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Abstract:

This paper is an up-to-date survey of the state-of-the-art in dynamical systems
theory relevant to high levels of dynamical complexity, characterizing chaos and
near chaos, as commonly found in the physical sciences. The paper also surveys
applications in economics and �nance. This survey does not include bifurcation
analyses at lower levels of dynamical complexity, such as Hopf and transcritical
bifurcations, which arise closer to the stable region of the parameter space. We
discuss the geometric approach (based on the theory of di¤erential/di¤erence
equations) to dynamical systems and make the basic notions of complexity, chaos,
and other related concepts precise, having in mind their (actual or potential)
applications to economically motivated questions. We also introduce speci�c
applications in microeconomics, macroeconomics, and �nance, and discuss the
policy relevancy of chaos.

JEL classi�cation: C3; C13, C51, C61.

Keywords: Complexity; Chaos; Endogenous business cycles.
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1 Introduction

According to an unsophisticated but perhaps still prevailing view, the output of deterministic
dynamical systems can in principle be predicted exactly and, assuming that the model rep-
resenting the real system is correct, errors in prediction will be of the same order of errors in
observation and measurement of the variables. On the contrary, random processes describe
systems of irreducible complexity owing to the presence of an inde�nitely large number of
degrees of freedom, whose behavior can only be predicted in probabilistic terms.
This simplifying view was completely upset by the discovery of chaos, i.e., deterministic

systems with stochastic behavior. It is now well known that perfectly deterministic systems
(i.e., systems with no stochastic components) of low dimensions (i.e., with a small number
of state variables) and with simple nonlinearities (i.e., a single quadratic function) can have
stochastic behavior. The discovery that such systems exist and are indeed ubiquitous has
brought about a profound re-consideration of the issue of randomness.
Besides its obvious intellectual appeal, chaos is interesting in economics and �nance,

because of its ability to generate output that mimics the output of stochastic systems, thereby
o¤ering an alternative explanation for business cycles. Moreover, the possible existence of
chaos could be exploitable and even invaluable. If, for example, chaos can be shown to exist
in asset prices, the implication would be that pro�table, nonlinearity-based trading rules
exist (at least in the short run and provided the actual generating mechanism is known).
Prediction, however, over long periods is all but impossible, due to the sensitive dependence
on initial conditions property of chaos.
In the following sections, we will be discussing dynamical systems mainly from a geometric

(or topological) point of view. This approach, being intuitively appealing and lending itself
to suggestive graphical representations, has been tremendously successful in the study of low-
dimensional systems, such as, for example, (discrete- and continuous-time) systems with one
and perhaps two variables. For higher-dimensional systems, however, the ergodic approach,
based on the axiomatic formulation of probability theory and aimed at the investigation of
statistical properties of orbits, is more appealing. See Barnett et al. (1997) for a discussion
of that approach.
While this paper does not survey bifurcation regions producing low levels of dynamical

complexity, such as Hopf and transcritical bifurcation, those forms of bifurcation, close to the
stable region, have been shown to be very common in even the most elementary dynamical
macroeconomic models, including linear models. See Barnett and Duzhak (2007, 2010)
and Barnett, Banerjee, Duzhak, and Gopalan (2011). With the growing importance of
Euler equations models, having no analytical closed form solutions, intermediate levels of
dynamical complexity, between the well-known low levels and the challenging chaotic level,
are growing in importance. For example, Barnett and He (2010) have shown that singularity
bifurcation arises in some Euler equations macroeconometric models.
In fact bifurcation can occur without leaving the stable region of the parameter space.
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Monotonic stability and damped stability are within di¤erent bifurcation regions, and there
is an in�nite number of damped stable regions, beginning with single periodic, biperiodic,
and an in�nite number of multiperiodic damped regions � all stable.

2 Dynamical Systems

In general, in order to generate complex dynamics a deterministic model must have two
essential properties: (i) there must be continuous- or discrete-time lags between variables
and (ii) there must be some nonlinearity in the functional relationships of the model. In
applied disciplines including economics, the �rst of these features is typically represented by
means of systems of di¤erential or di¤erence equations and even though there exist other
mathematical formulations of dynamics which are interesting and economically relevant, in
this paper we shall concentrate our attention on them.
Typically, a system of ordinary di¤erential equations will be written as

_x = f(x), x 2 Rn (1)

where f : U ! Rn with U an open subset of Rn and _x � dx=dt.1 The vector x denotes the
physical (economic) variables to be studied, or some appropriate transformations of them;
t 2 R indicates time. In this case, the space Rn of dependent variables is referred to as
phase space (or state space), while Rn � R is called the space of motions.
Equation (1) is often referred to as a vector �eld, since a solution of (1) at each point

x is a curve in Rn, whose velocity vector is given by f(x). A solution of equation (1) is a
function

 : I ! Rn

where I is an interval in R [in economic applications, typically I = [0;+1)], such that  is
di¤erentiable on I, [ (t)] 2 U for all t 2 I, and

_ (t) = f [ (t)], 8 t 2 I.

The set f (t) jt 2 I g is the orbit of  : it is contained in the phase space; the set f(t;  (t)) jt 2 I g
is the trajectory of  : it is contained in the space of motions. However, in applications,
the terms �orbit�and �trajectory�are often used as synonyms. If we wish to indicate the

1Systems described by equation (1), in which f does not depend directly on the independent variable t
are called autonomous. If f does depend on t directly, we shall write

_x = f(x; t); (x; t) 2 Rn � R

and f : U ! Rn with U an open subset of Rn � R. Equations of this type are called non-autonomous. In
economics they are used, for example, to investigate technical progress.
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dependence on initial conditions explicitly, then a solution of equation (1) passing through
the point x0 at time t0 is denoted by

 (t; t0; x0)

(if t0 is equal to zero it can be omitted). For a solution  (t; x0) to exist, continuity of f
is su¢ cient. For such a solution to be unique, it is su¢ cient that f be continuous and
di¤erentiable in U .
We can also think of solutions of ordinary di¤erential equations in a slightly di¤erent

manner, which is now becoming prevalent in dynamical system theory and will be very
helpful for understanding some of the concepts discussed in the following sections. Suppose
we denote by  t(x) the point in Rn reached by the system at time t starting from the point
x at time 0, under the action of the vector �eld f of equation (1). Then the totality of
solutions of (1) can be represented by the one-parameter family of maps of the phase-space
onto itself,  t : Rn ! Rn, which is called phase �ow (or, for short, �ow) generated by the
vector �eld f , by analogy with �uid �ow where we think of the time evolution as a streamline.
If we now take t as a �xed parameter and considering that, for autonomous vector �elds,

time-translated solutions remain solutions [i.e., if  (t) is a solution of equation (1),  (t+ �)
is also a solution for any � 2 R], the problem may be formulated as

xt+1 = T (xt), x 2 Rn, t 2 N (2)

where T =  � and � is the �xed value of the parameter t, normalized so that � = 1.
Thus, a di¤erence equation like (2) can be derived from a di¤erential equation like (1).

This need not be that case and many problems in economics as well as in other areas of
research give rise directly to discrete-time dynamical systems. In fact, non invertible maps
such as the celebrated logistic map extensively discussed later in this article could not be
derived from a system of ordinary di¤erential equations.
Equations like (2) are often referred to as iterated maps, since its orbit is obtained recur-

sively given an initial condition xt. For example, if we compose T with itself, then we get
the second iterate

xt+2 = T � T (xt) = T 2(xt)

and by induction on n we get the nth iterate

xt+n = T � T n�1(xt) = T n(xt).

Hence, by the notation T n(x), we mean T composed with itself n � 1 times, not the nth
derivative of T or the nth power of T .2

2As an example, if T (x) = �x3, then T 2(x) = T � T (x) = �(�x3)3 = x9 and T 3(x) = T � T � T (x) =
T � T 2(x) = �(x9)3 = �x27:
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Notice the following di¤erence between the orbits of continuous-time and those of discrete-
time systems: the former are continuous curves in the state space, whereas the latter are
sequences of points in space. Also, the fact that a map is a function implies that, starting
from any given point in space, there exists only one forward orbit. If the function is non-
invertible, however, backward orbits are not de�ned.3

It is also to be noted that dynamical systems (whether of a continuous or of a discrete
type), can be classi�ed into conservative and dissipative ones. See Medio (1992) for a detailed
discussion. Conservative systems cannot have attracting regions in the phase space, i.e.,
there can never be asymptotically stable �xed points, or limit cycles, or strange attractors.
Since strange attractors (to be de�ned later) are the main object of our investigation and
conservative systems are relatively rare in economic applications, we shall not pursue their
general study here. Unlike conservative ones, dissipative dynamical systems, on which most
of this article concentrates, are characterized by contraction of phase space volumes with
increasing time. Because of dissipation, the dynamics of a system whose phase space is n-
dimensional, will eventually be con�ned to a subset of dimension smaller than n. In the case,
for example, of an n-dimensional system of di¤erential equations characterized by a unique,
globally asymptotically stable equilibrium point, the �ow will contract any n-dimensional
set of initial conditions to a zero-dimensional �nal state, a point in Rn.
The asymptotic, permanent regime of a dissipative system is the only observable behavior,

in the sense that it is not ephemeral, can be repeated and therefore be �seen�(i.e., on the
screen of a computer), and is often easier to investigate than the overall orbit structure.
Even though transients may sometimes last for a very long time and their behavior may be
an interesting subject for investigation, for dissipative systems we shall concentrate instead
on the long-run behavior of the system, ignoring the transient behavior associated with the
start up of the system. That is, we shall consider only the attractor (or attractors, in
general) to which trajectories from a range of initial conditions are attracted, to understand
the asymptotic properties of a dynamical system. That is, we shall concentrate on the
asymptotic properties of a dynamical system, devoting our attention mainly to the attractors
of a system, i.e., to the sets of points to which trajectories starting from a range of initial
conditions tend as time goes by. See Medio (1992, Chapter ?) for a more detailed discussion.

2.1 Strange Attractors

The simplest type of an attractor is a stable �xed point or (using a terminology more common
in economics) a stable equilibrium. Ascertaining the existence of a �xed/equilibrium point
mathematically amounts to �nding the solutions of a system of algebraic equations. In the
continuous-time case _x = f(x), the set of equilibria is de�ned by E = f�x jf(�x) = 0g, i.e., the

3A map is invertible if and only if it is one-to-one. For example, the map T : R! R de�ned by T (x) = x2
is not one-to-one, since T (1) = 1 = T (�1). However, the map T : [0;1) ! R de�ned by T (x) = x2 is one-
to-one (and therefore invertible).
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set of values of x such that its rate of change in time is 0. Analogously, in the discrete-time
case xt+1 = T (xt), we have E = f�x j�x� T (�x) = 0g, i.e., the values of x which are mapped
to themselves by T . As an example, consider the logistic map

xt+1 = Tr(xt) = rxt(1� xt), x 2 [0; 1], r 2 (0; 4]. (3)

To �nd the �xed points of (3), we put xt+1 = xt = �x and solve for �x, �nding �x1 = 0 and
�x2 = 1� 1=r, as can be seen in Figure 1.
To get some idea of the importance of �xed points, in Figure 2 we plot the phase diagram

of the logistic map for di¤erent values of the tuning (or control) parameter, r. Notice that
the height of the phase curve hill depends on the value r. For r < 1, the only �xed point in
the interval 0 � x � 1 is �x = 0, but for r > 1, there are two �xed points. Using graphical
iteration (an algorithmic process of drawing vertical and horizontal segments �rst to the
phase curve and then to the diagonal, xt+1 = xt, which re�ects it back to the curve), it is
easy to show that all trajectories for starting values in the interval 0 � x � 1 and for r < 1
approach the �nal value �x = 0. The point �x = 0 is the attractor for those orbits and the
interval 0 � x � 1 is the basin of attraction for that attractor.
In general, we can examine the dynamical information contained in the derivative of the

map at the �xed point, T 0(�x). If jT 0(�x)j 6= 1, �x is called hyperbolic �xed point. In fact a
�xed point �x is stable (or attracting) if jT 0(�x)j < 1, unstable (or repelling) if jT 0(�x)j > 1, and
superstable (or superattractive) if jT 0(�x)j = 0; superstable in the sense that convergence to
the �xed point is very rapid. Fixed points whose derivatives are equal to one in absolute
value are called nonhyperbolic (or neutral) �xed points.
Next in the scale of complexity of invariant sets, we consider stable periodic solutions, or

limit cycles. For maps, a point �x is a periodic point of T with period k, if T k(�x) = �x for
k > 1 and T j(�x) 6= �x for 0 < j < k. In other words, �x is a periodic point of T with period
k if it is a �xed point of T k. In this case we say that �x has period k under T , and the orbit
is a sequence of k distinct points f�x; T (�x); � � �; T k(�x)g which, under the iterated action of T ,
are repeatedly visited by the system, always in the same order. Since all points between �x
and T k(�x) are also period k points, the resulting sequence is known as a period k cycle or
alternatively a k-period cycle. Notice that k is the least period; if k = 1, then �x is a �xed
point for T .4

The third basic type of attractor is called quasiperiodic. If we consider the motion
of a dynamical system after all transients have died out, the simplest way of looking at a
quasiperiodic attractor is to describe its dynamics as a mechanism consisting of two or more
independent periodic motions. Quasiperiodic orbits can look quite complicated, since the
motion never exactly repeats itself (hence, quasi), but the motion is not chaotic (as it was
wrongly once conjectured). Notice that quasiperiodic dynamics have been found to occur
in economically motivated dynamical models. See, for example, Medio (1992, Chapter 12).

4For example, the point 1 lies on a 2-cycle for T (x) = �x3, since T (1) = �1 and T (�1) = 1. Similarly,
the point 0 lies on a 3-cycle for T (x) = � 3

2x
2 + 5

2x+ 1, since T (0) = 1, T (1) = 2, and T (2) = 0.
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Attractors with an orbit structure more complicated than that of periodic or quasiperiodic
systems are called chaotic or strange attractors. The strangeness of an attractor mostly
refers to its geometric characteristic of being a �fractal�set, whereas chaotic is often referred to
a dynamic property, known as �sensitive dependence on initial conditions,�or equivalently,
�divergence of nearby orbits.� Notice that strangeness, as de�ned by fractal dimension,
and chaoticity, as de�ned by sensitive dependence on initial conditions, are independent
properties. Thus, we have chaotic attractors that are not fractal and strange attractors that
are not chaotic.
As we shall see, separation of nearby orbits, or, equivalently, ampli�cation of errors is

the basic mechanism that makes accurate prediction of the future course of chaotic orbits
impossible, except in the short run. On the other hand, as chaotic attractor are bounded
objects, the expansion that characterizes their orbits must be accompanied by a �folding�
action that prevents them to escape to in�nity. The coupling of �stretching and folding�of
orbits is the distinguishing feature of chaos and it is at the root of both the complexity of
its dynamics and the �strangeness�of its geometry.
In dissipative systems, a chaotic attractor typically arises when the overall contraction of

volumes, which characterizes those systems, takes place by shrinking in some directions, ac-
companied by (less rapid) stretching in the others. However, one-dimensional, non-invertible
maps that generate chaotic orbits characterized by sensitive dependence on initial conditions
(such as, for example, the logistic map) pose a puzzling problem. Strictly speaking, they
are not conservative or dissipative: they might indeed be called �anti-dissipative.� These
maps only have a stretching action and their output remains bounded due to the e¤ect of the
(nonmonotonic) nonlinearity. We could think of these maps as limit cases of (dissipative)
two-dimensional, invertible maps with very strong contraction in one direction, so strong
that, in the limit, only one dimension is left, along which nearby orbits separate.
In what follows, we shall discuss the �fractal�property of chaotic attractors brie�y, whereas

the �sensitive dependence on initial conditions�property of chaos will be given greater atten-
tion, since this property of chaos is, in our opinion, the most relevant to economics.

2.2 Fractal Dimension

The term �fractal�was coined by Mandelbrot (1985) and it refers to geometrical objects
characterized by non-integral dimensions and �self-similarity.� The term fractal comes from
the Latin fractus which means broken. Intuitively, a snow�ake can be taken as a natural
fractal. The problem of de�ning measurement criteria �ner than the familiar Euclidean
dimensions (length, area, volume) in order to quantify the geometric properties of �broken�
or �porous�objects was tackled by mathematicians long before the name and properties of
fractals became popular. There now exists a rather large number of criteria for measuring
qualities that otherwise have no clear de�nition (such as, for example, the degree of roughness
or brokenness of an object), but we shall limit ourselves here to discuss the simplest type
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concisely.
Let S be a set of points in a space of Euclidean dimension p (think, for example, of the

points on the real line generated by the iterations of a one-dimensional map). We now
consider certain boxes of side � (or, equivalently, certain spheres of radius �), and calculate
the minimum number of such cells, N(�), necessary to �cover�S. Then, the fractal dimension
D of the set S will be given by the following limit (assuming it exists)

D � lim
�!0

log(N(�))

log(1=�)
. (4)

The quantity de�ned in Equation (4) is also called the (Kolmogorov) capacity dimension.
It is easily seen that, for the most familiar geometrical objects, it provides perfectly intuitive
results. For example, if S consists of just one point, N(�) = 1 and D = 0; if it is a segment
of unit length, N(�) = 1=�, and D = 1; if it is a plane of unit area, N(�) = 1=�2 and D = 2;
�nally, if S is a cube of unit area, N(�) = 1=�3 and D = 3, etc. That is to say, for �regular�
geometric objects, dimension D does not di¤er from the usual Euclidean dimension, and, in
particular, D is an integer.
The fractal dimension, however, is not always an integer. Let us consider the fractal

called Cantor set (or Cantor dust), named after the German mathematician George Cantor
(1845-1918). To make a Cantor set, start with a line segment of unit length. Remove the
middle third and repeat this process without end, each time on twice as many line segments
as before. The Cantor set is the set of points that remains, which are in�nitely many but
their total length is zero. What is the fractal dimension of the Cantor set? By making use
of the notion of capacity dimension, we shall have N(�) = 1 for � = 1, N(�) = 2 for � = 1=3,
and, generalizing, N(�) = 2n for � = (1=3)n. Taking the limit for n !1 (or, equivalently,
taking the limit for �! 0), yields

D = lim
n!1
(�!0)

log 2n

log 3n
' 0:63.

We have thus quantitatively characterized a geometric set that is more complex than the
usual Euclidean objects. Indeed the dimension of the Cantor set is a non-integer. We might
say that the Cantor dust is an object �greater�than a point (dimension 0) but �smaller�than
a segment (dimension 1). It can also be veri�ed that the Cantor set is characterized by
self-similarity.
The concept of fractal dimension is useful in the geometric analysis of dynamical systems,

because it can be conceived of as a measure of the way trajectories �ll the phase space under
the action of a �ow or a map. A non-integer fractal dimension, for example, indicates
that trajectories of a system �ll up less than an integer subspace of the phase space. See
Medio (1992, chapter 7) for a non-rigorous, but intuitive discussion. Also, the concept of
fractal dimension is useful in the quantitative analysis of chaotic attractors. For example,
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the dimension of the attractor of a system [as measured by (4)] can be taken as an index of
complexity, as indicated by the essential dimension of the system.

2.3 Lyapunov Exponents

To provide a rigorous characterization, as well as a way of measuring sensitive dependence
on initial conditions, we shall now discuss a powerful conceptual tool known as Lyapunov
exponents. They provide an extremely useful tool for characterizing the behavior of nonlin-
ear dynamical systems. They measure the (in�nitesimal) exponential rate at which nearby
orbits are moving apart. A positive Lyapunov exponent is an operational de�nition of
chaotic behavior. Notice, however, that it is possible to have sensitive dependence on initial
conditions with orbit divergence less than exponential. In this case, no Lyapunov exponent
will be positive.
Although Lyapunov exponents could be discussed in a rather general framework, we shall

deal with the issue in the context of one-dimensional maps, since they are by far the most
common type of dynamical system encountered in economic applications of chaos theory.
Consider, therefore, the map given by equation (3), with T : U ! R, U being a subset of R.
We want to describe the evolution in time of two orbits originating from two nearby points
x0 and x0+ � (where � is the di¤erence, assumed to be in�nitesimally small, between x0 and
x0 + �). If we apply the map function T , n times to each point, the di¤erence between the
results will be related to � as follows

dn = en�(x0)�

where dn is the di¤erence between the two points after they have been iterated by the map
T , n times and �(x0) is the rate of convergence or divergence.
Taking the logarithm of the above equation and solving for �(x0) gives

�(x0) =
1

n
log

����dn�
���� .

Asymptotically, we shall have [since dn=� = T 0(xn�1) � � � T 0(x1)T 0(x0)]

�(x0) = lim
n!1

1

n
log

����dn�
����

= lim
n!1

1

n
log jT 0(xn�1) � � � T 0(x1)T 0(x0)j

= lim
n!1

1

n

n�1X
j=0

log jT 0(xj)j . (5)
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The quantity �(x0) is called Lyapunov exponent. Note that the right hand side of (5) is an
average along an orbit (a time average) of the logarithm of the derivative. Notice that, in
general, Lyapunov exponents depend on the selected initial conditions. From equation (5),
the interpretation of �(x0) is straightforward: it is the (local) asymptotic exponential rate of
divergence of nearby orbits. It is local, since we evaluate the rate of separation in the limit,
as � ! 0. It is asymptotic, since we evaluate it in the limit of an inde�nitely large number
of iterations, as n!1, assuming that the limit exists.
As an example, let

T�(x) =

�
2x for 0 � x � 1=2
2(1� x) for 1=2 � x � 1 (6)

be the symmetric �tent�map. Clearly, �(x0) is not de�ned if x0 is such that xj = T j�(x0) =
1=2 for some j (because the derivative is not de�ned). For other points x0 2 [0; 1], jT 0�(xj)j =
2 for all j, so that �(x0) = log 2.
As another example, consider the logistic map, Tr(x), given by equation (3). Since

T 0r(xj) = r(1� 2xj), the Lyapunov exponent is given by

�(x0) = lim
n!1

1

n

n�1X
j=0

log jr(1� 2xj)j

= log r + lim
n!1

1

n

n�1X
j=0

log j1� 2xjj .

Clearly, if x0 = 0 or 1, then �(x0) = log r. For points x0 2 (0; 1) and for r = 4, �(x0) = log 2.
The sign of Lyapunov exponents is especially important to classify di¤erent types of

dynamical behavior. In particular, the presence of a positive Lyapunov exponent signals
that nearby orbits diverge exponentially in the corresponding direction. In its turn, this
indicates that observation errors will be ampli�ed by the action of the map. We shall see
in what follows that the presence of a positive Lyapunov exponent is intimately related to
the lack of predictability of dynamical systems, and thus it is an essential feature of chaotic
behavior. It is to be noted that the calculation of Lyapunov exponents in the general,
multidimensional case is more complex and cannot be discussed here in any detail.

2.4 Transition to Chaos

In the previous sections, we have provided a classi�cation of attractors and discussed the
distinct properties of chaotic attractors. The relevance of these procedures would be greatly
enhanced if, in addition, we could describe the qualitative changes in the orbit structure of
the system which take place when the control parameters are varied. In this way, we would

11



obtain not only a snapshot of chaotic dynamics, but also a description of its emergence.
Moreover, if we could provide a rigorous and exhaustive classi�cation of the ways in which
complex behavior may appear, transition to chaos could be predicted theoretically, and
potentially turbulent mechanisms could be detected in practical applications � and their
undesirable e¤ects could be avoided by acting on the relevant parameters.
Unfortunately, the present state of the art does not permit us to de�ne the prerequisites of

chaotic behavior with su¢ cient precision and generality. In order to forecast the appearance
of chaos in a dynamical system, we are for the time being left with a limited number of
theoretical predictive criteria and a list of certain typical (but by no means exclusive) �routes
to chaos�. Typically, transition to chaos takes place through bifurcations. A bifurcation is
an essentially nonlinear phenomenon and describes a qualitative change in the orbit structure
of a (discrete or continuous-time) dynamical system when one or more parameter is changed.
Bifurcation theory is a vast and complex area and we shall consider it here only incidentally.
There exist various types of routes to chaos, generated by so-called codimension one

bifurcations (that is, bifurcations depending on a single parameter). In what follows, we
shall only (brie�y) deal with period-doubling, probably the best known route to chaos at
least in the economics literature � see, for example, Baumol and Benhabib (1989). For a
discussion of other routes to chaos (such as intermittency and the quasiperiodic route), see
Medio (1992, Chapter 9).
Period-doubling takes place in both discrete and continuous-time dynamical systems, and

can be most simply described by considering the dynamics of the logistic map, Tr(x) given
by equation (3), for di¤erent values of r. If r < 1, the phase curve will lie entirely below
the xt+1 = xt line in the positive quadrant [see Figure 3(a)] and �x = 0 is the only �xed point
(in fact �x = 0 is an equilibrium for all r). Figures 3(a) and 3(b) give the phase and state
space representations of Tr(x) for r = 0:6 and x0 = 0:01. Notice that the only �xed point
is at Tr(x) = �x = 0.
As r increases beyond 1, �x = 0 loses stability, but a new (positive) �xed point, �x = 1�1=r,

appears at the intersection of the xt+1 = xt line and the phase curve, as shown in Figure
4(a). In fact, for r = 2 the �xed point �x = 1� 1=r becomes superstable, since T 02(1=2) = 0.
Therefore, for 1 < r < 3 there are two �xed points: �x = 0, which is unstable, and �x = 1�1=r,
which is stable. From Figure 4(b) we see that the trajectory approaches some positive unique
value (a so-called single limit point) between 0 and 1.
As r goes through r = 3 , a bifurcation called ��ip�occurs and the situation changes.

The �xed point x = 1 � 1=r turns into a repeller, since jT 0r(x)j > 1, and a stable 2-cycle
(or an orbit of period 2) is born: x, Tr(x), T 2r (x) = x. For example, for r = 3:2360679775,
there is a superstable orbit of period 2: 0:5, 0:8090169943:::, 0:5, as can be seen in the state
diagram in Figure 5(b).
Let us brie�y describe how this happens. For an orbit of period 2 we need to consider

12



the function of Tr � Tr(x), abbreviated T 2r (x), and the associated dynamic equation

T 2r (x) = Tr � Tr(x)
= r2x(1� x)(1� rx(1� x)). (7)

This is again a nonlinear system and its dynamic behavior can be studied as r varies using
the same analysis as before. In particular, the �xed points of T 2r (x) can be found by equating
T 2r (x) with x and solving the resulting 4th order equation. Hence

x = T 2r (x)

= r2x(1� x)(1� rx(1� x))

= �r3x4 + 2r3x3 � (r2 + r3)x2 + r2x

whence we can derive the four �xed points, namely

�x1 = 0

�x2 = 1� 1=r

�x3 =
1

2r

�
r + 1 +

p
(r � 3)(r + 1)

�
�x4 =

1

2r

�
r + 1�

p
(r � 3)(r + 1)

�
.

Clearly, the four �xed points of T 2r (x) are the two �xed points of Tr(x) and the two elements
of the 2-cycle, which have no counterpart in Tr(x); see the phase diagram in Figure 5(a).
The �xed points of the second-order system (7) are characterized by the derivative of

T 2r (x), (T
2
r )
0(x). Since (T 2r )

0(0) = r2 and (T 2r )
0(1� 1=r) = (2� r)2, for values of r between

3 and 3:45, each of the �xed points �x = 0 and �x = 1 � 1=r (which are still present) are
unstable. The other two �xed points, however, �x = 1

2r

�
r + 1�

p
(r � 3)(r + 1)

�
, are both

stable, thus implying that each of them locally attracts the dynamics of the second-order
system (7).
With respect to Figure 5(a), for r between 3 and 3:45, the trajectories of the �rst-order

system (3) no longer converge to the �xed point �x = 1 � 1=r (point B), but escape from
it and diverge towards the pair of �xed points, �x = 1

2r

�
r + 1�

p
(r � 3)(r + 1)

�
� points

D and C, respectively. Any one of them is unstable under the �rst-order system (3), since
jT 0r(x)j > 1 at both C and D, so that the trajectories once in any one of these points are
initially repelled. Points C and D, however, are stable under the second-order system (7),
since (T 2r )

0(x) at both C and D is less than 1 in absolute value, so that after having moved
away from each of C and D in the �rst step, trajectories come back to each of these points
in the second step, thus making the dynamics of system (7) stable with respect to each of C
and D. Summarizing, for r between 3 and 3:45, the trajectories of Tr(x) oscillate in the set
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fC, Dg, giving rise to a stable 2-cycle for Tr(x), as it is shown in Figure 5(b). In this case
the system is said to undergo a �ip bifurcation; see Guckenheimer and Holmes (1983).
If r is increased further, then the two stable �xed points of T 2r (x) become unstable. In

particular, both �xed points of T 2r (x) will bifurcate at the same r value, leading to an orbit
of period 4. In other words

T 2r � T 2r (x) = T 4r (x)

= Tr � Tr � Tr � Tr(x)

will have eight �xed points, four of which will be stable. For example, for r = 3:498561699
there is a superstable orbit of period 4: 0:5, 0:874:::, 0:383:::, and 0:827:::; see the phase and
state space representations in Figures 6(a) and 6(b).
The same bifurcation scenario will repeat over and over again as r is increased, yielding

orbits of period 16, 32, 64, and so on ad in�nitum. However, the sequence fr�g of values
of r at which �-cycles appear has a �nite accumulation point r1 ' 3:569946, involving an
in�nite number of period doubling bifurcations. The values of r for which these transitions
from one cycle to another cycle occur, are called bifurcation points, the transitions are called
bifurcations, and the phenomenon is called period-doubling. The limit set corresponding
to r1 is a geometric object with a non-integer fractal dimension ' 0:538 and a Lyapunov
exponent equal to zero, and consequently the motion on it is not chaotic in the sense de�ned
above. In fact, Feigenbaum (1978) discovered that convergence of r to r1 is controlled by the
universal parameter � ' 4:669202, known as the Feigenbaum attractor. The computation of
� is based on the formula

� = lim
�!1

�
r� � r��1
r�+1 � r�

�
where (r� � r��1) and (r�+1 � r�) are the distances on the real line between successive �ip
bifurcations.
Past r1, we enter what is usually called the �chaotic zone�. For r1 < r < 4, the

model will behave either periodically or aperiodically, in the latter case, the dynamics may
be nonchaotic (zero Lyapunov exponent, no sensitive dependence on initial conditions) or
chaotic (positive Lyapunov exponent, sensitive dependence on initial conditions). There is,
for example, a tiny interval near r = 3:83 (a so-called window of stability or periodicity)
where a stable 3-cycle occurs; see Figures 7(a) and 7(b). Just past r = 3:83, the period
doubling occurs again, leading to orbits of period 6, 12, 24, and so on, also governed by
the Feigenbaum constant. In fact, for r between r1 and 4 there is a denumerably in�nite
number of periodic windows and still an indenumerable number of values of r for which the
model behaves aperiodically (chaotically or not). For r = 4, we have a completely chaotic
orbit, as is illustrated in the state space diagram of Figure 8.
In fact, the di¤erent period lengths � of stable periodic orbits appear in a universal order,

with higher-period cycles being associated with higher values of r. In particular, if r� is
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the value of r at which a stable �-cycle �rst appears as r is increased, then r� > rq if � � q
(where � � q simply means that �� is listed before q�) in the following Sharkovski (1964)
ordering (in which we �rst list the odd numbers except one, then 2 times the odds, 22 times
the odds, etc., and at the end the powers of 2 in decreasing order, representing the period
doubling)

3 � 5 � ::: � 2 � 3 � 2 � 5 � ::: � 22 � 3 � 22 � 5 � :::

� 23 � 3 � 23 � 5 � ::: � 23 � 22 � 2 � 1

This ordering seems strange, but it turns out to be the ordering which expresses which
periods imply which other periods. For example, the minimum r value for an orbit of
period � = 2 �3 = 6 is larger than the minimum r value for an orbit of period � = 22 �3 = 12,
because 6 � 12 in the Sharkovski ordering. One consequence of this ordering is that the
existence of a stable � (= 3)-cycle guarantees the existence of any other stable q-cycle for
some rq < r�; see, for example, Li and Yorke (1975).

3 Chaos in Dynamic Economic Models

Chaos represents a radical change of perspective on business cycles. Business cycles re-
ceive an endogenous explanation and are traced back to the strong nonlinear deterministic
structure that can pervade the economic system. This is di¤erent from the (currently domi-
nant) exogenous approach to economic �uctuations, based on the assumption that economic
equilibria are determinate and intrinsically stable, so that in the absence of continuing ex-
ogenous shocks the economy tends towards a steady state, but because of stochastic shocks
a stationary pattern of �uctuations is observed.
Goodwin (1951) was one of the �rst to understand the relevance of chaos theory for

economics. Recently, however, there has been a revival of interest in dynamical systems
theory, and there is a group of economists who look at economic �uctuations as deterministic
phenomena, endogenously created by market forces, and aggregator (utility and production)
functions. They agree with Goodwin that chaos theory has great implications for both
theory and policy. For example, chaos could help unify di¤erent approaches to structural
macroeconomics. As Grandmont (1985) has shown for di¤erent parameter values even
the most classical of economic models can produce stable solutions (characterizing classical
economics) or more complex solutions, such as cycles or even chaos (characterizing some
Keynesian economics, including much post-Keynesian economics).
In what follows, we shall brie�y review some representative theoretical microeconomic

and macroeconomic models that predict cycles and chaos as outcomes of reasonable eco-
nomic hypotheses. Our purpose is not to provide a complete survey of all existing dynamic
economic models that predict chaos. The reader that is interested in a more exhaustive
survey should also consult Brock (1988).
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3.1 Rational Choice and Chaos

Benhabib and Day (1981), using a standard micro-framework, showed that rational choice
can lead to erratic behavior when preferences depend on past experience. Following Ben-
habib and Day (1981), consider the (logarithmic representation of the) Cobb-Douglas utility
function

u(x1; x2;�) = � log x1 + (1� �) log x2

with 0 < � < 1. Maximizing subject to (the usual budget constraint)

p1x1 + p2x2 = y (8)

yields the Marshallian demand functions

x1 = �
y

p1
and x2 = (1� �)

y

p2
. (9)

Assuming, however, that preferences depend on past experience, as in Benhabib and Day
(1981), according to a function

�t = rx1;t�1x2;t�1 (10)

where r is an �experience dependence�parameter, then the demand for x1 and x2 is described
by a �rst-order di¤erence equation in x1 and x2, respectively. For example, by substituting
(10) into (9) and exploiting the budget constraint (8), the demand for x1 is obtained (under
the assumption of constant prices) as

x1t =
ry

p1p2
x1;t�1(y � p1x1;t�1). (11)

Clearly, equation (11) describes a one-humped curve like the logistic map (3). In fact, for
p1 = p2 = y = 1, equation (11) reduces to equation (3). Therefore, the speci�cation of
experience dependent preferences generates chaotic behavior for appropriate values of the
experience dependence parameter, r.

3.2 Descriptive Growth Theory and Chaos

Following Day (1982), we consider the descriptive one-sector model due to Solow (1956).
Under the assumptions that aggregate saving equals gross investment and that the capital
stock exists for exactly one period, this system can be written as a �rst-order system in
discrete time as

(1 + �)kt+1 = sf(kt) (12)

where k is capital per worker, f(kt) a neoclassical production function, and the two parame-
ters � > �1 and s 2 [0; 1] represent, respectively, the rates of population growth and saving.
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Under the usual convexity assumptions, the phaseline of equation (12) is an increasing con-
cave function through the origin, with two �xed points. The trivial steady state at 0 is
asymptotically unstable while the other (positive) �xed point is globally stable, attracting
orbits that start at any initial value k0 > 0.
Day (1982) extended the above neoclassical one-sector model of capital accumulation by

introducing a pollution e¤ect that reduces productivity as in the following (Cobb-Douglas
type) production function

f(kt) = Bk't (& � kt)

 (13)

where kt � & = constant (acting as a saturation level of capital per worker) and (& � kt)



re�ects the e¤ect of pollution on per capita output. In particular, when k increases, pollution
also increases and less output can be produced with a given stock of capital than in the
standard model. With (13), the neoclassical model (12) becomes

(1 + �)kt+1 = sBk't (& � kt)

 (14)

which for B = 
 = & = 1 reduces to

kt+1 = rkt(1� kt) (15)

where r = sB=(1+�). Equation (15) is formally identical with the logistic map (3). Hence,
all properties of the logistic map apply here as well. Moreover, the general �ve-parameter
map (14) is also chaotic for appropriate values of the parameters. See Day (1982) for details.

3.3 Optimal Monetary Growth Theory and Chaos

In this section we consider one version of the Sidrauski (1967) optimal growth model with
money. It is assumed that the economy is composed of a large number of identical in�nitely
lived households, each maximizing (at time t) a lifetime utility function of the form

1X
t=0

�tu(ct;mt)

where c and m are per capita consumption and real money balances. Ignoring capital
accumulation, production, and interest-bearing public debt, the representative household�s
budget constraint for period t is assumed to be

Pt(mt + ct) = Pty +Ht + Pt�1mt�1

where y is a constant endowment and Ht is per capita lump-sum government transfers,
assumed to be equal to �Mt�1 (where � > 0 is the constant rate of money growth). Assuming
additive instantaneous utility, the equilibrium �xed points for the system are obtained by
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solving the following �rst-order di¤erence equation [see Azariadis (1993, section 26.3) for
more details]

mt+1uc(y;mt+1) =
1 + �

�
[uc(y;mt)� um(y;mt)]mt. (16)

If we drop the separability assumption and instead consider

u(c;m) =

�
c1=2m1=2

�1��
1� �

, � > 0; � 6= 1

where � is the reciprocal of the intertemporal elasticity of substitution between current and
future values of the aggregate commodity (cm)1=2, then equation (16) simpli�es to

x�t+1 =
1 + �

�
x�t (1� xt) (17)

where xt = y=mt and � = (� � 3)=2, assumed to be positive. Equation (17) has a unique
positive steady state

�x = 1� �

1 + �
. (18)

Substituting (18) into (17) to eliminate (1 + �)=�, we obtain

xt+1 = xt

�
1� xt
1� �x

�1=�
which for � = 1 reduces to the logistic map (3). See Matsuyama (1991) or Azariadis (1993,
section 26.4) for more details regarding the dynamic behavior of this system.
The implications for economics of the results just obtained are puzzling. For example,

consider the case in which models of optimal growth give rise to dynamic, logistic-type
equations with chaotic parameters. The sequences thus generated are optimal in the sense
that they solve a problem of intertemporal maximization of rational agents, in an economy
satisfying the requirements of competitive equilibrium at each point of time. In the absence
of (exogenous) random disturbances, along optimal trajectories agents� expectations are
supposed to be always ful�lled. While the latter assumption may be acceptable when the
dynamics of the system are simple (i.e., convergence to a steady state or to a periodic orbit),
it makes little sense if the dynamics are chaotic.

4 E¢ cient Markets and Chaos

The e¢ cient market hypothesis and the notions connected with it have provided the basis for
a great deal of research in �nancial economics. The hypothesis states that asset prices are
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rationally related to economic realities and always incorporate all the information available to
the market. This implies the absence of exploitable excess pro�t opportunities. However,
despite the widespread allegiance to the notion of market e¢ ciency, a number of studies
have suggested that certain asset prices are not rationally related to economic realities. It
has been argued, for example, that market valuations di¤er substantially and persistently
from rational valuations and that existing evidence (based on common techniques) does not
establish that �nancial markets are e¢ cient.
Motivated by these considerations, in this section we provide a review of the literature

with respect to the e¢ cient market hypothesis and consider the intersection between the
e¢ cient market theory and chaos theory.

4.1 The Martingale Model

Standard asset pricing models typically imply the martingale model, according to which
tomorrow�s price is expected to be the same as today�s price. Symbolically, a stochastic
process xt follows a martingale if

Et(xt+1j
t) = xt (19)

where 
t is the time t information set, assumed to include xt. Equation (19) says that
if xt follows a martingale the best forecast of xt+1 that could be constructed based on
current information 
t would just equal xt. Alternatively, the martingale model implies
that (xt+1 � xt) is a fair game (a game which is neither in your favor nor your opponent�s)

Et[(xt+1 � xt)j
t] = 0. (20)

Clearly, xt is a martingale if and only if (xt+1 � xt) is a fair game. It is for this reason that
fair games are sometimes called martingale di¤erences.
It is to be noted that the martingale process is a special case of the more general sub-

martingale process. In particular, xt is a submartingale if it has the property Et(xt+1j
t) >
xt. Note that the submartingale is also a fair game where xt+1 is expected to be greater
than xt. In terms of the (xt+1�xt) process the submartingale model implies that Et[(xt+1�
xt)j
t] > 0. LeRoy (1989, pp. 1593-4) also o¤ers an example in which Et[(xt+1�xt)j
t] < 0,
in which case xt will be a supermartingale.
The martingale and fair game models are basically two names for the same characteriza-

tion of equilibrium in �nancial markets. In fact, as LeRoy (1989, p. 1589) puts it, �rates of
return are a fair game if and only if a series closely related to prices � that is, prices plus
cumulated dividends, discounted back to the present � is a martingale.� To see this, on
the assumption that capital markets are perfect and investors are risk neutral, let Rt be the
one-period rate of return and suppose that Rt, less a constant r, is a fair game

Et(Rt j
t)� r = 0. (21)
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Using the de�nition of the rate of return as the sum of dividend yield plus capital gain, the
fair game model (21) can be written as

Et[(pt+1 + dt+1) j
t]� pt
pt

� r = 0 (22)

where dt denotes dividends and pt the stock price, both at time t. Equation (22) implies

pt =
Et[(pt+1 + dt+1) j
t]

(1 + r)
(23)

which says that the stock price today equals the sum of the expected future price and
dividends, discounted back to the present at rate r.
It is to be noted that none of the variables de�ned so far is a martingale. In this regard

LeRoy (1989) shows that the price itself, without dividends added in, is not generally a
martingale and that the variable that is a martingale is the discounted value of a mutual
fund which holds the stock [the price of which follows (23)] and reinvests dividend income
in further share purchases. To see this, we follow LeRoy (1989) and let vt = ptht=(1 + r)t

be the discounted (to date zero) value of a mutual fund that holds ht shares of stock at time
t. The assumption that the mutual fund reinvests dividends (in further share purchases)
implies that pt+1ht+1 = (pt+1 + dt+1)ht. Thus (neglecting 
t), we have

Et(vt+1) = Et

�
pt+1ht+1
(1 + r)t+1

�
= Et

�
(pt+1 + dt+1)ht
(1 + r)t+1

�
=

1

(1 + r)t
Et(pt+1 + dt+1)

(1 + r)
ht =

1

(1 + r)t
ptht = vt

Hence, the discounted value of such a mutual fund is a martingale.
The fair game model (20) says that increments in value (changes in price adjusted for div-

idends) are unpredictable, conditional on the information set 
t. In this sense, information

t is fully re�ected in prices and hence useless in predicting rates of return. The hypothesis
that prices fully re�ect available information has come to be known as the e¢ cient market
hypothesis. In fact, Fama (1970) de�ned three types of (informational) capital market e¢ -
ciency (not to be confused with allocational or Pareto-e¢ ciency), each of which is based on
a di¤erent notion of exactly what type of information is understood to be relevant. In par-
ticular, markets are weak-form, semistrong-form, and strong-form e¢ cient if the information
set includes past prices and returns alone, all public information, and any information pub-
lic as well as private, respectively. Clearly, strong-form e¢ ciency implies semistrong-form
e¢ ciency, which in turn implies weak-form e¢ ciency, but the reverse implications do not
follow, since a market easily could be weak-form e¢ cient but not semistrong-form e¢ cient
or semistrong-form e¢ cient but not strong-form e¢ cient.
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It should be noted that in perfect capital markets, risk neutral investors will always
prefer to hold whichever asset generates the highest expected return (completely ignoring
risk di¤erences). In equilibrium (when all assets are held willingly), all assets earn the same
expected rate of return, equal to the real interest rate which itself is constant over time.
Therefore, returns follow the fair game model (20). However, relaxing any one of the (strong)
assumptions required by a fair game process for asset returns � such as, risk neutrality or
uniform and freely available information � is likely to negate the correspondence between
the fair game hypothesis and informationally e¢ cient markets. For example, allowing risk
averse agents can result in nonzero expected excess returns in equilibrium, as time-varying
compensation for bearing risk.

4.2 The Random Walk Model

The martingale model given by (19) can be written equivalently as

xt+1 = xt + "t

where "t is the martingale di¤erence. When written in this form the martingale looks
identical to the pure random walk model (an AR(1) process with unit coe¢ cient and zero
drift), the forerunner of the theory of e¢ cient capital markets.
The martingale, however, is less restrictive than the random walk. In particular, the mar-

tingale di¤erence requires only independence of the conditional expectation of price changes
from the available information, as risk neutrality implies, whereas the (more restrictive) ran-
dom walk model requires this and also independence involving the higher conditional mo-
ments (i.e., variance, skewness, and kurtosis) of the probability distribution of price changes.
By not requiring probabilistic independence between successive price changes, the martingale
di¤erence model is entirely consistent with the fact that price changes, although uncorre-
lated, tend not to be independent over time but to have clusters of volatility and tranquility
(i.e., dependence in the higher conditional moments), a phenomenon originally noted for
stock market prices by Mandelbrot (1963) and Fama (1965).
In this regard, as LeRoy (1989, p. 1592) puts it, �risk neutrality is consistent with

nonzero serial correlation in conditional variances: The fact that future conditional vari-
ances are partly forecastable is irrelevant because risk neutrality implies that no one cares
about these variances�. In fact one promising approach to modelling the dynamic and distri-
butional properties of stock price changes is to use Engle�s (1982) autoregressive conditional
heteroskedastic (ARCH) model and its extensions. These models have been successful in
describing other �nancial market series. See, for example, Bollerslev (1986), Nelson (1991),
and Engle et al. (1987).
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4.3 The Present Value Model

Finally, the e¢ cient market model (21) does not imply that prices are completely without
structure. In fact (21) turns out to be exactly the same model as the expected present-
value model [according to which stock prices (in the context of the stock market) equal the
expected present value of future dividends] with which the theory of e¢ cient capital markets
is most often identi�ed in the literature. This mathematical equivalence was �rst pointed
out by Samuelson (1965).
In particular, replacing t by t + 1 in (23) and using the resulting equation to eliminate

pt+1 in (23), the stock price can be written [using the rule of iterated expectations that
guarantees that Et(Et+1(pt+2 j
t+1) = Et(pt+2 j
t) and similarly for dividends] as

pt =
Et(dt+1)

(1 + r)
+
Et(pt+2 + dt+2)

(1 + r)
.

Proceeding similarly n times and assuming that Et(pt+n)=(1 + r)n ! 0 as n !1, so as to
rule out speculative bubbles, we obtain the expected present-value model

pt =
1X
j=1

1

(1 + r)j
Et(dt+j) (24)

which allows us to obtain the so-called fundamental value of the stock as the present value
of expected future dividends. Moreover, the proof is completely reversible, implying that
if (24) is satis�ed, so is the fair game model (23), suggesting that it would be logically
inconsistent to reject the expected present-value model while at the same time accepting
the fair game model. What is striking here, however, is that even though dividend changes
in (24) can be partly forecast, the e¢ cient market model (21) implies that rates or return
cannot be forecast.
Abandoning the convergence assumption, Et(pt+n)=(1 + r)n ! 0 as n!1, leads to an

in�nite number of solutions any one of which can be written as

pt =
1X
j=1

1

(1 + r)j
Et(dt+j) +Bt (25)

where the additional term, Bt, in (25) is called a �rational bubble,� in the sense that it is
entirely consistent with rational expectations and the time path of expected returns.
The implications for �nancial economics of the results just obtained are important. As

Lucas (2009) put it , �one thing we are not going to have, now or ever, is a set of models
that forecasts sudden falls in the value of �nancial assets, like the declines that followed the
failure of Lehman Brothers in September [of 2008].� However, the possible existence of chaos
implies that nonlinearity-based trading rules exist and that prediction over short periods is
possible, provided that the deterministic part of the system is low-dimensional and its noisy
part is of a small amplitude.
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5 Policy Relevancy of Chaos

As it has been shown in Section 3, chaos can be produced, for some parameter settings, from
even many of the most classical economic models, including models in which there is contin-
uous market clearing, rational expectations, overlapping generations, perfect competition,
no externalities, and no forms of market failure. The issue has been whether or not the
parameter settings that can produce chaos are economically �reasonable.� With large enough
nonlinear, dynamic models to be viewed as possible approximations to reality, there are no
currently available conclusions regarding the plausibility of the subset of the parameter set
that can support chaos.
But there is also the question about whether or not we should care. In positive economics,

there is good reason to care. Understanding the behavior of an economy that is chaotic
is not possible with a model that is not chaotic, since chaotic solution paths have many
properties that cannot be produced from nonchaotic solutions. But on the normative side,
the usefulness of chaos is much less clear. Grandmont�s (1985) model, for example, produces
Pareto optimal chaotic solution paths. The fact that the solutions are chaotic does not alone
provide any justi�cation for government intervention, and indeed any such intervention could
produce a stable, but Pareto inferior solution. In fact, Bullard and Butler (1993) have argued
that the existing theoretical results on chaos have no policy relevance, since in chaotic models
the justi�cation for intervention always can be identi�ed with a form of market failure entered
into the structure of the model, and hence the chaos is an independent and policy-irrelevant
feature of those models.
There is an exemption, however. Woodford (1989) has argued that chaos might produce

increased Pareto-sensitivity to market failure. If that is the case, then there is an interac-
tion between chaos and the policy implications of market failure, with small market failures
producing increased Pareto loss, when the economy also is chaotic. This could be an im-
portant result and could result in high policy relevancy for chaos, but at present Woodford�s
speculation remains only a supposition, and has not been con�rmed in theory or practice.
Hence, at present, the policy relevance of chaos must remain in doubt.

6 Testability of Chaos within the Economy

From an empirical perspective it is di¢ cult to distinguish between exogenous �uctuations
produced by random shocks and endogenous �uctuations produced from the nonlinear struc-
ture of the economy. It is for this reason that there have been a great deal of studies in
recent years investigating the basic features of chaotic phenomena in economic and �nancial
time series, using a number of tests for nonlinearity, fractal attractors, and sensitivity to
initial conditions. Some of the best known tests that have been used are the correlation
dimension test for chaos [see Grassberger and Procaccia (1983)], the BDS test of the null
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hypothesis of whiteness [see Brock et al. (1996)], and a number of tests for chaos based on
the calculation of Lyapunov exponents.
Barnett and Serletis (2000) devote a good deal of space to the empirical evidence on

economic and �nancial data, look at the controversies that have arisen about the available
results, address important questions regarding the power of some of the best known tests for
nonlinearity or chaos against various alternatives, and raise the issue of whether dynamical
systems theory is practical in economics. In this regard, as Barnett and Serletis (2000, pp.
721) put it,

�in the �eld of economics, it is especially unwise to take a strong opinion (either
pro or con) in that area of research. Contrary to popular opinion within the
profession, there have been no published tests of chaos �within the structure of
the economic system,�and there is very little chance that any such tests will be
available in this �eld for a very long time. Such tests are simply beyond the state
of the art. Existing tests cannot tell whether the source of detected chaos comes
from within the structure of the economy, or from chaotic external shocks, as from
the weather. Thus, we do not have the slightest idea of whether or not asset
prices exhibit chaotic nonlinear dynamics produced from the nonlinear structure
of the economy (and hence we are not justi�ed in excluding the possibility).�

7 Conclusion

We have reviewed a great deal of high quality research on nonlinear and complex dynamics.
There are many reasons for this interest. Chaos, for example, represents a radical change of
perspective on business cycles. Business cycles receive an endogenous explanation and are
traced back to the strong nonlinear deterministic structure that can pervade the economic
system. This is di¤erent from the (currently dominant) exogenous approach to economic
�uctuations, based on the assumption that economic equilibria are determinate and intrin-
sically stable, so that in the absence of continuing exogenous shocks the economy tends
towards a steady state, but because of stochastic shocks a stationary pattern of �uctuations
is observed.
Chaos could also help unify di¤erent approaches to structural macroeconomics. As

Grandmont (1985) has shown, for di¤erent parameter values even the most classical of eco-
nomic models can produce stable solutions (characterizing classical economics) or more com-
plex solutions, such as cycles or even chaos (characterizing much of Keynesian economics).
Finally, if forecasting is a goal, the possible existence of chaos could be exploitable and even
invaluable. If, for example, chaos can be shown to exist in asset prices, the implication
would be that pro�table, nonlinearity-based trading rules exist (at least in the short run
and provided the actual generating mechanism is known). Prediction, however, over long
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periods is all but impossible, due to the �sensitive dependence on initial conditions�property
of chaos.
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Figure 3(a).  Phase Diagram for the Logistic Equation

Figure 3(b).  State Diagram for the Logistic Equation
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Note:  This graph has one possible final value, which is 0. 
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Figure 4(a).  Phase Diagram for the Logistic Equation

Figure 4(b).  State Diagram for the Logistic Equation
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Figure 4(b).  State Diagram for the Logistic Equation

Note:  This graph has one possible final value, which is 0.583333333.
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Figure 5(a).  Phase Diagram for the Logistic Equation, Period 2 Cycle

Figure 5(b).  State Diagram for the Logistic Equation, Period 2 Cycle
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Figure 5(b).  State Diagram for the Logistic Equation, Period 2 Cycle

Note:  This graph has period 2 behavior, or two possible final values: 0.5 and 0.809016994.
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Figure 6(a).  Phase Diagram for the Logistic Equation, Period 4 Cycle

Figure 6(b).  State Diagram for the Logistic Equation, Period 4 Cycle
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Figure 6(b).  State Diagram for the Logistic Equation, Period 4 Cycle

Note:  This graph has period 4 behavior, or four possible final values: 
0.5, 0.874640425, 0.383598231, and 0.827237111.
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Figure 7(a).  Phase Diagram for the Logistic Equation, Period 3 Cycle

Figure 7(b).  State Diagram for the Logistic Equation, Period 3 Cycle
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Figure 7(b).  State Diagram for the Logistic Equation, Period 3 Cycle

Note:  This graph has period 3 behavior, or three possible final values:  
0.504666487, 0.957416598, and 0.156149316.
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Figure 8.  State Diagram for the Logistic Equation, Chaos

Note:  This graph illustrates chaotic behavior, or an infinite number of possible final values. 
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