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Abstract

Since the financial crisis in 2008, the risk measures which are the core of risk man-
agement, have received increasing attention among economists and practitioners. In this
review, the concentrate is on recent developments in the estimation of the most popular
risk measures, namely, value at risk (VaR), expected shortfall (ES), and expectile. After in-
troducing the concept of risk measures, the focus is on discussion and comparison of their
econometric modeling. Then, parametric and nonparametric estimations of tail dependence
are investigated. Finally, we conclude with insights into future research directions.

Keywords: Expectile; Expected Shortfall; Network; Nonparametric Estimation; Tail De-
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1 Introduction

Risk management plays a crucial role in financial institutions, such as banks, insurance indus-
tries, and investment funds, and at the core of risk management are the techniques employed
to measure risk. Risk professionals have long been searching for a “good” risk measure. Af-
ter Markowitz (1952), the variance of the profit and loss distributions became the dominating
risk measure in finance. However, one shortcoming of this measure is that it requires the risk
functional to be a random variable with finite variance. More importantly, the correspond-
ing distributions are implicitly assumed to be approximately symmetric, in the sense that large
gains and losses are equally penalized, which contradicts the fact that investors are usually more
concerned about large losses than gains.

Different types of economic risks exist in the financial market, as has been progressively
realized by financial and regulatory institutions. In 1996, the Basel Committee on Banking
Supervision (BCBS) incorporated systematic risk as a supplement to credit risk and adopted a
mandatory risk measure called the VaR to be calculated by all banks for each line of their balance
sheets. Given a holding period with probability 1− τ , VaR is defined as the possible maximum
loss, within a confidence level of 1−τ . Since then, VaR has become one of the most widely used
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measures of market risk in risk management. The pioneering work on VaR was Morgan (1996),
Jorion (1997), Duffie and Pan (1997). Among them, Morgan (1996) introduced the RiskMetrics
methodology, which played an important role in the increasing popularity of VaR. However, VaR
has long been a controversial topic. A first criticism is that when VaR is used as a risk measure,
diversification does not necessarily reduce the risk. Perhaps more importantly, as criticized by
Basak and Shapiro (2001), VaR may induce large losses because of its insensitivity to extreme
loss. These drawbacks of VaR naturally elicit an important question that has contributed to
the development of risk measurement: what properties should be expected from a good risk
measure?

In the seminal work by Artzner et al. (1999), the desirable properties of risk measures were
formalized in a set of axioms. A risk measure with the properties of translation invariance,
subadditivity, positive homogeneity and monotonicity is called a coherent risk measure. To find
such an oracle, Artzner et al. (1999) and Basak and Shapiro (2001) introduced ES, which is
defined as the conditional expectation of the loss given that the loss exceeds the VaR level in
a given time period, as an alternative to VaR. As ES remedies the aforementioned problems of
VaR, it has replaced VaR in many institutions as a risk management tool. Specifically, the BCBS
recommends financial institutions replace VaR with ES in their internal market risk models.

In addition to the coherent properties introduced above, backtesting and forecast verifica-
tion are also important properties to consider. As risk measures are usually estimated using
historical data, a risk measure must have the ability to verify and compare competing estimation
procedures. In statistical decision theory, a risk measure where verification and comparison is
possible is called an elicitable risk measure. In Embrechts and Hofert (2014) and Ziegel (2016),
the connection of elicitability with backtesting and coherency, respectively, was considered. Un-
fortunately, Gneiting (2011) showed that ES is not elicitable, so an issue with direct backtesting
of ES estimates may exist. With a view on the feasibility of the backtesting, expectile, first intro-
duced by Newey and Powell (1987), has been suggested as a coherent and elicitable alternative
to ES in recent studies. Expectile regression estimates are the solutions to the minimization of
asymmetrically weighted mean squared errors. Owning to the quadratic loss function, expec-
tile is sensitive to the extreme losses of a given distribution. Furthermore, Bellini et al. (2014)
characterized generalized quantiles, which have positive homogeneity and convexity properties,
and showed that expectile eτ (with τ ≥ 1

2 ) is the only generalized quantile that enjoys all the
properties of a coherent risk measure.

The aforementioned risk measures assess the risk in an isolated perspective; however, the
interaction between different individuals is also of great importance. The failure of Fannie Mae
and Freddie Mac harmed the entire financial system and eventually led to the outbreak of the
financial crisis, thereby calling for a study on measuring the financial co-movements between
the agents in the financial markets. The copula approach is a natural way to measure the tail
dependence between two institutions. More recently, the CoVaR approach was introduced by
Adrian and Brunnermeier (2016) to measure tail dependence. CoVaR is defined as the VaR of an
institution conditioned on another institution (or the whole system) being in distress. Finally, the
financial network which includes quantitative information regarding interactions and the roles
of institutions within the entire financial system, has become particularly popular for studying
the system risk from an overall perspective. Therefore, in this paper, one section is used to
discuss this topic.

The rest of this paper is organized as follows. In Section 2, the properties of some popu-
lar risk measures, namely, VaR, ES and expectile, are discussed and compared. Section 3 and
Section 4 survey the practical evaluation of these risk measures in terms of parametric mod-
els and nonparametric models, respectively. Section 5 is devoted to investigating the recent
developments in measuring tail dependence. Section 6 concludes the paper.
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2 Risk Measures and Related Properties

This section introduces the definition of the risk measures discussed in this paper, namely, VaR,
ES and expectile.

2.1 Popular Risk Measures

Since Markowitz (1952) stated the famous mean-variance framework in portfolio optimization,
variance (standard deviation) had long been the dominant risk measure. The mean-variance
framework was replaced by VaR, the most popular downside risk measure in recent years. Here,
first, some notation is instroduced. LetRt be a random variable denoting the return of a portfolio
at time t, and let τ ∈ (0, 1) be the probability level.

Definition 2.1. For a probability level τ , the value at risk (VaR) of a random variable Rt is
defined as the minus τ -quantile of Rt:

VaRτ (Rt) = −qτ (Rt) = − inf{r|P (Rt ≤ r) ≥ τ}. (1)

VaR suffers from some drawbacks: it lacks subadditivity and is insensitive to extreme loss.
To alleviate these problems inherent in VaR, Artzner et al. (1999) and Basak and Shapiro (2001)
proposed ES as an alternative.

Definition 2.2. For a probability level τ , the expected shortfall (ES) of a random variable Rt
is defined as

ESτ (Rt) = −E[Rt|Rt ≤ −VaRτ (Rt)]. (2)

As ES has been criticized for issues related to backtesting, the coherent and elicitable risk
measure, the expectile, was proposed by Bellini et al. (2014) and Ziegel (2016).

Definition 2.3. For a probability level τ , the τ -expectile eτ (Rt) of a random variable Rt is
defined as

eτ = arg min
r∈R

E[|τ − I(Rt ≤ r)| · |Rt − r|2], (3)

where I(·) denotes the indicator function.

Remark 1: Most papers use returns to calculate VaR, and the return is defined as Rt =
log(Pt) − log(Pt−1), where Pt denotes the price of a financial asset at time t. However, in
practice, regulators or risk managers may be more concerned about the distribution of the
losses, which is defined as Yt ≡ −Rt = log(Pt−1) − log(Pt). Moreover, in some cases, the
model is easier to construct using losses rather than returns. For a probability level τ , the VaR
of the loss variable Yt is defined as

VaRτ (Yt) = qτ (Yt) = inf{y|P (Yt ≤ y) ≥ τ}, (4)

and the related ES is defined as

ESτ (Yt) = E[Yt|Yt ≥ VaRτ (Yt)]. (5)

Therefore, in the following sections, the estimation of VaR and ES are discussed using either
returns or losses according to the original paper.
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2.2 Coherency and Elicitability

A risk measure can be interpreted as a function that maps a loss distribution or random variable
to a capital amount. Artzner et al. (1999) proposed four axioms that bundle mathematical prop-
erties as possible criteria for the choice of such functions. The so-called coherent risk measures
satisfy the following set of conditions.

Definition 2.4. [Artzner et al. (1999)] Let G be a set of real-valued random variables (typically,
the loss variables). The loss function ρ(·) : G → R is a coherent risk measure if it satisfies

1. Translation invariance: Y ∈ G, c0 ∈ R, then ρ(Y + c0) = ρ(Y )− c0;

2. Subadditivity: Y1, Y2 ∈ G, then ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2);

3. Positive homogeneity: λ ≥ 0, Y ∈ G, then ρ(λY ) = λρ(Y );

4. Monotonicity: Y1, Y2 ∈ G with Y1 ≤ Y2, then ρ(Y1) ≤ ρ(Y2).

Translation invariance means that the risk measure decreases by c0 if a sure amount c0 is
added to the position. Subadditivity is correlated with the concept of diversification and implies
that the risk of a portfolio composed of two sub-portfolios is smaller than the sum of the risk
of these two sub-portfolios. Positive homogeneity means that if the size of the portfolio is
increased by a factor of λ while keeping the weights unchanged, the risk would increase by the
same factor λ. Monotonicity means that assets with more negative random outcomes are more
risky.

As mentioned above, one coherent risk measure is ES. Additionally, portfolio optimization
is easier to implement with ES objectives than with VaR objectives, and the extreme losses are
explicitly taken into account in the allocation process when ES is used. For further analysis of
the advantages of using ES, please refer to Jondeau et al. (2007). However, Gneiting (2011)
showed that ES is not elicitable, which is the property connected to comparing the performance
of different forecast methods, so there could be an issue with direct backtesting of ES estimates.
The concept of elicitability was first introduced by Osband (1985) and Lambert et al. (2008) and
then by Gneiting (2011). To introduce elicitability, first, the definition of a consistent scoring
function is recalled here.

Definition 2.5. [Ziegel (2016)] Let P ∈ P be the distribution function of a real-valued random
variable Y , where P is a class of probability measures on R with Borel sigma algebra, and let
ρ(·) be a real-valued function on P . A scoring function s(·, ·) is consistent for the functional
ρ(·) relative to the class P if and only if for all t ∈ ρ(P ) and all x ∈ R,

EP [s(t, Y )] ≤ EP [s(x, Y )], (6)

where x is a point estimate. Furthermore, s(·, ·) is strictly consistent if it is consistent and
EP [s(t, Y )] = EP [s(x, Y )] implies that x ∈ ρ(P ).

Then, the definition of elicitability is introcduced.

Definition 2.6. [Ziegel (2016)] A function ρ(·) is elicitable relative to the class P if there exists
a scoring function s(·, ·) that is strictly consistent for ρ(·) relative to P .

Expectile was shown to be elicitable by Bellini et al. (2014) and Ziegel (2016) and has been
suggested as a coherent and elicitable alternative to ES. Ziegel (2016) also showed that expectile
is indeed the only law-invariant and coherent elicitable risk measures. Expectile appears to
be a perfect substitute for VaR and ES. However, expectile is not comonotonically additive
from the so-called Kusuoka representation, see Emmer et al. (2015) and Ziegel (2016) for more
discussions.

From the discussions above, it is clear that it is not easy to find an all-inclusive risk mea-
sure. Therefore, it turns to the estimation techniques of these risk measures and their further
development is investigated.
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3 Models for VaR and ES

Since Morgan (1996), RiskMetrics have been widely used in the estimation of VaR. However,
in this review, conditional estimates of VaR and ES are of interest. Conditional estimators
yield more accurate assessments of risk than their unconditional counterparts by modeling the
stochastic nature of conditional volatility. The reader interested in RiskMetrics and other un-
conditional parametric approach should refer to Morgan (1996), Hull and White (1998) for
RiskMetrics; Butler and Schachter (1998), Gourieroux et al. (2000), and Chen and Tang (2005)
for historical simulation and its variants; and McNeil (1997), Danielsson and de Vries (1997)
for unconditional extreme value theory (EVT).

3.1 Parametric Models

By using parametric models to put structure on the tails of the distribution, the following semi-
parametric approaches are free from estimating the complete distribution of returns. The first
model is based on EVT; then, the quantile regression technique developed by Chernozhukov
and Umantsev (2001) and Engle and Manganelli (2004) are discussed. Finally, a regression ap-
proach for ES is also investigated. Besides, it is worthy mentioning that Wang and Zhao (2016)
proposed a semiparametirc approach to estimate conditional VaR, which is characterized by a
general parametric model with nonparametric noise distribution. The advantage of this paper is
to combine the good merits of parametric and nonparametric aproaches, please refer to Wang
and Zhao (2016) and the details is omitted.

3.1.1 Extreme Value Theory

EVT was designed to model the tail behavior of random variables. The main idea of EVT is that,
given a sufficiently large threshold u, returns less than u can be approximated by a generalized
Pareto distribution (GPD). The GPD is particularly applicable for the estimation of VaR and ES,
and it is defined as

GPD(w; ς, ψ) =

 1−
(

1 + ςw
ψ

)−1/ς
, if ς 6= 0,

1− exp
(
−w
ψ

)
, if ς = 0,

(7)

where w denotes the exceedances over u, ς is a tail index representing the shapes of the tails of
the distribution, and ψ is a scaling parameter. Considering the temporal evolution of volatility,
McNeil and Frey (2000) generalized McNeil (1997) by proposing the GARCH-EVT model for
the estimation of conditional VaR and ES. Their procedure to model the conditional volatility
and the distribution of the tails separately is as follows. In the first step, they employ a GARCH
model to filter the dependence in the return series, and the resulting residuals are i.i.d. if the
GARCH model is correctly specified. The GARCH model adopted to filter out the first- and
second-order dynamics is of the form

Rt = µt + σtzt, µt = µ+ ϕRt−1, σ
2
t = ω + αε2t−1 + βσ2t−1, (8)

where {Rt}nt=1 is the return series, and some constraints of the parameters, such as ω > 0,
α ≥ 0, β ≥ 0, and α+ β < 1, are set to ensure positive volatility and covariance as a stationary
process. After implementing the quasi-maximum likelihood (QML) for the estimation of the
model, the residuals are standardized by ẑt = (Rt − µ̂t)/σ̂t, where µ̂t and σ̂t are the obtained
estimators. In the second step, the GPD is estimated based on all exceedances, which are defined
as the realizations ẑt that are below a given threshold u. Defining Nu =

∑n
t=1 I(ẑt < u) as

the number of exceedances, the standardized residuals are sorted and a sample of exceedances
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is selected as {ẑ(1), . . . , ẑ(Nu)}. Then, (ς̂ , ψ̂)> is obtained by estimating the GPD using the ex-
ceedances. With (ς̂ , ψ̂)>, after inverting the conditional cumulative distribution function (CDF)
of the exceedances, the τ -quantile of random variable {Rt}nt=1 is obtained by

q̂τ (Rt) =

 u+ −ψ̂
ς̂

(
( n
Nu
τ)−ς̂ − 1

)
, if ς 6= 0

u+ ψ̂ log( n
Nu
τ), if ς = 0

. (9)

Finally, the forecasting of VaR and ES from t to t+ 1 is given by

VaRt+1,τ = − (µ̂t+1 + σ̂t+1q̂τ (Rt)) , (10)

ESt+1,τ =
VaRt+1,τ

1− ς̂
+
ψ̂ − ς̂u
1− ς̂

, (11)

where µ̂t+1 and σ̂t+1 are one-step forecasts of the expected return and variance, respectively,
which can be calculated by µ̂t+1 = µ̂ + ϕ̂Rt and σ̂2t+1 = ω̂ + α̂ε̂2t + β̂σ̂2t . Compared to
unconditional EVT, an obvious improvement of the GARCH-EVT approach is the incorporation
of expected return and volatility into the VaR changes.

A further study by Kuester et al. (2006) compared 13 conditional EVT models using NAS-
DAQ Composite Index data and found that GARCH-EVT always performed better than other
conditional models for probability level 0 < τ < 0.1, given that the GARCH-filtered inno-
vations follow a normal or skew t-distribution. For a detailed discussion on EVT, refer to the
survey paper of Rocco (2014).

3.1.2 Quantile Approach

We know that VaR is actually a quantile estimator, so the estimation of VaR is equal to the
modeling of a quantile. The basic idea of the quantile regression approach is to model a given
quantile of the distribution through time, and the technique of quantile regression was first
introduced in Koenker and Bassett (1978) and further summarized in Koenker (2005). The τ -
conditional quantile ofRt given Ft−1, where Ft is the information set at time t, can be obtained
by solving the following optimization problem

qt,τ = arg min
y∈R

E{[τ − I(Rt < r)](Rt − r) |Ft−1}. (12)

Examples of conditional quantile models include Koenker and Zhao (1996)’s conditional quan-
tile model, qt,τ (β) = β0,τ +

∑p
i=1 βi,τRt−i+ et with et = (γ0,τ +

∑q
j=1 γj,τ |et−j |)δ, p, q ≥ 1,

in which δ is the τ -quantile of an i.i.d. random variable with mean zero and finite variance; and
by taking Xt to be a proxy of Ft−1,Taylor (1999)’s and Chernozhukov and Umantsev (2001)’s
linear VaR, qt,τ (β) = X>t β and quadratic VaR models, qt,τ (β) = X>t β + X>t ΘXt, in which Θ
is a coefficient matrix.

The CAViaR model, proposed by Engle and Manganelli (2004), is the most popular linear
model. CAViaR aims to directly model the evolution of the quantile qτ , and a generic CAViaR
specification has the form:

Rt = qt,τ (β) + εt,τ , Qτ (εt,τ |Xt) = 0, (13)

qt,τ (β) = β0,τ +

p∑
i=1

βi,τqt−i,τ (β) +

q∑
j=1

βp+j,τg(Xt−j), (14)

where qt,τ (β) is the τ -conditional quantile of the return distribution, Qτ (εt,τ |Xt) is the τ -
conditional quantile of εt,τ given regressor Xt, βτ = (β0,τ , . . . , βp+q,τ ) is a vector of coef-
ficients, and g(·) is possibly a nonlinear function. The three suggested specifications in Engle
and Manganelli (2004) are as follows:
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Symmetric absolute value model

qt,τ (β) = β0,τ + β1,τqt−1,τ (β) + β2,τ |Rt−1|,

Asymmetric slope model

qt,τ (β) = β0,τ + β1,τqt−1,τ (β) + β2,τR
+
t−1 + β3,τR

−
t−1,

Indirect GARCH(1,1) model

q2t,τ (β) = β0,τ + β1,τq
2
t−1,τ (β) + β2,τR

2
t−1,

where R+
t = max(Rt, 0) and R−t = −min(Rt, 0). In the first and third settings, the dynamic

quantile responds symmetrically to past returns. By contrast, the asymmetric slope model con-
siders asymmetric effects, which means that the responses to positive and negative returns can
be different.

3.1.3 Regression Technique

An analogous approach to EVT was introduced by Cai et al. (2015), which proposed an easily
implemented regression technique based on the proportional mean residual life (PMRL) regres-
sion model to estimate ES. The mean residual life function m(y) is defined as

m(y) = E(Yt − y|Yt > y) = S−1(y)

∫ ∞
y

S(v) dv, (15)

where the loss variable Yt is nonnegative with finite mean µ, S(y) = 1−F (y) is the correspond-
ing survival function, with F (y) denoting the CDF of Yt. The above equation clearly shows that
m(y) is a function of ESτ (Yt) if we set y = VaRτ (Yt). Thus, to estimate ESτ , we first need to
estimate m(y). The inversion formula to equation (15) gives

S(y) =
m(0)

m(y)
exp

(
−
∫ y

0
m−1(v) dv

)
, (16)

and the two survival functions S0(y) and S1(y) are said to have proportional mean residual life

S1(y) = S0(y)

(∫ ∞
y

S0(v) dv/µ0

)1/k−1
, (17)

if the condition m1(y) = km0(y) for all y ≥ 0, k > 0 is satisfied. The technique in Maguluri
and Zhang (1994) can be used to extend this condition to a regression context with explanatory
variables X, namely,

m(y|X) = exp(−β>X)m0(y). (18)

Then, one has

S(y|X) = S0(y)

(
1

µ0

∫ ∞
y

S0(v)dv

)exp(β>X)−1
, (19)

where S0(y) is the baseline survival function, and µ0 = E[exp(β>X)Y |X] denotes the corre-
sponding baseline mean. Oakes and Dasu (2003) proposed a class of weighted ratio estimators
to estimate the above PMRL model. Suppose that the time series sample {(Yt,Xt)}nt=1 follows
a population satisfying (18); then, β can be estimated by solving

1
n

∑n
t=1 XtYt exp(β̂

>
Xt)

1
n

∑n
t=1 Yt exp(β̂

>
Xt)

− 1

n

n∑
t=1

Xt = 0. (20)

If we set S0(y) = exp(y/µ0) to be the baseline survival function, then (20) is the true maximum
likelihood equation of the exponential regression model. m̂(y|X) is readily estimated with the
quasi-likelihood estimator given by (20); then, the ES estimates ÊSτ with an estimated V̂ aRτ
can be obtained.
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3.2 Nonparametric Models

The aforementioned approaches assume that the tail of the distribution is well characterized by
certain parametric models; therefore, they all enjoy good interpretation and easy implementa-
tion. However, these methods may also suffer from the model misspecification problem. Fur-
thermore, as noted by Cai and Wang (2008), nonparametric modeling is appealing in several
aspects. First, little or no prior information of the functionals is needed in the nonparametric ap-
proach; thus, the model misspecification problem is avoided. Besides, nonparametric modeling
can provide insight for further parametric fitting.

3.2.1 Nonparametric Approach

To estimate the VaR and ES, Cai (2002), Wu et al. (2008), and Cai and Wang (2008) consid-
ered nonparametric modeling based on kernel smoothing to estimate the conditional distribution
function.

Assume that {(Yt,Xt)}nt=1 are stationary time series, where Yt is a risk or loss variable, and
Xt is a vector of covariates that can include both economic variables and lagged variables of
Yt. The VaR of Yt given Xt = x can be formulated as qτ (x) = S−1(τ |x), where the survival
function S(y|x) = 1− F (y|x) and F (y|x) is the conditional CDF of Y given X = x. Then, the
nonparametric estimator of VaR can be constructed as q̂τ (x) = Ŝ−1(τ |x); thus, the ES estimator
ÊSτ (x) is easily obtained using the plugging-in method,

ÊSτ (x) =
1

τ

∫ ∞
q̂τ (x)

yf̂(y|x) dy, (21)

where f(y|x) is the conditional CDF of Yt given Xt = x. Therefore, the key point to estimate
VaR and ES is to estimate the conditional probability distribution function (PDF) and CDF.

In the nonparametric setting, the kernel type of the nonparametric estimation of conditional
quantiles has serious drawbacks: the asymptotic bias cannot be adaptive, and the boundary ef-
fect requires boundary modification. Many different types of local linear estimators have been
proposed to overcome these drawbacks. One approach using a “check” function, such as a ro-
bustified local linear smoother, was proposed by Fan et al. (1994). An alternative procedure first
estimates the CDF using the “double-kernel” local linear technique proposed by Fan et al. (1996)
and then inverts the obtained CDF estimator to estimate the conditional quantile. This approach
is called Yu and Jones’s estimator, see Yu and Jones (1997, 1998) for a detailed comparison of
these two methods.

However, as noted by Hall et al. (1999), although the local linear estimators of the Yu and
Jones’s type have some attractive properties, such as no boundary effects, design adaptation,
and mathematical efficiency, they also have the disadvantage of producing conditional distribu-
tion function estimators that are not constrained to be monotone increasing or to lie between
zero and one; see Cai (2002) for details. Despite their large bias and boundary effects, the
Nadaraya-Watson (NW) methods are superior because they have the properties of positivity and
monotonicity. To combine these two approach, Hall et al. (1999) proposed a weighted NW
(WNW) estimator, which is designed to possess the superior property of the NW estimator that
it is always a distribution function and to preserve the properties of the local linear methods,
such as bias reduction and no boundary effect. Cai (2002) then established the weak consis-
tency and asymptotic normality of the WNW conditional distribution estimator for α-mixing
time series at both the boundary and interior points. The WNW estimator of the conditional
distribution function of Yt given Xt = x is defined as

F̂w(y|x) =

n∑
t=1

Wc,t(x, h)I(Yt ≤ y), (22)
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and the weights Wc,t(x, h) are given by

Wc,t(x, h) =
pt(x)Wh(x− Xt)∑n
t=1 pt(x)Wh(x− Xt)

, (23)

where Wh(·) = W (·/h)/h with W (·) denoting the kernel function and h being bandwidth, and
{pt(x)}nt=1 denotes the a series of weighted functions such that pt(x) ≥ 0. The optimal weights
pt(x) can be obtained by solving the following optimization problem,

max
n∑
t=1

log(pt(x)) s.t.
n∑
t=1

pt(x) = 1, and
n∑
t=1

(Xt − x)pt(x)Wh(x− Xt) = 0. (24)

Following Cai (2002), Wu et al. (2008) considered using the kernel method to estimate con-
ditional quantiles for both short-range and long-range dependent process. The Bahadur repre-
sentations and central limit theorems for the NW estimators of those processes were established
via the NW methods. Moreover, conditional on the historical information or a state process,
the asymptotic theory for the kernel estimates of the VaR was also proposed. Cai and Wang
(2008) moved one step further and combined the double kernel local linear technique of Yu
and Jones (1998) and the WNW method of Cai (2002) to propose the “weighted double kernel
local linear” (WDKLL) estimator. In their paper, they started with nonparametric estimation
of the conditional PDF and CDF. For a given symmetric kernel K(·), as h0 → 0, it is readily
seen that E[Kh0(y − Yt)|Xt = x] ≈ f(y|x) with Kh0(·) = K(·/h0)/h0, which means that
Y ∗t (y) = Kh0(y − Yt) can be regarded as an initial estimator of f(y|x) smoothing in the y
direction. Then, the local linear technique is applied to the observed variable Y ∗t (y) versus Xt,
which leads to

n∑
t=1

[Y ∗t (y)− a− b(Xt − x)]2Wh1(Xt − x), (25)

where the bandwidth h1 = h1(n) > 0 at this stage satisfies nh1 →∞ as n→∞. Minimizing
(25) with respect to a and b, a locally weighted least squares estimator of f(y|x) is expressed as

f̂ll(y|x) =
n∑
t=1

Wll,t(x, h1)Y ∗t (y), (26)

where the weights are given by

Wll,t(x, h1) =
[Sn,2(x)− (x− Xt)Sn,1(x)]Wh1(x− Xt)

Sn,0(x)Sn,2(x)− S2
n,1(x)

, (27)

with Sn,j(x) =
∑n

t=1Wh1(x − Xt)(Xt − x)j . From Fan and Gijbels (1996), it follows that
Wll,t(x, h1) satisfies the following discrete moments condition,

n∑
t=1

Wll,t(x, h1)(Xt − x)j =

 1, if j = 0

0, otherwise
, (28)

for 0 ≤ j ≤ 1. Furthermore, by integrating f̂ll(y|x), the double kernel local linear estimator of
F (y|x) is constructed as

F̂ll(y|x) =

∫ y

−∞
f̂ll(v|x) dv =

n∑
t=1

Wll,t(x, h1)Gh0(y − Yt), (29)

9



where Gh0(·) = G(·/h0) with G(·) denoting the CDF of K(·). Clearly, F̂ll(y|x) satisfies
some basic properties of a distribution function, such as differentiability with respect to y,
F̂ll(−∞|x) = 0, and F̂ll(∞|x) = 1.

Since both WNW estimators F̂w(y|x) and double kernel local linear estimator F̂ll(y|x) have
attractive properties, by combining them under a unified framework, the WDKLL estimator is
obtained as follows

f̂c(y|x) =
n∑
t=1

Wc,t(x, h1)Y ∗t (y), (30)

where Wc,t(x, h1) is given in (23), and

F̂c(y|x) =

∫ y

−∞
f̂c(v|x) dv =

n∑
t=1

Wc,t(x, h1)Gh0(y − Yt). (31)

Clearly, both f̂c(y|x) and F̂c(y|x) satisfy the conditions for the PDF and CDF. Therefore, the
nonparametric estimator of VaR can be constructed as qτ (y|x) = Ŝ−1c (τ |x), where Ŝc(y|x) =
1− F̂c(y|x), and ES estimator is obtained in a similar way as

ÊSτ (x) =
1

τ

n∑
t=1

Wc,t(x, h1)[YtḠh0(q̂τ (x)− Yt) + h0G1,h0(q̂τ − Yt)], (32)

where Ḡ(z) = 1−G(z) andG1,h0(z) = G1(z/h0) withG1(z) =
∫∞
z vK(v) dv. The proposed

nonparametric estimators enjoy asymptotic normality and consistency at both the boundary and
interior points.

3.2.2 Extreme Value Theory

Volatility clustering is a typical feature of the return series. Perhaps more importantly, the
distinction between period of volatility clustering of a stationary process and varying periods
of high/low volatility due to nonstationarity is not clear. To accommodate the potential vio-
lated stationary assumption caused by erratic changes, Chavez-Demoulin et al. (2014) extended
the classical peak over threshold (POT) method to fit time-varying volatility in the estimation
of VaR, which is applicable to both stationary and nonstationary time series. Specifically, in
the first step, on the basis of the conditional probability principle, the conditional distribution
Fy|Ft−1

(·) of loss variable Yt in the upper tail is decomposed as

P (Yt > y|Ft−1) = P (Yt > u|Ft−1)P (Yt − u > y − u|Yt > u,Ft−1), (33)

where u is a predetermined threshold with u < y. Then, the weekly counts Nu(l) of the losses
above the threshold u during week l are modeled independently with the excess Wt captured
by a negative loss that exceeds u at time t. Following POT, Nu(l) follows a Poisson distribu-
tion with parameter λwl and Wt ∼ GPD(wt; ςt, ψt). Note that the parameters of the Poisson
and GPD distributions are allowed to vary over time, which is different from the classical POT
approach. They further assumed that these parameters are realizations of independent hidden
processes, which can be modeled by Laplace innovations in addition to maximizing a-posteriori
estimation. Thus, smooth coefficient estimators with occasionally abrupt temporal changes can
be obtained. Specifically, weekly parameters ηwl = log λwl and ϕt = logψt are assumed to fol-
low a temporal first-order Markov process with Laplace innovations ηwl+1|ηwl = Laplace(ηwl , ι1)
and ϕt+1|ϕt = Laplace(ϕt, ι2), respectively. Denote Laplace(η, ι) as a Laplace distribution
with location parameter η and scale parameter ι > 0, where ι reflects the degree of the change.
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A small ι implies abrupt and frequent changes and vice versa for a large ι. Bayes’ theorem can
be applied to obtain the log-posterior distributions of ηw and ϕ as

L(ηw1 , . . . , η
w
L ;nu(1), . . . , nu(L)) =

L∑
l=1

(nu(l)ηwl − exp ηwl )− γ1
L∑
l=2

|ηwl − ηwl−1|, (34)

and

L(ϕ1, . . . , ϕnu , ς;w1, . . . , wnu) =
∑nu

t=1

(
− ϕt − (1 + 1/ς) log{1 + ςwt exp(−ϕt)}

)
−γ2

∑nu−1
t=1 |ϕt+1 − ϕt|, (35)

given the Poisson count nu(1), . . . , nu(L). An iterated dual mode (IDM) algorithm is em-
ployed here to compute the smooth maximum a-posteriori estimates of (ηw1 , . . . , η

w
L ), ς and

(ϕ1, . . . , ϕnu), which is easy to implement and has guaranteed convergence in this situation.
In the above model, the Poisson parameters are weekly estimated, and the GPD parameters

are estimated at the times of exceedance using the nonparametric Bayesian smoothing intro-
duced above. To obtain daily parameter estimates, homogeneity is assumed within each week,
so one has λ̂t = λ̂wl /5, with piecewise constancy between days of exceedances for ς of the
GPD, i.e.,

ς̂t = ς̂ti for ti ≤ t < ti+1, i = 1, . . . , nu. (36)

Clearly, not only the point estimates of {θ̂t = (λ̂t, ς̂t, ψ̂)}Tt=1 and (γ̂1, γ̂2) but also a measure of
uncertainty by means of the predictive distributions are provided. Given the estimated Poisson
parameter η̂wL at week L, we can estimate the distribution of Poisson parameter ηwL+1 at week
L+ 1 by

ηwL+1|ηwL = η̂wL ∼ Laplace(η̂wL , γ̂1). (37)

Meanwhile, the GPD parameter ϕT+1 at time T + 1 can be estimated by

ϕT+1|ϕT = ϕ̂T ∼

 δϕ̂T , with 1− P̂ (XT ≥ u),

Laplace(ϕ̂T , γ̂2), with P̂ (XT ≥ u),
(38)

where δϕ is the Dirac mass at ϕ. After smoothing the data up to time T , we take the best
bias-variance trade-off estimates λ̂T and ϕ̂T and insert them into (37) and (38) to obtain the
approximate distribution of θT+1|θT = θ̂T = (λ̂T , ς̂T , ψ̂). Finally, one has

V̂aRτ (YT ) = F−1
θT+1|θ̂T

(τ), (39)

where
F
θT+1|θ̂T (Y ) = 1−

{
1− exp(−λT+1|λ̂T )

}
(1 + ψ̂

Y − u
ςT+1|ς̂T

)−1/ψ̂.

ES within this conditional setup can be obtained by following the same procedure as that in
POT.

By combining a nonparametric method and EVT, Martins-Filho et al. (2018) proposed a
two-stage estimation procedure for VaR and ES. Assume that the loss variable {Yt} follows a
location-scale process formulated as

Yt = m(Xt) + h1/2(Xt)εt, (40)

where m(Xt) and h(Xt) are unknown functions of Xt, and {εt} is an i.i.d. innovation pro-
cess with E(εt) = 0 and Var(εt) = 1. The distribution function Fε(·) of εt belongs to the
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maximum domain of attraction of a Fréchet distribution with parameter −1/κ, denoted by
Fε(·) ∈ D(F−1/κ). Under this setting, one has

VaRτ (x) ≡ qτ (x) = m(x) + h1/2(x)qτ (εt),

ESτ (x) ≡ E[Yt|Yt > qτ (x)] = m(x) + h1/2(x)E(εt|εt > qτ (εt)), (41)

where qτ (x) is the conditional τ -quantile of Yt given Xt = x that is associated with distribution
function Fy|x(·), and qτ (εt) denotes the τ -quantile of εt. In the first stage, the local linear
approach is employed for the estimation of m(x), and the obtained estimator is denoted as
m̂(x). The procedure proposed by Fan and Yao (1998) is followed for the estimation of h(x).
Specifically, the residual sequence is obtained by Y ∗t = Yt − m̂(x); then,

(â(x), b̂(x)) = arg min
a,b

n∑
t=1

(
Y ∗2t − a− b>(Xt − x)

)2
Kh(Xt − x). (42)

With estimators m̂(x) and ĥ(x) = â(x), a sequence of standardized nonparametric residuals
{εt} can be generated by

ε̂t =

 (Yt − m̂(Xt))/ĥ
1/2(Xt), if ĥ(Xt) > 0,

0, otherwise,
(43)

for t = 1, . . . , n. In the second stage, to estimate VaRτ and ESτ , these residuals are used
to construct estimators for qτ (εt) and E(εt|εt > qτ (εt)). To this end, Theorem 7 in Pickands
(1975), i.e., if and only if Fε(·) ∈ D(F−1/κ), for κ < 0 and some function ψ(ζ) > 0 with
ζ ∈ R, is employed to obtain

lim
ζ→∞

sup
ζ+w<∞

|Fζ,εt(w)−G(w; ς, ψ(ζ))| = 0, (44)

where Fζ,ε(w) = [Fε(w + ζ)− Fε(ζ)]/[1− Fε(ζ)] andG(w; ς, ψ) ≡ 1− (1− ςw/ψ)1/ς with
0 < w < ∞ is a GPD. The main idea of this theorem is that when Fε(·) ∈ D(F−1/κ), the
extreme upper tail of εt is uniformly close to a GPD. As in Davis and Resnick (1984) and Smith
(1987), (44) is used to motivate the estimation of qτ (εt). After some algebra,

qτ (εt) ≈ qτN (εt) +
ψ(qτN (εt))

κ

(
1−

( n
N

(1− τ)
)κ)

, (45)

where τN = 1−N/n with N →∞ and N/n→ 0. Following Smith (1987), κ and ψ(qτN (εt))
can be estimated using the approximation provided by G(w; ς, ψ(qτN (εt))) to obtain q̂τ (εt).
For the estimation of E(εt|εt > qτ (εt)), the exceedances over the quantile qτ (εt) are assumed
to be distributed as g(w1; ς1, ψ1) = ψ−11 (1 − ς1w1/ψ1)

1/(ς1−1), which is the density function
associated with the GPD. Then,

Ê(εt|εt > qτ (εt)) = q̂τ (εt)/[1 + ς̂1], (46)

where ς̂1 is the estimator of ς1 obtained in the last step. Finally, VaRτ and ESτ can be estimated
by plugging q̂τ (εt) and Ê(εt|εt > qτ (εt)) into (41).

3.2.3 Quantile Approach

Nonparametric quantile regression is one of the most popular research areas in econometrics.
Among the vast number of research papers, refer to Honda (2000, 2004), Kim (2007), Cai and
Xu (2008), Cai and Xiao (2012) and the references therein for the varying coefficient quantile
model; Zou and Yuan (2008), Kai et al. (2010) and Kai et al. (2011) for composite quantile
regression; and Wu et al. (2010), Kong and Xia (2012) and Fan et al. (2017) for the single index
quantile model. Overall, a detailed discussion of these models can be found in Koenker (2005)
and thus the details are omitted.
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4 Expectile Models

In this section, we survey the existing literature for the estimation of expectile models.

4.1 Parametric Models

To extend the CAViaR model to accommodate the expectile framework, Kuan et al. (2009)
proposed CARE models, which allow expectiles to be estimated in a dynamic context based on
some special types of autoregressive processes. The τ -conditional expectile of return variable
Rt given information set Ft−1, can be obtained by solving the following optimization problem

et,τ = arg min
r∈R

E{|τ − I(Rt < r)|(Rt − r)2 | Ft−1}, (47)

and a generic CARE model has the form,

Rt = et,τ + εt,τ , Expecτ (εt,τ |Ft−1) = 0, and et,τ = β0,τ +

p∑
i=1

βi,τgi(Rt−i), (48)

where Expecτ (εt,τ |Ft−1) denotes the τ -conditional expectile of εt,τ given Ft−1, and gi(·) is a
nonlinear function. Two model specifications of the CARE approach exist. The first specifica-
tion considers the asymmetric effects on tail expectiles and includes the magnitudes of positive
and negative lagged returns in the model:

et,τ = β0,τ + β1,τRt−1 + β2,τ (R+
t−1)

2 + β3,τ (R−t−1)
2. (49)

Alternatively, |Rt−1| is considered to represent the magnitude of Rt−1 in the second specifica-
tion as

et,τ = β0,τ + β1,τR
+
t−1 + β2,τR

−
t−1. (50)

Kuan et al. (2009) defined the expectile as expectile-based value at risk (EVaR), EVaR(τ) =
|eτ |with τ < 0.5. EVaR is considered to be a downside risk measure, and further an intuition for
τ is given. If EVaR is taken as a margin (capital requirement) , then the probability level τ can be
understood as the relative cost of the expected margin shortfall. The model estimation employs
the asymmetric least squares proposed by Newey and Powell (1987), and the asymptotic results
are extended to allow for stationary and weekly dependent data.

Another independent work based on a parametric setup is Taylor (2008). As noted by Kuan
et al. (2009), this paper is concerned mainly with the determination of quantile-based VaR based
on expectiles; thus, their models are the same as the CAViaR models of Engle and Manganelli
(2004). More recently, Xu et al. (2018) considered the potential time-varying parameter prop-
erty and employed an adaptive method to fit a parametric expectile model for quantifying tail
risk dynamics.

4.2 Nonparametric and Semiparametric Models

As noted by Cai and Xiao (2012), a linear regression model may not be sufficiently flexible
to capture the underlying complex dependence structure in some practical applications. An in-
creasing number of researchers is focusing on nonparametric or semiparametric expecitle mod-
els. Xie et al. (2014) proposed a varying coefficient expectile model. Afterwards, Cai et al.
(2018) extended their work to consider a more general case, i.e., a partially varying coefficient
expectile model.
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4.2.1 A Varying Coefficient Expectile Model

The general form of the varying coefficient expectile model proposed by Xie et al. (2014) is

et,τ (Xt, Ut) = β>τ (Ut)Xt, (51)

where Xt = (X1t, X2t, . . . , Xpt) are risk factors, Ut is a single effect modifying risk factor
and βτ (Ut) = (β1,τ (Ut),β2,τ (Ut), . . . ,βp,τ (Ut))

> is a vector of smooth varying-coefficient
functions of Ut. The introduction of Ut considers current information and can also include
exogenous variables containing economic and market information as risk factors. To estimate
β(·), the iterative weighted local least squares (IWLLS), similar to that in Newey and Powell
(1987) and Yao and Tong (1996), is employed. Furthermore, the consistency and asymptotic
normality of the proposed estimator are established. Unfortunately, note that the aforementioned
models in (49), (50) and (51) do not include any lagged variable of eτ,t.

4.2.2 A Partially Varying-Coefficient Expectile Model

A purely nonparametric expectile model may suffer from the curse of dimensionality. To address
this problem, Cai et al. (2018) proposed a partially varying coefficient expectile model,

eτ,t(Xt, Ut) = α>τ Xt1 + β>τ (Ut)Xt2, (52)

where Xt = (X>t,1,X>t,2)> ∈ Rp+q is a vector of risk factors, Ut is called the smooth variable,
ατ ∈ Rp are constant coefficients and βτ (·) = (β1,τ (·), . . . , βq,τ (·))> is a vector of smooth
varying-coefficient functions that are twice continuously differentiable. This new model adopts
a partially linear form, in which some coefficients are assumed to be constant while other coef-
ficients are allowed to depend on smoothing variables selected by economic theories or stylized
facts. The model is quite flexible such that it includes both models in Kuan et al. (2009) and Xie
et al. (2014) as special cases. The new model not only shares all the merits of a fully varying-
coefficient model but also achieves more efficient estimation for the parametric coefficient part.
More importantly, model (52) allows Xt to include the lagged variables of eτ,t.

The profile least squares type method for classical semiparametric regression models might
not be suitable in the quantile/expectile setting. Therefore, the three-stage semiparametric pro-
cedure of Cai and Xiao (2012) is employed to overcome this problem. In the first stage, ατ is
treated as a function of Ut, and the model simplifies to a purely nonparametric expectile model,
which can be estimated via the IWLLS approach. However, in this stage, only local information
is used in the estimation of ατ , which it is actually a global parameter. Thus, in the second
stage, the average method is implemented to take advantage of the full sample information, and
a
√
n-consistent estimator for ατ is obtained as

α̃τ =
1

n

n∑
t=1

α̂τ (Ut). (53)

Finally, the estimated partial expectile residual R∗t = Rt − α̃>τ Xt1 is used to acquire a feasible
local linear functional coefficient estimation of βτ (·). Consistent estimators for ατ and βτ (·)
are obtained through the three-stage procedure, and the asymptotic properties of the proposed
estimator are established.

5 Models for Characterizing Tail Dependence

5.1 Copula Approach

After the financial crisis, people realized that the failure of one institution may endanger the
whole financial system. Tail dependence, which measures financial co-movement, aroused the
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interests of many researchers and is widely accepted to be asymmetric, nonlinear and time
varying. Copula models, which allow for flexible modeling of nonlinear dependence structures,
have been advocated as alternatives to correlation-based models to measure tail dependence.
Among the vast number of papers aiming at using copula models to forecast the VaR, Siburg
et al. (2015) considered employing copulas calibrated on the basis of nonparametric sample
estimators of the coefficient of lower tail dependence (LTD). Assume thatR1 andR2 are returns
variables with continuous marginal distribution functions F1(·) and F2(·). Then, LTD is defined
as the limit of the conditional probability that R1 is less than or equal to the τ -th quantile of F1

given that R2 is less than or equal to the τ -th quantile of F2 as τ goes to 0. Specifically, one has

LTD = lim
τ→0+

P
(
R1 ≤ F−11 (τ)|R2 ≤ F−12 (τ)

)
. (54)

From the definition above, LTD can be interpreted as the limiting likelihood of two financial as-
sets to crash simultaneously. As a copula is always an appropriate tool to model the dependence,
according to Sklar’s theorem, there exists a unique copula C(·, ·) such that

P (R1 ≤ r1, R2 ≤ r2) = C(F1(r1), F2(r2)). (55)

Normally, if the copula is known to come from a parametric copula family, the canonical
maximum-likelihood (CML) estimator can be used. However, when the copula family is mis-
specified and the CML estimator is no longer optimal, the choice of the optimal copula para-
metric family remains an open empirical question. A nonparametric estimator of the LTD was
employed in this paper to improve the accuracy of the copula model. To this end, LTD can be
re-written as

LTD = lim
τ→0+

C(τ, τ)/τ. (56)

Now, let {R1t, R2t}nt=1 be an i.i.d. sample of {R1, R2}. The specific nonparametric estimator
for LTD, introduced by Schmidt and Stadtmüller (2006), is given by

LTDn =
1

k

n∑
t=1

I(R(K1t) ≤ k,R(K2t) ≤ k), (57)

where I(·, ·) is indicator function, R(K1t) and R(K2t) are the ranks of observations R1t and
R2t respectively, and k ∈ {1, . . . , n} is chosen by a plateau-finding algorithm. The procedure
of forecasting the bivariate portfolio VaR is as follows. First, financial data are filtered with a
GARCH(1,1) model to obtain approximately i.i.d. samples of standardized residuals. Consider-
ing that LTD is commonly used to characterize the dependence in the financial market data, here
they opted the easily implemented Clayton copula, which is denoted by Cθ(·, ·) with parameter
θ. Then, the parameters of the marginal models are estimated via maximum-likelihood, and
the copula parameter θ is obtained by converting the nonparametric estimator of LTD into the
parameter of the Clayton copula. Finally, an out-of-sample version of the simulation procedures
laid out by Nikoloulopoulos et al. (2012) is used to obtain the forecasters for VaR and ES.

5.2 Network and CoVaR Procedure

Another way to model the tail dependence is the CoVaR approach, which was first introduced
by Adrian and Brunnermeier (2016), one of the most popular approaches of modeling systemic
risks. The CoVaR of institution i relative to institution j is defined as the VaR of institution i
conditioned on institution j being in distress. A related risk measure is the marginal expected
shortfall (MES) proposed by Acharya et al. (2012) and Acharya et al. (2017), which tracks the
sensitivity of an individual firm’s return to a market-wide extreme event. To develop a unified
framework for conceptualizing and empirically measuring this type of connectedness between
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institutions, Diebold and Yılmaz (2014) proposed the general framework of network approach.
Connectedness, in their paper, is based on assessing shares of forecast error variation in various
locations (firms, markets, countries, etc.) due to shocks arising everywhere. This notion is inti-
mately related to the economic explanation of variance decomposition, in which we decompose
the forecast error variance of variable i into parts attributed to other variables in the system. In
particular, connectedness can be modeled by the function C(X,H,A(L)), where X is the set
of objects interested, H is the prediction horizon for the variance decompositions, and A(L) are
the dynamics. This connectedness function refers to a population, so we need to find estimated
approximating models Ĉ(X,H,M(θ̂t)), in which M(θ̂t)) is a dynamic model approximating
A(L). Meanwhile, the connectedness table D (variance decomposition matrix), which is very
similar to the adjacency matrix except that it is not filled simply with 0-1 entries and it is asym-
metric, is introduced to describe the links between individuals in the system. As the connected
table is asymmetric, the links between objects are directed, so we need to classify them into
the From-degrees and To-degrees. From-degrees measure the exposures of individual firms to
system shocks from the network, whereas To-degrees measure the contributions of individual
firms to system network events. As CoVaR and MES are all aimed at tracking the associations
between individual firms and the overall market movement, and they are weighted and direc-
tional similar to the connectedness measurement, Diebold and Yılmaz (2014) unified these two
measures and proposed that they are closely related to different directional aggregations of a
certain weighted directed network.

To study the degree of tail dependence among various institutions, namely, financial network
system risk, Hautsch et al. (2014) considered applying a two-stage quantile regression approach
to account for a company’s interconnectedness within the financial sector. In the first step, the
firms’ specific VaRs are modeled by firm characteristics, macro state variables, and tail risk
spillover effects captured by loss exceedances. This model framework rules out the possibility
that the identified risk connections result from common risk factors. A well known least absolute
shrinkage and selection operator technique is used to shrink the high-dimensional covariates to
a feasible number of relevant risk connections. In the second step, to measure a firm’s system
impact, a value-weighted index of the financial sector is constructed and then regressed with
the firm’s VaR estimated in step 1 and other control variables, such as pre-identified company-
specific risk drivers and the macro variables. If the firm’s VaR has a significant and nonnegative
marginal effect on the VaR of the system, the company is said to be systemically relevant. In
this model, even if individual risk remains constant, the systemic impact of a firm can vary over
time due to varying market or balance sheet conditions, which remedies a major drawback of
the typical CoVaR approach that it can change only through the channel of individual VaRs.

Considering the potential nonlinear dependence structure in the study of network risk, Här-
dle et al. (2016) proposed a single index model (SIM) to estimate system interconnectedness
across financial institutions in a high-dimensional framework. Their estimation procedure can
be illustrated by three steps. In the first step, as in Adrian and Brunnermeier (2016), the VaR is
estimated for each financial institution in the system through linear quantile regression,

Yit = αi,τ + γi,τMt−1 + εit, (58)

where Mt−1 is a vector of macro state variables. In this way, the τ -VaR for institution i at
time t can be estimated as V̂aRit,τ = α̂i,τ + γ̂i,τMt−1. In the second step, to construct a risk
interdependence network, the SIM for quantile regression is employed. This model captures
the nonlinear dependence structure because it is based on a SIM quantile variable selection
technique, more precisely,

Yit = g(β>i|ziZit) + εit, (59)

where g(·) is an unknown function, βi|zi = {βi|−i,βi|M ,βi|Bi} is a vector of coefficients, and
Zit = {Y−i,t,Mt−1,Bi,t−1} is a vector of covariates, in which Y−i,t includes log returns of
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all financial institutions except for institution i, and Bi,t−1 are the firm’s characteristics. The
minimum average contrast estimation approach with penalization outlined in Fan et al. (2017)
is employed to estimate the shape of the unknown function g(·) and coefficients βi|zi . Then,
the CoVaR of institution i given other institutions in distress can be estimated as

ĈoVaRi|α,z̃it = ĝ(β̂
>
i|z̃iZ̃it), (60)

where ĝ(·) is the estimated link function, β̂
>
i|z̃i is the estimator for βi|zi , and Z̃it = {V̂aR−i,t,τ ,

Mt−1,Bi,t−1} with V̂aR−i,t,τ denoting the VaR of all institutions except institution i estimated
in step 1. An index D̂i|z̃i was also proposed to measure the marginal effect of covariates evalu-

ated at Zit = Z̃it, which is formulated as follows,

D̂i|z̃i =
∂ĝ(β̂

>
i|ziZit)
∂Zit

|Zit=Z̃it
= ĝ′(β̂

>
i|z̃iZ̃it)β̂i|z̃i . (61)

This index can capture spillover effects across financial institutions and further characterize their
evolution as a system represented by a network.

The CAViaR model gained considerable attention during the past few years, and the devel-
opment in both theory and application has occurred mainly in the univariate setup. To study the
degree of tail interdependence among different random variables, White et al. (2015) proposed
a multivariate regression quantile model that extends the multi-quantile model CAViaR model
of White et al. (2008) to the multivariate case. Let qj,t,τ be the τ -conditional quantile of the
j-th random variable Yjt given Ft−1 for j = 1, . . . ,m with m ≥ 2. A simple version of their
proposed structure is as follows,

qj,t,τ = X>t βj +

m∑
k=1

bjkqk,t−1,τ for m ≥ 2, equivalently, qt,τ = βXt + B qt−1,τ , (62)

where Xt are covariates with the coefficients β> = (β1, . . . , βm), q>t,τ = (q1,t,τ , . . . , qm,t,τ ),
and B = (bjk)m×m is the matrix of coefficients of the lagged variables qt−1,τ to capture the
network system risk. The above model has a VAR structure and is called VAR for VaR. The tail
co-dependence between two random variables Yi and Yj is captured by the off-diagonal coeffi-
cients bij and bji in B, and the model reduces to the CAViaR of Engle and Manganelli (2004)
if bij = 0 for all i 6= j. Furthermore, this model is particularly applicable in many aspects; see
White et al. (2015) for more discussions. As the seriousness of risk contagion across financial
institutions has been brought to the forefront by the financial crisis, VAR for VaR appears to be
particularly suitable to measure the financial spillover effect. Another potential applications of
this model might include that quantile impulse-response function can be employed to assess the
resilience and persistence of financial institutions to shocks through the overall index and that
model (62) can be extended to capture the dynamic network system risk.

6 Conclusion

After the outbreak of the recent financial crisis, the need of financial institutions for accurate
risk measures has never been greater. Since the pioneering work of Markowitz (1952), which
proposed variance as the measure of risk, VaR, ES and expectile have become the standard
measures of market risk employed by regulators and financial institutions. As the nature of
risks is changing over time (dynamic change), methods for measuring these risks must adapt
to the current environment. To accommodate the demands of special interests, a vast array
of parametric and nonparametric models of these risk measures are proposed. Hopefully, this
selective overview provides a better picture of this important field in finance and econometrics.
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However, the whole story of methods for the estimation of risk measures is far from com-
plete. New innovative techniques are needed in the framework of high-dimensional and/or high-
frequency data for estimating the tail risk. Moreover, as risk contagion is becoming the main
concern in the industry, one should put greater emphasis on network analysis and the CoVaR of
system risk under different types of dependence structures. More importantly, how to capture
the dynamic change in various risks is of great interest in both scientific research and financial
practitioners. Finally, expectile has proved to be superior to VaR and ES in some aspects; thus,
more critical analysis of the relative merits and potential estimation procedures accustomed to
specific regression techniques are required. The measurement of risk developed to confront and
address the challenges in the frontiers of technological innovation and scientific research and
will continue to advance based on emerging societal needs in the future.
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