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Abstract

This paper analyzes the dynamical properties of monetary models
with regime switching. We start with the analysis of the evolution of
inflation when policy is guided by a simple monetary rule where coeffi-
cients switch with the policy regime. We rule out the possibility of a Hopf
bifurcation and demonstrate the existence of a period doubling bifurca-
tion. As a result, a small change in the parameters (e.g. a more active
policy response) can lead to a drastic change in the path of inflation. We
demonstrate that while the New Keynesian model with a current-looking
Taylor rule is not prone to bifurcations, a hybrid rule exhibits the same
pattern of period doubling bifurcations as the basic setup.
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1 Introduction

Monetary policy has seen drastic changes over the past decades. The 1970s were

plagued by high inflation along with slow economic growth while the Central

bank stayed relatively passive in their actions. With the appointment of Volcker,

the Federal Reserve shifted to a more active regime which helped to combat

high inflation rates present at the start of the 1980s. The following period of

moderate inflation along with stable economic growth has been coined the Great

Moderation. With the Great Recession as a result of the financial crises starting

in 2007, the Fed had to move aggressively.

This paper studies the dynamical behavior of standard macroeconomic models

where the monetary policy regime can switch over time. More specifically, the

policy regime follows a Markov chain with a fixed transition matrix. We are

interested in the qualitative behavior of the solution not only for one particular

calibration of the model but rather the change in the qualitative behavior of the

solution in response to changes in the parameterization.

The standard New Keynesian model is known to display bifurcations, i.e. changes

in the dynamical evolution of the variables of interest in response to changes in

parameters (see Barnett and Duzhak (2008) and Barnett and Duzhak (2010)).

The present paper investigates whether bifurcations are possible when regimes

can switch over time. The answer is a-priori not clear. The solution to the

model, in the simplest case inflation, evolves differently depending on the state

the regime is in. If the standard New Keynesian model displays a bifurcation

for a certain region of the parameter space, then the regime switching model

would visit this parameter combination only for one of the policy regimes while
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the occasional switch to another policy regime can stabilize the solution.

In the first section, we study a basic setup with exogenous real interest rates.

The monetary authority sets the nominal interest rate as a function of current in-

flation. However, the response coefficient varies depending on the policy regime

present at the time. The Fisher equation which links the nominal interest rate

to future inflation and the real interest rate provides the second relationship.

Combining the two, we get an equation that relates future inflation to current

inflation and the real interest rate. Taking the latter as given, we get a system

of two linear difference equations for inflation in the two regimes.

To perform bifurcation analysis, we study the matrix that governs the evolution

of current inflation to future inflation. The relevant properties of this matrix

are the sign and magnitude of the eigenvalues. Therefore, we set up and solve

the characteristic polynomial.

The solution demonstrates two main findings with respect to bifurcations. First,

for the basic setup, there is no possibility of a Hopf bifurcation which would

lead to a change from a stable to unstable solution (or vice versa) in response

to a (potentially tiny) change in the parameter values. Second, we show the

existence of a period doubling bifurcation. In this case, the solution can move

from a stable to a periodic solution where the periodicity doubles.

Next, we ask whether our analysis of this simple setup carries over to the stan-

dard New Keynesian model. There, the monetary policy rule is more involved.

The so-called Taylor rule (see Taylor (1999)) has two components which makes

the nominal interest rate a function of both inflation and the output gap. This

extra component can lead the solution to become less prone to changes in its
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characteristics.

Due to the increased dimensionality for the New Keynesian economy as opposed

ot the basic setup, we move to numerical methods. There, we start with a

single bifurcation point and trace out the entire bifurcation boundary through

the parameter space, i.e. the parameter combinations at which a bifurcation

occurs.

We find that the standard New Keynesian model with regime switching and a

standard Taylor rule does not exhibit any bifurcations for the range of feasible

parameter combinations. While we do find a bifurcation boundary, it lies outside

the relevant range of parameter values and points to negative coefficients where

standard economics tells us that they should be positive.

Lastly, we investigate whether a state-of-the-art hybrid Taylor rule exhibits any

bifurcations. We solve the same baseline New Keynesian model but use a Taylor

rule that allows for forward looking response to inflation. After going through

the same solution steps as in the previous case, we find that this model might

exhibit a period-doubling bifurcation. The ideas from the basic setup thus carry

over to the most prominent model of monetary policy.

Our paper relates to several strands of the literature. First, we use the New Key-

nesian model with regime switching and study its properties. The original New

Keynesian model has been developed into an important tool for monetary policy

(see Gali and Gertler (1999), Bernanke, Laubach, Mishkin and Posen (1999),

and Leeper and Sims (1994)). Andrews (1993) and Evans (1985) study mone-

tary policy with parameter instability. Davig and Leeper (2006) and Farmer,

Waggoner and Zha (2007) study determinacy when the Taylor rule is generalized
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to allow for regime switching. There is a literature on methods to determine

parameter instability in time series (see Hansen (1992) and Nyblom (1989)).

Economic models of regime switching had then been investigated previously in

different contexts, see e.g. Hamilton (1989) and Warne (2000). Clarida, Gali

and Gertler (1999), Sims and Zha (2006) and Groen and Mumtaz (2008) find

empirical support for regime switches in monetary policy.

Second, we relate and make use of a large literature on bifurcation analysis.

Seydel (1994) provides an overview on theoretical insights and applications

with respect to bifurcations. Benhabib and Nishimura (1979) is an early ex-

ample of the use of bifurcations in economics. More recently, Barnett and He

study various forms of economic settings (see Barnett and He (1999), Barnett

and He (2001), Barnett and He (2002), Barnett and He (2004), and Barnett

and He (2006)). The present authors investigate bifurcation properties of New

Keynesian models (see Barnett and Duzhak (2008) and Barnett and Duzhak

(2010)).

The rest of the paper is organized as follows. Section 2 discusses a simple

version with exogenous real interest rates where nominal inflation is determined

by a policy rule. Section 3 discusses the classic New Keynesian model with

regime switching and a current-looking Taylor rule. Section 4 studies the same

New Keynesian model with a hybrid Taylor rule where we pay attention to the

forward looking aspect of policy. Section 5 concludes.
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2 Dynamics with a simple monetary policy rule

Before studying a complete New Keynesian macroeconomic model, we study

the dynamical properties of the monetary policy rule. A Central banker is

implementing a policy where he reacts to inflation by changing an interest rate

according to:

it = α(st)πt,

where it is the nominal interest rate, α(st) a state-dependent coefficient which

changes with the policy regime st, and πt denotes the rate of inflation.

We assume that there are two possible realizations for the policy regime st. The

policy regime determines the reaction to inflation when setting the nominal

interest rate. This linear reaction function to inflation evolves stochastically

between two states - st = 1 and st = 2, so that

α(st) =


α1 for st = 1

α2 for st = 2

where αi denotes different parameters that govern the aggressiveness of policy

to combat inflation. As usual, an active policy regime is the one when policy

parameter αi > 1.

The policy regime evolves according to a Markov chain where the transitional

probabilities are given by the transition matrix with entries pij = P [st =

j|st−1 = i] where i, j = 1, 2. Following Davig and Leeper (2006), we study
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the dynamics of this simple monetary policy rule by using the Fisher equation

it = Etπt+1 + rt

, where rt is the real interest rate.

The Fisher equation links the nominal interest rate to expected inflation and

the real interest rate. We use this relationship to solve for expected inflation

which evolves as a function of the nominal and real interest rates. Plugging in

for the policy rule where the nominal interest rate is a function of inflation, we

end up with the following dynamic system

 Et[π1t+1]

Et[π2t+1]

 =

 p11 p12

p21 p22


−1  α1 0

0 α2


 π1t

π2t

−
 p11 p12

p21 p22


−1  rt

rt

 .
In this system, we take the real interest rate rt as exogenously given. A fully

specified macroeconomic model, which we study below, endogenizes this rate.

We now analyze this system of linear difference equations. Therefore, we replace

the matrix multiplying the vector of inflation by explicitly computing the inverse

of the transition matrix

 p11 p12

p21 p22


−1  α1 0

0 α2

 =
1

∆

 p22 −p12

−p21 p11


 α1 0

0 α2

 =

 p22α
∆

−p12α2

∆

−p21α1

∆
p11α2

∆


where ∆ denotes the determinant of the transition matrix.

As is standard in the (bifurcation) analysis of difference equations, we study

the economy with parameter certainty. Parameter certainty means that agents
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have no uncertainty about the level of inflation if a certain state occurs. This

does not mean that agents know the level of inflation in the following period:

The state of the policy regime determines inflation and the state of the policy

regime itself switches with given probabilities. Using parameter certainty, we

can replace the expected level of inflation conditional on a state occuring by the

level of inflation.

Putting parameter certainty and the adjustments to the matrix and its determi-

nant into our equation, we can restate the system of linear difference equations

as

 π1t+1

π2t+1

 =

 p22α
p11p22−p12p21

−p12α2

p11p22−p12p21
−p21α1

p11p22−p12p21
p11α2

p11p22−p12p21


 π1t

π2t

−
 p11 p12

p21 p22


−1  rt

rt

 .

Since the entries in the transition matrix are probabilities, we know that p11 +

p21 = 1 and p22 + p12 = 1. Hence, we can express ∆ = p11p22 − p12p21 as

∆ = p11 + p22 − 1.

The key component of the dynamical system is the coefficient on current infla-

tion. This Jacobian of the linear difference equation captures the evolution of

expected inflation and thus the link between real and nominal interest rates.

Given our calculations for the matrix on inflation and the determinant of the

transition matrix above, the Jacobian of the linear difference equation is given

by

J =

 p22α1

p11+p22−1
−p12α2

p11+p22−1

−p21α1

p11+p22−1
p11α2

p11+p22−1

 .
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To analyze the stability of the evolution of inflation and its dynamic properties,

we compute the eigenvalues for the Jacobian matrix. Therefore, we compute

the characteristic polynomial P (λ) which is quadratic in this case given by

P (λ) = λ2 − bλ+ c,

where the coefficients are

b =
p22α1 + p11α2

p11 + p22 − 1
and c =

α1α2

(p11 + p22 − 1)
.

The nature of the solution to quadratic equations is mainly determined by the

discriminant of the square root that appears in the formula. For the dynamics

of inflation, the determinant D is given by

D =

[
p22α1 + p11α2

p11 + p22 − 1

]2

− 4α1α2

(p11 + p22 − 1)
.

A negative discriminant D gives rise to complex roots whereas a positive dis-

criminant leads to real roots.

We are interested in the quality of the dynamics and whether bifurcation exists,

i.e. whether the quality of the solution can change drastically despite a negligible

change in the parameter values. For a Hopf bifurcation (Hopf (1942)) to exist,

the discriminant D must be negative, giving a rise to complex roots of the

characteristic polynomial. To check whether this is true, we need to solve for

D =
(p22α1 + p11α2)2

(p11 + p22 − 1)2
− (p11 + p22 − 1)4α1α2

(p11 + p22 − 1)2
< 0.
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Given that (p11 +p22−1)2 is always nonnegative, we can simplify the inequality

to

(p22α1 + p11α2)2 − (p11 + p22 − 1)4α1α2 < 0.

The term on the left-hand side stays positive within the feasible set of pa-

rameters. Therefore, a Hopf bifurcation which arises only when the roots are

complex, is not possible for this economy.

However we can check the possibility of a Period Doubling bifurcation. This

type of bifurcation occurs when the root equals negative one and it leads to

the doubling of the periodicity of the dynamic solution. The following Lemma

provides conditions for the existence of the Period Doubling bifurcation (see

Kuznetsov (1998), p. 415).

Lemma 1 (Period Doubling Bifurcation) Suppose that a one dimensional

system

x 7→ f(x, α), x ∈ <1, α ∈ <2,

with f smooth, so that at α = 0 the fixed point x = 0, and let the period doubling

bifurcation conditions hold:

µ = fx(0, 0) = −1, c =
1

4
[fxx(0.0)]2 +

1

6
(0, 0) = 0.

Assume, that the following genericity conditions are satisfied:

PD.1 D(0) =
(

1
5
fx5 + 1

2
fxfx4 − [fx]

4
)

(0, 0) = 0;
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PD.2 the map α 7→ (µ(α) + 1, c(α))T is regular at α = 0, where c(α) is given by

c(α) = b(α) +
2a2(α)

µ2(α)− µ(α)
.

Then there are smooth invertible coordinate and parameter changes transforming

the system into

η 7→ −(1 + β1)η + β2η
3 + sη5 +O(η6), where s = sign [D(0)] = ±1.

This system without O(η6) terms is called the truncated normal form for the

period doubling bifurcation.

For our model, both conditions for the period doubling bifurcation hold. To find

the combination of parameters that make the variable µ from Lemma 1 equal to

negative one, we analyze the eigenvalues of the characteristic polynomial. The

characteristic polynomial P (λ) has the following roots:

λ1,2 =
1

2

[
α1p22 + α2p11

p11 + p22 − 1
±
√
D

]

where D is the discriminant defined above.

If one of these roots is in the negative part of the unit circle, then there is

a possibility of a period doubling bifurcation, given that the nondegeneracy

conditions are satisfied.

From the equation for the roots above, we get µ = −1 whenever one of the roots

λ1,2 = 1
2

[
α1p22+α2p11
p11+p22−1

±
√

(α1p22+α2p11)2

(p11+p22−1)2
− 4α1α2

p11+p22−1

]
equals −1. As a result, we
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can rearrange the expression to produce the condition

√
(α1p22 + α2p11)2 − 4α1α2(p11 + p22 − 1) = 2(p11 + p22 − 1) + (α1p22 + α2p11)

that needs to hold for a period doubling bifurcation to occur.

Simplifying this expression gives us

p11(1 + α2) + p22(1 + α1) + α1α2 = 1.

This equation can be described as a bifurcation boundary. The bifurcation

boundary is a function of the parameters of the dynamical model.

The bifurcation boundary is the key object in our analysis of the dynamical

system. The quality of the solution on either side of the boundary is very

different. Thus, when the parameters of the dynamical system are close or at

the bifuraction boundary, small changes to of parameters can lead to entirely

different behavior of the solution. We chose critical bifurcation parameter to be

pc22.

To calibrate the economy, we use the values in Table 1. One of the policy

regimes, regime 1, is active with a coefficient greater than 1 whereas regime

2 is a passive regime. The time preference factor β, reaction of inflation to

the output gap κ, and the degree of relative risk aversion σ will only become

relevant in the latter part of the paper.

We furthermore assume that the probability of staying in the active regime

conditional on being in the active regime p11 = 0 is zero. Whenever regime 1

occurs, the economy will be sent to a passive regime with certainty.
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Parameter Value
α1 1.5
α2 0.5
γ1 0.3
γ2 0.15
p11 0.85
p22 0.9
β 0.98
κ 0.024
σ 0.3

Table 1: Standard parameter combination used throughout the paper.

Using these assumptions, we determine the critical value for the transitional

probability p22 being pc22 = 0.1. We use this point as a benchmark to trace

out the bifurcation boundary. To obtain the entire bifurcation boundary, we

vary the other parameters, i.e. policy parameters α1 and α2, along with the

probability of staying in the passive regime p22.

Consequently, we demonstrate a period doubling bifurcation boundary as a

function of the three control parameters p22, α1, and α2 which is shown in

Figure 1. This figure illustrates a bifurcation boundary for the feasible set of

parameters where transitional probability p22 is between 0 and 1 and parameters

reflecting the reaction to inflation are greater than zero.

The graphs shows the shape of the period doubling bifurcation boundary. First,

if p22 = 1, then the policy regime would be passive and stay passive indefinitely.

In this case, no bifurcation can arise and the bifurcation boundary converges to

zero. Second, for the case of p22 = 0, the two policy regimes are identical the

likelihood with which they occur. The bifurcation boundary is thus symmetric

along policy parameters α1 and α2.
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Figure 1: Bifurcation boundary for the case of a simple monetary policy rule
keeping the probability p11 = 0.

Interestingly, however, a bifurcation boundary exists for all probabilities be-

tween these two extreme cases. In particular, if the policy reaction coefficient

α2 of the passive regime is small, the policy response coefficient needs be very

large for a bifurcation to arise. For a very aggressive policy in the active regime,

the rate of inflation will start to evolve in cycles despite the simple nature of

its equation of motion. The critical value for this seemingly erratic behavior to

occur is plotted in Figure 1.
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3 New Keynesian model with regime switching

This section describes the well-known equations for the standard New Keynesian

setup as laid out in e.g. Woodford (2003) or Walsh (2003). The standard New

Keynesian model traditionally consists of the forward-looking IS equation that

describes the demand side of the economy

xt = Etxt+1 −
1

σ
(it − Etπt+1) + uDt

and the Phillips curve which represents the supply side

πt = βEtπt+1 + κxt + uSt .

The IS curve relates the output gap xt to the nominal interest rate it and

expectations about the future output gap as well as inflation. The coefficient

on the difference between the nominal interest rate and expected inflation, i.e.

the coefficient on the real interest rate by the Fisher equation, is given by

1/σ . This coefficient is the inverse of relative risk aversion which equals the

elasticity of intertemporal substitution since preferences with constant relative

risk aversion are assumed to derive the equations. The New Keynesian Phillips

curve describes how inflation is driven by the output gap and expected inflation.

Both equations for demand and supply side allow for a shocks u·t.

The remaining equation to close the economy is a rule for monetary policy which

takes the form described in Taylor (1999). According to this Taylor rule, the

monetary authority sets the nominal interest rate by targeting both inflation
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and the output gap

it = α(st)πt + γ(st)xt

where αi governs the Central bank’s reaction to inflation and γi the reaction to

the output gap.

After plugging the Taylor rule into the IS equation, the model can be written

in matrix notation1

AYt+1 = BYt + ut

where the Y denotes the vector of variables Y = [π1t π2t x1t x2t]
T and ut the

vector of aggregate demand and supply shocks. The matrix multiplying next

period’s endogenous variables, inflation and output in either policy regime, is

given by

A =



β p11 β (1− p22) 0 0

β (1− p11) β p22 0 0

p11
σ

1−p22
σ

p11 1− p22

1−p11
σ

p22
σ

1− p11 p22


.

The matrix multiplying current period’s variables is given by

B =



1 0 −κ 0

0 1 0 −κ

α1

σ
0 1 + γ1

σ
0

0 α2

σ
0 1 + γ2

σ


.

1For a detailed derivation of this form see Barnett and Duzhak (2010).
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Pre-multiplying both sides of the equation by the inverse of the matrix A, we

obtain the normal form

Yt+1 = CYt + A−1ut

which we used in the previous section where C = A−1B.

After going through the steps of the previous section where we compute the

determinant of the matrix A and then compute the reaction matrix to current

period variables, we get

C =



p22
(−1+p22+p11 )β

−1+p22
(−1+p22+p11 )β

− p22 k
(−1+p22+p11 )β

− (−1+p22 )k
(−1+p22+p11 )β

−1+p11
(−1+p22+p11 )β

p11
(−1+p22+p11 )β

− (−1+p11 )k
(−1+p22+p11 )β

− p11 k
(−1+p22+p11 )β

p22 (−1+α1 β)
σ β (−1+p22+p11 )

1−p22−α2 β+α2 β,p22
σ β (−1+p22+p11 )

p22 (k+σ β+β,γ1 )
σ β (−1+p22+p11 )

(−1+p22 )(k+σ β+β γ2 )
σ β (−1+p22+p11 )

1−p11−α1 β+α1 β,p11
σ β (−1+p22+p11 )

p11 (−1+α2 β)
σ β (−1+p22+p11 )

(−1+p11 )(k+σ β+β γ1 )
σ β (−1+p22+p11 )

p11 (k+σ,β+β,γ2 )
σ β (−1+p22+p11 )



As before, matrix C is the key element when performing bifurcation analysis of

the model with a generalized Taylor rule.

Given the standard calibration provided in Table 1, we search the parameter

space of the elasticity of inflation with respect to the output gap κ and the

Taylor coefficient on the output gap in state 2 γ2 for possible bifurcations.

In order to locate bifurcation values, we need to choose our free parameter.

Parameters that describe the probabilities of regime change are held constant,

while structural and policy parameters are varied.

At this stage, however, we need to deviate from the path we took for the basic

model of the previous section. While we dealth with a two-by-two matrix in the

simple setup, we now have a four-dimensional dynamical system. As a result,
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the computation of the characteristic polynomial and its solution becomes more

involved.

Therefore, we move to a numerical methods to study our dynamical system.

To perform bifurcation analysis and search for period doubling (PD) and Hopf

bifurcations, we employ the software continuation package CONTENT. This

dynamical system software, developed by Yuri Kuznetsov and V. V. Levitin,

traces out bifurcation boundaries for large dynamical systems.

Due to the increased dimensionality of the system, we have four eigenvalues

for the Jacobian matrix where we have two pairs of complex-conjugate eigen-

values. Either pair has the potential to display the bifurcation patterns we

discussed previously. Therefore, we could potentially see a Hopf bifurcation or

a period doubling (PD) bifurcation but also the combination of the two. Then,

for example, the output gap could display a qualitatively different pattern in its

evolution from inflation.

When using the software, we can show that none of the possible bifurcations

can occur for any feasible set of parameters. Hence there is neither a possibility

of a Hopf, nor a possibility of a PD bifurcation, nor the combination thereof for

feasible parameters. We do, however, find the bifurcation boundary. A PD-Hopf

bifurcation occurs for parameter values γ2 = 0.179 and κ = −0.46. However,

since negative values for κ are economically infeasible, this is not a relevant

case. After tracing out the entire bifurcation boundary, it never crosses into

the subspace of feasible parameter combinations. Hence we conclude that given

the standard parameterization, the general Taylor rule leads to a structurally

stable model.
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4 The New Keynesian model with a hybrid

monetary policy rule

This section provides an analysis of the state-of-the-art model for monetary

policy. The monetary policy rule consists of a hybrid rule which includes both a

current-looking and a forward-looking component. Generally this type of rules

can include the features of backward-looking rules such as past values of inflation

or output gap, but we will limit our analysis to the following specification

it = α(st)πt+1 + γ(st)xt.

This form of a policy rule was proposed by Clarida, Gali and Gertler (1999)

where they provide support for a superior to the policy implemented by the

Federal Reserve. According to this rule, a policy maker is forward-looking with

respect to inflation and current looking with respect to the output gap.

Using this type of monetary policy rule in a New Keynesian setup produces the

system linear difference equations

Yt+1 = DYt
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where matrix D is given by

D =



p22
β(−1+p22+p11)

−1+p22
β(−1+p22+p11 )

− p22 k
β (−1+p22+p11 )

− (−1+p22 )k
β (−1+p22+p11 )

−1+p11
β (−1+p22+p11 )

p11
β (−1+p22+p11 )

− (−1+p11 )k
β (−1+p22+p11 )

− p11 k
β (−1+p22+p11 )

p22 (−1+α1)
σ β (−1+p22+p11 )

(−1+p22 )(−1+α2)
σ β (−1+p22+p11 )

p22 (k−kα1+σ β+β γ1)
σ β (−1+p22+p11 )

(−1+p22 )(k−kα2+σ β+β γ2)
σ β (−1+p22+p11 )

(−1+p11 )(−1+α1)
σ β (−1+p22+p11 )

(−1+α2)p11
σ β (−1+p22+p11 )

(−1+p11 )(k−kα1+σ β+β γ1)
σ β (−1+p22+p11 )

p11 (k−kα2+σ β+β γ2)
σ β (−1+p22+p11 )


.

We analyze the coefficient matrix D for possibilities of Hopf and period doubling

bifurcations using the same steps as in the preceding section.

Numerical analysis of this dynamic system leads to two findings. First, there

is no possibility of a Hopf bifurcation. Second, however, a period doubling

bifurcation emerges. The findings are thus the same as for the simple economy.

Figure 2 plots the bifurcation boundary for the period-doubling bifurcation for

the standard parameter combination of 1 where we allow risk aversion and the

policy response α2 to vary.

To find a bifurcation boundary we need to choose a parameter that will be

varied. Assume parameter α2 is a free parameter that we use for a numerical

bifurcation analysis. We first vary parameter α2 while holding all other pa-

rameters constant. Assuming the standard calibration in Table 1, the critical

value of parameter α2 is 0.00125. We use this point to trace out the bifurcation

boundary. After tracking the first period doubling bifurcation point, we chose

the second parameter that is varied simultaneously with parameter α2. For that

case, we can demonstrate a period doubling bifurcation boundary as a function

of two control parameters, α2 and the risk aversion parameter σ. Figure 2 shows
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Figure 2: Bifurcation for the period-doubling bifurcation in a model with a
hybrid policy rule where we vary parameters α2 and σ.

this period doubling bifurcation boundary which has values of parameter α2 in

the close proximity of zero. Hence, a period doubling bifurcation will occur for

a very narrow set of parameters α2 corresponding to a passive reaction to future

inflation. Similarly, we find a period doubling bifurcation point for parameter

κ = 3.725. After choosing a second parameter, σ, to be varied, we compute the

period doubling bifurcation boundary demonstrated by Figure 3. Parameter κ

is a nonlinear function of the discount factor and the parameter responsible for

the degree of price rigidity. It shows that the period doubling bifurcation will

occur when the economy is characterized by a high level of price stickiness.

After analyzing further parameter combinations, we find that a period doubling

bifurcation is also possible for lower values of κ accompanied by very high values

of the policy parameter α1 as shown in Figure 4. In other words, aggressive
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Figure 3: Bifurcation for the period-doubling bifurcation in a model with a
hybrid policy rule where we vary parameters σ and κ.
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Figure 4: Bifurcation for the period-doubling bifurcation in a model with a
hybrid policy rule where we vary parameters α1 and κ.
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reaction of the Central bank to future inflation will lead to a period doubling

bifurcation.

5 Conclusion

The New Keynesian model with a Taylor rule generalized to regime switching

allows policy parameters to vary over time. This type of policy rule can change

the dynamics of inflation and the output gap in a substantial way. We show that

not only short-term properties change but that regime switching can give rise to

changes in the qualitative properties of the solution. To get to this conclusion,

we analyze the dynamical properties of these models via bifurcation analysis.

We look for Hopf and period doubling bifurcations within the functional struc-

ture considered. The analytical bifurcation analysis detects the possibility of a

period doubling bifurcation for a simple monetary rule using Fisher’s equation.

This result carries over to the state-of-the-art monetary model with a hybrid

Taylor rule which is shown to be subject to a period doubling bifurcation. Our

analysis reveals that period doubling bifurcations and resulting changes in the

dynamics in inflation and output have more tendencies to arise in New Keyne-

sian model with the forward-looking generalized Taylor rule compared to the

current-looking counterpart.
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