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Abstract 

This paper derives the user cost of monetary assets and credit card services with 

interest rate risk under the assumption of intertemporal non-separability. Barnett and Su 

(2016) derived theory permitting inclusion of credit card transaction services into Divisia 

monetary aggregates. The risk adjustment in their theory is based on CCAPM1 under 

intertemporal separability. The equity premium puzzle focusses on downward bias in the 

CCAPM risk adjustment to common stock returns. Despite the high risk of credit card 

interest rates, the risk adjustment under the CCAPM assumption of intertemporal separability 

might nevertheless be similarly small. While the known downward bias of CCAPM risk 

adjustments are of little concern with Divisia monetary aggregates containing only low risk 

monetary assets, that downward bias cannot be ignored, once high risk credit card services 

are included. We believe that extending to intertemporal non-separability could provide a 

non-negligible risk adjustment, as has been emphasized by Barnett and Wu (2015). 

In this paper, we extend the credit-card-augmented Divisia monetary quantity 

aggregates to the case of risk aversion and intertemporal non-separability in consumption. 

                                                 
1 CCAPM is the “consumptions capital asset pricing model,” as opposed to the conventional “capital asset 
pricing model,” CAPM. 
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Our results are for the “representative consumer” aggregated over all consumers. While 

credit-card interest-rate risk may be low for some consumers, the volatility of credit card 

interest rates for the representative consumer is high, as reflected by the high volatility of the 

Federal Reserve’s data on credit card interest rates aggregated over consumers.2 One method 

of introducing intertemporal non-separability is to assume habit formation. We explore that 

possibility. 

To implement our theory, we introduce a pricing kernel, in accordance with the 

approach advocated by Barnett and Wu (2015). We assume that the pricing kernel is a linear 

function of the rate of return on a well-diversified wealth portfolio. We find that the risk 

adjustment of the credit-card-services user cost to its certainty equivalence level can be 

measured by its beta. That beta depends upon the covariance between the interest rates on 

credit card services and on the wealth portfolio of the consumer, in a manner analogous to the 

standard CAPM adjustment. As a result, credit card services’ risk premia depend on their 

market portfolio risk exposure, which is measured by the beta of the credit card interest rates.  

We are currently conducting research on empirical implementation of the theory 

proposed in this paper. We believe that under intertemporal non-separability, we will be able 

to generate an accurate credit-card-augmented Divisia monetary index to explain the 

available empirical data. 

Keywords— Divisia Index, monetary aggregation, intertemporal non-separability, 

credit card services, risk adjustment. 

JEL—C43, D81, E03, E40, E41, E44, E51, G12. 

                                                 
2 The relationship between that volatility and the theory of aggregation over consumers under risk is beyond the 
scope of this research, but is a serious matter meriting future research. 
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1. Introduction 

The simple sum monetary aggregate are consistent with economic aggregation theory, 

only if the user costs of all component assets are the same.  If currency has a zero rate of 

interest, then all assets in the aggregate must have a zero rate of interest.  The assumptions on 

which simple sum monetary aggregation are based have been unreasonable, since monetary 

assets began yielding interest.  But conventional index numbers from economic index number 

theory, such as Divisia and Fisher ideal, do not assume that components are perfect 

substitutes, and hence permit different user cost prices of the component assets.  The best 

known of the economic monetary aggregates are the Divisia monetary aggregates (Barnett 

(1980)).   

The simple sum monetary aggregates do not and cannot include credit card 

transactions, because of accounting conventions.  Monetary assets are assets, while credit 

card balances are liabilities.  Assets and liabilities cannot be added in accounting. However, 

economic monetary aggregates, such as the Divisia monetary aggregates, measure flows of 

services, and are not based on accounting conventions. Economic index numbers are based 

on microeconomic theory. Using economic aggregation and index number theory, the 

transactions services of credit card and monetary assets can be aggregated jointly. 

Credit card transactions play a significant role in the flow of monetary transactions 

services and provide a deferred payment service not available from monetary assets. Ignoring 

credit card services from monetary aggregates can lead to bias in the measurement of 

monetary services. The inability of simple sum monetary aggregates to include credit card 

transactions services is a fundamental defect of accounting aggregation of monetary services.  

However, the interest rate on credit card balances, when aggregated over credit card holders, 

is much more volatile than interest rates on  monetary assets.  As a result, the user cost of 

credit card transactions services is much more risky than the user cost of monetary assets.  
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While the need for risk adjustment of the user costs of monetary assets might be low in the 

Divisia monetary aggregates, the need for risk adjustment of the user cost of credit card 

transactions services cannot be ignored. This paper studies the risk adjustment of the user 

cost of credit card services under intertemporal non-separability.  

Barnett (1978, 1980) first derived the user cost of monetary assets under perfect 

certainty. Barnett, Liu and Jensen (1997) and Barnett and Liu (2000) further introduced risk 

adjustment of the monetary-asset user cost in a consumption based, CCAPM, asset pricing 

model. Barnett and Su (2016) extended the derivation to include credit card services under 

the assumption of intertemporal separability of tastes. Despite the high volatility of the 

interest rate on credit card holdings of the representative consumer, the risk adjustment is 

likely to be downward biased by the assumption of intertemporal separability.  The CCAPM 

approach under intertemporal separability implies that the entire effect of financial risk on 

consumption is contemporaneous without any lags.  As a result, CCAPM risk adjustments 

ignore two sources of correlation between investment risk and consumption life style.  (1) It 

overlooks the fact that current consumption of goods depends not only on current period 

investment risk, but also on future period expected investment risk.  (2) In addition, CCAPM 

ignores the fact that current period investment risk not only affects current period 

consumption of goods but also future period consumption.  Our extension weakens CCAPM 

by removing the first restriction, but not the second one, which remains a subject for possible 

future research.3 

                                                 
3 Consider the consequence of stock market risk on luxury car sales, as related to the equity premium puzzle.  
The first restriction says that a stock market capital gain this period will be translated into a highly correlated 
increase in contemporaneous luxury car sales, even if common stock holders are not convinced that the 
contemporaneous capital gain is permanent, but might be offset by future capital losses.  The second restriction 
says that if indeed the stock holder decides to spend the current capital gain on a luxury car, he will do so 
immediately, rather than waiting until next period to buy the car.  Although these two restrictions are 
fundamentally different, neither seems realistic.  Although we believe both are relevant to the equity premium 
puzzle, we are addressing only the first in the present research. 
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2. Consumer’s Optimization Problem  

In this section, we formulate a representative consumer’s stochastic decision problem 

over consumer goods, monetary asset services, and credit card transaction services. The 

consumer’s decisions are made in discrete time over an infinite planning horizon for the time 

intervals, , 1,..., ,...t t t s+ + , where t  is the current time period. 

Our assumptions on credit card services are the same as those in Barnett and Su 

(2016). All transactions are made at the beginning of periods, and the payments for the 

transactions are either by credit card or money. Credit card purchases take place at the start of 

intervals, but interest on credit card transactions and payments on credit card balances occur 

at the end of the current and future periods. In other words, the discrete time periods are 

closed on the left and open on the right. After aggregation over consumers, the expected 

interest rate paid by the representative credit card holder can be very high, despite the fact 

that some consumers pay no explicit interest on credit card balances. It is important to 

recognize that our model is not for a single consumer, but for the representative consumer 

aggregated over consumers, with all quantities in the model understood to be per capita. 

Definitions of the variables are as follows: 

tx  = per capita (planned) aggregate consumption of goods; 

*
tp  = the true cost of living index;  

( )1 ,..., ,...,a a a a
t t it Itm m m ′=m  = vector of planned per capita real balances of I monetary 

assets during period t; 

( )1 ,..., ,...,c c c c
t t it Ltm m m ′=m  = vector of planned per-capita real credit-card expenditure 

balances on goods using L credit cards during period t. In the jargon of the credit card 

industry, those contemporaneous expenditure balances are called credit card “volumes.”  
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Those volumes are not the total credit card balances, which include the rotating balances 

resulting from purchases in previous periods and not yet paid off; 

,( )t
a c
t t
′ ′ ′= mm m  = vector of current period monetary asset balances and credit card 

transactions volumes; 

( )1 ,..., ,...,t t l t Ltz z z ′=z  = vector of per capita rotating real balances in the L credit 

cards during period t, so that the total balances in the credit cards are t
c
t +m z ; 

1 (k ,...,k ,...k )t t jt Jt ′= =k  vector of planned per capita real holdings of J nonmonetary 

assets during period t; 

1( ,... ,... )t jt Jtt R R R ′=R = vector of yields on the J nonmonetary assets during period t; 

( )1 ,..., ,...,t t l t Lte e e ′=e  = vector of interest rates on c
tm  during period t;  

( )1 ,..., ,...,z z z z
t t lt Lte e e ′=e = vector of interest rates on tz  during period t;  

( )1 ,..., ,...,t t it I tr r r ′=r  = vector rates of return on a
tm during period t; 

yt  = other sources of income, such as wages or transfers from the government; 

1 = unit vector, with each element equalling the number 1.  The dimension of the 

vector is defined to conform to its application. 

It should be observed that under risk, there can be multiple nonmonetary assets, j = 1, 

…, J, subject to different amounts of risk and different rates of return, jtR .  What they have 

in common is providing no services, other than their investment rates of return, while 

differing from each other only in their degree of risk. It is important to emphasize that 

relative to our definition, the only source of differences among rates of return on 
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nonmonetary assets is differences in risk. Among those nonmonetary assets, the risk free one 

is often called the “benchmark asset” or “reference asset.”  Its rate of return is unique.4 

Under our assumptions, the benchmark asset is risk free pure capital, providing no 

services other than its rate of return as an investment.  The benchmark asset is fully secured 

by its ownership.  The interest rate on credit card transaction volumes, te , is much higher 

than the benchmark asset rate, because te  is the interest rate on an unsecured liability, subject 

to substantial default and fraud risk. The value of te  that we are using is the explicit interest 

rate on credit card service, as in Barnett and Su (2017). There also is implicit interest on 

credit card services, such as the annual service fees and increased price of goods commonly 

purchased with credit cards. Since we are using the Federal Reserve’s average explicit 

interest rate series on credit cards, our measure of te  could be biased downward. The actual 

te , including implicit interest, could be even higher. 

We use assumptions similar to those in Barnett and Wu (2005). The representative 

consumer has an intertemporally non-separable utility function. The value of te  is averaged 

over consumers who pay both explicit and implicit interest on credit card volumes and 

consumers who pay only implicit interest on credit card volumes.  But in our initial 

applications, implicit interest will be assumed to be zero, since implicit interest is not 

included in the Federal Reserve’s data. 

The current period utility function, U , is defined over current and past consumption, 

a vector of current period monetary assets, and a vector of credit card transaction volumes. 

The consumers’ holdings of nonmonetary assets, including the benchmark asset, do not enter 

the utility function, since those pure capital assets are defined to produce no services other 

                                                 
4 The conventional benchmark rate can be acquired by risk adjusting any of the nonmonetary assets’ rates of 
return.  The same benchmark rate would result from risk adjusting any of the risky nonmonetary assets, since 
they differ only in their risk.  For our purpose, any pure investment asset can be used as the benchmark asset 
after risk adjustment, since our theory accounts for the differences in risk among those nonfinancial assets. 
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than their investment rate of return. That non-monetary asset holdings are solely a means of 

accumulating wealth to endow the next period. The carried-forward rotating balances in 

credit cards also do not enter the current period utility function, and hence will not enter our 

derived monetary services aggregate, since they are from transactions in prior periods. During 

the current period they appear only in constraints. We exclude from current-period utility the 

rotating balances used for transactions in prior periods to avoid the double counting of 

transaction services. 

We have partitioned the vector tm  into ,( )t
a c
t t
′ ′ ′= mm m and have correspondingly 

partitioned the vector of interest rate into ( , )′ ′ ′r e . We assume that the utility function, U , is 

blockwise weakly separable in tm . Hence, there exists a monetary aggregator function, M  , 

and utility function, V, such that 

, 1 , 1( , ,..., ) ( ( ), ,..., )t t t t t n t t t t nU U x x x V M x x x− − − −= =m m    (2.1) 

where ( )tM m  is the aggregate over monetary asset and over credit card transaction volumes. 

The function, U, is assumed to be increasing and strictly concave in ,t txm , conditionally on 

1,...,t t nx x− − .   

The implications of this extension to CCAPM are the following.  The expected rate-

of-return risk on t s+m during future period t + s will not only correlate contemporaneously 

with expected consumption of goods in that future period, t sx + , as in CCAPM under 

intertemporal separability, but also will correlate with 1t sx + − , 2t sx + − , … 1tx +  , tx .  As a result, 

the CCAPM contemporaneous correlation would capture only part of the correlation between 

expected investment risk and consumption of goods.  Conversely current period consumption 

of goods, tx , will not only correlate with current period rate of return on holdings of risky 

assets, tm , but also on expected rates of return on all future holdings of risky monetary 
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service assets.  If risk from long term holding of assets is viewed as being less than short term 

risk, consumption risk will be decreased by the non-separability of utility.5 As an extension to 

CCAPM, we anticipate that this model will produce more plausible risk adjustments than 

CCAPM, as used in the theory developed by Barnett and Su (2016).   

But it should be observed that there is a possible further extension that could produce 

even larger risk adjustments.  If the current period utility function contained future 

consumption of goods, then current period asset risk could correlate with future planned 

consumption of consumer goods.  Our current extension to intertemporal non-separability 

does not capture that possible source of increased risk adjustment, which could be a 

productive source of future research.   

The fact that blockwise weak separability is a necessary condition for exact aggregation 

is well known in the perfect-certainty case. Barnett, Liu, and Jensen (1997) have shown that 

( )tM m  is the exact quantity aggregate, even under risk, when tm  contains only monetary 

assets. 

We assume that credit card transaction services are weakly separable from consumer 

goods. In the credit card industry, credit cards are defined to include only those cards that can 

be used widely to buy many kinds of goods and services and also provide a line of credit. 

They include only Visa, Mastercard, Discover, and American Express. They are used for the 

same purposes as cash, except that they defer payment. Store cards, such as Sears cards and 

gasoline cards, are not counted as credit cards. Since store cards are associated with specific 

goods, store cards are not weakly separable from consumer goods. The four "credit cards" are 

in the same weakly separable block as monetary assets, which also do not link to any specific 

consumer goods. 

                                                 
55 This observation is relevant to the equity premium puzzle, since the buy and hold approach to stock market 
investment is widely viewed as being more conservative than high frequency trading. 
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Given initial net wealth, tW , the consumer seeks to maximize expected lifetime 

utility. We introduce the expectations operator, tE , to designate expectations conditional 

upon information available at current period t.  The decision is to maximize V = V(m0, x0, m1, 

x1, m2, x2, ……) defined by 

V = 1
0

( , , ,..., )s
t t s t s t s t s n

s
E U x x xβ

∞

+ + + − + −
=
∑ m                                  (2.2) 

subject to the budget constraints, 

* * * * *c a
t t t t t t t t t t tW p p p x p p′ ′ ′ ′+ + = + +1 m 1 z 1 k 1 m             (2.3) 

and 

* * * *
1 1 1 1 1 1( ) ( ) ( ) ( )a c z

t t t t t t t t t t t t t tW p p p p y+ + + + + +′ ′ ′ ′= + − + − + + + +1 r m 1 e m 1 e z 1 R k .       (2.4) 

The intertemporal utility function, V(m0, x0, m1, x1, m2, x2, ……), is assumed to be increasing 

and strictly concave in all of its  arguments. This assumption implicitly constrains the 

properties of single period utility functions, U, as a function of lagged quantities.6 

The decision also is subject to the transversality condition, 

*lim s
t t ss

pβ +→∞
=k 0 .    (2.5) 

The consumer’s subjective rate of time preference, β , is assumed to be constant.7 The 

transversality condition rules out perpetual borrowing at the pure investment rates, tR .  

Solving for the Euler equations (see appendix), we have  

1

1

*

1 *
1

*

1 *
1

( )

( )

t

t

t t
t ta

t t
t

t t
t tc

t t

U p
p

E
U p

p

+

+

+
+

+
+

 ∂
+ + − ∂  = ∂
− + +  ∂ 

1 r 1
m

0
1 e 1

m

βλ λ

βλ λ
 ,   (2.6) 

                                                 
6 In the literature on habit formation, the implicit constraint on those properties of U may merit further 
theoretical research. 
7 Habit formation is considered to be “myopic,” if U is optimized separately for each period of time, 
conditionally upon lagged consumption.  Our decision is not myopic, since we optimize the complete 
intertemporal utility function, V. 
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1

*

1 *
1

( )
t

t
t t t

t

pE
p ++

+

 
+ − = 

 
1 R 1 0βλ λ ,                            (2.7) 

where 
0

n
s t s

t t
s t

UE
x

λ β +

=

∂
=

∂∑  is the expected present value of the marginal utility of 

consumption, tx . Observe that equation (2.7) holds independently of j. These are the Euler 

equations for consumer optimization under intertemporal non-separability.  

When the utility function is intertemporally separable, t
t

t

U
x

λ ∂
=
∂

 . Substituting into 

the Euler equations, we have 

*
1

, 1*
1 1

(1 ) 0t t t t
t i ta

it t t t

U U p UE r
m x p x

+
+

+ +

 ∂ ∂ ∂
+ + − = ∂ ∂ ∂ 
β ,  (2.8) 

*
1

, 1*
1 1

(1 ) 0t t t t
t l tc

lt t t t

U U p UE e
m x p x

β +
+

+ +

 ∂ ∂ ∂
− + + = ∂ ∂ ∂ 

,   (2.9) 

*
1

, 1*
1 1

(1 ) 0t t t
t j t

t t t

U p UE R
x p x

+
+

+ +

 ∂ ∂
+ − = ∂ ∂ 

β .   (2.10) 

From (2.10), we have  

*
1

, 1*
1 1

(1 )t t t
t j t

t t t

U U pE R
x x p

+
+

+ +

 ∂ ∂
= + ∂ ∂ 

β .     (2.11) 

Substituting equation (2.11) back into (2.8), we have  

 
* *

1 1
, 1 , 1* *

1 1 1 1

(1 ) (1 ) 0t t t t t
t i t j ta

it t t t t

U U p U pE r R
m x p x p

β β+ +
+ +

+ + + +

 ∂ ∂ ∂
+ + − + = ∂ ∂ ∂ 

,   (2.12) 

while by substituting equation (2.11) into (2.9) , we have  

 
* *

1 1
, 1 , 1* *

1 1 1 1

(1 ) (1 ) 0t t t t t
t l t j tc

lt t t t t

U U p U pE e R
m x p x p

β β+ +
+ +

+ + + +

 ∂ ∂ ∂
− + + + = ∂ ∂ ∂ 

.   (2.13) 

Rearranging the above equations, we have 
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*
1

, 1 , 1*
1 1

*
1

, 1 , 1*
1 1

*
1

, 1*
1 1

( ) 0

( ) 0

(1

 

) 0

t t t
t j t i ta

it t t

t t t
t l t j tc

lt t t

t t t
t j t

t t t

U U pE R r
m x p

U U pE e R
m x p

U U pE R
x x p

β

β

β

+
+ +

+ +

+
+ +

+ +

+
+

+ +

  ∂ ∂
− − =  ∂ ∂  

  ∂ ∂ − − =  ∂ ∂  
  ∂ ∂ − + =  ∂ ∂  

 .    (2.14) 

Hence the result in Barnett and Su (2016) still holds, as a special case under intertemporally 

separable consumption. 

For notational convenience, we sometimes convert the nominal rates of return to real 

gross rates of return, such that 

*

1 1*
1

*

1 1*
1
*

1 1*
1

( )

( )

( )

t
t t

t

t
t t

t

t
t t

t

p
p
p
p

p
p

+ +
+

+ +
+

+ +
+

 
= + 

 
  = + 
 
 
 = +
  

r 1 r

e 1 e

R 1 R







,        (2.15) 

where 1t+r  and 1t+R  are the real gross rates of excess return on assets, and 1t+e  are the real 

gross interest rate on credit card transaction services. Under this change of variables and 

observing that current-period marginal utilities are known with certainty, the Euler equations 

become 

1 1

1 1

t
t t ta

t
t

t
t t tc

t

U

E
U

+ +

+ +

∂ + − ∂  =
 ∂

− + ∂ 

r 1
m

0
e 1

m





βλ λ

βλ λ
,       (2.16) 

( )1 1t t t tE + + − =R 1 0βλ λ .          (2.17) 
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3. Generalized Augmented Divisia Index under Intertemporal Non-separability 

3.1. Risk adjusted user cost of monetary assets and credit card services 

We now return to the Euler equations. The equations in (2.16) are for monetary assets 

and credit card transactions, and equation (2.17) is for consumer goods. Money is a durable 

good. The single period cost of consuming the services of a durable good or asset is the user 

cost price or rental price. User cost price aggregates are duals to quantity aggregates. Either 

implies the other uniquely. In addition, user-cost aggregates of monetary services imply the 

corresponding interest-rate aggregates uniquely. We now derive the user cost of monetary 

services and the user cost of credit card transactions services under intertemporal non-

separability.  

As in Barnett, Liu, and Jensen (1997), we define the contemporaneous real user-cost 

price of the services of monetary asset i to be the marginal rate of substitution between 

monetary asset i and consumption of goods, so that the contemporaneous risk-adjusted real 

user cost price of services of monetary asset i is defined such that 

0

t t
a a

a it it
it n

s t s t
t

s t

U U
m m

UE
x

π
λβ +

=

∂ ∂
∂ ∂

= =
∂
∂∑

 .       (3.1) 

Similarly, we define the contemporaneous real user-cost price of the transaction 

services of credit card l to be the marginal rate of substitution between credit card l 

transaction volumes and consumption of goods, so that the contemporaneous risk-adjusted 

real user cost price of credit card l transaction volumes is defined such that 

0

t t
c c

c lt lt
lt n

s t s t
t

s t

U U
m m

UE
x

π
λβ +

=

∂ ∂
∂ ∂

= =
∂
∂∑

.       (3.2) 
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With the user costs defined above, we can show that the solution value of the exact 

monetary aggregate, ( )tM m , can be tracked accurately in continuous time by the 

generalized Divisia index, as proved in the perfect certainty special case for monetary assets 

alone by Barnett (1980). 

Proposition 1. Let
1

/
I

a a a a
it it it it it

i
s m m

=

= ∑π π be the user-cost-evaluated expenditure share of 

monetary asset i and 
1

/
L

c c c c
lt lt lt lt lt

l
s m m

=

= ∑π π  be the user-cost-evaluated expenditure share of 

credit card l transactions. Under the weak-separability assumption, we have for any linearly 

homogenous monetary aggregator function, (.)M , that 

log logt t td M d′= s m ,        (3.3) 

which can also be written as 

1 1
log

I L
a c

t it it lt lt
i l

d M s d log m s d log m
= =

= +∑ ∑       (3.4) 

where  ( )t tM M= m , st is the vector of shares, ( ),a c
t t t

′′ ′=s s s with ( )1 ,..., ,...,
t

a
t it Its s s ′=s , and 

( )1 ,..., ,...,
t

c
t lt Lts s s ′=s . 

Proof. Under our assumption of weak separability, current period utility is 

1 1( , , ,..., ) ( ( ), , ,..., )t t t t t n t t t t nU U x x x V M x x x− − − −= =m m ,   (3.5) 

so that 

t t t
a a
it t it

U V M
m M m
∂ ∂ ∂

=
∂ ∂ ∂

 ,   (3.6) 

t t t
c c
lt t lt

U V M
m M m
∂ ∂ ∂

=
∂ ∂ ∂

 .   (3.7) 

By definitions (3.1) and (3.2), it then follows that 
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( / )at t
it ta

it t

M V
m M
∂ ∂

=
∂ ∂

π λ ,    (3.8) 

( / )ct t
lt tc

lt t

M V
m M

π λ∂ ∂
=

∂ ∂
.    (3.9) 

Taking the total differential of ( )t tM M= m  and using the above results, we obtain, 

1 1

1 1

( / ) ( / )

( / )( )

( / )( ).

I L
a a c ct t

t t it it t lt lt
i lt t

I L
a a c ct

t it it lt lt
i lt

t
t t t

t

V VdM dm dm
M M

V dm dm
M
V d
M

= =

= =

 ∂ ∂
= + ∂ ∂ 

 ∂
= + ∂ 
 ∂ ′= 

∂ 

∑ ∑

∑ ∑

π m

λ π λ π

λ π π

λ

    (3.10) 

Because of the linear homogeneity of ( ) ( , )a c
t t it ltM M M m m= =m , it follows that 

1 1

1 1
( / ) ( / ) .

I L
a ct t

t it lta c
i lit lt

I L
a a c ct t

t it it t lt lt
i lt t

M MM m m
m m

V Vm m
M M

= =

= =

∂ ∂ = + ∂ ∂ 
 

∂ ∂ = +
 ∂ ∂ 

∑ ∑

∑ ∑λ π λ π
     (3.11) 

Dividing (3.10) by (3.11), the proposition follows.   ∎ 

   

The user-cost price aggregate, ( )t t= πΠ Π , dual to the monetary quantity aggregator 

function, ( ) ( ) ,a c
t t t tM M M= =m m m , is computed from factor reversal, 

( ) ( )
1 1

 
I L

a a c c
t t it it lt lt

i l
M m m

= =

= +∑ ∑π mΠ π π , so that 

1 1( )
( )

I L
a a c c
it it lt lt

i l
t

t

m m

M
= =

+
=
∑ ∑

π
m

π
Π

π
 .      (3.12) 

In continuous time, the user-cost price dual can be tracked without error by the Divisia user 

cost price index 

1 1
log log log

I I
a c

t it it lt lt
i l

d s d s d
= =

= +∑ ∑π πΠ .      (3.13) 
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The result shows that the tracking ability of the Divisia aggregation index holds 

regardless of the form of the unknown utility function, U . The result in Barnett and Su 

(2016) is a special case under intertemporal separability. 

As a means of illustrating the nature of the risk adjustment and to acquire a more 

convenient expression for the user cost, a
itπ  and c

ltπ , we define the pricing kernel to be 

1
1

t
t

t

Q +
+ =

βλ
λ

.          (3.14)  

Recall that tλ  is the present value of the marginal utility of consumption at time t. Hence, 

1tQ +  measures the marginal utility growth from t  to 1t + . For example, if the utility function 

is time-separable, we have that 
1 1

1
1

( , )

( , )

t t

t

t t

t

t

U x
x

x

Q U x

+ +

+
+

∂
∂

=
∂

∂

m

mβ , which is the subjectively 

discounted marginal rate of substitution between consumption this period and consumption 

next period. As required of marginal rates of substitution, 1tQ +  is positive. 

Since the pricing kernel is the subjectively discounted marginal rate of substitution in 

consumption, it reflects the trade-off among monetary services, risk, and rate of return on 

different assets through the first-order conditions. If we use the approximation that 

characterizes conventional CAPM, the pricing kernel becomes a linear function of the interest 

rates. 

The Euler equations can be written as 

, 1 11 ( )t j t tE R Q+ +=  ,     (3.15) 

, 1 11 ( )a
it t i t tE r Q+ += − π ,    (3.16) 

, 1 1( ) 1c
lt t l t tE e Q+ += −π ,    (3.17) 

where jtR is the gross rate of return on a nonmonetary asset, which need not be risk free.   
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Recall that there can be multiple nonmonetary assets, j = 1, …, J, subject to different 

amounts of risk and thereby different rates of return, jtR .  What they have in common is 

providing no services, other than their investment rates of return and differing from each 

other only in their degrees of risk.  But equation (3.15) must be equally as applicable to all of 

them, so long as they differ only in their risk. 

Equation (3.15) imposes restrictions on the nonmonetary assets’ return processes. For 

monetary assets, equation (3.16) implies that the deviation from the usual Euler equation 

measures the user cost of that monetary asset. For credit card transactions, equation (3.17) 

implies that the deviation from the usual Euler equation measures the user cost of credit card 

transaction services. The non-monetary asset pricing within the asset portfolio’s pricing 

kernel, 1tQ + , should be as accurate as possible. Otherwise, we could attribute non-monetary 

asset pricing errors to the credit-card user costs and monetary-asset user costs. From the Euler 

equations, we can obtain the following proposition. 

Proposition 2. Given the real gross rate of return, , 1i tr + , on a monetary asset and the real 

gross rate of return, , 1j tR +
 , on a non-monetary asset, and , 1l te +  the real gross interest rate on 

credit card transaction volumes, as defined in (2.15), the risk-adjusted real user-cost price of 

the services of monetary asset i can be obtained as   

, 1 , 1

, 1

(1 ) ( ) (1 ) ( )it t j t jt t i ta
it

t j t

E R E r
E R

ω ω
π + +

+

+ − +
=







,   (3.18) 

where 

1 , 1cov ( , )it t t i tQ r+ += − ω ,    (3.19) 

1 , 1cov ( , )jt t t j tQ R+ += − ω .    (3.20) 
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The risk-adjusted real user-cost price of the services of the credit card volumes can be 

obtained as 

, 1 , 1

, 1

(1 ) ( ) (1 ) ( )
( )

jt t l t lt t j tc
lt

t j t

E e E R
E R

ω ω
π + +

+

+ − +
=







,     (3.21) 

where 

1 , 1cov ( , )lt t t l tQ eω + += −  .   (3.22) 

 
Proof. From the Euler equation in (3.15), we have 

1 , 1 1 , 11 ( ) cov ( , )t t t j t t t j tE Q E R Q R+ + + += +  .   (3.23) 

From the Euler equation in (3.16), we have 

1 , 1 1 , 11 ( ) cov ( , )a
it t t t i t t t i tE Q E r Q r+ + + += − − π .   (3.24) 

From the Euler equation in (3.17), we have 

 
1 , 1 1 , 1( ) cov ( , ) 1c

lt t t t l t t t l tE Q E e Q e+ + + += + − π .    (3.25) 

From equation (3.23), we have  

1 , 1
1

, 1

1 cov ( , )

( )

t t j t
t t

t j t

Q R
E Q

E R

+ +
+

+

−
=





.        (3.26) 

Substituting equation (3.26) into equation (3.24), we have  

1 , 1
, 1 1 , 1

, 1

1 cov ( , )
1 ( ) cov ( , )

( )
t t j ta

it t i t t t i t
t j t

Q R
E r Q r

E R
+ +

+ + +
+

−
= − −



 



π .   (3.27) 

Rearranging the equation, we have 

 1 , 11 , 1
, 1 , 1

, 1 , 1

1 cov ( , )1 cov ( , )
( ) ( ) t t j tt t i ta

it t j t t i t
t j t t j t

Q RQ r
E R E r

E R E R
π + ++ +

+ +
+ +

−−
= −









 

.  (3.28) 

Substituting equation (3.19) and equation (3.20) into equation (3.28), 

we have 
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, 1, 1
, 1 , 1

, 1 , 1

(1 )(1 )
( ) ( ) j ti ta

it t j t t i t
t j t t j t

E R E r
E R E R

ωω
π ++

+ +
+ +

++
= −



 

,    (3.29) 

so that, 

, 1 , 1 , 1 , 1

, 1

( )(1 ) ( )(1 )t j t i t t i t j ta
it

t j t

E R E r
E R

ω ω
π + + + +

+

+ − +
=







 .    (3.30) 

Similarly, substituting equation (3.26) into equation (3.25), we have  

1 , 1
, 1 1 , 1

, 1

1 cov ( , )
( ) cov ( , ) 1

( )
t t j tc

lt t l t t t l t
t j t

Q R
E e Q e

E R
+ +

+ + +
+

−
= + −



 



π  .  (3.31) 

Rearranging the equation, we have 
 

1 , 1 1 , 1
, 1 , 1

, 1 , 1

1 cov ( , ) cov ( , ) 1
( ) ( )

( ) ( )
t t j t t t l tc

lt t l t t j t
t j t t j t

Q R Q e
E e E R

E R E R
+ + + +

+ +
+ +

− −
= +









 

π ,  (3.32) 

so that  
1 , 1 , 1 1 , 1 , 1

, 1

(1 cov ( , )) ( ) (1 cov ( , )) ( )
( )

t t j t t l t t t l t t j tc
lt

t j t

Q R E e Q e E R
E R

+ + + + + +

+

− − −
=

 

 



π .    (3.33) 

Substituting equations (3.20) and (3.22) into equation (3.33), we have  

, 1 , 1 , 1 , 1

, 1

(1 ) ( ) (1 ) ( )
( )

j t t l t l t t j tc
lt

t j t

E e E R
E R

+ + + +

+

+ − +
=







ω ω
π .                       ∎      (3.34) 

 
We are assuming that the sole source of differences among rates of return on different 

benchmark assets, j, is differences in risk.  Since our results are risk adjusted, our results are 

not dependent upon the choice of the benchmark asset, and hence the subscript j does not 

appear in the results. 

3.2 The perfect certainty case 

To observe the intuition associated with the above proposition, assume that one of the 

non-monetary assets is the “benchmark asset,” defined to be risk-free with gross real interest 
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rate of f
tr  at time t . As shown by Barnett (1978), the certainty-equivalent user cost, ae

itπ , of 

a monetary asset a
itm  is 

, 1
f

t t i tae
it f

t

r E r
r

+−
=



π .    (3.35)  

From (3.15), the first order condition for f
tr   is 

11 ( )f
t t tE Q r+= .         (3.36) 

From the non-randomness of f
tr  we have that 

1
1

t t f
t

E Q
r+ = .         (3.37) 

Substituting equation (3.37) into equation (3.16), we have 

, 1 , 1 , 11 1 1, 1
11  cov ( , ) 1 cov ( , )t t t t t

a
it i t i t i t i tf

t
t t trE E Q Q E Qr r r

r+ + + ++ + +− − == −−   π ,  (3.38) 

so that  

, 1
, 1 1cov ( , )

f
t i ta

it i tf t t
t

tr r
r

r
E

Q+
+ +−

−
=



π .  

Letting 1, 1cov ( , )t tit i tr Q+ += − ω , we have 

 , 1
, 1

, 1

f
t i ta ae

it itf
t

i t i
t

t

r E r
r + +

+−
= + = +



π πω ω .  

Substituting equation (3.37) into equation (3.17) for the credit card case, we have 

, 1 1 , 1 1 , 1 , 1 1
1cov( , ) 1  cov( , ) 1c

lt t l t t l t t t l t l t tf
t

E e EQ e Q E e e Q
r+ + + + + + += + − = + −   π , (3.39) 

so that  

, 1
, 1 1  cov( , )

f
t l t tc

lt l t tf
t

E e r
e Q

r
+

+ +

−
= +



π . 

Letting 1 , 1cov ( , )lt t t l tQ e+ += − ω , we have  
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, 1 c ce
lt lt l t+= −π π ω ,  

where the certainty equivalent credit card user cost is 

, 1 
f

t l t tce
lt f

t

E e r
r
+ −

=


π . 

This proposition relates the user cost of credit cards to the rates of return on financial 

assets, which need not be risk-free. The user costs of monetary assets are consistent with the 

result in Barnett and Wu (2005), which relates the user costs of monetary assets to the rates of 

return on financial assets. 

Therefore, a
itπ  can be larger or smaller than the certainty-equivalent user cost ae

itπ , 

depending on the sign of the covariance between , 1i tr +  and 1tQ + . When the return on a 

monetary asset is positively correlated with the pricing kernel 1tQ + , and thereby negatively 

correlated with the rate of return on the full portfolio of monetary and nonmonetary assets, 

the monetary asset’s user cost will be adjusted downwards from the certainty-equivalent user 

cost. Such assets offer a hedge against aggregate risk by performing well, when the return on 

a monetary asset is negatively correlated with the pricing kernel 1tQ + , and thereby positively 

correlated with the rate of return on the full asset portfolio. The asset’s user cost will be 

adjusted upwards from the certainty-equivalent user cost, since such assets tend to pay off 

when the asset portfolio’s rate of return is high.  

Similarly, c
ltπ  can be larger or smaller than the certainty-equivalent user cost, ce

ltπ , 

depending on the sign of the covariance between , 1l te +  and 1tQ +  When the interest rate on a 

credit card service is positively correlated with the pricing kernel, 1tQ + , and thereby 

negatively correlated with the rate of return on the full portfolio of monetary assets, non-

monetary assets, and credit card service, the credit card service’s user cost will be adjusted 

upwards from the certainty-equivalent user cost. 
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To calculate the risk adjustment of credit card service, we need to compute the 

covariance between the interest rate on credit card service , 1l te +  and the pricing kernel 1tQ + , 

which is unobservable. Consumption-based asset pricing models allow us to relate 1tQ +  to 

consumption growth through a specific intertemporally separable utility function. But the 

empirical results from Barnett, Liu, and Jensen (1997) show that consumption risk 

adjustments for the user costs of monetary assets are small in most cases under the standard 

utility function with moderate risk aversion.  We anticipate that the same problem would 

arise with risk adjustment of credit card services user costs, despite their higher risk than 

monetary assets.  The reason is that such consumption based intertemporally separable risk 

adjustments to common stock returns, including high risk common stocks, have been shown 

to be small in the literature on the “equity premium puzzle.” 

With more general, intertemporally nonseparable utility functions, we can use the 

theory in this paper to extend the existing empirical studies on the user costs of risky 

monetary assets and credit card services, and thereby on the induced risk adjusted Divisia 

monetary quantity and user cost aggregates. 

3.3. Simple sum aggregation special case 

In the general case, the simple summation of the monetary asset components can be 

written tautologically as the following identity, 

, 1 , 1

1 1 1

fI I I
t t i t t i ta a a

it it it it itf f
i i it t

r E r E r
m m m

r r
+ +

= = =

 −
= + + − 
 

∑ ∑ ∑
 

ω ω .    (3.40) 

This decomposition of the simple sum can be interpreted as follows.  The term , 1

1

I
t i t a

itf
i t

E r
m

r
+

=
∑



  

is the discounted investment yield part of the simple sum, while itω  is its risk adjustment, and 

, 1

1

fI
t t i t a

it itf
i t

r E r
m

r
+

=

−
+∑



ω  is the discounted monetary service flow part. Thus, the simple sum 
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monetary aggregate represents a joint product, consisting of a discounted monetary service 

flow, a discounted investment yield flow, and risk adjustment. The joint product exceeds the 

economic stock of monetary services, which does not include the discounted investment 

yield.8  If investment yield were a monetary service, then money would include the 

discounted present value of the investment return on the entire capital stock of the country. 

When central banks first began producing monetary aggregates, all of the components 

over which they aggregated yielded no interest. Hence, there was perfect certainty about the 

rate of return on each component. In addition, because that rate of return was exactly zero for 

each component, the user costs were known to be the same for each component. Under those 

circumstances, it is well known in aggregation theory that the exact monetary quantity index 

becomes the simple summation. Under those assumptions, it follows from (3.40) that 

, 1

1 1

fI I
t t i t a a

it it itf
i it

r E r
m m

r
+

= =

−
+ =∑ ∑



ω .       (3.41) 

The simple sum index is a special case of the generalized Divisia index. As the 

financial innovation and deregulation of financial intermediation have progressed, the 

assumption that all monetary assets yield zero interest rates has become increasingly 

unrealistic. The introduction of credit card transaction services into the generalized Divisia 

index renders the simple sum index not only unreasonable but also impossible. Credit card 

volumes have high interest costs for the representative consumer and can have high risk.  But 

even if that were not the case, monetary assets cannot be added to credit card volumes, since 

accounting procedures do not permit adding assets to liabilities. 

The need for the generalized Divisia Index can be interpreted as follows. The 

consumer has to make a three-dimensional decision involving trade-off among investment 

return, risk adjustment, and liquidity service consumption. Monetary assets can produce 

                                                 
8 Regarding measurement of the economic stock of money, defined to be the discounted service flow, see 
Barnett, Keating, and Chae (2006). 
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investment returns, contribute to risk, and provide liquidity services. Credit card transactions 

can produce payment deferred liquidity services involving future interest payment and can 

also contribute to risk. Our objective is to track the exact aggregator function, ( )tM m , which 

measures only liquidity. To do so, we must remove the investment yield and adjust for risk.  

3.4.  Intertemporally separable special case 

In this section, we show that the result in Barnett and Su (2016) is a special cases of 

our result, by demonstrating that the Barnett and Su (2016) result becomes ours under the 

assumption of intertemporal separability.   

Rewriting equation (3.27), we have 

, 1 , 1 1 , 1 , 1 1 , 1 , 1

, 1

, 1 , 1 1 , 1 , 1 1 , 1 , 1

, 1

( ) ( ) cov ( , ) ( ) cov ( , ) ( )
( )

( ) ( ) cov ( , ) ( ) cov ( , ) ( )
( ) (

t j t t i t t t j t t i t t t i t t j ta
it

t j t

t j t t i t t t j t t i t t t i t t j t

t j t t j

E R E r Q R E r Q r E R
E R

E R E r Q R E r Q r E R
E R E R

π + + + + + + + +

+

+ + + + + + + +

+

− + −
=

− −
= +

  

  



  

  

 

, 1

.
)t+

    (3.42)  

Now define the risk neutral monetary asset user cost to be 

, 1 , 1

, 1

( ) ( )
( )

t j t t i tem
it

t j t

E R E r
E R
+ +

+

−
=







π ,        (3.43) 

and let the adjustment for risk aversion be 

1 , 1 , 1 1 , 1 , 1

, 1

cov ( , ) ( ) cov ( , ) ( )
( )

t t j t t i t t t i t t j t
i

t j t

Q R E r Q r E R
E R

+ + + + + +

+

−
=

 

 



η .    (3.44) 

When consumption is intertemporal separable, the price kernel is

1 1 1
1

( , ) /
( , ) /

t t t
t

t t t

U x xQ
U x x

β + + +
+

∂ ∂
=

∂ ∂
m

m
 , 

which we can substitute back into the equation (3.44) to acquire the following

1 1 1 1 1 1
, 1 , 1 , 1 , 1

, 1

( , ) / ( , ) /cov ( , ) ( ) cov ( , ) ( )
( , ) / ( , ) / .

( )

t t t t t t
t j t t i t t i t t j t

t t t t t t
i

t j t

U x x U x xR E r r E R
U x x U x x

E R

+ + + + + +
+ + + +

+

∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂
=

m m
m m

 

 



β β
η

           (3.45)  
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Rearranging the equation, we have 

1 1 1 , 1 , 1 1 1 1 , 1 , 1

, 1

cov ( ( , ) / , ) ( ) cov ( ( , ) / , ) ( )
.

( ) ( , ) /
t t t t j t t i t t t t t i t t j t

i
t j t t t t

U x x R E r U x x r E R
E R U x x

+ + + + + + + + + +

+

∂ ∂ − ∂ ∂
=

  ∂ ∂ 

m m
m

 

 



β β
η

           (3.46)  

Further rearranging the equation, we have 

1 1 1 , 1 , 1 1 1 1 , 1

, 1

cov ( ( , ) / , ) ( ) cov ( ( , ) / , )
.

( , ) /( ) ( , ) /
t t t t j t t i t t t t t i t

i
t t tt j t t t t

U x x R E r U x x r
U x xE R U x x

+ + + + + + + + +

+

∂ ∂ ∂ ∂
= −

∂ ∂  ∂ ∂ 

m m
mm



 



β β
η

           (3.47)  

But recalling that, 

, 1 , 1

, 1

( ) ( )
( )

t j t t i tem
it

t j t

E R E r
E R
+ +

+

−
=







π ,       (3.48) 

we have 

, 1

, 1

( )
1

( )
t i t em

it
t j t

E r
E R

+

+

= −




π .        (3.49) 

Substituting equation (3.49) back into equation (3.47), we have 

1 1 1 , 1 1 1 1 , 1(1 )cov ( ( , ) / , ) cov ( ( , ) / , )
,

( , ) / ( , ) /

em
it t t t t j t t t t t i t

i
t t t t t t

U x x R U x x r
U x x U x x

+ + + + + + + +− ∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂

m m
m m



β π β
η

           (3.50) 

while substituting equation (3.50) back into equation (3.42), we have 

, 1 1 1 , 1 1 1 1 , 1(1 )cov ( ( , ) / , ) cov ( ( , ) / , )
,

( , ) / ( , ) /

a em
it it

e
i t t t t t j t t t t t i t

t t t t t t

U x x R U x x r
U x x U x x

+ + + + + + + +

=

− ∂ ∂ ∂ ∂
+ −

∂ ∂ ∂ ∂

m m
m m





π π

β π β (3.51) 

where the first term on the right side of the equation represents the risk neutral user cost of 

the monetary asset, and the rest is the risk adjustment. 

Similarly, we can derive the intertemporally separable credit card user cost from the 

general form of credit card user cost, which is 
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1 , 1
, 1 1 , 1

, 1

, 1 1 , 1 , 1 1 , 1 , 1 , 1

, 1

~

, 1 , 1

, 1

1 cov ( , )
( ) cov ( , ) 1

( )

( ) cov ( , ) ( ) cov ( , ) ( ) ( )
( )

( ) ( )
( )

t t j tc
lt t l t t t l t

t j t

t l t t t j t t l t t t l t t j t t j t

t j t

t l t t j t

t j t

Q R
E e Q e

E R

E e Q R E e Q e E R E R
E R

E e E R
E R

+ +
+ + +

+

+ + + + + + + +

+

+ +

+

−
= + −

− + −
=

− −
= +



 



  

  







π

1 , 1 , 1 1 , 1 , 1

, 1

cov ( , ) ( ) cov ( , ) ( )
.

( )
t t j t t l t t t l t t j t

t j t

Q R E e Q e E R
E R

+ + + + + +

+

+ 

 



(3.52) 

When consumption is intertemporally separable, we can substitute the price kernel 

1 1 1
1

( , ) /
( , ) /

t t t
t

t t t

U x xQ
U x x

β + + +
+

∂ ∂
=

∂ ∂
m

m
,  

back into equation (3.52) to acquire 

, 1 , 1

, 1

1 1 1 1 1 1
, 1 , 1 , 1 , 1

, 1

, 1 , 1

,

( ) ( )
( )

( , ) / ( , ) /cov ( , ) ( ) cov ( , ) ( )
( , ) / ( , ) /

( )

( ) ( )
(

t l t t j tc
lt

t j t

t t t t t t
t j t t l t t l t t j t

t t t t t t

t j t

t l t t j t

t j

E e E R
E R

U x x U x xR E e e E R
U x x U x x

E R

E e E R
E R

+ +

+

+ + + + + +
+ + + +

+

+ +

−
=

∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂
+

−
=

m m
m m







 

 









π

β β

1

1 1 1 , 1 , 1 1 1 1 , 1 , 1

, 1

)

cov ( ( , ) / , ) ( ) cov ( ( , ) / , ) ( )
.

( , ) / ( )

t

t t t t j t t l t t t t t l t t j t

t t t t j t

U x x R E e U x x e E R
U x x E R

+

+ + + + + + + + + +

+

− ∂ ∂ + ∂ ∂
+

∂ ∂

m m
m

 

 



β β

  

(3.53) 

Letting

1 1 1 , 1 , 1 1 1 1 , 1 , 1

, 1

cov ( ( , ) / , ) ( ) cov ( ( , ) / , ) ( )
,

( , ) / ( )
t t t t j t t l t t t t t l t t j t

l
t t t t j t

U x x R E e U x x e E R
U x x E R

+ + + + + + + + + +

+

− ∂ ∂ + ∂ ∂
=

∂ ∂

m m
m

 

 



β β
η

           (3.54)  

we have  

, 1 , 1

, 1

( ) ( )
( )

t l t t j tc
lt l

t j t

E e E R
E R
+ +

+

−
= +







π η .       (3.55) 

Letting the risk neutral user cost of credit card volumes be 
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, 1 , 1

, 1

( ) ( )
( )

t l t t j tec
lt

t j t

E e E R
E R
+ +

+

−
=







π ,  

we have  

, 1

, 1

( )
1

( )
t l t ec

lt
t j t

E e
E R

+

+

= +




π .         (3.56) 

Substituting equation (3.56) into equation (3.54), we have 

1 1 1 , 1 1 1 1 , 1

1 1 1 , 11 1 1 , 1

cov ( ( , ) / , ) cov ( ( , ) / , )
( 1)

( , ) / ( , ) /

cov ( ( , ) / , )cov ( ( , ) / , )
( 1)

( , ) /

t t t t j t t t t t l tec
l lt

t t t t t t

t t t t j tt t t t l t ec
lt

t t t

U x x R U x x e
U x x U x x

U x x RU x x e
U x x

+ + + + + + + +

+ + + ++ + + +

− ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= − +

∂ ∂

m m
m m

mm
m









β β
η π

β
β π .

( , ) /t t tU x x∂ ∂m

           (3.57) 

Then substituting equation (3.57) into equation (3.53), we acquire 

1 1 1 , 11 1 1 , 1 cov ( ( , ) / , )cov ( ( , ) / , )
( 1) ,

( , ) / ( , ) /

c ec
lt lt

t t t t j tt t t t l t ec
lt

t t t t t t

U x x RU x x e
U x x U x x

+ + + ++ + + +

=

∂ ∂∂ ∂
+ − +

∂ ∂ ∂ ∂

mm
m m





π π

β
β π

 

          (3.58) 

which is the same as those in Barnett and Su (2016).  

3.5. Approximation to the risk adjustment 

Consumption-based asset pricing models, CCAPM, require explicit assumptions 

about investors’ utility functions. An alternative approach, CAPM, which is commonly used 

in finance, is to approximate 1tQ +  by a simple function of observable macroeconomic factors 

that are believed to be closely related to investor’s marginal utility growth. Sharpe (1964) and 

Lintner (1965) approximate 1tQ +  by a linear function of the rate of return on the market 

portfolio. Then the rate of return on each individual asset is linked to its covariance with the 

market rate of return. 
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Barnett and Wu (2005) showed that there exists a similar CAPM relationship among 

user costs of risky monetary assets, under the assumption that 1tQ +  is a linear function of the 

rate of return on a well-diversified wealth portfolio. In this paper, we accept that assumption. 

Specifically, define , 1A tr +  to be the share-weighted real gross rate of return on the consumer’s 

asset portfolio, including the monetary assets, ( 1,..., )a
itm i I= , and the non-monetary assets, 

( )  1,...,  jtk j J= . Then the traditional CAPM approximation to 1tQ +  mentioned above is of 

the form 1 , 1  t t t A tQ a b r+ += −  , where ta , and tb  can be time dependent. The monetary 

aggregate, ( )tM m , measures the flow of monetary services rather than the stock of financial 

portfolio wealth. 

Let tA  be the real value of the portfolio’s stock, and let itφ and jtϕ  denote the share of 

a
itm  and jtk  in the portfolio’s stock value, respectively, so that 

1 1

1 1

,

.

a a
it it

it I J
a t
it jt

i j

jt jt
jt I J

a t
it jt

i j

m m
Am k

k k
Am k

= =

= =

= =
+

= =
+

∑ ∑

∑ ∑

φ

ϕ

        (3.59) 

Then, by construction, , 1 , 1 , 1
1 1

I J

A t it i t jt j t
i j

r r R+ + +
= =

= +∑ ∑ 

φ ϕ , where 

1 1
1

I J

it jt
i j= =

+ =∑ ∑φ ϕ .   

Multiplying (3.15) by jtϕ and (3.16) by itφ , we acquire 

, 1 1

, 1 1

0 ( ), (1,..., ),

( ), (1,..., ).
jt t j t t jt

a
it it it t i t t it

E R Q j J

E r Q i I
+ +

+ +

= − =

= − =





ϕ ϕ

φ π φ φ
     (3.60) 



29 
 

Summing the above equations over i and j, then adding the two summed equations 

together, and using the definition of , 1A tr + , we get 

, 1 1
1

1 ( )
I

a
it it t A t t

i
E r Q+ +

=

= −∑φ π .      (3.61)  

Let 
1 1

I J
a k

At it it jt jt
i j= =

= +∑ ∑Π φ π ϕ π , where k
itπ  is the user cost of non-monetary asset j. We define 

AtΠ  to be the user cost of the consumer’s asset wealth portfolio. But the user cost, k
jtπ , of 

every non-monetary asset is 0, so equivalently
1

I
a

At it it
i=

=∑Π φ π . The reason is that consumers 

do not pay a price, in terms of foregone interest, for the monetary services of non-monetary 

assets, since they provide no monetary services and provide only their investment rate of 

return. Barnett and Wu (2005) showed that our definition of AtΠ is consistent with Fisher’s 

factor reversal test, in the following sense: 

1 1

I J
a a k

At t it it jt jt
i j

A m k
= =

= +∑ ∑Π π π .       (3.62) 

Since we know that 0k
it =π  for all j, portfolio factor reversal equivalently can be 

written as 

1

I
a a

At t it it
i

A m
=

=∑Π π .         (3.63) 

Recall that (( ) , ).a c
t t tM M=m m m   Suppose that M is weakly separable in monetary assets, so 

there exists f such that ( (, ) ), ).(a c a c
t t t tfM M=m m m m   Then )( a

tf m  is the aggregation 

theoretic quantity aggregate over the services of monetary assets alone.  By factor reversal, 

there exists a user cost aggregate, atΠ , dual to )( a
tf m , such that ,

1
)(

I
a a a

ct t i t it
i

mf
=

=∑mΠ π . It 

follows from (3.68) that ( )a
At t ct tfA = mΠ Π , and hence ( ) /a

At ct t tAf =  mΠ Π . 
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Suppose one of the non-monetary assets is risk-free with gross real interest rate f
tr . 

By substituting , 1
f

t t i tae
it f

t

r E r
r

+−
=



π for a
itπ  into the definition of AtΠ , using the definition of

, 1A tr + , and letting , 1
f

t i tr Er +=   for all j  , it follows that the certainty equivalent user cost of the 

asset wealth portfolio is , 1
,

f
t t A te

A t f
t

r E r
r

+−
Π = . We now can prove the following proposition. 

 Proposition 4. If one of the non-monetary assets is (locally) risk-free with gross real 

interest rate f
tr , and if 1 , 1t t t A tQ a b r+ += − , where , 1A tr +   is the gross real rate of return on the 

consumer’s wealth portfolio, then the user cost of any monetary asset i or credit card volume 

l  is given by 

( ),a ae e
it it it At At− = −π π β Π Π     (3.64) 

 ( ),c ce e
lt lt lt At At− = −π π β Π Π         (3.65) 

 
where a

itπ , c
ltπ , and AtΠ  are the user costs of monetary asset i, credit card transaction volume 

l, and asset wealth portfolio, respectively; and 

, 1( )f
t t i tae

it f
t

r E r
r

+−
=



π  ,  , 1( ) f
t l t tce

lt f
t

E e r
r
+ −

=


π  and , 1( )f
t t A te

At f
t

r E r
r

+−
=Π  

 are the certainty-equivalent user costs of monetary asset i, credit card transaction volume l, 

and asset wealth portfolio, respectively. The “betas" of monetary asset i and credit card 

transaction volume l in equation (3.64) and (3.65) are given by 

 

, 1 , 1

, 1

, 1 , 1

, 1

cov ( , )
,

var ( )
cov ( )

.
var ( )

t A t i t
it

t A t

t A t l t
lt

t A t

r r
r
r e

r

β

β

+ +

+

+ +

+

=

= −





       (3.66) 

Proof. Equation (3.64) follows from Barnett and Wu (2005).  The rest of this proof is 

about (3.65). 
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From equation (3.61) and the definition of ΠAt, we have for the wealth portfolio that 

1 , 1 1 , 11 cov ( , )At t t t A t t t A tE Q E r Q r+ + + += − −Π .      (3.67) 

Given the risk-free rate f
tr , we have 1

1
t

t
t fE Q

r+ =  . Hence 

, 1
1 , 1 1 , 11 cov ( , ) cov ( , )t A t e

At t t A t At t t A tr
t

E r
Q r Q r

r
+

+ + + += − − = −Π Π .   (3.68) 

Using the assumption that 1 , 1t t t A tQ a b r+ += − , so that 1 , 1 , 1cov ( , ) var ( )t t A t t t A tQ r b r+ + += − , it 

follows that 

, 1var ( )e
At At t t A tb r += +Π Π .        (3.69) 

For the monetary asset case, Barnett and Wu (2005) have shown that 

1 , 1 , 1 , 1cov ( , ) cov ( , )a ae ae
it it t t i t it t t A t i tQ r b r r+ + + += − = + π π π .    (3.70) 

Similarly, for credit card volume l, we have , 1
f

t l t tc ce
lt lt lt ltf

t

E e r
r
+ −

= − = −


π ω π ω  where 

1 , 1cov ( , )lt t t l tQ e+ += − ω  and 1 , 1t t t A tQ a b r+ += − , so that 

1 , 1 , 1 , 1cov ( , ) cov ( , )c ce ce
lt lt t t l t lt t t A t l tQ e b r e+ + + += − = − π π π .   (3.71) 

From equations (3.69) and (3.70), Barnett and Wu (2005) conclude that 

, 1 , 1

, 1

cov ( , )
var ( )

a ae
t A t i tit it

e
At At t A t

r r
r
+ +

+

−
=

−

π π
Π Π

 .   (3.72) 

Similarly from equation (3.69) and equation (3.71), we can conclude that 

, 1 , 1

, 1

cov ( , )
var ( )

c ce
t A t l tlt lt

e
At At t A t

r e
r
+ +

+

−
= −

−

π π
Π Π

.   ∎ (3.73) 

 
In the approximation, 1 , 1t t t A tQ a b r+ += − , to the theoretical pricing kernel, 1tQ + , the 

reason for the minus sign is similar to the reason for the minus signs before the own rates of 

return within monetary asset user costs: the intent in the finance literature is to measure a 
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“price”, not a rate of return. With the minus sign in front of bt , and with bt  positive, we can 

interpret bt  in equations (3.69), (3.70) and (3.71) as a “price” of risk. Then bt measures the 

amount of risk premium added to the left-hand side per unit of covariance in equation (3.70) 

and (3.71), or variance in equation (3.69). Also recall that the pricing kernel itself, as a 

subjectively discounted marginal rate of substitution, should be positive. The signs of at  and 

bt  must both be positive, and at  must be sufficiently large, so that the pricing kernel is 

positive for all observed values of rA,t+1. 

Proposition 4 is very similar to the standard CAPM formula for asset returns. In 

CAPM theory, the expected excess rate of return on an individual asset is determined by its 

covariance with the excess rate of return on market portfolio, , 1M tr + , in accordance with 

, 1 , 1( ),f f
t i t t it t M t tE r r E r r+ +− = − β     (3.74) 

where , 1 , 1 , 1cov ( , ) / var ( )f f f
it t i t t M t t t M t tr r r r r r+ + += − − −β  . 

The result from Proposition 4 implies that credit card transaction volume l’s risk 

premium depends upon its market portfolio risk exposure, which is measured by the beta of 

this exposure. The larger the beta, through risk exposure to the wealth portfolio, the larger the 

risk adjustment. Credit card user costs will be adjusted upwards for those credit card 

transactions whose rates of return are positively correlated with the interest rate on the market 

portfolio, and conversely for those credit card transactions whose rates of return are 

negatively correlated with the asset portfolio. 

While CCAPM adjusts for risk relative to its correlation with only current period 

consumption of goods, our CAPM result adjusts for risk relative its correlation with asset 

portfolio wealth value.  Compared to our CAPM adjustment, the CCAPM adjustment is 

“myopic.” 
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4. Empirical Study  

We are currently working on implementing this paper’s theory for a future empirical 

paper.  The data source for credit card services are documented in Barnett and Su (2017). 

Transaction volumes of credit card services are from four sources: Visa, MasterCard, 

American Express, and Discover. The credit card interest rates imputed to the representative 

consumer are based on the Federal Reserve Board’s data on all commercial bank credit card 

accounts. All the other quantities and interest rates, including the benchmark rate on 

monetary assets, are from the Center for Financial Stability’s monthly releases on current 

Divisia monetary aggregates. 

An extension of the current paper could be to introduce heterogeneous agents. This 

extension would disaggregate the consumers who fully repay their credit card transaction 

volumes each period from those consumers with rotating balances.  

5. Conclusion 

Simple sum monetary aggregates treat monetary assets as perfect substitutes. That 

assumption has not been justifiable since monetary assets began paying interest.  Barnett 

(1978, 1980) showed that the Divisia monetary quantity index, with user cost prices, is 

directly derivable from aggregation theory in the absence of uncertainty. Barnett, Liu, and 

Jensen. (1997) extended to include risk under intertemporal separability in accordance with 

CCAPM conventions. Barnett and Su (2016) first included credit cards transaction services 

into monetary aggregates. They further extend it to the case of uncertain returns and risk 

aversion using CCAPM assumptions. Despite the fact that credit card interest rates are high 

and volatile, the CCAPM risk adjustment could be small, for the same reason causing the 

equity premium puzzle in the asset pricing literature. Extension to include intertemporal non-

separability could resolve this problem.   Barnett and Wu (2004) developed the user cost of 

monetary assets under intertemporal non-separability, but without inclusion of credit card 
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transactions services. This paper extends to the inclusion of credit card transactions services 

under intertemporally non-separable utility and risk aversion.  

The risk adjustment of monetary asset user costs to their certainty equivalent user 

costs can be measured by the adjustment’s beta, which depends on the covariance between 

the consumer’s wealth portfolio and the rate of return on the monetary asset. Similarly, for 

any credit card service, the risk adjustment of its user cost to its certainty equivalent user cost 

can be measured by the adjustment’s beta, which depends on the covariance between the 

consumer’s wealth portfolio and the interest rate on credit card transactions. This is 

analogous to the standard Capital Asset Pricing Model (CAPM) and is more likely to capture 

the effects of risk on consumer behaviour than the covariance only with current period 

consumption of goods, as in CCAPM.  
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Appendix 

In this appendix, we derive the Euler equations (2.6) and (2.7) from the decision 

problem consisting of maximizing equations (2.2) subject to equations (2.3) and (2.4).  Given 

initial net wealth, tW , the consumer seeks to maximize his expected lifetime utility function. 

The expectations operator, tE , is designated to be expectations conditional upon all 

information available at current period t. 

The decision is to maximize V = V(m0, x0, m1, x1, m2, x2, ……) defined by 

V = 1
0

( , , ,..., )s
t t s t s t s t s n

s
E U x x xβ

∞

+ + + − + −
=
∑ m ,     (A.1) 

subject to the budget constraints, 

* * * * *c a
t t t t t t t t t t tW p p p x p p′ ′ ′ ′+ + = + +1 m 1 z 1 k 1 m    (A.2) 

and 

* * * *
1 1 1 1 1 1( ) ( ) ( ) ( )a c z

t t t t t t t t t t t t t tW p p p p y+ + + + + +′ ′ ′ ′= + − + − + + + +1 r m 1 e m 1 e z 1 R k .   (A.3) 

The intertemporal utility function, V(m0, x0, m1, x1, m2, x2, ……), is assumed to be increasing 

and strictly concave in all of its  arguments. The decision also is subject to the transversality 

condition, 

*lim s
t t ss

pβ +→∞
=k 0 .     (A.4) 

The consumer’s subjective rate of time preference, β , is assumed to be constant. The 

transversality condition rules out perpetual borrowing at the nonmonetary pure investment 

rates, tR .  

Define the current period value function of the consumer’s optimization problem as 

follows: 

1,( , ..., ).t t t t nH H W x x− −=         (A.5) 
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Given the price, wage, and interest rate processes, the consumer selects the deterministic 

point and stochastic process ( , , )t t tx m k  to maximize the expected value of U  over the 

planning horizon, subject to the sequence of constraints. Assuming the solution to the 

decision problem exists, we then have the Bellman equation 

1 1
( , , )

( ( , , ,..., ) )sup
t t t

t t t t t t n t
x

H E U x x x H− − += +
m k

m β .   (A.6) 

With any given tm  and tk , the value of tx is determined from (A.2). At each period t, 

the consumer’s decision problem is therefore to choose tm  and tk  to maximize utility 

subject to the constraints. Therefore, we can reformulate the optimization problem as the 

following. From equation (A.2) , we have 

* t

a ct
t t t t

t

Wx
p

′ ′ ′ ′= − − + +1 m 1 k 1 m 1 z .                                                  (A.7) 

Moving it forward one period, we have 

1

1
1 1 1 1*

1
t

a ct
t t t t

t

Wx
p +

+
+ + + +

+

′ ′ ′ ′= − − + +1 m 1 k 1 m 1 z .   (A.8) 

Substituting equation (A.3) into (A.8), we have  

* *

1 1 1 1 1* *
1 1

* *

1 1 1 1 1* * *
1 1 1

( ( ) ) ( ( ) )

1( ( ) ) ( ( ) ) .

a a c ct t
t t t t t t t

t t

zt t
t t t t t t t

t t t

p px
p p

p p y
p p p

+ + + + +
+ +

+ + + + +
+ + +

′ ′ ′ ′= + − + − +

′ ′ ′ ′+ − + + + − +

1 r m 1 m 1 m 1 e m

1 z 1 e z 1 R k 1 k
   (A.9) 

On the right hand side of the equation, the first term is the released or absorbed funds 

from rolling over the portfolio of monetary assets. The second term is the net change in credit 

card debt from purchases of consumption goods. The third term is the changes in credit card 

rotating balances. The fourth term is the released or absorbed funds from rolling over non-

monetary assets. The last term is the income from other sources, such as labor income. 

Since rotating balances, tz , reflect the credit card transactions during previous 

periods, their transactions services were valued in the utility function of previous periods and 
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should not again be in the utility function of the current period. In addition, 1ty +  consists of 

income sources exogenous to the decision, such as wage income. Thus equation (A.9) is of 

the following form: 

1

* *
1 1 1 1 1 1 1 1( , , , , , , , , , , )

t

z
t t t t t t t t t t t tx x y p p

++ + + + + + + += m m k k z r e e .  (A.10) 

The consumption next period is a function of monetary assets, credit card services, 

and non-monetary assets along with variables exogenous to the current period, including tz  

and 1ty + . Taking total differentials on both sides of equation (A.7) conditionally upon fixed 

values of the exogenous variables, we have 

' ' 'a c
t t t tdx d d d= − + −1 m 1 m 1 k .                                                                        (A.11) 

Taking total differentials on both sides of equation (A.9) conditionally upon fixed values of 

the exogenous variables, we have 
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           (A.12) 

Differentiating equation (A.6) with respect to tx , we have     
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Moving equation (A.6) forward one period and taking the derivative of 1tH +  with respect to 

tx ,  we get 
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        (A.14) 

Define the expected present value of the marginal utility of consumption by 
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n
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∂
=

∂∑ .     (A.15) 

Substituting equation (A.15) into equation (A.13), we have  
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Moving (A.16) forward one period, we have 
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Differentiating equation (A.6) with respect to a
tm , we have the first order conditions 

for a
tm as follows. 
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Similarly differentiating equation (A.6) with respect to c
tm , we have the first order conditions 

for c
tm as follows. 
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Differentiating equation (A.6) with respect to tk , we have the first order conditions for tk as 

follows. 
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From equation (A.11), we have 

t
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while from equation (A.12), we have 
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Substituting (A.14), (A.17), (A.21), and (A.22) into equation (A.18), we have  
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Rearranging equation (A.23), we have 
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The last term in equation (A.24) could be simplified as the follows. 
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Substituting equation (A.25) into equation (A.24), we have 
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From equation (A.11), we have 

t
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while from equation (A.12), we have 
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Substituting (A.14), (A.17), (A.27), and (A.28) into equation (A.19), we have  
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Rearranging equation (A.29), we have 
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Substituting equation (A.25) into equation (A.30), we have 
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From equation (A.11), we have 
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From equation (A.12), we have 
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Substituting (A.14), (A.17), (A.32) and (A.33) into equation (A.20), we have  
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Rearranging equation (A.34), we have 
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Substituting equation (A.25) into equation (A.35), we have 
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Combining equations (A.26), (A.31), (A.36), the first order conditions can be written 
as 
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Substituting (2.15) into (A.37), we have  
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( )1 1t t t tE + + − =R 1 0βλ λ .   ∎    (A.39) 
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