0 : β0 = 0 with known α or unknown α.

The results for γ0 = 0 in Tables 1 and 2 show that the size of the proposed test with known α

is slightly more accurate than that with unknown α for n = 200, but both have a quite accurate

size for a larger n. The results for γ0 6= 0 in Tables 1 and 2 show that the proposed test for

H0 : γ0 = 0 has a good power whenever α is known or unknown, the power increases as γ0

deviates more from zero, and the test with known α is more powerful than that with unknown

α since the latter requires splitting the data into two parts, which reduces the effective sample

size in the inference.

The results for β0 = 0 in Tables 3 and 4 show that the proposed test for H0 : β0 = 0 has a

good size whenever α is known or unknown. Also, the results for β0 6= 0 in Tables 3 and 4 show

that the proposed test has a good power and the test with known α is more powerful than that

with unknown α, which is due to the technique of splitting data.

In conclusion, Tables 1–4 show that the proposed robust tests for H0 : γ0 = 0 and/or

H0 : β0 = 0 with a lagged predicted variable in a predictive regression perform pretty well

regardless of {Xt} being a stationary process, or a nearly integrated process or a unit root

process. The test with known α is more powerful than the test with unknown α, which can

be explained by the employed technique of splitting data in order to unify the cases with and

without intercept in the predictive regression.

3.2 Real Data Analyses

This subsection demonstrates the practical usefulness of the proposed tests by applying them

to test the predictability of stock returns in the U.S. market regardless of the financial variable

(regressor) being stationary or nearly integrated or unit root.

We revisit the data analysis in Kostakis et al. (2015) and Cai and Wang (2014) by focusing

on the period 1/1982–12/2015 for one of the two predicted variables: the CRSP value-weighted

excess return and the S&P 500 excess return, and one of the ten financial predictors: dividend

payout ratio, long-term yield, dividend yield, dividend-price ratio, T-bill rate, earnings-price

ratio, book-to-market value ratio, default yield spread, net equity expansion and term spread.

The reason to focus on this time period is due to the ACF analyses in Figures 1 – 9 supporting

the assumption of uncorrelated errors in model (3).
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In Tables 5 and 6, we report the P-values of the proposed robust empirical likelihood tests

for testing H0 : γ0 = 0 and H0 : β0 = 0. When we say a known α in model (3), it means α is set

to be the least squares estimator, that is, α minimizes the least squares distance
∑n

t=1{Yt−α−

γYt−1−βXt−1}2. Some findings are summarized as follows by comparing the obtained P-values

with the significance level 10%.

• When the predicted variable is the CRSP value-weighted excess return, the null hypothesis

H0 : γ0 = 0 can not be rejecteit hasd for all considered regressors and the predictability

(i.e., β0 6= 0) exists for four regressors whenever α is treated as a known or an unknown

parameter.

• When the predicted variable is the S&P 500 excess return, the null hypothesis H0 : γ0 = 0

is rejected for all cases whenever α is known or unknown, and the predictability (i.e.,

β0 6= 0) exists for four regressors when α is known, but there exists no predictability for

all regressors when α is unknown.

As argued in the introduction, the existing literature on testing predictability often ignores

checking uncorrelated errors, while the employed tests for predictability heavily rely on this

assumption. In other words, the existing findings on predictability may not be methodologically

rigorous. Based on a different time period, where the assumption of uncorrelated errors is

checked to be reasonable, our proposed robust test does not reject H0 : γ0 = 0 for the predicted

variable CRSP value-weighted excess return, which means the method in Demetrescu (2014) by

adding a lagged predicted variable on purpose is valid for this predicted variable. However, our

proposed robust test does reject H0 : γ0 = 0 for the predicted variable S&P 500 excess return,

which means the method in Demetrescu (2014) for improving the test power of IVX-based tests is

invalid for this predicted variable. Unlike the results in Campbell and Yogo (2006) and Kostakis

et al. (2015) for the period after 1/1952, where the assumption of uncorrelated errors may

be reasonable, our tests clearly reject predictability for the term spread. The predictability for

dividend yield and no predictability for default yield spread are consistent with that in Campbell

and Yogo (2006) for the period 1/1952–12/2008. In comparison with findings in Cai and Wang

(2014) and Kostakis et al. (2015), the proposed robust tests clearly indicate that it is necessary

to include a lagged predicted variable into the predictive regression for the predicted variable

S&P 500 excess return.
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4 Conclusions

Without characterizing the stochastic properties of regressors, this paper introduces new test

statistics based on empirical likelihood with weighted score equations in a predictive regression

to test both the existence of the lagged variables and the predictability, and reexamines the

empirical evidence on the predictability of stock returns of Kostakis et al. (2015) and Cai and

Wang (2014) using the proposed new robust tests. The Wilks theorem is proved for the proposed

empirical likelihood tests regardless of regressors being stationary or nearly integrated or unit

root. Hence the proposed new tests are easy to implement without any ad hoc method such as

bootstrap method for obtaining critical values.

The Monte Carlo simulation study shows that the finite sample performance of the proposed

tests is good. The proposed robust procedure for testing H0 : γ0 = 0 can be employed to check

whether the method in Demetrescu (2014) is applicable. The empirical analysis shows that

adding a lagged predicted variable for the S&P 500 excess return is necessary while there is no

need to add the lag for the CRSP value-weighted excess return.
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Appendix: Proofs of Theorems

Before proving theorems, we need some lemmas.

Lemma 1. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ+ |Vt|2+δ} <∞ for some δ > 0,

and α = α0 is known. Further assume |φ0| < 1 independent of n.

(i) If γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/

√
n for some d2 ∈ R, then

1√
n

n∑
t=1

Zt(0, 0) = W 1 +

d1{E(U2
1 ) + α2

0}+ d2E{X1(α0 + U1)}

d1E( (α0+U1)X1√
1+X2

1

) + d2E(
X2

1√
1+X2

1

)

+ op(1), (7)

1

n

n∑
t=1

Zt(0, 0)ZT
t (0, 0) = E(U2

1 )

 E(U2
1 ) + α2

0 E( (α0+U1)X1√
1+X2

1

)

E( (α0+U1)X1√
1+X2

1

) E(
X2

1

1+X2
1
)

+ op(1) := Σ1 + op(1), (8)

and max
1≤t≤n

||Zt(0, 0)|| = op(n
1/2), (9)

where W 1 ∼ N(0,Σ1).

(ii) If γ0 = d1/
√
n for some d1 ∈ R and β0 is a nonzero constant, then

1√
n

n∑
t=1

Zt(0, β0) = W 2 +

 d1E{(α0 + β0X1 + U2)(α0 + U2 + β0X1 − β0X2)}

d1E( (α0+β0X1+U2)X2√
1+X2

2

)

+ op(1),

1
n

∑n
t=1Zt(0, β0)ZT

t (0, β0)

= E(U2
1 )

E(α0 + U2 + β0X1 − β0X2)2 E( (α0+U2+β0X1−β0X2)X2√
1+X2

2

)

E( (α0+U2+β0X1−β0X2)X2√
1+X2

2

) E(
X2

1

1+X2
1
)

+ op(1)

:= Σ2 + op(1),

and max
1≤t≤n

||Zt(0, β0)|| = op(n
1/2),

where W 2 ∼ N(0,Σ2).

(iii) If β0 = d2/
√
n for some d2 ∈ R and γ0 is a nonzero constant, then

1√
n

n∑
t=1

Zt(γ0, 0) = W 3 + lim
t→∞

 d2E{Xt−1( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)}

d2E(
X2

1√
1+X2

1

)

+ op(1),
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1
n

∑n
t=1Zt(γ0, 0)ZT

t (γ0, 0) =

limt→∞

 E( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)

2 E{ Xt−1√
1+X2

t−1

( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)}

E{ Xt−1√
1+X2

t−1

( α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj)} E(

X2
1

1+X2
1
)

×
E(U2

1 ) + op(1)

:= Σ3 + op(1),

and max
1≤t≤n

||Zt(γ0, 0)|| = op(n
1/2),

where W 3 ∼ N(0,Σ3).

Proof. (i) Since

Yt = α0
1− γt0
1− γ0

+ γt0Y0 +
t−1∑
j=0

γt−1−j
0 β0Xj +

t∑
j=1

γt−j0 Uj , (10)

we have Yt − α0 − Ut = op(1) as t→∞, which is used to show that

1√
n

∑n
t=1 Zt1(0, 0)

= 1√
n

∑n
t=1 UtYt−1 + d1

n

∑n
t=1 Yt−1Yt−1 + d2

n

∑n
t=1Xt−1Yt−1

= 1√
n

∑n
t=3 Ut{α0

1−(d1/
√
n)t−1

1−d1/
√
n

+ ( d1√
n

)t−1Y0 +
∑t−2

j=0( d1√
n

)t−2−j d2√
n
Xj

+
∑t−2

j=1( d1√
n

)t−1−jUj + Ut−1}+ d1{E(U2
1 ) + α2

0}+ d2E{X1(α0 + U1)}+ op(1)

= 1√
n

∑n
t=3 Ut(α0 + Ut−1) + d1{E(U2

1 ) + α2
0}+ d2E{X1(α0 + U1)}+ op(1)

and
1√
n

∑n
t=1 Zt2(0, 0)

= 1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d1
n

∑n
t=1

Yt−1Xt−1√
1+X2

t−1

+ d2
n

∑n
t=1

X2
t−1√

1+X2
t−1

= 1√
n

∑n
t=1

UtXt−1√
1+X2

t−1

+ d1E( (α0+U1)X1√
1+X2

1

) + d2E(
X2

1√
1+X2

1

) + op(1),

which imply (7). Similarly we can prove (8) and (9).

(ii) By noting that Yt − α0 − β0Xt−1 − Ut = op(1) as t→∞, results can be shown in a way

similar to the proof of (i).

(iii) By noting that Yt − α0
1−γ0 −

∑t
j=1 γ

t−j
0 Uj = op(1) as t → ∞, results follow from similar

arguments in proving (i).

Lemma 2. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ + |Vt|2+δ} < ∞ for some

δ > 0, and α = α0 is known. Further assume φ0 = 1 − ρ/n for some ρ ∈ R and θ0 = 0. Put

Z∗t (γ, β) = (Zt1(γ, β), Xn−1√
1+X2

n−1

Zt2(γ, β))T .
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(i) If γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/n for some d2 ∈ R, then

1√
n

n∑
t=1

Z∗t (0, 0) = W̃ 1 +

d1{E(U2
1 ) + α2

0}+ d2α0

∫ 1
0 JV,ρ(s) ds

d1α0 + d2

∫ 1
0 JV,ρ(s) ds

+ op(1), (11)

1

n

n∑
t=1

Z∗t (0, 0)Z∗Tt (0, 0) = E(U2
1 )

E(U2
1 ) + α2

0 α0

α0 1

+ op(1) := Σ̃1 + op(1), (12)

and max
1≤t≤n

||Z∗t (0, 0)|| = op(n
1/2), (13)

where W̃ 1 ∼ N(0, Σ̃1).

(ii) If γ0 = d1/n for some d1 ∈ R and β0 is a nonzero constant, then

1√
n

n∑
t=1

Z∗t (0, β0) = W̃ 2 +

d1α0β0

∫ 1
0 JV,ρ(s) ds

d1β0

∫ 1
0 JV,ρ(s) ds

+ op(1), (14)

1
n

∑n
t=1Z

∗
t (0, β0)Z∗Tt (0, β0)

= E(U2
1 )

E(U1 − β0
∑∞

j=0 ψjV1−j)
2 + α2

0 α0

α0 1

+ op(1)

:= Σ̃2 + op(1),

(15)

and max
1≤t≤n

||Z∗t (0, β0)|| = op(n
1/2), (16)

where W̃ 2 ∼ N(0, Σ̃2).

(iii) If β0 = d2/n for some d2 ∈ R and γ0 is a nonzero constant, then

1√
n

n∑
t=1

Z∗t (γ0, 0) = W̃ 3 +

d2
α0

1−γ0

∫ 1
0 JV,ρ(s) ds

d2

∫ 1
0 JV,ρ(s) ds

+ op(1), (17)

1
n

∑n
t=1Z

∗
t (γ0, 0)Z∗Tt (γ0, 0)

= E(U2
1 ) limt→∞

E(
∑t

j=1 γ
t−j
0 Uj)

2 + ( α0
1−γ0 )2 α0

1−γ0
α0

1−γ0 1

+ op(1)

:= Σ̃3 + op(1),

(18)

and max
1≤t≤n

||Z∗t (γ0, 0)|| = op(n
1/2), (19)

where W̃ 3 ∼ N(0, Σ̃3).
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Proof. (i) It follows from Phillips (1987) that

1√
n
X[nr]

D→ JV,ρ(r) in the space D[0, 1], (20)

where D[0, 1] is the collection of real-valued functions on [0, 1] which are right continuous with

left limits; see Billingsley (1999). By (10) and (20), we have Yt − α0 − Ut = op(1) as t → ∞.

Hence,

1√
n

∑n
t=1 Zt1(0, 0)

= 1√
n

∑n
t=1 UtYt−1 + d1

n

∑n
t=1 Yt−1Yt−1 + d2

n3/2

∑n
t=1Xt−1Yt−1

= 1√
n

∑n
t=1 Ut(α0 + Ut−1) + d1{E(U2

1 ) + α2
0}+ d2E(Y1)

∫ 1
0 JV,ρ(s) ds+ op(1)

= 1√
n

∑n
t=1 Ut(α0 + Ut−1) + d1{E(U2

1 ) + α2
0}+ d2α0

∫ 1
0 JV,ρ(s) ds+ op(1)

(21)

and
1√
n

∑n
t=1 Zt2(0, 0)

= 1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d1
n

∑n
t=1

Yt−1Xt−1√
1+X2

t−1

+ d2
n3/2

∑n
t=1

X2
t−1√

1+X2
t−1

= 1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d1α0
n

∑n
t=1

Xt−1√
1+X2

t−1

+ d1
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d2
n3/2

∑n
t=1

X2
t−1√

1+X2
t−1

+ op(1).

(22)

Put S0 = 0 and St =
∑t

j=1 Uj for t = 1, · · · , n. Then

1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

= 1√
n

∑n
t=1(St − St−1) Xt−1√

1+X2
t−1

= 1√
n
Sn

Xn−1√
1+X2

n−1

+ 1√
n

∑n
t=1 St{

Xt−1√
1+X2

t−1

− Xt√
1+X2

t

}.

(23)

It follows from Taylor expansion that

Xt−1√
1 +X2

t−1

− Xt√
1 +X2

t

= (1 + ξ2
t )−3/2(Xt−1 −Xt), (24)

where ξt lies between Xt−1 and Xt. By (20), we have |Xt−1|/ta
p→ ∞, |Xt|/ta

p→ ∞ and

|Xt−1 −Xt|/ta
p→ 0 for any a ∈ (0, 1/2) as t→∞, which imply that

|ξt|/ta
p→∞ for any a ∈ (0, 1/2) as t→∞. (25)
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It follows from (24) and (25) that

1√
n

n∑
t=1

St(
Xt−1√

1 +X2
t−1

− Xt−2√
1 +X2

t−2

) = op(1). (26)

By (23) and (26), we have

1√
n

n∑
t=1

Ut
Xt−1√

1 +X2
t−1

=
Xn−1√

1 +X2
n−1

1√
n

n∑
t=1

Ut + op(1). (27)

Similarly we have 
1
n

∑n
t=1

Xt−1√
1+X2

t−1

= Xn−1√
1+X2

n−1

+ op(1)

1
n3/2

∑n
t=1

X2
t−1√

1+X2
t−1

= Xn−1√
1+X2

n−1

1
n

∑n
t=1

Xt−1

n1/2 + op(1).
(28)

Hence, (11) follows from (20), (21), (22), (27) and (28).

(ii) It follows from (10) and (20) that

1√
n
Y[nr] =

β0√
n
X[nr] + op(1)

D→ β0JV,ρ(r) in the space D[0, 1]. (29)

Hence,

1√
n

∑n
t=1 Zt1(0, β0)

= 1√
n

∑n
t=1 Ut(Yt−1 − β0Xt−1) + d1

n3/2

∑n
t=1 Yt−1(Yt−1 − β0Xt−1)

= 1√
n

∑n
t=1 Ut(α0 + Ut−1 − β0

∑∞
j=0 ψjVt−1−j) + d1α0β0

∫ 1
0 JV,ρ(s) ds+ op(1)

and
1√
n

∑n
t=1 Zt2(0, β0)

= 1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d1
n3/2

∑n
t=1 Yt−1

Xt−1√
1+X2

t−1

= Xn−1√
1+X2

n−1

1√
n

∑n
t=1 Ut + d1β0

n3/2

∑n
t=1

X2
t−1√

1+X2
t−1

+ op(1)

= Xn−1√
1+X2

n−1

1√
n

∑n
t=1 Ut + Xn−1√

1+X2
n−1

d1β0

∫ 1
0 JV,ρ(s) ds+ op(1),

which imply (14). Similarly we can prove (15) and (16).
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(iii) By noting that Yt − α0
1−γ0 −

∑t
j=1 γ

t−j
0 Uj = op(1) as t→∞, we have

1√
n

∑n
t=1 Zt1(γ0, 0) = 1√

n

∑n
t=1 UtYt−1 + d2

n3/2

∑n
t=1Xt−1Yt−1

= 1√
n

∑n
t=1 Ut(

α0
1−γ0 +

∑t−1
j=1 γ

t−1−j
0 Uj) + d2

α0
1−γ0

∫ 1
0 JV,ρ(s) ds+ op(1)

and

1√
n

∑n
t=1 Zt2(γ0, 0) = 1√

n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

+ d2
n3/2

∑n
t=1

X2
t−1√

1+X2
t−1

= Xn−1√
1+X2

n−1

1√
n

∑n
t=1 Ut + Xn−1√

1+X2
n−1

d2

∫ 1
0 JV,ρ(s) ds+ op(1),

which imply (17). Similarly we can prove (18) and (19).

Lemma 3. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ+ |Vt|2+δ} <∞ for some δ > 0,

and α = α0 is known. Further assume φ0 = 1− ρ/n for some ρ ∈ R and θ0 6= 0.

(i) If γ0 = d1/
√
n for some d1 ∈ R and β0 = d2/n

3/2 for some d2 ∈ R, then

1√
n

n∑
t=1

Zt(0, 0) = W̄ 1 +

d1{E(U2
1 ) + α2

0}+ d2α0θ0

∫ 1
0

1−e−ρs
s ds

d1α0sgn(θ0) + d2|θ0|
∫ 1

0
1−e−ρs

ρ ds

+ op(1), (30)

1

n

n∑
t=1

Zt(0, 0)ZT
t (0, 0) = E(U2

1 )

E(U2
1 ) + α2

0 α0

α0 1

+ op(1) := Σ̄1 + op(1), (31)

and max
1≤t≤n

||Zt(0, 0)|| = op(n
1/2), (32)

where W̄ 1 ∼ N(0, Σ̄1).

(ii) If γ0 = d1/n
3/2 for some d1 ∈ R and β0 is a nonzero constant, then

1√
n

n∑
t=1

Zt(0, β0) = W̄ 2 +

d1β0θ0(α0 − β0θ0)
∫ 1

0
1−e−ρs

ρ ds

d1β0|θ0|
∫ 1

0
1−e−ρs

ρ ds

+ op(1), (33)

1
n

∑n
t=1Zt(0, β0)ZT

t (0, β0)

= E(U2
1 )

E(α0 + U1 − β0θ0 − β0
∑∞

j=0 ψjV1−j)
2 (α0 − β0θ0)sgn(θ0)

(α0 − β0θ0)sgn(θ0) 1

+ op(1)

:= Σ̄2 + op(1),

(34)
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and max
1≤t≤n

||Zt(0, β0)|| = op(n
1/2), (35)

where W̄ 2 ∼ N(0, Σ̄2).

(iii) If β0 = d2/n
3/2 for some d2 ∈ R and γ0 is a nonzero constant, then

1√
n

n∑
t=1

Zt(γ0, 0) = W̄ 3 +

d2θ0
α0

1−γ0

∫ 1
0

1−e−ρs
s ds

d2|θ0|
∫ 1

0
1−e−ρs

ρ ds

+ op(1), (36)

1
n

∑n
t=1Zt(γ0, 0)ZT

t (γ0, 0)

= E(U2
1 ) limt→∞

E(
∑t−1

j=1 γ
t−1−j
0 Uj)

2 + ( α0
1−γ0 )2 α0

1−γ0 sgn(θ0)

α0
1−γ0 sgn(θ0) 1

+ op(1)

:= Σ̄3 + op(1),

(37)

and max
1≤t≤n

||Zt(γ0, 0)|| = op(n
1/2), (38)

where W̄ 3 ∼ N(0, Σ̄3).

Proof. (i) By noting that X[ns]/n
p→ θ0

1−e−ρs
ρ for s ∈ [0, 1] and Yt − α0 − Ut = op(1) as t→∞,

results follow from the same arguments in proving Lemma 2(i).

(ii) By noting that Y[ns]/n = β0X[ns]/n + op(1)
p→ β0θ0

1−e−ρs
ρ for s ∈ [0, 1], results follow

from the same arguments in proving Lemma 2(ii).

(iii) By noting that Yt− α0
1−γ0 −

∑t
j=1 γ

t−j
0 Uj = op(1) as t→∞, results follow from the same

arguments in proving Lemma 2(iii).

Lemma 4. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ+ |Vt|2+δ} <∞ for some δ > 0,

and α = α0 is known. Further assume φ0| < 1 independent of n.

(i) Under H0 : γ0 = 0, with probability tending to one, L(0, β) attains its maximum value at

some point β∗ in the interior of the ball |β − β0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞,

and β∗ and λ∗ = λ∗(β∗) satisfy Q1n(β∗,λ∗) = 0 and Q2n(β∗,λ∗) = 0, where

Q1n(β,λ) :=
1

n

n∑
t=1

Zt(0, β)

1 + λTZt(0, β)
, and Q2n(β,λ) =

1

n

n∑
t=1

1

1 + λTZt(0, β)

(
∂Zt(0, β)

∂β

)T
λ.

(ii) Under H0 : β0 = 0, with probability tending to one, L(γ, 0) attains its maximum value

at some point γ∗ in the interior of the ball |γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n→∞,
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and γ∗ and λ∗ = λ∗(γ∗) satisfy Q3n(γ∗,λ∗) = 0 and Q4n(γ∗,λ∗) = 0, where

Q3n(γ,λ) :=
1

n

n∑
t=1

Zt(γ, 0)

1 + λTZt(γ, 0)
, and Q4n(γ,λ) =

1

n

n∑
t=1

1

1 + λTZt(γ, 0)

(
∂Zt(γ, 0)

∂γ

)T
λ.

Proof. Using Lemma 1, this lemma follows from the arguments in the proof of Lemma 1 of Qin

and Lawless (1994).

Lemma 5. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ+ |Vt|2+δ} <∞ for some δ > 0,

and α = α0 is known. Further assume φ0 = 1− ρ/n for some ρ ∈ R and θ0 = 0.

(i) Put β̄ = β
√
n, β̄0 = β0

√
n, Z̄

∗
t (γ, β̄) = Z∗t (γ, β) defined in Lemma 2 and L̄(γ, β̄) =

L(γ, β). Under H0 : γ0 = 0, with probability tending to one, L̄(0, β̄) attains its maximum value

at some point β̄∗ in the interior of the ball |β̄− β̄0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n→∞,

and β̄∗ and λ̄
∗

= λ̄
∗
(β̄∗) satisfy Q̃1n(β̄∗, λ̄

∗
) = 0 and Q̃2n(β̄∗, λ̄

∗
) = 0, where

Q̃1n(β̄, λ̄) :=
1

n

n∑
t=1

Z̄
∗
t (0, β̄)

1 + λ̄
T
Z̄
∗
t (0, β̄)

, and Q̃2n(β̄, λ̄) =
1

n

n∑
t=1

1

1 + λ̄
T
Z̄
∗
t (0, β̄)

(
∂Z̄
∗
t (0, β̄)

∂β̄

)T
λ̄.

(ii) Under H0 : β0 = 0, with probability tending to one, L(γ, 0) attains its maximum value

at some point γ∗ in the interior of the ball |γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n→∞,

and γ∗ and λ∗ = λ∗(γ∗) satisfy Q̃3n(γ∗,λ∗) = 0 and Q̃4n(γ∗,λ∗) = 0, where

Q̃3n(γ,λ) :=
1

n

n∑
t=1

Z∗t (γ, 0)

1 + λTZ∗t (γ, 0)
, and Q̃4n(γ,λ) =

1

n

n∑
t=1

1

1 + λTZ∗t (γ, 0)

(
∂Z∗t (γ, 0)

∂γ

)T
λ.

Proof. Using Lemma 2, this lemma follows from the arguments in the proof of Lemma 1 of Qin

and Lawless (1994).

Lemma 6. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ+ |Vt|2+δ} <∞ for some δ > 0,

and α = α0 is known. Further assume φ0 = 1− ρ/n for some ρ ∈ R and θ0 6= 0.

(i) Put β̄ = βn, β̄0 = β0n, Z̄t(γ, β̄) = Zt(γ, β) and L̄(γ, β̄) = L(γ, β). Under H0 : γ0 = 0,

with probability tending to one, L̄(0, β̄) attains its maximum value at some point β̄∗ in the

interior of the ball |β̄− β̄0| ≤ n−1/δ0 for some δ0 ∈ (2, 2+δ) as n→∞, and β̄∗ and λ̄
∗

= λ̄
∗
(β̄∗)

satisfy Q̄1n(β̄∗, λ̄
∗
) = 0 and Q̄2n(β̄∗, λ̄

∗
) = 0, where

Q̄1n(β̄, λ̄) :=
1

n

n∑
t=1

Z̄t(0, β̄)

1 + λ̄
T
Z̄t(0, β̄)

, and Q̄2n(β̄, λ̄) =
1

n

n∑
t=1

1

1 + λ̄
T
Z̄t(0, β̄)

(
∂Z̄t(0, β̄)

∂β̄

)T
λ̄.
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(ii) Under H0 : β0 = 0, with probability tending to one, L(γ, 0) attains its maximum value

at some point γ∗ in the interior of the ball |γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n→∞,

and γ∗ and λ∗ = λ∗(γ∗) satisfy Q̄3n(γ∗,λ∗) = 0 and Q̄4n(γ∗,λ∗) = 0, where

Q̄3n(γ,λ) :=
1

n

n∑
t=1

Zt(γ, 0)

1 + λTZt(γ, 0)
, and Q̄4n(γ,λ) =

1

n

n∑
t=1

1

1 + λTZt(γ, 0)

(
∂Zt(γ, 0)

∂γ

)T
λ.

Proof. Using Lemma 3, this lemma follows from the arguments in the proof of Lemma 1 of Qin

and Lawless (1994).

Proof of Theorem 1. Case A1) Assume φ0 = 1 − ρ/n, θ0 = 0 and H0 : γ0 = 0 & β0 = 0. Then

it follows from Lemma 2(i) with d1 = d2 = 0 and standard arguments in empirical likelihood

method (see Owen (2001)) that

−2 logL(0, 0) = W̃
T
1 Σ̃−1

1 W̃ 1 + op(1)
d→ χ2(2) as n→∞.

Case A2) Assume φ0 = 1− ρ/n, θ0 = 0 and H0 : γ0 = 0. Using notations in Lemma 5(i), it

follows from (20) that

1
n

∑n
t=1

∂Z̄t1(0,β̄0)

∂β̄

= − 1
n

∑n
t=1

Xt−1√
n

(Yt−1 − β0Xt−1)− 1
n

∑n
t=1 Ut

Xt−1√
n

= − 1
n

∑n
t=1

Xt−1√
n
{α0 + Ut−1 − β0

∑∞
j=0 ψjVt−1−j}+ op(1)

= −α0

∫ 1
0 JV,ρ(s) ds+ op(1)

and

1

n

n∑
t=1

∂Z̄∗t2(0, β̄0)

∂β̄
= − Xn−1√

1 +X2
n−1

1

n

n∑
t=1

Xt−1√
n

Xt−1√
1 +X2

t−1

= −
∫ 1

0
Jv,ρ(s) ds+ op(1),

which imply that

∂Q̃1n(β̄0, 0)

∂β̄
=

−α0

∫ 1
0 JV,ρ(s) ds

−
∫ 1

0 Jv,ρ(s) ds

+ op(1) =: S̃∗2 + op(1). (39)
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By Lemma 2(ii) with d1 = 0, we can show that


∂Q̃1n(β̄0,0)

∂λ̄
= −Σ̃2 + op(1),

Q̃1n(β̄0, 0) = Op(n
−1/2), Q̃1n(β̄0,0)

∂β̄
= Op(1),

∂Q̃2n(β̄0,0)

∂β̄
= 0, ∂Q̃2n(β̄0,0)

∂λ̄
= S̃∗2 + op(1) = Op(1),

(40)

where Σ̃2 is defined in Lemma 2(ii). By (39) and (40), expanding Q̃1n(β̄∗, λ̄
∗
) and Q̃2n(β̄∗, λ̄

∗
)

around (β̄0, 0)T yields

0 = Q̃1n(β̄0, 0) + ∂Q̃1n(β̄0,0)

∂β̄
(β̄∗ − β̄0) + ∂Q̃1n(β̄0,0)

∂λ̄
T λ̄

∗
+ op(||λ̄

∗||+ |β̄∗ − β̄0|)

= Q̃1n(β̄0, 0) + S̃∗2(β̄∗ − β̄0)− Σ̃2λ̄
∗

+ op(||λ̄
∗||+ |β̄∗ − β̄0|)

and

0 = Q̃2n(β̄0, 0) + ∂Q̃2n(β̄0,0)

∂β̄
(β̄∗ − β̄0) + ∂Q̃2n(β̄0,0)

∂λ̄
T λ̄

∗
+ op(||λ̄

∗||+ |β̄∗ − β̄0|)

= S̃∗T2 λ̄
∗

+ op(||λ̄
∗||+ |β̄∗ − β̄0|),

which imply that

S̃∗T2 Σ̃−1
2 S̃∗2

√
n(β̄∗ − β̄0) = −S̃∗T2 Σ̃−1

2

√
nQ̃1n(β̄0, 0) + op(1)

and √
nλ̄
∗

= Σ̃−1
2

√
nQ̃1n(β̄0, 0) + Σ̃−1

2 S̃∗2
√
n(β̄∗ − β̄0) + op(1)

= {Σ̃−1
2 −

Σ̃−1
2 S̃∗

2 S̃
∗T
2 Σ̃−1

2

S̃∗T
2 Σ̃−1

2 S̃∗
2

}
√
nQ̃1n(β̄0, 0) + op(1)

= {Σ̃−1
2 −

Σ̃−1
2 S̃2S̃T2 Σ̃−1

2

S̃T2 Σ̃−1
2 S̃2

}
√
nQ̃1n(β̄0, 0) + op(1),

(41)

where S̃2 = −(α0, 1)T . It follows from (41) and Taylor expansion that

−2 logLP1(0)

= −2 log L̄(0, β̄∗)

= 2
∑n

t=1 λ̄
∗T
Z̄t(0, β̄

∗)−
∑n

t=1 λ̄
∗T
Z̄t(0, β̄

∗)Z̄
T
t (0, β̄∗)λ̄

∗
+ op(1)

= 2nλ̄
∗T
Q̃1n(β̄0, 0) + 2nλ̄

∗T ∂Q̃1n(β̄0,0)

∂β̄
(β̄∗ − β̄0)− nλ̄∗T Σ̃2λ̄

∗
+ op(1)

= 2
√
nλ̄
∗T {
√
nQ̃1n(β̄0, 0) + S̃2

√
n(β̄∗ − β̄0)} − nλ̄∗T Σ̃2λ̄

∗
+ op(1)

= 2
√
nλ̄
∗T

Σ̃2
√
nλ̄
∗ − nλ̄∗T Σ̃2λ̄

∗
+ op(1)

= {
√
nQ̃1n(β̄0, 0)}T {Σ̃−1

2 −
Σ̃−1

2 S̃2S̃T2 Σ̃−1
2

S̃T2 Σ̃−1
2 S̃2

}Σ̃2{Σ̃−1
2 −

Σ̃−1
2 S̃2S̃T2 Σ̃−1

2

S̃T2 Σ̃−1
2 S̃2

}{
√
nQ̃1n(β̄0, 0)}+ op(1)

= (Σ̃
−1/2
2 W̃ 2)T {I2×2 −

Σ̃
−1/2
2 S̃2S̃T2 Σ̃

−1/2
2

S̃T2 Σ̃−1
2 S̃2

}(Σ̃−1/2
2 W̃ 2) + op(1),

(42)

27



where I2×2 denotes the 2×2 identity matrix. Since the matrix I2×2−
Σ̃

−1/2
2 S̃2S̃T2 Σ̃

−1/2
2

S̃T2 Σ̃−1
2 S̃2

is idempotent

and

rank(I2×2−
Σ̃
−1/2
2 S̃2S̃

T
2 Σ̃
−1/2
2

S̃T2 Σ̃−1
2 S̃2

) = 2−trace(Σ̃
−1/2
2 S̃2S̃

T
2 Σ̃
−1/2
2

S̃T2 Σ̃−1
2 S̃2

) = 2−trace( S̃
T
2 Σ̃
−1/2
2 Σ̃

−1/2
2 S̃2

S̃T2 Σ̃−1
2 S̃2

) = 1,

it follows from Lemma 2(ii) with d1 = 0 that −2 logLP1(0)
d→ χ2(1) as n→∞.

Case A3) Assume φ0 = 1− ρ/n, θ0 = 0 and H0 : β0 = 0. Like the proof for the case A2), it

follows from Lemmas 2(iii) with d2 = 0 and 5(ii) that

−2 logLP2(0) = (Σ̃
−1/2
3 W̃ 3)T {I2×2 −

Σ̃
−1/2
3 S̃3S̃

T
3 Σ̃
−1/2
3

S̃T3 Σ̃−1
3 S̃3

}(Σ̃−1/2
3 W̃ 3) + op(1),

where Σ̃3 and W̃ 3 are defined in Lemma 2(iii), and

S̃3 = lim
n→∞

∂Q̃3n(γ0, 0)

∂γ
= −

 lim
t→∞

E(
t∑

j=1

γt−j0 Uj)
2 + (

α0

1− γ0
)2,

α0

1− γ0

T

.

Since the matrix I2×2 −
Σ̃

−1/2
3 S̃3S̃T3 Σ̃

−1/2
3

S̃T3 Σ̃−1
3 S̃3

is idempotent with rank one, it follows from Lemma

2(iii) with d2 = 0 that −2 logLP2(0)
d→ χ2(1) as n→∞.

Therefore it follows from the above cases A1)–A3) that Theorem 1 holds for the case of

φ0 = 1 − ρ/n and θ0 = 0. Similarly we can show Theorem 1 holds for the case of |φ0| < 1 by

using Lemmas 1 and 4, and for the case of φ0 = 1− ρ/n and θ0 6= 0 by using Lemmas 3 and 6.

Proofs of Theorems 2–5. They can be shown in the same way as the proof of Theorem 1 by

using Lemmas 1–6. For computing the non-central parameters in Theorems 3(ii) and 4(ii), we

use the facts that

D̃
T
2 {Σ̃−1

2 −
Σ̃−1

2 S̃2S̃
T
2 Σ̃−1

2

S̃T2 Σ̃−1
2 S̃2

}D̃2 = d2
1β

2
0(

∫ 1

0
JV,ρ(s) ds)

2S̃T2 {Σ̃−1
2 −

Σ̃−1
2 S̃2S̃

T
2 Σ̃−1

2

S̃T2 Σ̃−1
2 S̃2

}S̃2 = 0

and

D̄
T
2 {Σ̄−1

2 −
Σ̄−1

2 S̄2S̄
T
2 Σ̄−1

2

S̄T2 Σ̄−1
2 S̄2

}D̄2 = d2
1β

2
0 S̄

T
2 {Σ̄−1

2 −
Σ̄−1

2 S̄2S̄
T
2 Σ̄−1

2

S̄T2 Σ̄−1
2 S̄2

}S̄2 = 0.
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Figure 1: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1927–12/1994 and
Yt being the CRSP value-weighted excess return.

29



0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F
Dividend Payout Ratio

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Long−term Yield

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Divident Yield

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Divident−price Ratio

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F
T−bill Rate

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Earnings−price Ratio

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Book−to−market Value Ratio

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Default Yield Spread

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Net Equity Expansion

0 5 10 15 20 25

0
.0

0
.6

Lag

A
C

F

Term Spread

Figure 2: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1952–12/2015 and
Yt being the CRSP value-weighted excess return.
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Figure 3: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1982–12/2015 and
Yt being the CRSP value-weighted excess return.
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Figure 4: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1927–12/1994 and
Yt being the S&P 500 excess return.
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Figure 5: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1952–12/2015 and
Yt being the S&P500 excess return.
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Figure 6: Autocorrelation function of Ût = Yt − α̂− β̂Xt−1 for the period 1/1982–12/2015 and
Yt being the S&P 500 excess return.
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Figure 7: Autocorrelation function of Ût = Yt−α̂−γ̂Yt−1−β̂Xt−1 for the period 1/1982–12/2015
and Yt being the S&P 500 excess return.
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Figure 8: Autocorrelation function of Ût = Yt−α̂−γ̂Yt−1−β̂Xt−1 for the period 1/1982–12/2015
and Yt being the CRSP value-weighted excess return.
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Figure 9: Autocorrelation function of the estimated V ′t s for the period 1/1982–12/2015 based
on the ARMA(1,15) model, i.e., Xt = θ + φXt−1 + Vt −

∑15
j=1 ψjVt−j .

37



Table 1: Empirical sizes and powers are reported for the test based on Theorem 1 and model
(3) with θ0 = 0 and known α = 1 for testing H0 : γ0 = 0 vs Ha : γ0 6= 0.

(γ0, φ0) n = 200 n = 2000 n = 5000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.108 0.058 0.117 0.065 0.110 0.067
(− 1√

n
, 0.9) 0.427 0.314 0.480 0.352 0.459 0.352

( 1√
n
, 0.9) 0.464 0.339 0.430 0.314 0.440 0.323

(− 2√
n
, 0.9) 0.869 0.790 0.890 0.833 0.908 0.857

( 2√
n
, 0.9) 0.913 0.864 0.918 0.862 0.933 0.876

(− 3√
n
, 0.9) 0.988 0.973 0.999 0.997 0.997 0.991

( 3√
n
, 0.9) 0.998 0.996 0.998 0.994 1.000 0.999

(− 4√
n
, 0.9) 0.999 0.987 1.000 1.000 1.000 0.999

( 4√
n
, 0.9) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1− 2
n) 0.103 0.059 0.115 0.056 0.110 0.048

(− 1√
n
, 1− 2

n) 0.415 0.299 0.459 0.329 0.439 0.317

( 1√
n
, 1− 2

n) 0.436 0.324 0.412 0.300 0.423 0.312

(− 2√
n
, 1− 2

n) 0.838 0.768 0.874 0.791 0.887 0.817

( 2√
n
, 1− 2

n) 0.908 0.826 0.903 0.816 0.894 0.832

(− 3√
n
, 1− 2

n) 0.985 0.969 0.996 0.988 0.992 0.982

( 3√
n
, 1− 2

n) 0.994 0.992 0.996 0.989 0.998 0.997

(− 4√
n
, 1− 2

n) 0.998 0.995 1.000 1.000 1.000 0.999

( 4√
n
, 1− 2

n) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1) 0.106 0.057 0.110 0.051 0.102 0.058
(− 1√

n
, 1) 0.404 0.301 0.442 0.323 0.425 0.306

( 1√
n
, 1) 0.402 0.281 0.398 0.294 0.405 0.298

(− 2√
n
, 1) 0.836 0.739 0.864 0.782 0.882 0.797

( 2√
n
, 1) 0.881 0.799 0.883 0.815 0.885 0.809

(− 3√
n
, 1) 0.978 0.959 0.992 0.980 0.990 0.980

( 3√
n
, 1) 0.995 0.989 0.997 0.989 0.997 0.994

(− 4√
n
, 1) 1.000 0.993 1.000 1.000 1.000 0.999

( 4√
n
, 1) 1.000 0.999 1.000 1.000 1.000 1.000

38



Table 2: Empirical sizes and powers are reported for the test based on Theorem 5 and model
(3) with θ0 = 0 and unknown α = 1 for testing H0 : γ0 = 0 vs Ha : γ0 6= 0.

(γ0, φ0) n = 200 n = 2000 n = 5000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.113 0.062 0.099 0.048 0.097 0.042
(− 1√

n
, 0.9) 0.265 0.171 0.222 0.126 0.232 0.138

( 1√
n
, 0.9) 0.283 0.193 0.247 0.164 0.256 0.178

(− 2√
n
, 0.9) 0.560 0.445 0.569 0.440 0.587 0.451

( 2√
n
, 0.9) 0.567 0.433 0.574 0.469 0.551 0.429

(− 3√
n
, 0.9) 0.883 0.752 0.864 0.781 0.865 0.787

( 3√
n
, 0.9) 0.876 0.808 0.850 0.780 0.894 0.810

(− 4√
n
, 0.9) 0.965 0.934 0.966 0.943 0.971 0.948

( 4√
n
, 0.9) 0.979 0.959 0.977 0.950 0.982 0.959

(0, 1− 2
n) 0.1210 0.061 0.096 0.049 0.107 0.048

(− 1√
n
, 1− 2

n) 0.262 0.172 0.229 0.140 0.247 0.160

( 1√
n
, 1− 2

n) 0.293 0.204 0.261 0.182 0.268 0.179

(− 2√
n
, 1− 2

n) 0.575 0.463 0.590 0.481 0.597 0.485

( 2√
n
, 1− 2

n) 0.592 0.484 0.616 0.494 0.574 0.467

(− 3√
n
, 1− 2

n) 0.863 0.771 0.886 0.793 0.884 0.823

( 3√
n
, 1− 2

n) 0.909 0.825 0.898 0.815 0.910 0.835

(− 4√
n
, 1− 2

n) 0.967 0.938 0.976 0.953 0.975 0.964

( 4√
n
, 1− 2

n) 0.988 0.972 0.987 0.966 0.985 0.972

(0, 1) 0.123 0.066 0.093 0.050 0.106 0.049
(− 1√

n
, 1) 0.275 0.177 0.233 0.139 0.251 0.162

( 1√
n
, 1) 0.292 0.208 0.256 0.181 0.265 0.173

(− 2√
n
, 1) 0.587 0.475 0.589 0.483 0.597 0.489

( 2√
n
, 1) 0.598 0.492 0.617 0.484 0.576 0.464

(− 3√
n
, 1) 0.861 0.776 0.887 0.793 0.883 0.825

( 3√
n
, 1) 0.904 0.835 0.896 0.813 0.907 0.834

(− 4√
n
, 1) 0.970 0.934 0.977 0.955 0.975 0.964

( 4√
n
, 1) 0.989 0.973 0.984 0.969 0.983 0.972

39



Table 3: Empirical sizes and powers are reported for the test based on Theorem 1 and model
(3) with θ0 = 0 and known α = 1 for testing H0 : β0 = 0 vs Ha : β0 6= 0.

(γ0, φ0) n = 200 n = 2000 n = 5000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.119 0.063 0.095 0.044 0.090 0.039
(− 1√

n
, 0.9) 0.566 0.458 0.655 0.542 0.690 0.570

( 1√
n
, 0.9) 0.719 0.590 0.692 0.583 0.705 0.577

(− 2√
n
, 0.9) 0.936 0.890 0.990 0.977 0.992 0.987

( 2√
n
, 0.9) 0.994 0.987 0.997 0.993 0.998 0.996

(− 3√
n
, 0.9) 0.990 0.982 1.000 1.000 0.999 0.999

( 3√
n
, 0.9) 1.000 1.000 1.000 1.000 1.000 1.000

(− 4√
n
, 0.9) 0.998 0.994 1.000 1.000 1.000 1.000

( 4√
n
, 0.9) 0.999 0.999 1.000 1.000 1.000 1.000

(0, 1− 2
n) 0.126 0.069 0.098 0.050 0.091 0.050

(− 2
n , 1−

2
n) 0.187 0.119 0.169 0.115 0.182 0.098

( 2
n , 1−

2
n) 0.221 0.127 0.173 0.112 0.195 0.109

(− 4
n , 1−

2
n) 0.378 0.303 0.332 0.241 0.296 0.208

( 4
n , 1−

2
n) 0.482 0.369 0.413 0.290 0.388 0.281

(− 6
n , 1−

2
n) 0.539 0.445 0.535 0.437 0.499 0.398

( 6
n , 1−

2
n) 0.738 0.613 0.678 0.575 0.652 0.529

(− 8
n , 1−

2
n) 0.666 0.595 0.648 0.576 0.645 0.572

( 8
n , 1−

2
n) 0.854 0.766 0.825 0.753 0.811 0.722

(0, 1) 0.128 0.071 0.103 0.051 0.111 0.057
(− 2

n , 1) 0.430 0.345 0.256 0.181 0.260 0.184
( 2
n , 1) 0.459 0.364 0.285 0.183 0.296 0.197

(− 4
n , 1) 0.673 0.619 0.499 0.405 0.450 0.351

( 4
n , 1) 0.791 0.703 0.621 0.505 0.552 0.456

(− 6
n , 1) 0.775 0.725 0.678 0.606 0.645 0.568

( 6
n , 1) 0.890 0.830 0.856 0.763 0.811 0.727

(− 8
n , 1) 0.853 0.798 0.775 0.722 0.776 0.707

( 8
n , 1) 0.934 0.898 0.941 0.888 0.926 0.864
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Table 4: Empirical sizes and powers are reported for the test based on Theorem 5 and model
(3) with θ0 = 0 and unknown α = 1 for testing H0 : β0 = 0 vs Ha : β0 6= 0.

(γ0, φ0) n = 200 n = 2000 n = 5000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.113 0.063 0.108 0.056 0.088 0.043
(− 1√

n
, 0.9) 0.359 0.262 0.380 0.248 0.395 0.284

( 1√
n
, 0.9) 0.474 0.329 0.422 0.287 0.423 0.287

(− 2√
n
, 0.9) 0.638 0.528 0.824 0.743 0.846 0.747

( 2√
n
, 0.9) 0.921 0.842 0.915 0.848 0.913 0.847

(− 3√
n
, 0.9) 0.810 0.680 0.980 0.949 0.986 0.968

( 3√
n
, 0.9) 0.994 0.986 0.998 0.995 1.000 0.995

(− 4√
n
, 0.9) 0.867 0.779 0.998 0.996 0.998 0.997

( 4√
n
, 0.9) 0.999 0.998 1.000 1.000 1.000 1.000

(0, 1− 2
n) 0.108 0.061 0.095 0.036 0.082 0.048

(− 2
n , 1−

2
n) 0.152 0.0829 0.132 0.070 0.117 0.058

( 2
n , 1−

2
n) 0.163 0.096 0.136 0.057 0.153 0.089

(− 4
n , 1−

2
n) 0.248 0.156 0.236 0.153 0.258 0.164

( 4
n , 1−

2
n) 0.286 0.175 0.300 0.184 0.268 0.167

(− 6
n , 1−

2
n) 0.370 0.271 0.397 0.309 0.377 0.301

( 6
n , 1−

2
n) 0.490 0.367 0.469 0.359 0.440 0.317

(− 8
n , 1−

2
n) 0.474 0.366 0.508 0.419 0.510 0.419

( 8
n , 1−

2
n) 0.654 0.521 0.642 0.524 0.615 0.488

(0, 1) 0.116 0.065 0.1012 0.041 0.091 0.052
(− 2

n , 1) 0.150 0.084 0.126 0.072 0.141 0.075
( 2
n , 1) 0.227 0.141 0.212 0.140 0.231 0.150

(− 4
n , 1) 0.267 0.178 0.301 0.215 0.295 0.219

( 4
n , 1) 0.444 0.316 0.472 0.361 0.436 0.317

(− 6
n , 1) 0.412 0.329 0.457 0.365 0.474 0.375

( 6
n , 1) 0.619 0.497 0.650 0.548 0.624 0.537

(− 8
n , 1) 0.561 0.449 0.607 0.527 0.551 0.474

( 8
n , 1) 0.750 0.630 0.774 0.692 0.759 0.675

41



Table 5: P-values are reported for testing H0 : γ0 = 0 and H0 : β0 = 0 for both known and
unknown α under model (3) for the CRSP value-weighted excess return.

Model with known α Model with unknown α
Regressor H0 : γ0 = 0 H0 : β0 = 0 H0 : γ0 = 0 H0 : β0 = 0

Dividend payout ratio 0.5058 0.5001 0.2885 0.7483
Long-term yield 0.5098 0.9924 0.3563 0.1145
Dividend yield 0.6041 0.0000 0.4188 0.0668
Dividend-price ratio 0.4983 0.0000 0.3318 0.0656
T-bill rate 0.5034 0.9225 0.3541 0.1246
Earnings-price ratio 0.5036 0.0000 0.2956 0.0412
Book-to-market value ratio 0.4948 0.0107 0.3289 0.0533
Default yield spread 0.5136 0.7235 0.2801 0.5484
Net equity expansion 0.4890 0.7816 0.2788 0.9143
Term spread 0.5117 0.7401 0.2768 0.9295

Table 6: P-values are reported for testing H0 : γ0 = 0 and H0 : β0 = 0 for both known and
unknown α under model (3) for the S&P500 value-weighted excess return.

Model with known α Model with unknown α
Regressor H0 : γ0 = 0 H0 : β0 = 0 H0 : γ0 = 0 H0 : β0 = 0

Dividend payout ratio 0.0000 0.4658 0.0005 0.8430
Long-term yield 0.0000 0.0820 0.0006 0.3160
Dividend yield 0.0000 0.0000 0.0008 0.1247
Dividend-price ratio 0.0000 0.0000 0.0006 0.2671
T-bill rate 0.0000 0.2485 0.0006 0.3349
Earnings-price ratio 0.0000 0.0015 0.0005 0.2275
Book-to-market value ratio 0.0000 0.3828 0.0006 0.2092
Default yield spread 0.0000 0.3095 0.0005 0.5061
Net equity expansion 0.0000 0.8079 0.0005 0.8436
Term spread 0.0000 0.7632 0.0004 0.8855
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