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Abstract

In a 2007 paper, “A global game with strategic substitutes and complements”, by Karp,
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1 Introduction

The global games method, as proposed by Carlsson and Van Damme (1993), shows that

in some classes of games with strategic complements, the issue of multiple equilibria can

be resolved with a slight relaxation of common knowledge about an underlying funda-

mental.1 Carlsson and Van Damme (1993) work with a 2-player, 2-action coordination

game. Morris and Shin (2003) extend this to the case of infinitely many players. Both

show that when players observe private, noisy signals about a fundamental, then iterated

deletion of strictly dominant strategies produces an “essentially unique” Bayesian-Nash

equilibrium strategy, which is monotone in the signal.

Karp, Lee, and Mason (2007) (KLM from here on) investigate a model similar to that

of Morris and Shin (2003), but allow for congestion effects by introducing varying degrees

of strategic substitutes in the model.2 In general, games with strategic substitutes are

harder to work with. In particular, a finite-player game with strategic substitutes does

not necessarily have a pure-strategy Nash equilibrium (confer Roy and Sabarwal (2012)).

Moreover, in a finite-player game with both strategic complements and substitutes, a

pure-strategy Nash equilibrium does not necessarily exist (confer Monaco and Sabarwal

(2015)).

KLM consider a specialized version of games that may have both strategic comple-

ments and substitutes and focus on symmetric Bayesian-Nash equilibrium. One of their

results (Proposition 1, page 161 in their paper) is that in the Bayesian game associated

with the underlying complete information game, a Bayesian-Nash equilibrium always ex-

ists. In this note, we document a gap in their proof of this statement and we present

an alternative proof of existence of equilibrium for an (arbitrarily large but) finite player

1Recall that games with strategic complements formalize the idea that observing a higher action from

an opponent makes it more beneficial for a given player to also choose a higher action. In these cases,

multiple equilibria arise easily.
2Recall that games with strategic substitutes formalize the idea that observing a higher action from

an opponent makes it more beneficial for a given player to choose a lower action.
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version of their model. This may be motivated as an approximation of the model with a

continuum of players, as usual.

2 KLM’s Model

There is a continuum of agents of mass 1, indexed i ∈ [0, 1], each considering an action

in {0, 1}. There is a payoff-relevant state given by θ ∈ R. Each player i observes a

private signal of the state xi = θ + ηi, where ηi is a random variable drawn uniformly

from [−ǫ, ǫ], ǫ > 0, and then chooses an action. KLM define the strategy space as the set

of all distributional strategies yi so that for any signal x ∈ R, yi(x) gives the probability

of choosing action 1.3 The strategy space for a player is denoted Y and is endowed with

the sup-norm metric: for every y, y′ ∈ Y ,

d(y, y′) = sup
x∈R

|y(x)− y′(x)| .

KLM assume that for a given player i, the actions of other players affect player i only

through the proportion of other players that play 1. This proportion is denoted α ∈ [0, 1].

In the complete information setting, utility depends on the underlying state θ and on α

as follows

Ui(θ, α) = θ + f(α),

where f : [0, 1] → R is an interaction function which captures the congestion effect.

The function f is assumed to be an analytic function. When f is everywhere increasing,

the game is one of strategic complements. When f is decreasing, there are strategic

substitutes. When f is neither always increasing nor always decreasing, we have both

strategic complements and substitutes, depending on the slope of f .

3KLM term these distributional strategies, but more precisely, they are behavioral strategies. As

noted in Milgrom and Weber (1985), there is a simple rule to transform one into another. In this section,

to aid reference to KLM, we shall defer to their terminology, although regardless of terminology, the set

of such objects is shown below to be not sup-norm compact.
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With incomplete information, KLM restrict attention to symmetric equilibrium. In

particular, if each of player i’s opponents plays the same strategy y, then the proportion

of individuals choosing action 1 given realization of state θ is

α(θ, y) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

y(z)dz.

When player i observes signal x, expected utility of player i from playing yi given others

are playing y is

ui(x, yi, y) =

(

1

2ǫ

∫ x+ǫ

x−ǫ

(θ + f(α(θ, y)))dθ

)

yi(x).

In this setting, KLM state the following proposition.

Proposition 1 (KLM, page 161). In the game of incomplete information, there is an

equilibrium in distributional strategies.

KLM provide a proof of Proposition 1 on page 168 in their paper, invoking the fixed

point theorem in Glicksberg (1952). Glicksberg’s theorem requires compact strategy

spaces. KLM use the following paragraph to justify that the strategy space is compact in

the sup-norm topology:

From Milgrom and Weber (1985, Theorem 1), each player’s set of distribu-

tional strategies is a compact, convex metric space in the weak topology. In

order to establish continuity of expected payoffs, we shall use the sup-norm

metric on the set of distributional strategies. The topology induced by this

metric is necessarily stronger than the weak topology, since the weak topol-

ogy ensures continuity only of linear functionals. Hence each player’s set of

distributional strategies remains compact under this metric.

The last sentence, starting with “Hence each player’s...”, is not justified by the previous

statements. Certainly, a topology stronger than the weak topology may ensure continuity

of functions other than just linear functionals. But that means more open sets, and hence
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more open covers to test for compactness. Therefore, compactness is harder to satisfy

under stronger topologies. We present a class of counter-examples to the claim that the

set of strategies used in KLM is compact in the sup-norm topology.

Claim 1. The set Y of player i’s strategies is not compact in the sup-norm metric.

Proof. Suppose to the contrary that Y is compact in the sup-norm metric. Fix ǫ ∈ (0, 1
2
)

arbitrarily, and consider the open cover of Y given {B(y, ǫ) : y ∈ Y }, where each B(y, ǫ) is

the open ball of radius ǫ according to the sup-norm metric. Let {B(yn, ǫ) : n = 1, . . . N}

be a finite subcover. Fix an arbitrary collection of points {xn}
N

n=1 in R and a strategy

zi ∈ Y that satisfies

zi(xn) ∈











[0, yni (xn)− ǫ) if yni (xn) > ǫ, and

(yni (xn) + ǫ, 1] if yni (xn) ≤ ǫ.

Then for each n, either zi(xn) > yni (xn)+ǫ or zi(xn) < yni (xn)−ǫ, so that |zi(xn)− yni (xn)| ≥

ǫ. Therefore, for each n,

d(zi, y
n
i ) = sup

x∈R

|zi(x)− yni (x)| ≥ |zi(xn)− yni (xn)| ≥ ǫ,

so that for each n, zi 6∈ B(yni , ǫ). This implies that zi 6∈
N
∪

n=1
B(yni , ǫ), a contradiction to the

fact that {B(yn, ǫ) : n = 1, . . .N} is a finite subcover. Consequently, Y is not compact in

the sup-norm metric.

In their discussion (KLM, page 160), KLM indicate that the existence proof in Milgrom

and Weber (1985) does not apply because of a violation of the “absolutely continuous

information” condition, but that it can be overcome using the simplifications in their

model. In particular, they show that expected utility is continuous in the sup-norm

metric (page 168-169) and combined with a strategy space that is compact in the sup-

norm metric and is convex, Glicksberg’s theorem may be applied using the sup-norm

metric. The claim above shows that the strategy space is not compact in the sup-norm

metric, and therefore, the approach in KLM is not entirely correct.
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In the next section, we prove existence of equilibrium in a finite player version of the

global game in KLM, using a result due to Balder (1988).

3 Equilibrium Existence

Let’s recall the setting in Balder (1988). Consider a game with finitely many players,

indexed i = 1, . . . , N . Each player i has a type space Ti with a sigma-algebra Ti, and a

compact, metric action space Ai with the Borel sigma-algebra Ai. The product spaces

are denoted T = ×N
i=1Ti, T = ×N

i=1Ti, A = ×N
i=1Ai, and A = ×N

i=1Ai. Each player i has a

payoff function Ui : T × A → R. Let η be a probability measure on (T, T ) that governs

the random behavior of joint information and for each i, let ηi be the i-th marginal of η

on Ti that governs the private information for player i.

A behavioral strategy for player i is a function si : Ti×Ai → [0, 1] such that (1) si(ti, ·)

is a probability measure on Ai, for every ti ∈ Ti, and (2) si(·, B) is Ti-measurable on Ti,

for every Borel set B ∈ Ai. Given a profile of strategies (s1, . . . , sN), the expected payoff

to player i is

Ei(s1, . . . , sI) =

∫

T

[
∫

A1

· · ·

∫

AN

Ui(t, a)s1(t1; da1) . . . sN (tN ; daN)

]

η(dt).

In this setting, a (Bayesian-Nash) equilibrium in behavioral strategies is known to exist

under the following conditions.

Theorem (Balder (1988), page 273). Suppose for each player i = 1, · · · , N ,

1. Ui is T ⊗ B(A)-measurable on T ×A,

2. Ui(t, ·) is continuous on A for every t ∈ T ,

3. |Ui| ≤ ϕ on T ×A for some ϕ ∈ L1(T, T , η),

4. Ai is a compact metric space, and

5



5. η is absolutely continuous with respect to η1 × η2 × · · · × ηN (the product measure

derived from the marginals).

Then there exists an equilibrium in behavioral strategies.

We show this theorem applies to a finite player version of KLM, as follows. Suppose

there are finitely many players, indexed i = 1, . . . , N , (N ≥ 2, ) each considering an action

in Ai = {0, 1} (endowed with the discrete topology and sigma-algebra). The payoff of

each player depends on an underlying state of the world x0 ∈ R and on the proportion of

other players who play action 1, and is given by

Ui(x0, a1, . . . , aN ) =

(

x0 + f

(

1

N − 1

N
∑

j=1,j 6=i

aj

))

ai,

where f : [0, 1] → R is a continuous function. Similar to KLM, dominance regions are

assumed as follows: there are real numbers x < x such that for x0 < x the strictly

dominant action for every player is to play 0 and for x0 > x the strictly dominant action

for every player is to play 1.

The information structure is given as follows. Let ε0 be a random variable distributed

uniformly on [x, x] with density φ0. Given an underlying state of the world x0, each

player i observes xi = x0 + εi, where εi are identically distributed uniformly on [−ǫ, ǫ],

with density φi, and (εi)
N
i=0 are jointly independent. The type space of players i = 1, . . . , N

is Ti = [x − ǫ, x + ǫ] with the Borel sigma-algebra, Ti. To make an explicit comparsion

to Balder’s theorem, we introduce player 0 (“chance” or “nature”) with a trivial action

space (a singleton), with type space T0 = [x, x] with the Borel sigma-algebra T0, and with

payoffs set identically to zero. In this case, the joint density of the information structure

is given by φ(x0, x1, . . . , xN ) = φ0(x0)φ1(x1 − x0) · · ·φN(xN − x0), so that the measure η

on T is given by η(B) =
∫

B
φ(x)λN+1(dx), where λN+1 is Lebesgue measure on R

N+1 and

B ∈ T .

Given a profile of strategies (s0, s1, . . . , sN), the expected payoff to player i = 1, . . . , N
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is

Ei(s0, s1, . . . , sI) =

∫

T

[
∫

A1

· · ·

∫

AN

Ui(x0, a1, . . . , aN)s1(x1; da1) . . . sI(xN ; daN)

]

η(dx),

and the expected payoff to player 0 is identically zero. Notice that Ei does not depend

on s0.

Corollary 1. In the finite player version of KLM, there is an equilibrium in behavioral

strategies.

Proof. Conditions (1)-(4) in Balder’s theorem hold, because for each player i, Ai is finite,

Ti is compact, and Ui is continuous on T×A. To see that (5) holds, for each i = 0, 1, . . . , N ,

let the marginal density on Ti derived from φ be given by fi(xi) =
∫

φ(xi, x−i)λ
N(dx−i),

where λN is Lebesgue measure on R
N , and the corresponding marginal measure is given

by ηi(B) =
∫

B
fi(xi)λ(dx), where λ is Lebesgue measure on R and B ∈ Ti. Let the

product of the marginal measures be denoted µ = η0 × η1 × · · · × ηN and the product of

the marginal densities be denoted f . Thus, µ(B) =
∫

B
f(x)λN+1(dx).

To see that η is absolutely continuous with respect to µ, notice that support(φ) ⊂

T = [x, x] × [x − ǫ, x + ǫ]N . Moreover, for every i = 0, . . . , N and for every xi ∈ Ti,

fi(xi) > 0, and therefore, T ⊂ support(f). Fix B ∈ T arbitrarily and suppose µ(B) =
∫

B
f(x)λN+1(dx) = 0. Then either λN+1(B) = 0 or for λN+1-a.e. x ∈ B, f(x) = 0. In the

first case, λN+1(B) = 0 implies that η(B) =
∫

B
φ(x)λN+1(dx) = 0. In the second case, for

λN+1-a.e. x ∈ B, f(x) = 0 implies that for λN+1-a.e. x ∈ B, φ(x) = 0, which implies that

η(B) =
∫

B
φ(x)λN+1(dx) = 0. Consequently, η is absolutely continuous with respect to

µ. An application of Balder’s theorem now yields an equilibrium in behavioral strategies.

As usual, for every player i = 1, . . . , N , the equilibrium strategy can be extended from

Ti to R by playing the strictly dominant action on the complement of Ti. Notice that the

equilibrium shown here is in the standard setting with an ex-ante evaluation of payoffs.

The global games equilibrium is defined with an interim evaluation of payoffs. An interim

equilibrium can be derived from the ex-ante equilibrium as follows.

7



Consider an ex-ante equilibrium in behavioral strategies (s∗0, s
∗
1, . . . , s

∗
N). For each

player i = 1, . . . , N , define the conditional density on the types of others by φ̂i(x−i|xi) =

φ(xi,x−i)
fi(xi)

, for xi ∈ Ti, and the corresponding conditional measure on T−i by η̂i(B|xi) =
∫

B
φ̂i(x−i|xi)λ

N(dx−i). Ignoring the strategy of the chance player, we may re-write the

(ex-ante) expected payoff to player i = 1, . . . , N as

Ei(s
∗
1, . . . , s

∗
N) =

∫

Ti

Ei[s
∗
i (xi, 1), s

∗
−i|xi] ηi(dxi),

where Ei[s
∗
i (xi, 1), s

∗
−i|xi] =

∫

T
−i

∫

A
−i

Ui(x0, 1, a−i)s
∗
i (xi, 1)s

∗
−i(x−i, da−i)η̂i(dx−i|xi) is the

(conditional) expected payoff to player i from playing s∗i (xi, 1) conditional on receiving

signal xi, given others are playing s∗−i. Therefore, for every player i = 1, . . . , N and for

ηi-a.e. xi, Ei[ξ, s
∗
−i|xi] is maximized over [0, 1] at s∗i (xi, 1). On the set of ηi-measure

zero where s∗i (xi, 1) is not optimal, let player i re-optimize to find the payoff maximizing

probability and denote it ŝi(xi, 1), and then extend ŝi(·, 1) to all of Ti by setting it equal

to s∗i (·, 1) on the complement of this set.

In order to check that ŝi(·, 1) is Ti-measurable, consider the setB = {xi | ŝi(xi, 1) ∈ C},

for arbitrary Borel-measurable C ⊂ [0, 1]. Notice that the set Zi = {xi | s
∗
i (xi, 1) 6= ŝi(xi, 1)}

is a subset of a set of ηi-measure zero, hence is Ti-measurable and has ηi-measure zero.4

In particular, the set {xi | s
∗
i (xi, 1) ∈ C, ŝi(xi) 6∈ C} is Ti-measurable. Moreover, we know

that the set {xi | s
∗
i (xi, 1) ∈ C} is Ti-measurable, and therefore, the set

{xi | s
∗
i (xi, 1) ∈ C, ŝi(xi, 1) ∈ C} = {xi | s

∗
i (xi, 1) ∈ C}∩(Ti\{xi | s

∗
i (xi, 1) ∈ C, ŝi(xi, 1) 6∈ C})

is Ti-measurable, and consequently, the set

B = {xi | s
∗
i (xi, 1) ∈ C, ŝi(xi, 1) ∈ C} ∪ {xi | s

∗
i (xi, 1) 6∈ C, ŝi(xi, 1) ∈ C}

is Ti-measurable. Setting ŝi(xi, 0) = 1− ŝi(xi, 1), it follows that ŝi is a behavioral strategy.

Finally, the set Z = T0 × Z1 × · · · × ZN is a set of µ-measure zero, and therefore,

of η-measure zero, whence for every player i = 1, . . . , N , Z−i is a set of η̂i-measure

4We are implicitly assuming that Ti is a complete sigma-algebra and ηi is a complete measure. If not,

we may replace Ti and ηi by their completion, in the standard manner.
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zero. Therefore, for every i = 1, . . . , N , for every xi ∈ Ti, and for every ξ ∈ [0, 1],

Ei[ξ, s
∗
−i|xi] = Ei[ξ, ŝ−i|xi]. As ŝi(xi, 1) is optimal against s∗−i, it remains optimal against

ŝ−i, whence (ŝ1, . . . , ŝN) is an interim equilibrium in behavioral strategies.

Notice that the equilibrium shown here is for the case of (arbitrarily large but) finitely

many players and the function f measuring congestion effects is only assumed to be

continuous (not analytic). The equilibrium may or may not be symmetric. Searching

for symmetric equilibrium and/or moving to the continuum player case would require

modifications to Balder’s theorem. That requires additional results including delicate

measurability arguments, and remains an open question.
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