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Abstract

This paper studies games with both strategic substitutes and strategic complements, and
more generally, games with strategic heterogeneity (GSH). Such games may behave differ-
ently from either games with strategic complements or games with strategic substitutes.
Under mild assumptions (on one or two players only), the equilibrium set in a GSH
is totally unordered (no two equilibria are comparable in the standard product order).
Moreover, under mild assumptions (on one player only), parameterized GSH do not allow
decreasing equilibrium selections. In general, this cannot be strengthened to conclude in-
creasing selections. Monotone comparative statics results are presented for games in which
some players exhibit strategic substitutes and others exhibit strategic complements. For
two-player games with linearly ordered strategy spaces, there is a characterization. More
generally, there are sufficient conditions. The conditions apply only to players exhibiting
strategic substitutes; no conditions are needed for players with strategic complements.
Several examples highlight the results.
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1 Introduction

Games with strategic substitutes (GSS) and games with strategic complements (GSC)

formalize two basic strategic interactions and have widespread applications. In GSC,

best-response of each player is weakly increasing in actions of the other players, whereas

GSS have the characteristic that the best-response of each player is weakly decreasing in

the actions of the other players.1

This paper focuses on games with both strategic substitutes and strategic comple-

ments. Relatively little is known about such games even though several classes of inter-

actions fall in this category. For example, a classic application in Singh and Vives (1984)

considers a duopoly in which one firm behaves as a Cournot-firm (exhibiting strategic

substitutes) and the other as a Bertrand-firm (with strategic complements). Variations of

the classic matching pennies game provide other examples. A Becker (1968) type game of

crime and law enforcement is another example: the criminal exhibits strategic substitutes

(the greater is law enforcement, the lower is crime) and the police exhibit strategic com-

plements (the greater is crime, the greater is law enforcement). Such games also arise in

studies of pre-commitment in industries with learning effects, see Tombak (2006). More-

over, Fudenberg and Tirole (1984) and Dixit (1987) present examples of pre-commitment

where the strategic property of one player’s action is opposite to that of the other player.

More recent examples are found in Shadmehr and Bernhardt (2011), analyzing collective

1 There is a long literature developing the theory of GSC. Some of this work can be seen in Topkis

(1978), Topkis (1979), Bulow, Geanakoplos, and Klemperer (1985), Lippman, Mamer, and McCardle

(1987), Sobel (1988), Milgrom and Roberts (1990), Vives (1990), Milgrom and Shannon (1994), Mil-

grom and Roberts (1994), Zhou (1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998),

Echenique (2002), Echenique (2004), Quah (2007), and Quah and Strulovici (2009), among others. Ex-

tensive bibliographies are available in Topkis (1998), in Vives (1999), and in Vives (2005). There is a

growing literature on GSS: confer Amir (1996), Villas-Boas (1997), Amir and Lambson (2000), Schipper

(2003), Zimper (2007), Roy and Sabarwal (2008), Acemoglu and Jensen (2009), Amir, Garcia, and Knauff

(2010), Acemoglu and Jensen (2010), Roy and Sabarwal (2010), Jensen (2010), and Roy and Sabarwal

(2012), among others.
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actions in citizen protests and revolutions, and Baliga and Sjostrom (2012), analyzing

third-party incentives to manipulate conflict between two players.

Games with both strategic substitutes and strategic complements are the basis for

our notion of a game with strategic heterogeneity (GSH), which, in principle, allows for

arbitrary strategic heterogeneity among players. The unified framework of GSH also helps

clarify the scope of results found separately for GSC or GSS.

We present three main results. First, we show that the equilibrium set in a GSH

is totally unordered (no two equilibria are comparable in the standard product order),

under mild assumptions (related to strategic substitutes for one player only, or related

to strategic properties of two players only, and without any restrictions on the strategic

interactions among other players). Second, we show that parameterized GSH do not allow

decreasing equilibrium selections, under mild assumptions (related to strategic substitutes

for one player only). In general, this cannot be strengthened to exhibit an increasing

equilibrium selection. Third, we present monotone comparative statics results for games in

which some players exhibit strategic substitutes and others exhibit strategic complements.

For two player games with linearly ordered strategy spaces, we present a characterization

of monotone comparative statics. More generally, we present sufficient conditions. In

both two-player and multi-player settings, the conditions apply only to players exhibiting

strategic substitutes. No conditions are needed for players with strategic complements.

Several examples highlight the results.

In addition to shedding light on GSH, these results show that games with both strategic

substitutes and strategic complements may behave differently from either GSC or GSS.

For example, as is well-known, in GSC, the equilibrium set has nice order and structure

properties: there always exist a smallest and a largest equilibrium, and more generally, the

equilibrium set is a non-empty, complete lattice. These properties have proved useful in

several ways: they help to provide simple and intuitive algorithms to compute equilibria,

and they help to show monotone comparative statics of equilibria in such games. In
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contrast, in GSS, the equilibrium set is totally unordered: no two equilibria are comparable

(in the standard product order). The GSH framework can be used to inquire when and by

how much the order structure of the equilibrium set is affected as we move player-by-player

from a GSC to a GSS.

Our first result implies that the nice order and structure properties of GSC do not

survive a minimal introduction of strategic substitutes, in the following sense. Consider a

GSC. Its equilibrium set is a non-empty, complete lattice, and every pair of equilibria has

a smallest larger equilibrium, and a largest smaller equilibrium. If we modify this game

to require that just one player has strict strategic substitutes,2 and has a singleton-valued

best-response (perhaps because that payoff function is strictly quasi-concave), then the

order structure of the equilibrium set is destroyed completely. That is, no two equilibria

are comparable. Similarly, if we modify this game to require that one player has strict

strategic complements,3 and another has strict strategic substitutes, then again the order

structure of the equilibrium set is destroyed completely.

Indeed, our first result is stronger, and shows that in any GSH, if there is reason to

believe that either (1) just one player has strict strategic substitutes and has singleton-

valued best-responses, or (2) just one player has strict strategic complements and another

player has strict strategic substitutes, then without any restrictions on the strategic inter-

action among the other players, no two equilibria are comparable. Consequently, in such

cases, with multiple equilibria, techniques based on the complete lattice structure of the

equilibrium set, or the existence of a smallest or largest equilibrium are invalid. Typically,

different techniques are needed to analyze such games. In this regard, a game with both

strategic substitutes and strategic complements is different from a GSC and mimics more

the results for a GSS.

The non-ordered nature of equilibria implies that starting from one equilibrium, al-

gorithms to compute another equilibrium may be made more efficient by discarding two

2Intuitively, best response is strictly decreasing in other player strategies
3Intuitively, best response is strictly increasing in other player strategies
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areas of the strategy space. Moreover, if player strategy spaces are linearly ordered,4 then

the set of symmetric equilibria is non-empty, if, and only if, there is a unique symmetric

equilibrium.5 Therefore, in such cases, there is at most one symmetric equilibrium.

Our second result shows that in parameterized GSH, under mild conditions, equilibria

do not decrease as the parameter increases. These conditions take two forms: either (1)

just one player has strict strategic substitutes and singleton-valued best responses, or (2)

just one player has strict strategic substitutes and strict single-crossing property in (own

variable; parameter). In either case, there are no restrictions on strategic interaction

among other players.

Recall that in a GSC, (leaving aside stability issues,) it is possible to find a higher

equilibrium at a lower parameter and a lower equilibrium at a higher parameter. In a

GSS, however, there are no decreasing equilibrium selections. Therefore, our second result

implies that decreasing selections in a GSC are eliminated with a “minimal” introduction

of strategic substitutes. In this regard, too, a game with both strategic substitutes and

strategic complements is different from a GSC and mimics more the results for a GSS.

An example shows that our second result cannot be strengthened to yield increasing

equilibria more generally.

Our third result provides conditions that guarantee that an increase in the parameter

leads to an increase in the equilibrium; in other words, conditions under which monotone

comparative statics is guaranteed.

For two-player games in which one player exhibits strategic substitutes, the other

player exhibits strategic complements, and each player has a linearly ordered strategy

space, we characterize monotone comparative statics via a condition on the best response

of only the player with strategic substitutes. (No additional condition is imposed on the

4As usual, a partially ordered set is linearly ordered, if the partial order is complete; that is, every

two elements are comparable
5As usual, in a symmetric equilibrium, each player plays the same strategy.
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player with strategic complements.) The condition is intuitive and is based on a trade-off

between the direct parameter effect and the indirect strategic substitute effect. The same

condition works for GSS in a similar setting when best-responses are singleton-valued.

This characterization does not hold more generally: either for two-player games with

more general strategy spaces, or for games with more players, as shown by examples. In

this regard, games with both strategic substitutes and complements behave differently

from GSS.

For more general cases, when some players exhibit strategic substitutes and others

exhibit strategic complements, we present sufficient conditions that guarantee monotone

comparative statics. As in the two-player case, these conditions are needed only for players

with strategic substitutes. The conditions are stronger than in the two-player case, but

still involve a trade-off between the direct parameter effect and the indirect strategic

substitute effect.

The paper proceeds as follows. Section 2 defines games with strategic heterogene-

ity. Section 3 presents the first main result on the structure of the equilibrium set in

such games. Section 4 defines parameterized games with strategic heterogeneity. Section

5 presents the second main result on non-decreasing equilibrium selections. Section 6

presents the third main result on monotone comparative statics. Section 7 concludes.

2 Games with Strategic Heterogeneity

As usual, a lattice is a partially ordered set in which every two elements, x and y, have a

supremum, denoted x∨ y, and an infimum, denoted x ∧ y. A complete lattice is a lattice

in which every non-empty subset has a supremum and infimum in the set.6 A function

f : X → R (where X is a lattice) is quasi-supermodular if (1) f(x) ≥ f(x ∧ y) =⇒

f(x∨ y) ≥ f(y), and (2) f(x) > f(x∧ y) =⇒ f(x∨ y) > f(y). A function f : X ×T → R

6This paper uses standard lattice terminology. See, for example, Topkis (1998).
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(where X is a lattice and T is a partially ordered set) satisfies single-crossing property

in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′, t′) ≤ f(x′′, t′) =⇒ f(x′, t′′) ≤ f(x′′, t′′),

and (2) f(x′, t′) < f(x′′, t′) =⇒ f(x′, t′′) < f(x′′, t′′).

Consider finitely many players, I, and for each player i, a strategy space that is a par-

tially ordered set, denoted (Xi,�i), and a real-valued payoff function, denoted ui(xi, x−i).

As usual, the domain of each ui is the product of the strategy spaces, (X,�), endowed

with the product order.7 The strategic game Γ =
{

(Xi,�i, ui)
I
i=1

}

is a game with

strategic heterogeneity, or GSH, if for every player i,

1. Xi is a non-empty, complete lattice, and

2. For every x−i, ui is upper-semi continuous in xi.
8

The definition of a GSH here is very general, allowing for arbitrary heterogeneity

in strategic interaction among the players. In particular, no restriction is placed on

whether players have strategic complements or strategic substitutes. Consequently, this

definition allows for games with strategic complements, games with strategic substitutes,

and mixtures of the two.

For each player i, the best response of player i to x−i is denoted βi(x−i), and is

given by argmaxxi∈Xi
ui(xi, x−i). As the payoff function is upper semi-continuous and the

strategy space is compact in the order interval topology, for every i, and for every x−i,

βi(x−i) is non-empty. Let β : X ։ X , given by β(x) = (βi(x−i))
I
i=1, denote the joint

best-response correspondence.

As usual, a (pure strategy) Nash equilibrium of the game is a profile of player

actions x such that x ∈ β(x). The equilibrium set of the game is given by E =

{x ∈ X|x ∈ β(x)}. Needless to say, at this level of generality, a GSH may have no Nash

equilibrium. For example, the textbook two-player matching pennies game is admissible

7For notational convenience, we shall usually drop the index i from the notation for the partial order.
8In the standard order interval topology.
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here, and has no pure strategy Nash equilibrium. One may assume additional conditions

to invoke standard results to guarantee existence of equilibrium via Brouwer-Schauder

type theorems, or Kakutani-Glicksberg-Ky Fan type theorems, or other types of results.

We do not make these assumptions so that our results apply whenever equilibrium exists,

regardless of whether a specific equilibrium existence theorem is invoked, or whether an

equilibrium is shown to exist directly in a game.

Of particular interest to us are cases where the best-response of a player is either

increasing (the case of strategic complements) or decreasing (the case of strategic substi-

tutes) with respect to the strategies of the other players. Here, increasing or decreasing

are with respect to an appropriately defined set order, as follows.

Recall that if the payoff function of player i is quasi-supermodular in xi, and satisfies

the single-crossing property in (xi; x−i), then the best-response correspondence of player

i is nondecreasing in the induced set order. (The standard induced set order is defined

as follows: for non-empty subsets A,B of a lattice X , A ⊑in B, if for every a ∈ A, and

for every b ∈ B, a ∧ b ∈ A, and a ∨ b ∈ B.) In other words, x′
−i � x′′

−i ⇒ βi(x′
−i) ⊑in

βi(x′′
−i). When player i’s best response is a function, this translates into the standard

definition of a weakly increasing function: x′
−i � x′′

−i ⇒ βi(x′
−i) � βi(x′′

−i). Let us

formalize this by saying that player i has strategic complements, if player i’s best

response correspondence βi is non-decreasing in x−i in the induced set order. A game

with strategic complements, or GSC, is a GSH in which every player i has strategic

complements.

Similarly, in a GSH, if the payoff function of each player i is quasi-supermodular in

xi, and satisfies the dual single-crossing property in (xi; x−i),
9 then the best-response cor-

respondence of each player is nonincreasing in the standard induced set order: for every

9A function f : X×T → R (where X is a lattice and T is a partially ordered set) satisfies dual single-

crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′′, t′) ≤ f(x′, t′) =⇒ f(x′′, t′′) ≤

f(x′, t′′), and (2) f(x′′, t′) < f(x′, t′) =⇒ f(x′′, t′′) < f(x′, t′′). This is a natural generalization of Amir

(1996).

7



x′
−i � x′′

−i ⇒ βi(x′′
−i) ⊑in βi(x′

−i). When player i’s best response is a function, this trans-

lates into the standard definition of a weakly decreasing function: x′
−i � x′′

−i ⇒ βi(x′′
−i) �

βi(x′
−i). Let us formalize this by saying that player i has strategic substitutes, if

player i’s best response correspondence βi is non-increasing in x−i in the induced set or-

der. A game with strategic substitutes, or GSS, is a GSH in which every player i has

strategic substitutes.

Notice that the definitions of strategic complements and strategic substitutes are weak

versions, because both admit a best response correspondence that is constant in other

player actions. Therefore, it is useful to define strict versions of these ideas as well.

Consider the following set order. For non-empty subsets A,B of a lattice X , A is strictly

lower than B, denoted A ⊏s B, if for every a ∈ A, and for every b ∈ B, a ≺ b. This

definition is a slight strengthening of the following set order defined in Shannon (1995): A

is completely lower than B, denoted A ⊑c B, if for every a ∈ A, and for every b ∈ B,

a � b. Notice that when A and B are non-empty, complete sub-lattices of X , A is strictly

lower than B, if, and only if, supA ≺ inf B; and similarly, A is completely lower than B,

if, and only if, supA � inf B.

Let us say that player i has quasi-strict strategic complements, if for every

x′
−i ≺ x′′

−i, β
i(x′

−i) ⊑c β
i(x′′

−i). In other words, player i’s best response is increasing in x−i

in the completely lower than set order. Notice that when best response is singleton-valued,

quasi-strict strategic complements is equivalent to strategic complements, and therefore,

may not necessarily yield strictly increasing best responses. Say that player i has strict

strategic complements, if for every x′
−i ≺ x′′

−i, β
i
t(x

′
−i) ⊏s βi

t(x
′′
−i). In other words,

player i’s best response is increasing in x−i in the strictly lower than set order. Applying

a result due to Shannon (1995), if player i’s payoff is strictly quasi-supermodular in xi,
10

and player i’s payoff satisfies strict single-crossing property in (xi, x−i),
11 then player i

10A function f : X → R (where X is a lattice) is strictly quasi-supermodular if for all unordered

x, y, f(x) ≥ f(x ∧ y) =⇒ f(x ∨ y) > f(y).
11A function f : X×T → R (whereX is a lattice and T is a partially ordered set) satisfies strict single-
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has quasi-strict strategic complements. Moreover, in finite-dimensional Euclidean spaces,

Edlin and Shannon (1998) provide an additional intuitive and easy-to-use differentiable

condition regarding strictly increasing marginal returns to derive a comparison in the

strictly lower than set order, and therefore, to conclude that player i has strict strategic

complements.

Similarly, player i has quasi-strict strategic substitutes, if for every x′
−i ≺ x′′

−i,

βi(x′′
−i) ⊑c βi(x′

−i). In other words, player i’s best response is decreasing in x−i in the

completely lower than set order. Moreover, player i has strict strategic substitutes,

if for every x′
−i ≺ x′′

−i, β
i
t(x

′′
−i) ⊏s βi

t(x
′
−i). In other words, player i’s best response is

decreasing in x−i in the strictly lower than set order. The conditions for strict strategic

complements and quasi-strict strategic complements can be easily adapted for substitutes.

3 Structure of Equilibrium Set

Theorem 1 shows how a single player with (strict) strategic substitutes can destroy the

order structure of the equilibrium set.

Theorem 1. In a GSH, suppose one of the following conditions is satisfied.

1. One player has strict strategic substitutes and singleton-valued best response.

2. One player has strict strategic substitutes and another player has strict strategic

complements.

In either case, if x∗ and x̂ are distinct equilibria, then x∗ and x̂ are not comparable.

Proof. Suppose condition (1) is satisfied. Suppose, without loss of generality, that player

1 has strict strategic substitutes with singleton-valued best responses, and suppose the

distinct equilibria x̂ and x∗ are comparable, with x̂ ≺ x∗. Case 1 remains the same as

crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, f(x′, t′) ≤ f(x′′, t′) =⇒ f(x′, t′′) < f(x′′, t′′).
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above. Suppose x̂−1 ≺ x∗
−1. Then x̂1 = β1(x̂−1) and x∗

1 = β1(x∗
−1), and by strict strategic

substitutes, x∗
1 ≺ x̂1, contradicting x̂ ≺ x∗. For case 2, suppose x̂−1 = x∗

−1 and x̂1 ≺ x∗
1.

Then x̂1 = β1(x̂−1) = β2(x∗
−2) = x∗

2, contradicting x̂1 ≺ x∗
1. Thus, x∗ and x̂ are not

comparable.

Suppose condition (2) is satisfied. Suppose, without loss of generality, that player 1

has strict strategic substitutes, player 2 has strict strategic complements, and suppose

the distinct equilibria are comparable, with x̂ ≺ x∗. As case 1, suppose x̂−1 ≺ x∗
−1. Then

x̂1 ∈ β1(x̂−1) and x∗
1 ∈ β1(x∗

−1), and by strict strategic substitutes, x∗
1 ≺ x̂1, contradicting

x̂ ≺ x∗. As case 2, suppose x̂1 ≺ x∗
1. Then x̂−2 ≺ x∗

−2. As x̂2 ∈ β2(x̂−2) and x∗
2 ∈ β2(x∗

−2),

strict strategic complements implies x̂2 ≺ x∗
2, whence x̂−1 ≺ x∗

−1, and we are in case 1.

Thus, x∗ and x̂ are not comparable.

The economic intuition in this proof is straightforward. When condition (2) is satisfied,

in case 1 in the proof, if opponents of player 1 play higher strategies in the x∗ equilibrium

than in the x̂ equilibrium, then player 1 (with strict strategic substitutes) must be playing

a strictly lower strategy in the x∗ equilibrium than in the x̂ equilibrium, and therefore, the

equilibria are non-comparable. Case 2 essentially says that with x̂ ≺ x∗, player 1 cannot

be playing a higher strategy in the x∗ equilibrium. For if he did, then player 2 (with strict

strategic complements) is playing a higher strategy in the x∗ equilibrium, and therefore,

the opponents of player 1 are playing higher strategies in the x∗ equilibrium, whence

player 1 is playing a strictly lower strategy in the x∗ equilibrium, which is a contradiction.

The intuition behind condition (2) is taken further in condition (1), in the sense that

when the best-response of the player with strict strategic substitutes is singleton-valued,

the requirement of a player with strict strategic complements can be dropped. Intuitively,

if x̂ ≺ x∗, then we need only consider the case when the opponents of player 1 play higher

strategies; that is, x̂−1 ≺ x∗
−1. For if x̂−1 = x∗

−1, then by singleton-valued best responses,

the best response of player 1 to x̂−1 is the same as her best response to x∗
−1, and thus both

equilibria are the same, which is a contradiction. Condition (1) in theorem 1 formalizes
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the intuition that adding one player with strict strategic substitutes completely destroys

the order structure of the equilibrium set.

Notice that Roy and Sabarwal (2008) present a different version of this result, using

(joint) best-responses that satisfy a never-increasing property. Their result is designed

for GSS. Their technique cannot be used to prove theorem 1, because the conditions of

theorem 1 allow for cases that are excluded by the assumptions used in their proof.12

In particular, their result cannot cover any of the examples in this paper. This is not

altogether surprising, given their focus on GSS. Additionally, the proof here is different;

it is more direct and relies more on economic intuition.

Let us look at some applications of theorem 1.

Example 1 (Matching Pennies: Double-or-Nothing). Consider the following ex-

tension of a standard matching pennies game. Each player has two pennies that they lay

on a table with their hand covering the pennies. Once the pennies are revealed, the out-

comes determine the payoffs as follows. Let’s say that a player goes for double-or-nothing,

if she plays either both heads or both tails, and she does not go for double-or-nothing, if

she plays anything else. If the outcome is (H,H) and (H,H), or (T, T ) and (T, T ), that is,

both players go for double-or-nothing and the pennies match, then player 2 wins $2 from

player 1. If the outcome is (H,H); (T, T ), or (T, T ); (H,H), that is, both player go for

double-or-nothing and the pennies do not match, then player 1 wins $2 from player 2. If

both players put up exactly one H and one T , that is, nobody goes for double-or-nothing,

it is a tie and no money changes hands; and if one player goes for double-or-nothing, that

is, plays either (H,H) or (T, T ), and the other does not, (that is, plays (H, T ) or (T,H),)

then the player who goes for double-or-nothing loses and pays $1 to the other player. The

payoffs of this zero-sum game are summarized in Figure 1.

12Their result excludes the general class in which all-but-one players have quasi-strict strategic com-

plements, the remaining player has at least two actions, and there are no restrictions on the strategic

interaction with the remaining player. Indeed, their result does not apply even when these properties

only hold locally. Details are provided in the appendix.
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(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 -1, 1 -1, 1 2, -2

(T, H) 1, -1 0, 0 0, 0 1, -1

(H, T) 1, -1 0, 0 0, 0 1, -1

(T, T) 2, -2 -1, 1 -1, 1 -2, 2

Player 2

P
la

y
er

 1

Figure 1: Matching Pennies: Double-or-Nothing

Assuming H ≺ T , and with the standard product order, the strategy space of each

player has the order (H,H) ≺ (H, T ) ≺ (T, T ); (H,H) ≺ (T,H) ≺ (T, T ); and (T,H) and

(H, T ) are not comparable. Notice that player 1 has strict strategic substitutes, player 2

has strict strategic complements, and the four Nash equilibria (H, T ;T,H), (H, T ;H, T ),

(T,H ;T,H), and (T,H ;H, T ) are all non-comparable.

A more general version of this example is presented next.

Example 2 (A general two-player, four-point GSH). Consider a GSH with two

players. Player 1’s strategy space is a standard four-point lattice, X1 = {a1, b1, c1, d1},

with b1 and c1 unordered, and a1 = b1∧ c1, and d1 = b1∨ c1, shown graphically in figure 2.

Similarly, X2 = {a2, b2, c2, d2}, also shown graphically in figure 2. Suppose player 1’s best

response correspondence is given as follows: β1(a2) = {d1}, β
1(b2) = β1(c2) = {b1, c1}, and

β1(d2) = {a1}, and player 2’s best response correspondence is given as follows: β2(a1) =

{a2}, β
2(b1) = β2(c1) = {b2, c2}, and β2(d1) = {d2}. Both are depicted in figure 2. It is

easy to check that this example satisfies the conditions of theorem 1: player 1 has strict

strategic substitutes, player 2 has strict strategic complements. Consequently, the four

Nash equilibria (b1, b2), (b1, c2), (c1, b2), and (c1, c2) are all non-comparable. (Notice that

double-or-nothing matching pennies is a special case of this example.)
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a1 b1 

c1 d1 

a2 b2 

c2 d2 

X1 X2 

BR
2
(d1) 

BR
2
(b1) = BR

2
(c1) 

BR
2
(a1) 

BR
1
(a2) 

BR
1
(d2) 

BR
1
(b2) = BR

1
(c2) 

Figure 2: A General Two-Player, Four-Point GSH

For completeness, observe that non-comparability of equilibria may hold with condi-

tions weaker than one player with strict strategic complements and one player with strict

strategic substitutes. The next application provides a two-player game with quasi-strict

strategic substitutes (that is, best response of each player is decreasing in the completely

lower than set order) and quasi-strict strategic complements (best response of each player

is increasing in the completely lower than set order) that has non-comparability of equi-

libria.

Example 1 (Matching Pennies: Double-or-Nothing, Part 2), continued. Con-

sider the following modification to the game of double-or-nothing matching pennies. If

both players go for double-or-nothing and the pennies match (that is, the outcome is

(H,H) and (H,H), or (T, T ) and (T, T )), player 2 wins $2 from player 1, and if both

pennies do not match (the outcome is (H,H); (T, T ), or (T, T ); (H,H)), player 1 wins $2

from player 2. In all other cases, the game is a tie, and no money changes hands. The

payoffs of this zero-sum game are summarized in Figure 3.

Assume the same order structure as in double-or-nothing matching pennies. Notice

that player 1 has quasi-strict strategic substitutes, player 2 has quasi-strict strategic

complements, and the four Nash equilibria are all non-comparable.

Example 3 (Cournot Duopoly with Spillovers). Consider two firms, an incumbent

(firm 1) and an entrant (firm 2) competing as Cournot duopolists, producing quantities x1

and x2, respectively. Inverse market demand is given by p = a−b(x1+x2), and firm output

13



(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 0, 0 0, 0 2, -2

(T, H) 0, 0 0, 0 0, 0 0, 0

(H, T) 0, 0 0, 0 0, 0 0, 0

(T, T) 2, -2 0, 0 0, 0 -2, 2

Player 2

P
la

y
er

 1

Figure 3: Matching Pennies: Double-or-Nothing, Part 2

is in [0, 8]. Firm 1’s costs are linear, given by a constant marginal cost c1 > 0. Thus, the

incumbent’s profit is given by π1(x1, x2) = (a− b(x1 + x2))x1 − cx1. As
∂2π1

∂x2∂x1

= −b < 0,

firm 1’s best response is decreasing in x2. Indeed, firm 1’s best response is given by

x1 = a−c1−bx2

2b
. Suppose there is a one-way spillover from the incumbent to the entrant,

say, in the form of cheaper access to industry-specific talent, or having access to superior

supply chain management at a lower cost, and so on, and this lowers firm 2’s costs. The

spillover may depend on firm 1’s output, and is denoted s(x1). Suppose firm 2’s costs are

given by c2x2s(x1). Its profits are given by π2(x1, x2) = (a − b(x1 + x2))x2 − c2x2s(x1).

Firm 2’s best response is given by x2 =
a−c2s(x1)−bx1

2b
.

Suppose a = 15, b = 1
2
, c1 = 11, c2 = 3, and the spillover function is s(x1) =

2
3
x3
1−x2

1−

1
2
x1 + 3. (This spillover function is non-negative and non-monotonic: as firm 1’s output

increases from 0 to 1+
√
2

2
≈ 1.2, the spillover reduces from 3 to a local minimum of about

2.1, and then starts to increase.) In this case, best responses are given by β1(x2) = 4− 1
2
x2,

and β2(x1) = max{6 + x1 + 3x2
1 − 2x3

1, 0}. Thus, condition 1 in thoerem 1 is satisfied. It

is easy to check that there are three Nash equilibria: (1
2
, 7), (2, 4), and (4, 0), as shown in

figure 4, and as predicted by theorem 1, these are non-comparable.

Condition (1) in theorem 1 shows that when the best-response of the player with strict

14
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Figure 4: Cournot Duopoly with Spillovers

strategic substitutes is singleton-valued, the condition in theorem 1 regarding one player

with strict strategic complements can be dropped. Example 4 below shows that when the

best-response of the player with strict strategic substitutes is not singleton-valued, this

condition cannot be dropped, in general.

Example 4 (A Dove-Hawk-type game). Consider the GSH with two players given

in figure 5, where for player 1, L ≺ M ≺ H , and for player 2, L ≺ M . We may interpret

L as a low (most Dovish, least Hawkish) action, M as a medium (less Dovish, more

Hawkish) action, and H as a high (or least Dovish, most Hawkish) action. Player 1

has strict strategic subsitutes, with non-singleton-valued best-response: β1(L) = {M,H},

and β1(M) = {L}. Player 2 is of a type that prefers less conflict (or avoids agression, or

would prefer a more “cooperative” action). Player 2 exhibits strategic complements; in

fact, player 2’s best-response function is constant, β2(L) = β2(M) = β2(H) = {L}. This
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game has two Nash equilibria, (M,L) and (H,L), and these equilibria are comparable,

with (M,L) ≺ (H,L).

L M

L 0, 5 5, 0

M 5, 5 0, 0

H 5, 5 0, 0

Player 2

P
la

y
er

 1

Figure 5: A Dove-Hawk-type Game

Theorem 1 can be used to highlight a particular non-robustness in the order structure

of the equilibrium set in games with strategic complements.

Recall that in GSC, the equilibrium set is a non-empty, complete lattice (see Zhou

(1994)), and there exist a smallest equilibrium and a largest equilibrium (various versions

of this result can be seen in Topkis (1978), Topkis (1979), Lippman, Mamer, and McCardle

(1987), Sobel (1988), Milgrom and Roberts (1990), Vives (1990), Milgrom and Shannon

(1994), among others). On the other hand, in GSS, the equilibrium set is completely

unordered: no two equilibria are comparable (in the standard product order), as shown

in Roy and Sabarwal (2008). These results show that when we move from a setting in

which all players exhibit strategic complements to a setting in which all players exhibit

strategic substitutes, the order structure of the equilibrium set is destroyed completely.

Theorem 1 can be used to inquire when and by how much the order structure of the

equilibrium set is affected as we move player-by-player from a setting of all players with

strategic complements to a setting of all players with strategic substitutes.

Theorem 1 implies that the nice order and structure properties of GSC do not survive

a minimal introduction of strategic substitutes, in the following sense. Consider a GSC. In

this case, the equilibrium set is a non-empty, complete lattice, and every pair of equilibria

16



has a smallest larger equilibrium, and a largest smaller equilibrium. If we modify this

game to require that just one player has strict strategic substitutes, and that player’s

best-response is singleton-valued (perhaps because that payoff function is strictly quasi-

concave), then the order structure of the equilibrium set is destroyed completely. That is,

no two equilibria are comparable. Similarly, if we modify this game to require that one

player has strict strategic complements, and another has strict strategic substitutes, then

again the order structure of the equilibrium set is destroyed completely.

Of course, the result in theorem 1 is stronger, and applies to general GSH, not just

to GSC. In particular, in any GSH, if there is reason to believe that either (1) one player

has strict strategic complements and another player has strict strategic substitutes, or (2)

just one player has strict strategic substitutes and has singleton-valued best-responses,

then without any restrictions on the strategic interaction among the other players, we

may conclude that no two equilibria are comparable.

Indeed, theorem 1 yields the following corollary immediately.

Corollary 1. Let Γ satisfy one of the conditions of theorem 1. The following are equiva-

lent.

(1) E is a non-empty lattice

(2) E is a singleton

(3) E is a non-empty, complete lattice

In other words, with multiple equilibria, an important component of the theory of

GSC does not survive a minimal extension of the theory to include other realistic cases.

Theorem 1 further implies that for the cases considered here, with multiple equilib-

ria, techniques based on the existence of a smallest or largest equilibrium are invalid. In

particular, the standard technique of using extremal equilibria to show monotone com-

parative statics in GSC is invalid here. Moreover, the non-ordered nature of equilibria

show that starting from one equilibrium, algorithms to compute another equilibrium may

be made more efficient by discarding two areas of the action space.

17



Furthermore, theorem 1 implies immediately that when strategy spaces of players are

linearly ordered,13 the game has at most one symmetric equilibrium,14 as formalized next.

Corollary 2. Let Γ satisfy one of the conditions of theorem 1, and suppose the strategy

space of each player is linearly ordered.

The set of symmetric equilibria is non-empty, if, and only if, there is a unique symmetric

equilibrium.

4 Parameterized GSH

Consider finitely many players, I, and for each player i, a strategy space that is a partially

ordered set, denoted (Xi,�i), a real-valued payoff function, denoted ui(xi, x−i, t), and a

partially ordered set of parameters, T . As usual, the product of the strategy spaces,

denoted (X,�), is endowed with the product order and topology.15 The strategic game

Γ =
{

(Xi,�i, ui)
I
i=1, T

}

is a parameterized game with strategic heterogeneity, or

parameterized GSH, if for every player i,

1. Xi is a non-empty, complete lattice, and

2. For every (x−i, t), ui is quasi-supermodular and upper semi-continuous in xi,
16 and

3. For every x−i, ui satisfies single-crossing property in (xi; t).

As earlier, for each t ∈ T , and for each player i, the best response of player i to

x−i is denoted βi
t(x−i), and is given by argmaxxi∈Xi

ui(xi, x−i, t). As the payoff function is

quasi-supermodular and upper semi-continuous, and the strategy space is compact in the

13As usual, linearly ordered means that every pair of strategies is comparable. A linear order is

sometimes termed a complete order.
14An equilibrium is symmetric, if every player plays the same strategy in equilibrium.
15For notational convenience, we typically drop the index i from the notation for the partial order.
16In the standard order interval topology.
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order interval topology, for every i, and for every (x−i, t), β
i
t(x−i) is a non-empty, complete

sub-lattice. When convenient, we use β
i

t(xi
) = sup βi

t(xi
), and βi

t
(x

i
) = inf βi

t(xi
).

Moreover, as usual, single-crossing property in (xi; t) formalizes the standard idea that

the parameter is complementary to xi. It implies that βi
t(x−i) is non-decreasing in t in

the induced set order: for every t � t̂ and for every x−i, β
i
t(x−i) ⊑in βi

t̂
(x−i). Notice

that when best response is singleton-valued, this is equivalent to the statement that the

best response is a weakly increasing function in t: for every t � t̂ and for every x−i,

βi
t(x−i) � βi

t̂
(x−i).

For each t ∈ T , let βt : X ։ X given by βt(x) = (βi
t(x−i))i∈I denote the joint best-

response correspondence. From properties of player best responses, it follows that for

every t � t̂ and for every x, βt(x) ⊑in βt̂(x). In other words, the joint best response is

non-decreasing in t in the induced set order. As earlier, if each player’s best response is

singleton-valued, then the joint best response is singleton-valued and weakly increasing

in t: for every t � t̂ and for every x, βt(x) � βt̂(x).

As usual, for each t ∈ T , a (pure strategy) Nash equilibrium is a profile of player

actions x such that x ∈ βt(x), and the equilibrium set at t is given by E(t) =

{x ∈ X|x ∈ βt(x)}. As earlier, at this level of generality, a parameterized GSH may

have no Nash equilibrium. Our results apply whenever equilibrium exists, regardless of

the particular equilibrium existence technique used.

Recall that for each t, if the payoff function of player i is quasi-supermodular in xi, and

satisfies the single-crossing property in (xi; x−i), then the best-response correspondence

of player i is nondecreasing in the induced set order: for every t and every x′
−i � x′′

−i,

βi
t(x

′
−i) ⊑in βi

t(x
′′
−i). Say that player i has strategic complements, if for every t,

player i’s best response correspondence βi
t is non-decreasing in x−i in the induced set

order.

Similarly, for each t, if the payoff function of player i is quasi-supermodular in xi, and

satisfies the dual single-crossing property in (xi; x−i), then the best-response correspon-
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dence of player i is nonincreasing in the induced set order. That is, for every t and every

x′
−i � x′′

−i, β
i
t(x

′′
−i) ⊑in βi

t(x
′
−i). Say that player i has strategic substitutes, if for

every t, player i’s best response correspondence βi
t is non-increasing in x−i in the induced

set order.

Strict versions are defined similarly. Let us say that player i has quasi-strict

strategic complements, if for every t, and every x′
−i ≺ x′′

−i, β
i
t(x

′
−i) ⊑c β

i
t(x

′′
−i). Player

i has strict strategic complements, if for every t, and every x′
−i ≺ x′′

−i, β
i
t(x

′
−i) ⊏s

βi
t(x

′′
−i). Similarly, player i has quasi-strict strategic substitutes, if for every t,

and every x′
−i ≺ x′′

−i, β
i
t(x

′′
−i) ⊑c βi

t(x
′
−i). Moreover, player i has strict strategic

substitutes, if for every t, and every x′
−i ≺ x′′

−i, β
i
t(x

′′
−i) ⊏s βi

t(x
′
−i). These properties

may be derived from the same conditions on payoff functions presented earlier.

5 Non-Decreasing Equilibrium Selections

The following result shows that in a broad class of games, there are no decreasing selections

of equilibria.

Theorem 2. In a parameterized GSH, suppose one of the following conditions is satisfied.

1. One player has strict strategic substitutes and singleton-valued best response.

2. One player, say player i, has strict strategic substitutes and strict single-crossing

property in (xi; t).

Then for every t∗ ≺ t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂), x̂ 6≺ x∗.

Proof. Consider condition 1, and without loss of generality, suppose it is satisfied for

player 1. Suppose x̂ ≺ x∗. As case 1, consider x̂−1 ≺ x∗
−1. Then x∗

1 = β1
t∗(x

∗
−1) ≺

β1
t∗(x̂−1) � β1

t̂
(x̂−1) = x̂1, contradicting x̂ ≺ x∗. Here, the strict inequality follows from

strict strategic substitutes, and the weak inequality follows from single-crossing property
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in (x1; t). As case 2, consider x̂−1 = x∗
−1 and x̂1 ≺ x∗

1. Then x∗
1 = β1

t∗(x
∗
−1) = β1

t∗(x̂−1) �

β1
t̂
(x̂−1) = x̂1, contradicting x̂1 ≺ x∗

1.

Consider condition 2, suppose it is satisfied for player 1, and suppose x̂ ≺ x∗. As case 1,

consider x̂−1 ≺ x∗
−1. Then β1

t∗(x
∗
−1) ⊏s β

1
t∗(x̂−1) ⊑c β

1
t̂
(x̂−1), where the strictly lower than

relation follows from strict strategic substitute, and the completely lower than relation

follows from strict single-crossing property in (x1; t). Consequently, x∗
1 � sup β1

t∗(x
∗
−1) ≺

inf β1
t∗(x̂−1) � inf β1

t̂
(x̂−1) � x̂1, contradicting x̂1 ≺ x∗

1. As case 2, consider x̂−1 =

x∗
−1 and x̂1 ≺ x∗

1. Then β1
t∗(x

∗
−1) = β1

t∗(x̂−1) ⊑c β1
t̂
(x̂−1), whence x∗

1 � sup β1
t∗(x

∗
−1) =

sup β1
t∗(x̂−1) � inf β1

t̂
(x̂−1) � x̂1, contradicting x̂1 ≺ x∗

1.

This theorem presents conditions on one player only to derive equilibrium selection

results. In particular, if one player exhibits strict strategic substitutes and has a singleton-

valued best response, then without any restrictions on the strategic interdependence

among the other players, there are no decreasing selections of equilibria. In particu-

lar, this theorem does not require other players to exhibit either strategic substitutes or

strategic complements.

Example 3 (Cournot Duopoly with Spillovers), continued. Recall the best re-

sponses in the Cournot duopoly with spillovers example above, β1(x2) = a−bx2−c1
2b

, and

β2(x1) =
a−bx1−c2s(x1)

2b
, and the spillover function, s(x1) =

2
3
x3
1−x2

1−
x1

2
+3, and consider a

as the parameter. This game satisfies condition 1 (and 2) in theorem 2. Given parameter

values a = 15, b = 1
2
, c1 = 11, c2 = 3, it is easy to check that there are three Nash

equilibria: (1
2
, 7), (2, 4), and (4, 0), shown in figure 6. If we increase parameter a to 17,

both best responses increase, and there are 3 new equilibria: (1, 10), (1.686, 8.627), and

(6, 0). Notice that no new equilibrium is lower than any old equilibrium, as predicted by

theorem 2. Moreover, firm 1’s output in x̂∗ = (1.686, 8.627) is lower than its output in

x∗ = (2, 4), showing that in general, we cannot strengthen the conclusion of this theorem

to guarantee increasing equilibria.

Theorem 2 shows that in the presence of strategic substitutes, there are no decreasing
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Figure 6: Non-Decreasing Equilibria For Cournot Duopoly With Spillovers

equilibrium selections. Moreover, the example shows that in general, this result cannot

be strengthened to conclude monotone comparative statics. That is, when a parameter

increases, it is possible that there are some higher equilibria, but it is also possible that

there are equilibria that are not higher. Conditions yielding monotone comparative statics

are considered next.

6 Monotone Comparative Statics

6.1 Two-Player Parameterized GSH

This section considers two-player GSH in which one player exhibits strategic substitutes

and the other one exhibits strategic complements. In this setting, we present some results

characterizing monotone comparative statics.
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Theorem 3. Consider a two-player, parameterized GSH, in which player 1 has strategic

substitutes, and player 2 has strategic complements. Suppose strategy spaces are linearly

ordered and best responses are singleton-valued.

For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1)

Proof. Consider statement 1. As case 1, suppose x∗
1 � x̂1. Then x∗

2 = β2
t∗(x

∗
1) � β2

t∗(x̂1) �

β2
t̂
(x̂1) = x̂2, where the first inequality follows from strategic complements, and the second

from single-crossing property. As case 2, consider x∗
1 6� x̂1. Linearly ordered strategies

implies x̂1 ≺ x∗
1. In this case, x̂2 6≺ x∗

2. (For if x̂2 ≺ x∗
2, then x∗

1 = β1
t∗(x

∗
2) � β1

t̂
(x∗

2) �

β1
t̂
(x̂2) = x̂1, where, the first inequality follows from single-crossing property and the

second from strategic substitutes. This contradicts x̂1 ≺ x∗
1.) Linearly ordered strategies

now yields x∗
2 � x̂2.

Consider statement 2. For sufficiency, suppose x∗ � x̂. Then x∗
1 � x̂1, and strategic

complements implies β2
t̂
(x∗

1) � β2
t̂
(x̂1), whence x∗

1 � x̂1 = β1
t̂
β2
t̂
(x̂1) � β1

t̂
β2
t̂
(x∗

1), where the

inequality follows from strategic substitutes. For necessity, suppose x∗ 6� x̂. Then, using

statement 1, x∗
1 6� x̂1, and linear order implies x̂1 ≺ x∗

1. Thus, x̂2 = β2
t̂
(x̂1) � β2

t̂
(x∗

1),

where the inequality follows from strategic complements. Now, using strategic substitutes

yields β1
t̂
β2
t̂
(x∗

1) � β1
t̂
(x̂2) = x̂1 ≺ x∗

1, as desired.

This result formalizes the intuition that in a two-player GSH, when the parameter

(weakly) increases, the equilibrium response of the player with strategic complements is

always (weakly) higher. For monotone comparative statics, we also need the equilibrium

response of the player with strategic substitutes to be (weakly) higher; this is characterized

by the second condition. That is, x∗
1 � x̂1 is equivalent to x∗

1 � β1
t̂
◦ β2

t̂
(x∗

1).

The condition x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1) can be viewed as follows. Starting from an existing

equilibrium strategy for player 1, x∗
1 at t = t∗, an increase in t has two effects on β1

(·)(·).

23



One effect is an increase in β1, because best-response is nondecreasing in t. (This is

the direct effect of an increase in t, arising from the single-crossing property in (x1; t).)

The other effect is a decrease in β1, because an increase in t increases β2
t (x

∗
1), and β1

is decreasing in x2, due to strategic substitutes. (This is the indirect effect arising from

player 1’s response to player 2’s response to an increase in t.) The condition says that for

player 1, as long as the indirect strategic substitute effect does not dominate the direct

parameter effect, the new equilibrium response of player 1 is (weakly) larger than x∗
1. This

can be viewed explicitly in the following example.

Example 5 (Differentiated Duopoly). Consider the differentiated duopoly in Singh

and Vives (1984), where firm 1 chooses price as a strategic variable, and firm 2 chooses

quantity. Inverse market demand for each firm is given by p1 = a1−b1q1−cq2 and p2 = a2−

cq1 − b2q2.
17 We may view the demand parameters (a1, a2) as the parameter of the game.

Re-writing firm 1’s demand yields q1(p1, q2) =
1
b1
(a1 − cq2 − p1), and assuming zero cost,

firm 1’s profit is π1(p1, q2) = p1q1(p1, q2). Similarly, using firm 1’s demand, and assuming

zero cost, we may write firm 2’s profit as π2(p1, q2) =
(

a2 −
c
b1
(a1 − cq2 − p1)− b2q2

)

q2.

It is easy to check that ∂2π1

∂q2∂p1
= − c

b1
< 0 and ∂2π2

∂q2∂p1
= c

b1
> 0. In other words, firm 1’s best

response is decreasing in firm 2’s quantity choice, and firm 2’s best response is increasing

in firm 1’s price choice. Indeed, (the linear) best responses are given as follows: for firm

1, p1 =
a1−cq2

2
, and for firm 2, q2 =

a2b1−a1c+cp1
2(b1b2−c2)

. Notice that assuming a1 = a2, both best

responses are increasing in the parameter.

Let t = a1 = a2, and rewrite best responses as follows: for firm 1, β1
t (q2) =

t−cq2
2

, and

for firm 2, β2
t (p1) =

tb1−tc+cp1
2(b1b2−c2)

, and notice that best response of both players is increasing in

t. Suppose t = 2, b1 = b2 = 2, and c = 1. In this case, the unique Nash equilibrium is given

by (p∗1, q
∗
2) = (2

3
, 2
5
). Consider an increase to t̂ = 3. In this case, β1

t̂
(β2

t̂
(p∗1)) =

43
36

> 2
3
= p∗1,

and therefore, the new equilibrium is higher than the old equilibrium, as shown in figure

7. Indeed, the new equilibrium is (p̂1, q̂2) ≈ (1.15, 0.69). (For reference, profits of both

firms have gone up as well, from (0.31, 0.29) to (0.39, 0.72).)

17As usual, we assume that a1, a2, b1, b2, c > 0, b1 > c, and b1b2 − c2 > 0.
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Figure 7: Increasing Equilibria: Differentiated Duopoly

For completeness, figure 8 represents graphically the case where the direct effect does

not dominate the indirect effect. If best responses change in the manner shown in figure

8, the composite effect is lower, (β1
t̂
(β2

t̂
(p∗1)) < p∗1,) and as theorem 3 predicts, the new

equilibrium is not higher than the old equilibrium.

When payoff functions are twice continuously differentiable as well, the condition in

theorem 3 can be translated to payoff functions, as follows. Notice that if x∗ is an

equilibrium at t∗, and if β1
t ◦ β

2
t (x

∗
1) is increasing in t at t∗, then the condition in theorem

3 is satisfied for an increase in t from t∗. For twice continuously differentiable payoff

functions, this implies the following condition. For player 1, the condition in theorem 3

is satisfied locally, if ∂
∂t
(β1

t (β
2
t (x1)))

∣

∣

(x∗,t∗)
> 0.18 Using the Implicit Function theorem,

it is easy to calculate that

∂

∂t

(

β1
t (β

2
t (x1))

)

∣

∣

∣

∣

(x∗,t∗)

> 0 ⇔
∂2u1

∂x1∂t
+

∂2u1

∂x1∂x2

(

−
∂2u2

∂x2∂t

∂2u2

∂x2

2

)
∣

∣

∣

∣

∣

(x∗,t∗)

> 0.

18As usual, to apply this version, we suppose that the derivative is well-defined; in particular, (x∗, t∗)

is in the interior.
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Figure 8: Non-increasing Equilibria: Differentiated Duopoly

This condition has the same intuition as earlier. For player 1, ∂2u1

∂x1∂t
is positive, and

captures the direct effect of an increase in t. The term ∂2u1

∂x1∂x2

(

−
∂
2
u2

∂x2∂t

∂2u2

∂x2
2

)

is negative, and

captures the indirect effect of an increase in t.19 As above, if the indirect effect does

not dominate the direct effect, monotone comparative statics are guaranteed. Of course,

theorem 3 holds without differentiability or concavity, and without restriction to convex

strategy spaces.

In order to characterize increasing equilibria with best response correspondences, con-

sider the following lemmas.

Lemma 1. Consider a two-player, parameterized GSH, in which player 1 has strict strate-

gic substitutes, and player 2 has quasi-strict strategic complements. Suppose strategy

spaces are linearly ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

x∗
2 � x̂2.

19Notice that ∂2u1

∂x1∂x2

< 0 formalizes strategic substitutes, and ∂2u2

∂x2

2

< 0 formalizes strict concavity in

own argument. Moreover, ∂2u2

∂x2∂t
> 0 formalizes increasing differences in t.
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Proof. Suppose x∗
2 6� x̂2. Then linear order implies x̂2 ≺ x∗

2. Thus β
1
t∗(x

∗
2) ⊑in β1

t̂
(x∗

2) ⊏s

β1
t̂
(x̂2), where the induced set order inequality follows from single-crossing property in

(x1; t), and the strict set order inequality follows from strict strategic substitutes. This

implies x∗
1 � β

1

t∗(x
∗
2) � β

1

t̂ (x
∗
2) ≺ β1

t̂
(x̂2) � x̂1. Therefore, β2

t∗(x
∗
1) ⊑in β2

t̂
(x∗

1) ⊑c β2
t̂
(x̂1),

where the induced set order inequality follows from single-crossing property in (x2; t), and

the completely lower set order inequality follows from quasi-strict strategic complements.

This implies x∗
2 � β

2

t∗(x
∗
1) � β

2

t̂ (x
∗
1) � β2

t̂
(x̂1) � x̂2, a contradiction.

Lemma 2. Consider a two-player, parameterized GSH, in which player 1 has strategic

substitutes, and player 2 has strategic complements. Suppose strategy spaces are linearly

ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

x∗
1 � x̂1 =⇒ x∗

1 � β
1

t̂β
2

t̂
(x∗

1).

Proof. x∗
1 � x̂1 implies β2

t̂
(x∗

1) � β2

t̂
(x̂1) � x̂2, where the first inequality follows from

strategic complements. This, in turn, implies, x∗
1 � x̂1 � β

1

t̂ (x̂2) � β
1

t̂β
2

t̂
(x∗

1), where the

last inequality follows from strategic substitutes.

Lemma 3. Consider a two-player, parameterized GSH, in which player 1 has quasi-strict

strategic substitutes, and player 2 has strict strategic complements. Suppose strategy spaces

are linearly ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

x̂1 ≺ x∗
1 =⇒ β

1

t̂β
2

t̂
(x∗

1) ≺ x∗
1.

Proof. Using strict strategic complements, x̂1 ≺ x∗
1 implies β2

t̂
(x̂1) ⊏s β2

t̂
(x∗

1), and

therefore, x̂2 � β
2

t̂ (x̂1) ≺ β2

t̂
(x∗

1). Using quasi-strict strategic substitutes, it follows that

β1
t̂
(β2

t̂
(x∗

1)) ⊑c β
1
t̂
(x̂2). Consequently, β

1

t̂β
2

t̂
(x∗

1) � β1

t̂
(x̂2) � x̂1 ≺ x∗

1.

These lemmas yield the following theorem immediately.

Theorem 4. Consider a two-player, parameterized GSH, in which player 1 has strict

strategic substitutes, and player 2 has strict strategic complements. Suppose strategy spaces

are linearly ordered.

For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),
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1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β

1

t̂ ◦ β
2

t̂
(x∗

1)

These results are valid for two-player GSH with linearly ordered strategy spaces. To

investigate more general cases, notice first that these results may not necessarily hold

with more general strategy spaces, as shown in the next example.

Example 6 (Crime and Punishment). Consider a simplified version of Becker (1968):

there is a criminal (player 1) and a police force (player 2). The criminal has four actions:

no crime (a1), grand theft auto (a2), bank robbery (a3), and both grand theft auto and

bank robbery (a4), with a1 ≺ a2 ≺ a4, a1 ≺ a3 ≺ a4, and a2 and a3 are unordered. This

makes X1 = {a1, a2, a3, a4} into a lattice that is not linearly ordered. The police have two

actions: low enforcement (b1) and high enforcement (b2), with b1 ≺ b2. Suppose payoffs

are given in the left panel of figure 9.

b1 (low) b2 (high) b1 (low) b2 (high)

a1 (no crime) 1, 5 1, 0 a1 (no crime) 1, 5 1, 0

a2 (GTA) 10, 2 0, 0 a2 (GTA) 10, 2 0, 0

a3 (robbery) 3, 2 0, 0 a3 (robbery) 5, 2 5, 3

a4 (GTA + robbery) 5, 0 0, 10 a4 (GTA + robbery) 15, 0 0, 15

Figure 9: Crime and Punishment

It is easy to check that the criminal exhibits strategic substitutes and the police exhibit

strategic complements. This game has a unique Nash equilibrium: (a2, b1).
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Now suppose the bank receives a new, large, cash deposit – the equivalent of an

increase in a parameter representing potential value of the bank’s deposits. Denote the

new parameter t̂. The new game is given in the right panel of figure 9. It is easy to check

that compared to the left panel, the best response for each player is non-decreasing; that

is, the single-crossing property is satisfied. The new unique Nash equilibrium is (a3, b2),

which is not comparable to (a2, b1), because a2 and a3 are not comparable.

Notice that the conditions of theorem 3 are satisfied in this case, because a2 ≺ a4 =

β1
t̂
(β2

t̂
(a2)). This example shows that when we try to extend the analysis to non-linearly

ordered lattices, theorem 3 does not necessarily hold.

To investigate generalization in another direction, let’s consider cases with more than

two players.

6.2 Multi-Player Parameterized GSH

As the following example shows, when there are more than two players, even with linearly

ordered strategy spaces, an analogue of theorem 3 may not necessarily hold.

Example 6 (Crime and Punishment, Part 2), continued. Consider another version

of crime and punishment: there is a criminal (player 1) and two police forces (players 2

and 3). The criminal has four actions: a1, a2, a3, and a4, with the range of criminal

activity increasing in intensity a1 ≺ a2 ≺ a3 ≺ a4. Police force 1 has two actions: low

enforcement (b1) and high enforcement (b2), with b1 ≺ b2. Police force 2 has two actions:

low enforcement (c1) and high enforcement (c2), with c1 ≺ c2. Suppose payoffs are given

in figure 10.

It is easy to check that the criminal exhibits strategic substitutes and both police forces

exhibit strategic complements. The unique Nash equilibrium is given by x∗ = (a3, b1, c1).

Suppose, as earlier, an increase in the parameter corresponds to an increase in the

value of criminal activity to the criminal. Denote the new parameter t̂, and suppose the
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b1 (low) b2 (high) b1 (low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 0, 0

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 0, 0, 0

a3 10, 2, 2 0, 0, 2 a3 3, 2, 0 0, 0, 0

a4 7, 0, 0 0, 10, 0 a4 2, 0, 10 0, 10, 10

c1 (low) c2 (high)

Figure 10: Crime and Punishment-2, before parameter change

new payoffs are given in figure 11. The unique Nash equilibrium is given by x̂ = (a2, b2, c2),

and this is not comparable to x∗ = (a3, b1, c1).

Notice that the second iterate condition from theorem 3 would be as follows: x∗
1 �

β1
t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)). This condition is satisfied, because β2
t̂
(a3, c1) = b1, β

3
t̂
(a3, b1) = c2,

and therefore, x̂∗
1 = a3 � a3 = β1

t̂
(b1, c2) = β1

t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)).

These examples show that a straightforward application of theorem 3 may not neces-

sarily work for more general cases.20 We now develop results that can be applied to more

general cases by considering a little more structure on parameterized GSH.

The strategic game Γ =
{

(Xi,�i, ui)
I
i=1, T

}

is a parameterized GSH, if for every

player i,

1. The strategy space of player i is Xi, a non-empty, sub-complete, convex, sub-lattice

20An additional counter-example can be constructed where two players exhibit strategic substitutes

and one player exhibits strategic complements.
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b1 (low) b2 (high) b1 (low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 3, 4, 4

a3 10, 2, 2 10, 0, 2 a3 10, 2, 4 0, 4, 4

a4 15, 0, 0 7, 10, 0 a4 7, 0, 10 0, 10, 10

c1 (low) c2 (high)

Figure 11: Crime and Punishment-2, after parameter change

of a Banach lattice, with closed, convex order intervals.21 Let x̄i = supXi.

2. X = X1×· · ·×XI is the overall strategy space with the product order and topology,

and T is a partially ordered set.

3. For every player i, ui : X × T → R is continuous in x, quasi-supermodular and

quasi-concave in xi and satisfies single-crossing property in (xi; t).

Theorem 5. Consider a parameterized GSH in which players 1, . . . , J have strategic sub-

stitutes and J+1, . . . , I have strategic complements. Suppose best-responses are singleton-

valued.

For every t∗ � t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi)
I
i=1 be defined as follows: ŷi = βi

t̂
(x∗

−i),

for i = 1, . . . , J , and ŷi = βi
t̂
((ŷj)

J
j=1; (x̄j)

I
j=J+1,j 6=i), for i = J + 1, . . . , I.

If for i = 1, . . . , J , x∗
i � βi

t̂
(ŷ−i), then there is x̂ ∈ E(t̂) such that x∗ � x̂.

21The assumption on order intervals is automatically satisfied in standard Banach lattices, such as Rn,

Lp(µ) spaces, space of continuous functions over a compact set, and so on. See, for example, Aliprantis

and Border (1994). Moreover, the order and topological structure is assumed to be compatible in terms

of lattice norms.
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Proof. For i = 1, . . . , I, let Bi = [x∗
i , ŷi], and let B = ×I

i=1Bi. For i = 1, . . . , J ,

consider βi
t̂
on B−i. Notice that x∗

i � βi
t̂
(ŷ−i) by assumption, and βi

t̂
(x∗

−i) = ŷi, by

definition. Therefore, βi
t̂
(B−i) ⊆ Bi; that is, β

i
t̂
restricted to B−i maps into Bi. Similarly,

for i = J + 1, . . . , I, consider βi
t̂
on B−i. Single-crossing property in (xi; t) yields x∗

i �

βi
t̂
(x∗

−i) and also, βi
t̂
(ŷ−i) = βi

t̂
((ŷJj=1); (ŷj)

I
j=J+1,j 6=i) � βi

t̂
((ŷJj=1); (x̄j)

I
j=J+1,j 6=i) = ŷi, where

the inequality follows from (ŷj)
I
j=J+1,j 6=i � (supXj)Ij=J+1,j 6=i = (x̄j)

I
j=J+1,j 6=i. Therefore,

βi
t̂
(B−i) ⊆ Bi. Consequently, the joint best response function satisfies βt̂(B) ⊆ B; that

is, the restriction of β to B is a self-map, and applying Brouwer-Schauder-Tychonoff’s

theorem, there is a fixed point x̂ ∈ E(t̂) such that x∗ � x̂.

Notice that the fact that order intervals are compact and convex is used only to guar-

antee existence of an equilibrium. In classes of games where an equilibrium always exists,

these assumptions are not needed to prove theorem 1. For example, in quasi-aggregative

games, see Jensen (2010), equilibrium existence is guaranteed without convexity or quasi-

concavity assumptions, and therefore, our proof will work by invoking equilibrium ex-

istence on [x∗, ŷ], and not requiring convexity or quasi-concavity. Similarly, example 7

below does not require convex strategy spaces.

The condition for multi-player games in theorem 5 is stronger than the condition

characterizing increasing equilibria in two-player games (in theorem 3). This can be seen

as follows. Consider a two-player game in which player 1 has strategic substitutes and

player 2 has strategic complements. Notice that by the single-crossing property in (x1; t),

x∗
1 � β1

t̂
(x∗

2) = ŷ1, and therefore, using ŷ2 = β2
t̂
(ŷ1), it follows that β

1
t̂
(ŷ2) = β1

t̂
◦ β2

t̂
(ŷ1) �

β1
t̂
◦β2

t̂
(x∗

1). Consequently, when the condition in theorem 4 is satisfied, that is, x∗
1 � β1

t̂
(ŷ2),

the condition in theorem 3 is satisfied automatically, that is, x∗
1 � β1

t̂
◦β2

t̂
(x∗

1). Intuitively,

the condition in theorem 3 evaluates the combined direct and indirect effects given by

β1
t̂
◦ β2

t̂
at x∗

1, and the condition in theorem 5 evaluates the combined effects at ŷ1, which

is higher than x∗
1.

The need for a stronger condition in multi-player games arises due to additional
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strategic interaction among the players. For example, consider a three-player game in

which player 1 exhibits strategic substitutes and players 2 and 3 exhibit strategic com-

plements. The natural generalization of the condition in theorem 2 would be: x∗
1 �

β1
t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)). As shown in the Crime and Punishment, Part 2 example above,

this is not sufficient to guarantee monotone comparative statics. Intuitively, when the

parameter increases from t∗ to t̂, the direct effect on players 2 and 3 is captured by

(β2
t̂
(x∗

−2), β
3
t̂
(x∗

−3)), which raises their strategies. But an increase for player 2 has a fur-

ther impact for player 3, due to strategic complements, and vice-versa. The Crime and

Punishment, part 2 example essentially shows that not including these additional effects

may lead to an incorrect evaluation of the combined effects. The condition in theorem 5

adjusts for these effects by applying the combined evaluation on ŷ−i, which is larger than

x∗
−i.

A benefit of the condition in theorem 5 is that there are no restrictions on strategy

spaces to be linearly ordered, as required by theorem 3.

A similarity between theorem 5 and theorem 3 is that the condition needs to hold for

players with strategic substitutes only. There is no additional restriction on players with

strategic complements. Moreover, a special case of theorem 5 is the result for games with

strategic substitutes (theorem 1 in Roy and Sabarwal (2010)); it obtains when J = I.

Example 7 (Cournot Oligopoly). Consider 3 firms competing in quantities. Firm 1 is

a large firm (or, say, an incumbent) that can produce one of three levels of output: Low,

Medium, and High (denoted L1, M1, and H1). It exhibits strategic substitutes. Firms 2

and 3 are smaller (or, say, potential entrants) and are capable of producing either Low or

Medium level of output. Thus, X1 = {L1,M1, H1}, X2 = {L2,M2}, and X3 = {L3,M3}.

Suppose the smaller firms experience a technological spillover if enough output is produced

by their rival firms, and therefore, each exhibits strategic complements. Payoffs are as

follows.

Notice that a smaller firm is only willing to produce the medium level of output, if both
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L3 M3 L3 M3 L3 M3

L2 15, 20, 20 25, 20, 10 L2 40, 15, 15 10, 15, 10 L2 0, 10, 10 0, 5, 5

M2 25, 10, 20 10, 10, 10 M2 10, 10, 15 5, 10, 10 M2 0, 5, 5 0, 10, 10

L1 M1 H1

Figure 12: Cournot Oligopoly, before parameter change

competitors produce their maximum levels. Also notice the strategic substitutes property

of the large firm: it is only willing to produce a level other than L1 if both competitors

produce low levels. It is easy to check that the unique equilibrium is x∗ = (M1, L2, L3).

Now let the parameter t increase to some t̂, t̂ ≻ t∗, and consider the following payoffs.

L3 M3 L3 M3 L3 M3

L2 20, 25, 25 25, 25, 15 L2 45, 20, 15 30, 20, 20 L2 5, 10, 10 5, 10, 15

M2 25, 15, 15 20, 15, 25 M2 30, 15, 15 10, 15, 20 M2 5, 15, 10 5, 15, 15

L1 M1 H1

Figure 13: Cournot Oligopoly, after parameter change

Notice that the parameter increase is (weakly) complementary for each firm. Firm 3 is

more willing to increase its output: it will produce M3 as long as one of its competitors is

producing more than the low level of output. Firm 2 is now willing to produce M2, if, and

only if, firm 1 produces H1. The condition in theorem 5 needs to be checked for firm 1

only (the firm with strategic substitutes). In this case, ŷ1 = β1
t̂
(x∗

2, x
∗
3) = β1

t̂
(L2, L3) = M1,

ŷ2 = β2
t̂
(ŷ1, x̄3) = β2

t̂
(M1,M3) = L2, and ŷ3 = β3

t̂
(ŷ1, x̄2) = β3

t̂
(M1,M2) = M3. Therefore,
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x∗
1 = M1 � M1 = β1

t̂
(L2,M3) = β1

t̂
(ŷ−1). Consequently, there is a higher equilibrium:

x̂ = (M1, L2,M3).

The result in theorem 5 can be extended to best response correspondences, as follows.

The intuition remains the same.

Theorem 6. Consider a parameterized GSH in which players 1, . . . , J have strategic

substitutes, and players J + 1, . . . , I have strategic complements and the strict single-

crossing property in (xi; t).

For every t∗ ≺ t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi)i∈I be defined as follows: ŷi = β
i

t̂(x
∗
−i),

for i = 1, . . . , J , and ŷi = β
i

t̂((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i), for i = J + 1, . . . , I.

If for i = 1, . . . , J , x∗
i � βi

t̂
(ŷ−i), then there is x̂ ∈ E(t̂) such that x∗ � x̂.

Proof. Notice that for every i, x∗
i � ŷi, as follows. For i = 1, . . . , J , using single-crossing

property, x∗
i � β

i

t∗(x
∗
−i) � β

i

t̂(x
∗
−i) = ŷi. And for i = J + 1, . . . , I, x∗

i � β
i

t∗(x
∗
−i) �

β
i

t∗((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i) � β

i

t̂((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i) = ŷi, where the second inequality

follows from strategic complements, and the last inequality from single-crossing property.

For i = 1, . . . , I, let Bi = [x∗
i , ŷi], and let B = ×I

i=1Bi. For i = 1, . . . , I, consider βi
t̂

on B−i. Then x∗
i � βi

t̂
(ŷ−i) by assumption, and β

i

t̂(x
∗
−i) = ŷi, by definition. Therefore,

βi
t̂
(B−i) ⊆ Bi; that is, β

i
t̂
restricted to B−i maps into Bi. Similarly, for i = J + 1, . . . , I,

consider βi
t̂
on B−i. Strict single-crossing property in (xi; t) yields x∗

i � β
i

t∗(x
∗
−i) �

βi

t̂
(x∗

−i). Moreover, βi
t̂
(ŷ−i) = βi

t̂
((ŷJj=1); (ŷj)

I
j=J+1,j 6=i) ⊑in βi

t̂
((ŷJj=1); (x̄j)

I
j=J+1,j 6=i), where

the induced set order inequality follows from strategic complements. Therefore, β
i

t̂(ŷ−i) �

β
i

t̂((ŷ
J
j=1); (x̄j)

I
j=J+1,j 6=i) = ŷi. Thus, β

i
t̂
(B−i) ⊆ Bi. Consequently, the joint best response

correspondence satisfies βt̂(B) ⊆ B; that is, the restriction of β to B is a self-map, and

applying Kakutani-Fan-Glicksberg’s theorem, there is a fixed point x̂ ∈ E(t̂) such that

x∗ � x̂.
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7 Conclusion

This paper studies games with strategic heterogeneity (GSH). Such games include GSS

and GSC.

The equilibrium set in a GSH is totally unordered (no two equilibria are comparable

in the standard product order), under mild assumptions (related to strategic substitutes

for one player only, or related to strategic properties of two players only, and without any

restrictions on the strategic interactions among other players).

Parameterized GSH do not allow decreasing equilibrium selections, under mild as-

sumptions (related to strategic substitutes for one player only). In general, this cannot

be strengthened to exhibit an increasing equilibrium selection.

Monotone comparative statics results are presented for games in which some players

exhibit strategic complements and others exhibit strategic substitutes. For two player

games with linearly ordered strategy spaces, there is a characterization of monotone com-

parative statics. More generally, there are sufficient conditions. In both two-player and

multi-player settings, the conditions apply only to players exhibiting strategic substitutes.

No conditions are needed for players with strategic complements. Several examples high-

light the results.

In addition to shedding light on GSH, this work shows that games with both strategic

substitutes and strategic complements may behave differently from either GSC or GSS.
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Appendix

Roy and Sabarwal (2008) assume that the best-response correspondence satisfies a never-

increasing property, defined as follows. Let X be a lattice and T be a partially ordered

set. A correspondence φ : T ։ X is never increasing, if for every t′ ≺ t′′, for every

x′ ∈ φ(t′), and for every x′′ ∈ φ(t′′), x′ 6� x′′.22 This property is satisfied in a GSS,

but it excludes cases of interest when there are both strategic complements and strategic

substitutes, as follows.

Recall that player i has quasi-strict strategic complements, if her best response,

βi(x−i), is increasing in the completely lower than set order. Moreover, when best re-

sponses are singleton-valued, player i has quasi-strict strategic complements, if, and only

if, player i has strategic complements.

Proposition 1. Let Γ be a GSH in which all-but-one players exhibit quasi-strict strate-

gic complements, and the remaining player has at least two actions. The best response

correspondence in such a game does not satisfy the never-increasing property.

Proof. Suppose, without loss of generality, that all-but-player-1 have quasi-strict strate-

gic complements. Consider x′
1 ≺ x′′

1 in X1, and x′
−1 ∈ X−1. Then (x′

1, x
′
−1) ≺ (x′′

1, x
′
−1).

Let y′1 ∈ β1(x′
−1). For each i 6= 1, let x′

−i = (x′
1, x

′
−(1,i)) and x′′

−i = (x′′
1, x

′
−(1,i)). Then

for each i 6= 1, x′
−i ≺ x′′

−i. For each such i, fix y′i ∈ βi(x′
−i) and y′′i ∈ βi(x′′

−i) arbi-

trarily. By quasi-strict strategic complements, y′i � y′′i . Thus, (x′
1, x

′
−1) ≺ (x′′

1, x
′
−1),

(y′1, y
′
−1) ∈ β(x′

1, x
′
−1), (y

′
1, y

′′
−1) ∈ β(x′′

1, x
′
−1), and (y′1, y

′
−1) � (y′1, y

′′
−1), contradicting the

never-increasing property.

Consequently, the case where all-but-one players exhibit quasi-strict strategic com-

plements, and the remaining player has strategic substitutes is not covered by Roy and

22When best-responses are functions, this coincides with the definition of a not-increasing function,

t′ ≺ t′′ ⇒ φ(t′) 6� φ(t′′), and in linearly ordered X , this is equivalent to a strictly decreasing function.
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It is easy to see that the global nature of the definition of a never-increasing cor-

respondence rules out additional cases of interest. The Cournot duopoly with spillovers

(Example 3) provides an example. In this case, player 2 does not have quasi-strict strategic

complements. Nevertheless, the best-response correspondence does not satisfy the never-

increasing property, because for example, for all ǫ > 0 sufficiently small, (1
2
, 7) ≺ (1

2
+ǫ, 7),

but β2(1
2
) ≺ β2(1

2
+ ǫ), and therefore, β(1

2
, 7) ≺ β(1

2
+ ǫ, 7). This occurs, because player 2

has quasi-strict strategic complements in a neighborhood of 1
2
, even though he does not

have quasi-strict strategic complements globally. This is sufficient to violate the never-

increasing property. This observation can be generalized. In particular, a similar proof

shows that the conclusion of proposition 1 holds even when all-but-one players exhibit

“local” quasi-strict strategic complements.
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