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1 Introduction

Global games (Carlsson and Van Damme (1993)) provide a way to think about equilibrium

selection and robustness of an equilibrium in a complete information game when we add

a small amount of uncertainty. Intuitively, in the presence of uncertainty, equilibrium

actions in some environments can affect equilibrium actions in other relatively remote

environments through a contagion argument. This approach has been used successfully

to understand several important economic phenomenon, including speculative attacks in

currency markets, investment decisions, and macroeconomic coordination failures. There

is a large literature in this area. For a survey of theory and applications, confer Morris

and Shin (2003).1

The global games approach has been extended in many directions, including finitely

many players (as one example, confer Frankel, Morris, and Pauzner (2003)), a contin-

uum of symmetric players, as in Morris and Shin (2003), finitely many actions, as in

Oury (2013), actions in [0, 1], as in Frankel, Morris, and Pauzner (2003), and to multi-

dimensional uncertainty, as in Oury (2013).

All these approaches make assumptions on payoff structures that yield strategic com-

plements in actions across players. These assumptions typically include some form of

supermodularity, increasing differences, and state monotonicity. Once we allow more gen-

1For a small sampling of the literature, also confer Frankel, Morris, and Pauzner (2003), Heinemann,

Nagel, and Ockenfels (2004), Angeletos, Hellwig, and Pavan (2006), Steiner and Stewart (2008), Basteck,

Daniëls, and Heinemann (2013), and Oury (2013), among others.
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eral payoff structures, there do not appear to be general results that show existence of an

equilibrium in global games. This is due to several reasons.

First, in general, once strategic substitutes are introduced, a complete information

game may not necessarily have a pure-strategy Nash equilibrium (confer Roy and Sabarwal

(2012)) and similarly, a game with both strategic complements and strategic substitutes

may not necessarily have a pure-strategy Nash equilibrium (confer Monaco and Sabarwal

(2016)).

Second, models using an improper prior in global games (as in Morris and Shin (2003))

do not have a prior distribution of uncertainty in the normal sense of a probability,

and in these cases, it is hard to connect a global game with the standard model of an

incomplete information game. This makes it harder to invoke standard results on existence

of equilibrium in an incomplete information game.

Third, the information structure assumed in a global game makes it hard to apply a

standard proof of existence of equilibrium, because the observation of each player is corre-

lated with that of every other player (they all depend on the same underlying state of the

world). This correlation can potentially jeopardize an important assumption (requiring

absolute continuity of the joint information measure with respect to the product of its

marginals) in the general proofs of existence of an equilibrium in games of incomplete

information (such as in Balder (1988) and Milgrom and Weber (1985)).

A main contribution of the work here is to formulate a model of a global game that
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allows for arbitrary payoff structures (with only mild assumptions related to continuity

and integrability) and to show existence of equilibrium in this general model. This gen-

eralizes existing models of global games by allowing for arbitrary strategic heterogeneity

across players. In the process, we also show that in every global game, even though the

information of each player is correlated with that of other players, the joint information

measure is absolutely continuous with respect to the product of its marginals.

As interest in global games moves beyond cases with strategic complements, our result

provides a general framework in which the global games method is well-defined. This

provides a foundation for the study of equilibrium behavior in global games with strategic

heterogeneity. As one application, the results here can be used to show that there is a

global game equilibrium in the finite-player version of the model in Karp, Lee, and Mason

(2007).

This paper focuses on existence of equilibrium in a global game. The important

problems of uniqueness of the global games equilibrium selection (sometimes termed limit

uniqueness) in terms of dominance solvability, and its uniqueness as noise goes to zero

(sometimes termed noise independence) remain open in the general case. Showing that

an equilibrium exists in the more general case provides a first step to other researchers in

this regard.

The next section formalizes a model of a global game and defines a global game

equilibrium. The section after that proves existence of equilibrium in every global game

represented by this model. It also includes some extensions and discussion. The last
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section concludes.

2 Global Game and Equilibrium

Consider a finite collection of players, indexed i = 1, . . . , N . The action space for

player i is denoted Ai, where Ai is assumed to be a compact metric space,2 and its

Borel sigma-algebra is denoted Ai. The product spaces are denoted A = ×N
i=1Ai, and

A = ×N
i=1Ai.

Following the standard motivation for a global game, suppose there is a payoff rele-

vant state of the world and each player observes this state with some uncertainty. The

structure of uncertainty in a global game is formalized as follows. Let ε0 be a random

variable governing the behavior of the underlying state of the world. It is distributed on

an open set X0 ⊂ R with density φ0 having full support.3 Given an underlying state

of the world x0 ∈ X0, each player i ∈ {1, . . . , N} observes xi = x0 + εi, where εi are

distributed on [−ǫ, ǫ] (for some small ǫ > 0) with density φi having full support,4 and

(εi)
N
i=0 are jointly independent. Let T0 = (x − ǫ, x + ǫ), where x, x determine dominance

2This is more general than the standard assumption in global games, which typically assume finitely

many or a continuum of actions.
3As usual, we take the Borel sigma-algebra and Lebesgue measure on R. Moreover, modifying φ0 on

a set of Lebesgue measure zero if necessary, suppose that for every x0 ∈ X0, φ0(x0) > 0.
4Again, as usual, we take the Borel sigma-algebra and Lebesgue measure on R and restrict it to [−ǫ, ǫ].

Moreover, modifying φi on a set of Lebesgue measure zero if necessary, suppose that for every ξ ∈ [−ǫ, ǫ],

φi(ξ) > 0.
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regions, as defined below, and assume that T0 ⊂ support(φ0).
5

The payoff of each player i = 1, . . . , N in a global game depends on the underlying

state of the world x0 ∈ X0 ⊂ R and on the actions of players 1, . . . , N , and is given by a

function Ui : X0 × A → R, denoted Ui(x0, a1, . . . , aN). We assume that for every player

i ∈ {1, . . . , N}, Ui is X0 × A-measurable on X0 × A, where X0 denotes the Borel sigma-

algebra on X0. Moreover, (for the smaller set T0 ⊂ X0,) we assume that for every x0 ∈ T0,

Ui(x0, ·) is continuous on A, and that |Ui| ≤ Φi on T0 × A for some Φi ∈ L1(T0, T0, φ̃0),

where T0 is the Borel sigma-algebra on T0, φ̃0 is the normalized density on T0 derived from

φ0, as usual, by setting φ̃0 =
1∫

T0
φ0(x0)λ(dx0)

φ0 on T0 and zero otherwise, and L1(T0, T0, φ̃0)

is the corresponding space of integrable functions.

The payoffs here are very general with only mild assumptions related to continuity,

measurability, and integrability. In particular, there are no requirements related to su-

permodularity, increasing differences, or state monotonicty. This allows for arbitrary

strategic heterogeneity across players.

Moreover, the continuity and integrability conditions are only required on T0 ×A and

not the potentially larger X0×A. This allows for cases where payoffs are integrable when

realizations of state of the world are restricted to the smaller set T0 but not necessarily

on the possibly unbounded larger set X0.

Dominance regions in a global game are assumed as follows. There are real numbers

x < x such that for x0 < x the strictly dominant action for each player i ∈ {1, . . . , N} is

5In particular, this implies that
∫

T0

φ0(x0)λ(dx0) > 0, where λ is Lebesgue measure on R.
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to play ai ∈ Ai and for x0 > x the strictly dominant action for each player i is to play

ai ∈ Ai. Here, ai and ai are arbitrarily fixed actions in Ai. The dominance regions are

denoted D1 = (−∞, x] and D2 = [x,∞).

A global game is a collection Γ = ((Ai,Ai)
N
i=1, (εi)

N
i=0, (Ui)

N
i=1, (D1, D2)), with finitely

many players, indexed i = 1, . . . , N , where (Ai,Ai)
N
i=1 are action spaces for the players,

(εi)
N
i=0 formalizes the structure of uncertainty, (Ui)

N
i=1 are payoffs, and (D1, D2) are dom-

inance regions.

In a global game, the joint information structure is defined as follows. For ease of

notation, we introduce player 0 (“chance” or “nature”) with type space X0 as above,

endowed with the Borel sigma-algebra X0, and density φ0. The type space of players i =

1, . . . , N is Xi = {x0 + ξ ∈ R : x0 ∈ X0 and ξ ∈ [−ǫ, ǫ]} with the Borel sigma-algebra Xi.

The joint type space is given by X = ×N
i=0Xi with the product sigma-algebra X = ×N

i=0Xi.

The joint density on X is given by φ(x0, x1, . . . , xN) = φ0(x0)φ1(x1−x0) · · ·φN(xN −x0),

so that the measure governing the random behavior of joint information on X , denoted

η, is given by η(B) =
∫

B
φ(x)λN+1(dx), where λN+1 is Lebesgue measure on R

N+1 and

B ∈ X . The joint information structure is ((Xi,Xi)
N
i=0, η).

A behavioral strategy for player i = 1, . . . , N is a function si : Xi × Ai → [0, 1]

such that (1) for every xi ∈ Xi, si(xi, ·) is a probability measure on Ai, and (2) for every

Borel set B ∈ Ai, si(·, B) is Xi-measurable on Xi. The set of such strategies is denoted
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Si. Given a profile of strategies (s1, . . . , sN), the expected payoff to player i = 1, . . . , N is

Ui(s1, . . . , sN) =

∫

X

[
∫

A1

· · ·

∫

AN

Ui(x0, a)s1(x1; da1) . . . sN(xN ; daN)

]

η(dx).

An equilibrium in a global game Γ is a profile of behavioral strategies (s∗1, . . . , s
∗
N)

such that for every player i = 1, . . . , N , s∗i is a best response of player i to the strategies

of the other players s∗−i.

3 Existence of Equilibrium

Notice that an equilibrium in a global game is a Bayesian-Nash equilibrium in the related

incomplete information game. Using dominance regions, we may further reduce the search

for a global game equilibrium to a search for a Bayesian-Nash equilibrium with restricted

type spaces, as follows.

Consider T0 = (x − ǫ, x + ǫ) along with its Borel sigma-algebra T0, as above, and

consider the normalized density φ̃0 on T0 derived from φ0, as usual, by setting φ̃0 =

1∫
T0

φ0(x0)λ(dx0)
φ0 on T0 and zero otherwise. As T0 ⊂ support(φ0), we may suppose that

for x0 ∈ T0, φ0(x0) > 0, and therefore,
∫

T0

φ0(x0)λ(dx0) > 0. It follows that for

x0 ∈ T0, φ̃0(x0) > 0. Define the restricted type space of player i = 1, . . . , N by Ti =

{x0 + ξ ∈ R : x0 ∈ T0 and ξ ∈ [−ǫ, ǫ]} = (x − 2ǫ, x + 2ǫ) with the Borel sigma-algebra

Ti. The restricted joint type space is given by T = ×N
i=0Ti with the product sigma-

algebra T = ×N
i=0Ti. The restricted joint density on T is given by φ̃(x0, x1, . . . , xN) =

φ̃0(x0)φ1(x1 −x0) · · ·φN(xN − x0), so that the measure governing the random behavior of
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joint information on T , denoted η̃, is given by η̃(B) =
∫

B
φ̃(x)λN+1(dx), where λN+1 is

Lebesgue measure on R
N+1 and B ∈ T . The restricted joint information structure

is ((Ti, Ti)
N
i=0, η̃).

In a global game Γ, a restricted behavioral strategy for player i = 1, . . . , N is a

function s̃i : Ti × Ai → [0, 1] such that (1) for every xi ∈ Ti, s̃i(xi, ·) is a probability

measure on Ai, and (2) for every Borel set B ∈ Ai, s̃i(·, B) is Ti-measurable on Ti. The

set of such strategies is denoted S̃i. Given a profile of restricted strategies (s̃1, . . . , s̃N),

the expected payoff to player i = 1, . . . , N is

Ũi(s̃1, . . . , s̃N) =

∫

T

[
∫

A1

· · ·

∫

AN

Ui(x0, a)s1(x1; da1) . . . sN(xN ; daN)

]

η̃(dx).

The restricted incomplete information game is given by ((Ũi, S̃i, Ti, Ti)
N
i=0, η̃),

with N+1 players, where as usual, we may add player 0 as “chance” with type space given

by (T0, T0), a singleton strategy space, and payoffs set identically to zero (therefore, no

strategic motive). A Bayesian-Nash equilibrium in the restricted incomplete information

game can be extended to a global game equilibrium, as follows.

Theorem 1. Let Γ be a global game and ((Ũi, S̃i, Ti, Ti)
N
i=0, η̃) be the corresponding re-

stricted incomplete information game.

Every Bayesian-Nash equilibrium in the restricted incomplete information game can be

extended to a global game equilibrium in Γ.

Proof. Suppose (s̃∗0, s̃
∗
1, . . . , s̃

∗
N) is a Bayesian-Nash equilibrium in the restricted incom-

plete information game. For each player i = 1, . . . , N , extend s̃∗i to s∗i on Xi × Ai, as
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follows. For xi ∈ Ti, let s
∗
i (xi, ·) = s̃∗i (xi, ·). Now consider xi ∈ Xi \Ti. As case 1, suppose

that xi is a lower bound for Ti = (x− 2ǫ, x+ 2ǫ). Then xi is in the dominance region D1

for player i, and the strictly dominant action for player i in this region is ai. Let s
∗
i (xi, ·)

be the degenerate probability measure on ai. As case 2, suppose that xi is an upper bound

for Ti = (x − 2ǫ, x + 2ǫ). Then xi is in the dominance region D2 for player i, and the

strictly dominant action for player i in this region is ai. Let s∗i (xi, ·) be the degenerate

probability measure on ai. Consider the strategy profile (0, s∗1, . . . , s
∗
N). It must be that

for every i = 0, 1, . . . , N , s∗i is a best response to s∗−i. (Otherwise, it is not a best response

for some i = 1, . . . , N . In this case, we may modify s∗i on a set of positive measure and

do better against s∗−i. This set of positive measure may be taken to be a subset of Ti,

because on its complement, player i is playing strictly dominant actions. Using the same

modification for s̃∗i and the fact that φ̃ is a positive scalar multiple of φ yields a violation

of the fact that s̃∗i is a best response to s̃∗−i.) Therefore, (s∗1, . . . , s
∗
N) is a global game

equilibrium.

This result reduces the problem of finding a global game equilibrium to that of finding

a Bayesian-Nash equilibrium in the corresponding restricted incomplete information game.

This can be done as follows.

Notice that the information structure in a global game has the property that informa-

tion of each player is correlated with that of every other player, because they all depend

on the realization of the same underlying state of the world x0. In particular, if there is a

higher realization of state of the world, then each player’s observation is distributed over
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a higher region as well.

This correlation can potentially violate an important assumption (requiring absolute

continuity of the joint information measure with respect to the product of its marginals)

required in the general proofs of existence of an equilibrium in games of incomplete in-

formation (such as in Balder (1988) and Milgrom and Weber (1985)).6 Recall that when

there is correlation, a joint information measure is not necessarily absolutely continu-

ous with respect to the product of its marginals. For example, consider the unit square

[0, 1]× [0, 1] and the joint measure given by the uniform distribution on the diagonal. In

this case, each marginal measure is given by the uniform distribution on [0, 1]. The prod-

uct of the marginals assigns measure zero to the diagonal, but the joint measure assigns

measure 1 to the diagonal.

We show that the presence of correlation in the information structure of a global

game does not violate this assumption, that is, the measure η̃ in the restricted joint

information structure ((Ti, Ti)
N
i=0, η̃) is absolutely continuous with respect to the product

of the marginals derived from η̃.

Theorem 2. Let Γ be a global game and ((Ti, Ti)
N
i=0, η̃) be the corresponding restricted

information structure. The joint measure η̃ is absolutely continous with respect to the

product of its marginals.

Proof. Recall that η̃(B) =
∫

B
φ̃(x)λN+1(dx), where φ̃(x0, x1, . . . , xN ) = φ̃0(x0)φ1(x1 −

6Indeed, Karp, Lee, and Mason (2007) mention this violation to motivate their alternative approach

(confer page 160 of their paper).
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x0) · · ·φN(xN − x0) on T = ×N
i=0Ti, λ

N+1 is Lebesgue measure on R
N+1 and B ∈ T .

For each i = 0, 1, . . . , N , let the marginal density on Ti derived from φ̃ be given by

fi(xi) =
∫

φ̃(xi, x−i)λ
N (dx−i), where λ

N is Lebesgue measure on R
N , and the correspond-

ing marginal measure is given by µi(B) =
∫

B
fi(xi)λ(dx), where λ is Lebesgue measure on

R and B ∈ Ti. Let the product of the marginal measures be denoted µ = µ0×µ1×· · ·×µN

and the product of the marginal densities be denoted f(x) = f0(x0)f1(x1) · · ·fN(xN ).

Thus, µ(B) =
∫

B
f(x)λN+1(dx).

To see that η̃ is absolutely continuous with respect to µ, we first show that support(φ̃) ⊂

support(f), as follows. It is immediate from the definition of an information structure

that support(φ̃) ⊂ T = ×N
i=0Ti. The inclusion T ⊂ support(f) can be seen as follows.

For i = 0, and for every x0 ∈ T0, f0(x0) = φ̃0(x0) =
1∫

T0
φ0(x0)λ(dx0)

φ0(x0) > 0, because

T0 ⊂ support(φ0) and
∫

T0

φ0(x0)λ(dx0) > 0. Moreover, it can be seen that for each player

i ∈ {1, . . . , N}, and for every xi ∈ Ti, fi(xi) > 0, as follows. Fix xi ∈ Ti arbitrarily, and

notice that Fubini’s theorem implies that fi(xi) =
∫

φ(xi, x−i)λ
N(dx−i) =

∫

T0

φ̃0(x)φi(x1−

x)λ(dx). As xi ∈ Ti, let x0 ∈ T0 and ξ ∈ [−ǫ, ǫ] be such that xi = x0+ξ. As case 1, suppose

ξ ∈ (−ǫ, ǫ). In this case, |xi − x0| < ǫ. As T0 is open and absolute value is a continuous

function, there is δ > 0 such that [x0 − δ, x0 + δ] ⊂ T0 and for every x ∈ [x0 − δ, x0 + δ],

|xi − x| < ǫ. In other words, for every x ∈ [x0 − δ, x0 + δ] ⊂ T0, xi − x ∈ [−ǫ, ǫ]. Using

full support of φi, it follows that for every x ∈ [x0 − δ, x0 + δ] ⊂ T0, φ0(x)φi(xi − x) > 0.

Consequently, fi(xi) =
∫

T0

φ̃0(x)φi(x1 − x)λ(dx) ≥
∫

[x0−δ,x0+δ]
φ̃0(x)φi(x1 − x)λ(dx) > 0.

As case 2, suppose ξ = −ǫ. In this case, xi − x0 = −ǫ. As T0 is open, there is δ > 0
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such that [x0 − δ, x0] ⊂ T0 and for every x ∈ [x0 − δ, x0], −ǫ ≤ xi − x ≤ 0. Using

full support of φi, it follows that for every x ∈ [x0 − δ, x0] ⊂ T0, φ̃0(x)φi(xi − x) > 0.

Again, fi(xi) =
∫

T0

φ̃0(x)φi(x1 − x)λ(dx) ≥
∫

[x0−δ,x0]
φ̃0(x)φi(x1 − x)λ(dx) > 0. Similarly,

in the final case, when ξ = −ǫ, we may again show that fi(xi) > 0. As xi is arbitrary,

we conclude that for every xi ∈ Ti, fi(xi) > 0. From this, it follows that for every

x ∈ T = ×N
i=0Ti, f(x) = f0(x0)f1(x1) · · ·fN (xN) > 0, and therefore, T ⊂ support(f).

Thus, support(φ̃) ⊂ support(f).

To see that η̃ is absolutely continuous with respect to µ, fix B ∈ T arbitrarily and

suppose µ(B) =
∫

B
f(x)λN+1(dx) = 0. Then either λN+1(B) = 0 or for λN+1-a.e. x ∈ B,

f(x) = 0. In the first case, λN+1(B) = 0 implies that η̃(B) =
∫

B
φ̃(x)λN+1(dx) = 0. In the

second case, if for λN+1-a.e. x ∈ B, f(x) = 0, then support(φ̃) ⊂ support(f) implies that

for λN+1-a.e. x ∈ B, φ̃(x) = 0, from which it follows that η̃(B) =
∫

B
φ̃(x)λN+1(dx) = 0.

Consequently, η̃ is absolutely continuous with respect to µ.

In fact, this proof can be extended to show that in a global game Γ with joint infor-

mation structure ((Xi,Xi)
N
i=0, η), η is absolutely continuous with respect to the product

of its marginals. For completeness, the proof is given in the appendix.7

Theorems 1 and 2 above, in conjunction with Balder’s theorem, can be used to prove

existence of equilibrium in a global game, as follows.

7As a side remark, notice that the counter-example above based on the uniform joint measure on

the diagonal of the unit square is ruled out here, because the support of the errors is non-trivial, and

therefore, the joint measure lives on a set of positive measure with respect to the product of its marginals.
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Theorem 3. Every global game has an equilibrium.

Proof. Consider a global game Γ and consider the corresponding restricted incomplete

information game ((Ũi, S̃i, Ti, Ti)
N
i=0, η̃). For this incomplete information game, notice that

the assumptions on payoffs guarantee that (1) Ui is T0 × A-measurable on T0 × A, (2)

Ui(x0, ·) is continuous on A for every x0 ∈ T0, and (3) |Ui| ≤ Φi on T0 × A for some

Φi ∈ L1(T0, T0, φ0). Moreover, for every i = 0, . . . , N , Ai is a compact metric space. Fur-

thermore, the previous result shows that the joint measure η̃ is absolutely continuous with

respect to the product of its marginals. Consequently, the conditions in Balder’s theorem

(1988, page 273) are satisfied. Therefore, there exists a profile of strategies (s̃∗0, s̃
∗
1, . . . , s̃

∗
N)

that is a Bayesian-Nash equilibrium in this restricted incomplete information game. Using

theorem 1, we may extend this profile to a global game equilibrium (s∗1, . . . , s
∗
N) in Γ.

Theorem 3 shows that there is a global games equilibrium in a large class of global

games without the restriction of strategic complementarity. As interest in global games

moves beyond cases with strategic complements, our result provides a general framework

in which the global games method is well-defined. This provides a foundation for the

study of equilibrium behavior in global games with strategic heterogeneity.

A class of global games for which existence of equilibrium is not known generally is

one that has both strategic complements and substitutes. These include games that have

both complementarity and congestion. Intuitively, when a smaller number of (or smaller

proportion of) competitors are taking one action, it may be in a given player’s best interest
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to also take that action (strategic complements), but if a large number (or proportion) of

competitors are taking the same action, it may be in a given player’s best interest to take

the opposite action, capturing a type of congestion effect.

Karp, Lee, and Mason (2007) study a version of such a game, modeled as follows.

Suppose there are finitely many players, indexed i = 1, . . . , N , (N ≥ 2, )8 each considering

an action in Ai = {0, 1} (endowed with the discrete topology and sigma-algebra). The

payoff of each player depends on an underlying state of the world x0 ∈ R and on the

proportion of other players who play action 1, and is given by

Ui(x0, a1, . . . , aN ) =

(

x0 + f

(

1

N − 1

N
∑

j=1,j 6=i

aj

))

ai,

where f : [0, 1] → R is a continuous function.9 Strategic interaction can vary depending

on the response of f to the proportion of others playing a given action.

Dominance regions are assumed as usual. There are real numbers x < x such that

for x0 < x the strictly dominant action for every player is to play 0 and for x0 > x the

strictly dominant action for every player is to play 1.

The information structure is given as follows. Let ε0 be a random variable distributed

uniformly on X0 = (x − ǫ, x + ǫ) with density φ0. Notice that in this case, X0 = T0.

Given an underlying state of the world x0, each player i observes xi = x0 + εi, where

εi are identically distributed uniformly on [−ǫ, ǫ], with density φi, and (εi)
N
i=0 are jointly

independent. Finally, for each player i = 1, . . . , N , as Ai are finite and f is continuous, it

8Karp, Lee, and Mason (2007) assume a continuum of symmetric players.
9Karp, Lee, and Mason (2007) assume that f is an analytic function, hence smooth.
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follows that Ui is continuous and bounded on X0 × A and is integrable.

These components define a global game. By theorem 3, this finite-player version of

the global game in Karp, Lee, and Mason (2007) has a global game equilibrium.

In fact, the same result holds for more general games with both complementarity and

congestion. The action spaces can be compact metric spaces, the interactions are not

required to be aggregative, and both the prior distribution and the error distributions can

be more general.

4 Conclusion

We formulate a model of a global game with general payoff structures and prove existence

of equilibrium in this model. This provides a foundation for the study of equilibrium

behavior in more general global games, especially as research in global games moves

beyond cases with strategic complements.

Our proof of existence relies on relating a global game to its corresponding incomplete

information game, and further focusing on the corresponding restricted incomplete infor-

mation game. As an important step in the proof, we show that in every global game,

even though the information of each player is correlated, the joint information measure

(either in the restricted incomplete information game or in the global game) is absolutely

continuous with respect to the product of its marginals.
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As an application, our result can be used to show that an equilibrium exists in a

class of global games with both complementarity and congestion. In particular, there

is a global game equilibrium in the finite-player version of the complements-congestion

model in Karp, Lee, and Mason (2007), thus addressing a gap in the proof of equilibrium

existence documented in Hoffmann and Sabarwal (2015).

We acknowledge that the problems of limit uniqueness and noise independence remain

open in the general case. Existence of equilibrium provides a first step to other researchers

in this regard.
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Appendix

Theorem 4. Let Γ be a global game and ((Xi,Xi)
N
i=0, η) be the corresponding joint infor-

mation structure. The joint measure η is absolutely continous with respect to the product

of its marginals.

Proof. Recall that η(B) =
∫

B
φ(x)λN+1(dx), where φ(x0, x1, . . . , xN ) = φ0(x0)φ1(x1 −

x0) · · ·φN(xN − x0) on X = ×N
i=0Xi, λ

N+1 is Lebesgue measure on R
N+1 and B ∈ X .

For each i = 0, 1, . . . , N , let the marginal density on Xi derived from φ be given by

fi(xi) =
∫

φ(xi, x−i)λ
N (dx−i), where λ

N is Lebesgue measure on R
N , and the correspond-

ing marginal measure is given by µi(B) =
∫

B
fi(xi)λ(dx), where λ is Lebesgue measure on

R and B ∈ Xi. Let the product of the marginal measures be denoted µ = µ0×µ1×· · ·×µN

and the product of the marginal densities be denoted f(x) = f0(x0)f1(x1) · · ·fN(xN ).

Thus, µ(B) =
∫

B
f(x)λN+1(dx).

To see that η is absolutely continuous with respect to µ, we first show that support(φ) ⊂

support(f), as follows. It is immediate from the definition of an information structure

that support(φ) ⊂ X . The inclusion X ⊂ support(f) can be seen as follows.

By definition, for i = 0, and for every x0 ∈ X0, f0(x0) = φ0(x0) > 0. Moreover,

it can be seen that for each player i ∈ {1, . . . , N}, and for every xi ∈ Xi, fi(xi) >

0, as follows. Fix xi ∈ Xi arbitrarily, and notice that Fubini’s theorem implies that

fi(xi) =
∫

φ(xi, x−i)λ
N(dx−i) =

∫

X0

φ0(x)φi(x1 − x)λ(dx). As xi ∈ Xi, let x0 ∈ X0 and

ξ ∈ [−ǫ, ǫ] be such that xi = x0 + ξ. As case 1, suppose ξ ∈ (−ǫ, ǫ). In this case,

|xi − x0| < ǫ. As X0 is open and absolute value is a continuous function, there is δ > 0

such that [x0 − δ, x0 + δ] ⊂ X0 and for every x ∈ [x0 − δ, x0 + δ], |xi − x| < ǫ. In other

words, for every x ∈ [x0 − δ, x0 + δ] ⊂ X0, xi − x ∈ [−ǫ, ǫ]. Using full support of φi,

it follows that for every x ∈ [x0 − δ, x0 + δ] ⊂ X0, φ0(x)φi(xi − x) > 0. Consequently,

fi(xi) =
∫

X0

φ0(x)φi(x1 − x)λ(dx) ≥
∫

[x0−δ,x0+δ]
φ0(x)φi(x1 − x)λ(dx) > 0. As case 2,

suppose ξ = −ǫ. In this case, xi − x0 = −ǫ. As X0 is open, there is δ > 0 such that
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[x0 − δ, x0] ⊂ X0 and for every x ∈ [x0 − δ, x0], −ǫ ≤ xi − x ≤ 0. Using full support

of φi, it follows that for every x ∈ [x0 − δ, x0] ⊂ X0, φ0(x)φi(xi − x) > 0. Again,

fi(xi) =
∫

X0

φ0(x)φi(x1 − x)λ(dx) ≥
∫

[x0−δ,x0]
φ0(x)φi(x1 − x)λ(dx) > 0. Similarly, in

the final case, when ξ = −ǫ, we may again show that fi(xi) > 0. As xi is arbitrary,

we conclude that for every xi ∈ Xi, fi(xi) > 0. From this, it follows that for every

x ∈ X = ×N
i=0Xi, f(x) = f0(x0)f1(x1) · · · fN(xN ) > 0, and therefore, X ⊂ support(f).

Thus, support(φ) ⊂ support(f).

To see that η is absolutely continuous with respect to µ, fix B ∈ X arbitrarily and

suppose µ(B) =
∫

B
f(x)λN+1(dx) = 0. Then either λN+1(B) = 0 or for λN+1-a.e. x ∈ B,

f(x) = 0. In the first case, λN+1(B) = 0 implies that η(B) =
∫

B
φ(x)λN+1(dx) = 0. In the

second case, if for λN+1-a.e. x ∈ B, f(x) = 0, then support(φ) ⊂ support(f) implies that

for λN+1-a.e. x ∈ B, φ(x) = 0, from which it follows that η(B) =
∫

B
φ(x)λN+1(dx) = 0.

Consequently, η is absolutely continuous with respect to µ.
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