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ABSTRACT

Recently there has been a growing tendency to impose curvature, but not monotonicity, on
specifications of technology. But regularity requires satisfaction of both curvature and
monotonicity conditions.  Without both satisfied, the second order conditions for optimizing
behavior fail and duality theory fails.  When neither curvature nor monotonicity are imposed,
estimated flexible specifications of technology are much more likely to violate curvature than
monotonicity.  Hence it has been argued that there is no need to impose or check for monotonicity,
when curvature has been imposed globally. But imposition of curvature may induce violations of
monotonicity that otherwise would not have occurred.

We explore the regularity properties of our earlier results with a multiproduct financial
technology specified to be generalized quadratic.  In our earlier work, we used the usual approach
and accepted the usual view.  We now find that imposition of curvature globally and monotonicity
locally does not assure monotonicity within the region of the data. Our purpose is to alert
researchers to the kinds of problems that we encountered and which we believe are largely being
overlooked in the production modelling literature, as we had been overlooking them.
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1. INTRODUCTION

1.1.  The Issue

Recently there has been a growing tendency to impose curvature, but not

monotonicity, on specifications of technology.1  This practice is especially

                                                
1 See, e.g., Moschini (1998,1999), Hernandez (1994), Ryan and Wales (1998,1999), Diewert
and Wales (1987,1995), Cooper, McLaren, and Parameswran (1994), Kohli (1992), Diewert
and Ostensoe (1988), and Morey (1986).
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common with the currently popular generalized quadratic model.  We believe that

this practice of overlooking monotonicity should not be taken lightly.  Regularity

requires satisfaction of both the curvature and the monotonicity conditions.

Without both satisfied, the second order conditions for optimizing behavior fail,

duality theory fails, and the specification should be viewed as compromised in a

serious manner.  The damage done to inferences when regularity conditions fail

has been emphasized by Basmann, Molina, and Slottje (1983), Basmann,

Diamond, Frentrup, and White (1985), Basmann, Fawson,  and Shumway (1990),

and Basmann, Hayes, and Slottje (1994).

An earlier practice with "flexible functional forms" was to impose neither

monotonicity nor curvature, but check those conditions at each data point ex post.

Experience in that tradition has suggested that when violations of regularity occur,

they are much more likely to occur through violations of curvature conditions than

through violations of monotonicity conditions.  Based upon those results, the

more recent approach of imposing curvature alone seems constructive and

reasonable.  But once curvature is imposed without the imposition of

monotonicity, the earlier observation may no longer apply.  Permitting a highly

parameterized function to depart from the neoclassical function space is usually

fit-improving, regardless of whether or not the neoclassical null would pass a

hypothesis test.  With curvature imposed, the only way that an estimator’s fit can

be improved spuriously in that manner is through violations of monotonicity.

This problem is likely to be especially common with quadratic models, which can

have bliss points.

In short, violations of monotonicity that had not occurred prior to imposition

of curvature might be induced by imposition of curvature.  This possibility

motivated us to investigate two cases in which the quadratic model had been

estimated with curvature imposed globally and monotonicity imposed at a central
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point.  In both of those cases, the authors had accepted the usual view that global

monotonicity need not be checked, when global curvature and local monotonicity

had been imposed, and in fact we ourselves were among the three coauthors who

published the results in those two cases.  But we now have gone back to check

monotonicity by generating graphs of isoquants.  We had not attempted to graph

those isoquants, when we published the results is Barnett, Kirova, and Pasupathy

(1995), and hence our more cursory checks at that time had not alerted us to the

seriousness of the problem.  Having now attempted to produce those isoquants

and having observed the nature of the problem, we now view our results as

counterexamples to the usual view that we had accepted at the time that we

published our two estimated models.  Because of space constraints, we report

primarily on the model that produced the most disturbing regularity problems, but

we do mention in this paper that we found similar, but less extreme, violations of

monotonicity in the other case.

In addition, a further complication can be produced by imposing curvature.

In those studies that follow this recent approach, the technology usually is

specified as a composite function, including an outer function and inner

aggregator subfunctions.  Curvature is imposed both on the outer and the inner

subfunctions globally.  But if the outer function violates monotonicity in the level

of the inner aggregate, then curvature of the composite function can fail.  This

paradoxical possibility is analogous to the fact that changing the sign of a concave

function can produce a convex function.  Hence the currently growing approach to

imposing curvature may not only result in violations of monotonicity, but even in

violations of curvature itself.

We believe that the recent literature that takes curvature seriously is to be

welcomed as a constructive step in a positive direction.  But the potential damage

done by violations of monotonicity should not be underestimated, when curvature
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is imposed.  We explore that overlooked issue in this paper.  Based upon the

results with our two counterexamples, we believe that monotonicity needs to be

checked at all data points in applications of the generalized quadratic production

technology as well as with all other models that do not satisfy monotonicity

globally, regardless of whether or not curvature has been imposed globally.  In

addition, the needed checks may be more complicated than previously considered

in this literature, since we are not aware of any prior publications that had

considered such disturbing possibilities as curvature reversal of composite

functions, nonuniqueness of isoquants, or complex valued solutions with

production models.

We also believe that this phenomenon should be explored with parameters

estimated from other models and with other data, including simulated data

produced from technologies having various elasticity properties.  With the

generalized quadratic model, we believe that it also would be constructive to set

its parameters to attain various elasticities at the point at which monotonicity is

imposed, while curvature is imposed globally, and produce the model’s regular

region to see under what circumstances data reasonably can be expected to lie

within its regular region.  The regular region is defined to be the subset of the data

space within which the technology satisfies both the neoclassical monotonicity

and curvature conditions.

It is tempting to dismiss one or two counterexamples as perhaps resulting

from odd data or some other coincidence that need not be taken seriously.  But

since users of the generalized quadratic model, and other models in which only

curvature is imposed, have not been reporting the result of checks of monotonicity

at their data points---or even mentioning monotonicity---, our two

counterexamples comprise 100% of the available published evidence on this

subject.
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The burden of proof of the contrary hypothesis should be on those who are

failing to provide their relevant evidence.  In addition, it is important to recognize

that since we imposed curvature globally on all inner and outer functions of the

technology and monotonicity at a central point, our estimated model must produce

elasticities that are consistent with theory at that central point.  With the

generalized quadratic model, the parameterization is parsimonious in the sense

that flexibility at a point cannot be attained, if curvature and monotonicity are

both imposed globally.  By imposing curvature globally and monotonicity at a

point, the remaining degrees of freedom in Barnett, Kirova, and Pasupathy’s

(1995) estimated models are exactly equal to the number needed to permit

elasticities to be set arbitrarily at a point.  No degrees of freedom remain to

control global monotonicity properties.  Other data exhibiting similar elasticities

at the central point plus globally imposed curvature could easily produce the same

phenomena on which we report in this paper.  With earlier models, including the

translog and generalized Leontief, the effects of these limited degrees of freedom

were investigated in depth by Caves and Christensen (1980), Barnett, Lee, and

Wolfe (1987), Guilkey, Lovell, and Sickles (1983), and Barnett and Lee (1985).

Since the elasticities reported by Barnett, Kirova, and Pasupathy (1995) were not

unusual, the disturbing results in the current paper are likely to be representative

of what often would likely be revealed by similar isoquant plots from other

published models estimated in this tradition.

We could have used new data for these comparisons, but then there would

have been obvious concerns about whether or not we sought out adverse cases to

make our point.  We decided instead to investigate regularity with two models on

which we ourselves had previously reported favorably.  We obviously had not

generated and published those results for the purpose of permitting our own

published research to be discredited at a later date by us or by anyone else.  We
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did not become aware of the nature of the problem until we recently produced

graphs of the isoquants.  Under these circumstances it is tempting to overlook

subsequently discovered negative properties of one’s own previously published

research.  But we felt that it was important for us to reveal the unpleasant realities

of what we have discovered about our previous work.  These realities provide

counterexamples that we feel should be known to others who might similarly be

inclined to accept globaly monotonicity without testing, after having imposed

curvature globally and monotonicity locally.

1.2.  The Approach

Since we condition our investigation upon estimation of the parameters,

rather than upon a large range of possible settings of the parameters, we believe

that estimation in a manner consistent with the state of the art is appropriate, and

the state of the art currently could be viewed as generalized method of moments

(GMM) estimation of Euler equations for production under risk.   Barnett, Kirova,

and Pasupathy (1995) apply an approach to the estimation of technology

parameters when financial assets are included among outputs of the technology.

Using their parametric estimates, we explore both the monotonicity and curvature

properties of the resulting technology.  The relevant technologies are those of

financial intermediaries that produce inside money as output services. The need

for GMM estimation results from the inclusion of monetary assets in the model,

with interest paid at the end of the period and thereby unknown at the start of the

period.

The specification of technology that was used by Barnett, Kirova, and

Pasupathy (1995) was the currently popular generalized quadratic model.  That

model can be estimated subject to imposition of global curvature, but

monotonicity can be imposed only at one point, since flexibility is damaged if
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global monotonicity also is imposed.  They imposed curvature globally on all

inner and outer subfunctions of the technology, but imposed monotonicity only at

a point.  Unlike prior users of this model, we do check for monotonicity at each

data point, and we explore the implications of the of regularity violations for the

implied properties of the model's isoquants, including induced nonuniqueness of

isoquants, complex valued solutions, and other such unanticipated problems not

previously reported in the production modeling literature.

2.  FINANCIAL INTERMEDIARIES

One of the recent approaches to modeling financial intermediaries is to model

them as profit maximizing neoclassical multiproduct firms, which produce

financial services, such as demand deposits and time deposits, as outputs by

employing financial and non financial factors as inputs.2

In our current investigation of the regularity properties of the model, we use

Barnett, Kirova, and Pasupathy's (1995) model and GMM parameter estimates as

an illustration of the implications of the generalized quadratic model under state-

of-the-art application and estimation.  Since details of the model and estimation

are available in Barnett, Kirova, and Pasupathy (1995), we discuss the model and

estimation only to the degree necessary to understand our current investigation of

                                                
2Early work that used this approach was based on the assumption of perfect certainty. See
Hancock (1985, 1987, 1991), Barnett (1987), and Barnett and Hahm (1994).  This approach is
based upon a tradition that has been highly developed on the demand side.  See Barnett,
Fisher, and Serletis (1992) and Barnett (1997). Barnett and Zhou (1994) extended the supply
side approach to the case of uncertainty.  Barnett, Kirova, and Pasupathy (1995) introduced
capital accumulation and relaxed the assumption of "no retained earnings."  They also
rigorously nested exact monetary output aggregates within the transformation function of the
financial intermediary and report the behavior of the resulting exact monetary aggregate.

The resulting model can be viewed as a step in the direction of exploring
technological change and economies of scale and scope in financial intermediation in a
manner that is invariant to central bank policy intervention, and in a manner that can produce
inside money aggregates that are consistent with the theory that produced the policy invariant
Euler equations.
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the estimated model's regularity properties and to put our current findings about

the estimated isoquants into context.

2.1. Financial Firm's Production Model

The financial firm uses real resources such as labor, capital, and other

material inputs, plus a monetary input in the form of cash, in the production of the

services of the produced liabilities. The output of the firm in Barnett, Kirova, and

Pasupathy's (1995) application consists of demand deposits and time deposits,

which are liabilities to the firm.

Let Yt  be the real balances of the asset (loan) portfolio, yi t,  the real balances

of the ith produced account (liability) type, Ct  the real balances of cash holdings,

z j t,  the quantity of jth real input (including labor), and Kt  the quantity of capital

stock of the financial firm at time t. In the model, yi t,  constitute the outputs of the

financial firm, while Ct , z j t, ,  and Kt  are the inputs. Let Rt  be the portfolio rate

of return, which is unknown at the beginning of period t, and let hi t,  be the

holding cost per dollar of the ith liability. All financial transactions are contracted

at the beginning of the period. Interests on the deposits are paid at the end of the

period. The cost per unit of the jth  real  input, w j t, , is incurred at the beginning

of the period. Let PK t, be the cost of capital and Pt  be the general price index,

which is used to deflate nominal to real terms.

Variable profits (net of investment expenditure), πt  , at the beginning of

period t, can be represented by

πt t t t t t t t t t

i t t i t i t t
i

I

j t j t K t t
j

J

R Y P Y P C P C P

y P h y P w z P I

= + − + −

+ − +∑ − −∑

− − − − −

− − −
= =

( )

[ ( ) ], , , , , ,

1

1

1 1 1 1 1

1 1 1
1 1

       
(2.1)
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The first two terms in the above equation represent the change in variable profits

from rolling over the loan portfolio during period t. The third and fourth terms

represent the change in the nominal value of excess reserves. The fifth term

represents the change in the firm's variable profits from the change in the issuance

of produced financial liabilities. The sixth term constitutes payments for real

inputs, and the last term is the expenditure on investments.

Portfolio investment ,Yt ,  is constrained by total available funds. The

constraint is given by

 Y P k y P C P w z P It t i t i t t t t j t j t
j

J

i

I

K t t= − − − ∑∑ −
==

[( ) ], , , , ,1
11

, (2.2)

where k i , t  is the required reserves ratio on the ith produced liability. Equation

(2.2) implies that the total deposits y Pi t t
i

I

,
=
∑

1
 are allocated to required reserves,

excess reserves, payment for all real inputs used in production, investment  in

capital, and investment in loans.

The time to build approach is adopted to model capital dynamics. Capital

accumulation based on this approach is given by:

K I Kt t t= + −− −1 11( )δ         (2.3)

where the depreciation rate δ  is a constant and is assumed to be given. Gross

investment at time  t-1, It −1 , becomes productive only in period t.  Substituting

equations (2.2) and (2.3) into equation (2.1) to eliminate investment  in loans and

investment in capital goods, we get the variable profits at time t to be

π

δ

t t i t i t i t t i t i t t
i

I

t t t t j t j t
j

J

t t K t t t K t

R k h y P k y P

R C P R w z

R K P R K P

= + − − + +∑

− − + ∑

+ − + − +

− − − − −
=

− − − − − −
=

− − − − −

[( )( ) ( )]

( )

( )( ) ( )

, , , , ,

, ,

, ,

1 1 1

1

1 1 1

1 1 1 1 1
1

1 1 1 1 1 1
1

1 1 1 1 1

       

       

(2.4)
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The financial firm maximizes the expected value of the discounted

intertemporal utility of its variable profits stream, subject to the firm's

technological constraint. The firm's optimization problem is then given by:

Max E U

s t y y C z z K s t

t

s t

s
s t

s I s s s J s s

   

    (     

1

1

01 1

+






∑













= ∀ ≥

−

=

∞

µ
π( )

. . ,..., , , ,..., , ), , , ,Ω
(2.5)

where Et  is the expectation at time t, µ  is the subjective rate of time preference,

U  is the utility function, πs  is the variable profit at time s, and Ω  is the

transformation function.

The transformation function, Ω , is convex in its arguments. The derivatives

of Ω  with respect to the inputs and outputs are respectively given by:

∂
∂

∂
∂

∂
∂

Ω Ω Ω
C K z

j J
s s j s

≤ ≤ ≤ ∀ =0 0 0 1, , , ...,
,

        (2.6)

and

      
∂

∂
Ω

y
i I

i s,
,..., .≥ ∀ =0 1 (2.7)

Barnett, Kirova, and Pasupathy (1995) specify the utility function, U, to be in

the class of functions exhibiting Hyperbolic Absolute Risk Aversion (HARA ):

U
h

dt t( )π
ρ

ρ ρ
π

ρ

=
−

−
+









1

1
(2.8)

where ρ , h and d are parameters to be estimated.

Using Bellman's method and the Benveniste and Scheinkman equation,

Barnett, Kirova, and Pasupathy (1995) obtain the following set of Euler

equations:
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where

∂
∂π ρ

π
ρ

U
h

h
d

t
t=

−
+









−

1

1

.
(2.12)

2.2 Output Aggregation

The financial firm's outputs consist of demand deposits and time deposits.

The financial firm's outputs of demand and time deposits are important in

determining the level of inside money in the economy.  In this section, we find the

aggregation-theoretic exact quantity output aggregate that measures the firm's

produced service flow.  Relative to the money markets, our aggregation is on the

supply side.

Generating the exact quantity aggregate consists of first identifying the

components over which aggregation is admissible and then determining the
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aggregator function defined over the identified components.3  The first step

determines the existence of an exact aggregate, and the second step produces that

aggregate in the manner that is consistent with microeconomic theory.  Let

y = ′( ,..., )y yt It1  be the firm's output vector, and let ),...,( 1 ′= Jtt xxx  be the input

vector, so the transformation function can be written as Ω( )y, x = 0   An exact

supply side aggregate exists over all of the firm's outputs if and only if y is weakly

separable from x within the function Ω .  In accordance with the definition of

weak separability, there then exist two functions H  and y0  such that

Ω( ) ( ( ), )y, x y x= H y0 ,

where the output aggregator function, y0( )y , is a convex function of y.  The

econometric estimate of the aggregator function y0 is obtained by estimating the

Euler equations using GMM.

2.3 Testing for Weak Separability

The conventional parametric approach to testing weak separability was

adopted in Barnett, Kirova, and Pasupathy (1995), since weak separability is a

strictly nested null hypothesis within our parametric specification of technology.

To minimize the biases that can be produced from specification error, they used a

flexible functional form for technology.4 Unfortunately flexible functional forms

need not satisfy the regularity conditions imposed by economic theory, including

the monotonicity and curvature conditions. Hence we must consider methods for

testing and imposing those conditions, at least locally, as well as methods for

testing and imposing global blockwise weak separability of the technology in its

                                                
3For details, refer to Barnett (1980).
4The form of flexibility that we use is called Diewert-flexibility or second-order flexibility.
See Barnett (1983) for the definition and its connection with other definitions of parametric
flexibility.  The newer concept of global or Sobolev flexibility (see Barnett, Geweke, and
Wolfe (1991a,b)) is beyond the scope of this paper.
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outputs.  For existence of aggregator functions, the weak separability must be

global.  Barnett, Kirova, and Pasupathy (1995) used the generalized quadratic

(previously called the Generalized McFadden) functional form to specify the

technology of the firm.  That specification was originated by Diewert and Wales

(1987), who also originated the Generalized Barnett functional form.5

We assume that the transformation function, Ω , is linearly homogeneous.

Instead of specifying the form of the full transformation function Ω , and then

imposing weak separability in y, Barnett, Kirova, and Pasupathy (1995) directly

impose weak separability by specifying H y( , )0 x  and y0( )y  separately6. The

specification for Ω  is then obtained by substituting y0( )y  into H y( , )0 x . Since

y0( )y  and H y( , )0 x  are both specified to be flexible, the full technology Ω  is

flexible, subject to the separability restriction.

The function H  is specified to be the symmetric generalized quadratic

functional form

H y a y y
y

( , ) [ , ] /0 0 0 0
01

2
x a x x

x
x= + ′ + ′









 ′A α , (2.13)

where ′ ≠α x 0 , and a a an0 1, ( ,..., ) ′ =a , and A  are parameters to be estimated.

The matrix A  is ( ) ( )n n+ × +1 1  and symmetric. The vector ′ =α ( ,..., )α α1 n

contains all fixed nonnegative constants, which are chosen by the researcher.  The

matrix A  is partitioned as follows:

A =










A11 12

21

A

A A
,

                                                
5 That latter model was applied by Barnett and Hahm (1994) in the perfect certainty case, but
has not yet been adapted to the case of stochastic choice.
6For the more general form of the model which does not include the imposition of weak
separability, refer to Barnett and Zhou (1994).
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where 11A  is a scalar, 12A  is a n×1  row vector, 21A  is an 1×n  column vector,

and A  is an   n × n  symmetric matrix. Since A  is symmetric, we have

A A12 21= ′ .

Let 0),( **
0 ≠xy  be the chosen point about which the functional form is

locally flexible. Within the class of linearly homogeneous transformation

functions, the specification given above is not parsimonious, and hence we can

impose further restrictions on the model without losing local flexibility.  We

impose the following restrictions, which reduce the number of free parameters in

our specification to the minimum required number to maintain local flexibility.

′ =α x* 1, (2.14)

A y11 0 0* + =A x12
* , (2.15)

′ + =A y Ax 012 0
*

n
* , (2.16)

Solving (2.18) and (2.19) for A11  and A12 , and then substituting into (2.19)

results in

H y a y

y y y y

( , ) ( )

( ) ( ) ( ) ( ) ,* *

0 0 0
1

1
0 0

1
0 0

2

1

2
1

2

x a x x x Ax

x x Ax x x Ax*

= + ′ + ′ ′

− ′
′

+ ′
′

−

− −

α

α α                 * *
(2.17)

which is flexible at ( , )*y0 x* .7

The aggregator function   y 0 ( y )  is specified as:

y0

1

2
( )y b y y By y= ′ + ′ ′β , (2.18)

where ′ =b ( ,..., )b bm1  and the   m × m  symmetric matrix B  contain the

parameters to be estimated, while ′ =β ( ,..., )β β1 m  is the vector of fixed

                                                
7See Diewert and Wales (1987) for the proof of flexibility.
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nonnegative constants chosen by the researcher. As similarly done above with H,

we can impose the following restrictions without losing local flexibility:

′ =β y* 1, (2.19) 

y0
* = ′b y* (2.20)

By 0m
* = (2.21)

Substituting (2.18) into (2.17), we get the following flexible functional form for

Ω( )y, x , which satisfies the weak separability condition

Ω( ) ( ( ), )

( ) ( )

( ) ( )  

( ) ( ) .

*

* *

y x y x

b y y y By a x x x Ax

x x Ax b y y y By

x x Ax b y y y By

,

*

*

=

= ′ + ′ ′



 + ′ + ′ ′

− ′ ′ ′ + ′ ′





+ ′ ′ ′ + ′ ′





− −

− −

− −

H y

a

y

y

0

0
1 1

0
1 1

0
1 1

2

1

2

1

2

1

2

1

2

1

2

2

           

              

              

β α

α β

α β

(2.22)

The neoclassical curvature conditions require Ω( )y, x  and y0( )y  to be

convex functions. Monotonicity requires that ∂ ∂Ω y ≥ 0  and ∂ ∂Ω x ≤ 0 .

Convexity of H y( , )0 x  and   y 0 ( y )  requires the matrices A  and B  to be positive

semidefinite.  Global convexity of Ω( )y, x  further requires the condition

∂
∂

H y

y

( , )0

0
0

x
≥ . (2.23)

Positive semidefiniteness of the matrices A  and B  can be imposed without

loss of flexibility by substituting

A qq= ′ (2.24)

and

B uu= ′ , (2.25)

where q is an n n×  lower triangular matrix and u is an m m×  lower triangular

matrix. Although global convexity can be imposed on the functions H y( , )0 x  and
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y0( )y  separately, global convexity of the composite function Ω( )y, x  cannot be

imposed without damaging the flexibility of the function. Similarly, global

monotonocity with respect to the inputs and outputs cannot  be imposed on the

transformation function Ω( )y, x  without destroying the flexibility of the

functional form.

The first derivatives of Ω( )y, x  are

( )

( )

( )

∂
∂
Ω
y

b y By y y By

x x Ax b y By y y By

x x Ax b y By y y By b y y y By

*
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
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b
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(2.27)

At ( )y , x* * the value of the derivatives reduces to
∂
∂
Ω
y

b= a0 (2.28)

and
∂
∂
Ω
x

a= . (2.29)

Imposing monotonicity on (2.31) and (2.32) results in

0)( 0 ≥=Ω
bx,y

y
** a

∂
∂

 and 
∂
∂
Ω
x

y , x a* *( ) = ≤ 0 (2.30)
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The transformation function Ω( )y, x  defined by (2.22) and restricted to satisfy

equations (2.14), (2.19)-(2.21), (2.23)-(2.25), and (2.30) is flexible and locally

monotone at ( )y , x* * , subject to the weak separability condition.  Monotonicity is

verified empirically at each point within the data.  Although h, H, and y0 are

globally convex, the composite function Ω still can fail convexity locally at points

at which Ω fails monotonicity.

Substituting the functional form given by equation (2.22) into the system of

Euler equations, we obtain the structural model, which is a system of integral

equations. Barnett, Kirova, and Pasupathy (1995) tested the separability

hypothesis and accepted the null hypotheses.  Since that test is not central to

purposes of this current paper, we do not present or discuss the results of that test

in this paper, but the fact that the null was accepted does suggest that the

separability hypothesis is not the source of the regularity problems that we more

recently have found in this estimated model and report below.

2.4. Empirical Application

Barnett, Kirova, and Pasupathy (1995) apply the approach to estimating the

technology of commercial banks.  The outputs of that aggregated financial firm in

our application consist of demand deposits and time deposits.8 Demand deposits

and time deposits account for the major portion of the fund-providing functions of

the bank's balance sheet.  The inputs used in the production process include both

financial and nonfinancial inputs. The financial input in the form of cash is excess

reserves. The nonfinancial inputs includes labor, materials, and physical capital.

The output vector is given by ′ =y ( , )D Tt t  and the input vector is

                                                
8As shown in Debreu (1959), perfect competition alone is a sufficient condition for the
existence of a representative firm. Since we are assuming perfect competition in this paper, no
additional assumptions are implicit in our use of a representative neoclassical firm to model
aggregate banking behavior.
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′ =x ( , , , )C L M Kt t t t , where Dt  is demand deposits, Tt  is time deposits, Ct is

excess reserves,  Lt  is labor input, Mt  is material inputs, and Kt is capital.

In our empirical application we use the power utility function, which is a

nested special case of the general class of HARA utility functions, U t( )π , given

by equation  (2.8). We  use this simplification, since the available sample size

does not permit the use of the more general form. The power utility function is

obtained by setting d = 0,  and by imposing the restriction 0 1< <ρ ,  in equation

(2.8).

Using equations (2.9) - (2.11), the Euler equations are
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where th ,1  and th ,2  are respectively the holding costs of demand deposits and time

deposits, k t1,  and k t2,  are respectively the required reserves ratio on demand and
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time deposits, and w t1,  and w t2,  are respectively the prices of labor and material

inputs. The derivatives of Ω  with respect to the various inputs and outputs are

given by equations (2.26) and (2.27).

Since we impose monotonicity only at one point, we need to select the

"center of the approximation."  We choose y0 1 11* , ( , ),=
′

=  y*  and x*′
= ( , , , )1111

as the center of approximation.  The fixed nonnegative constants are chosen such

that

α i
i

j
j

x

x
=

∑
∀

=

| ~ |

| ~ |
1

4    i = 1,2,3,4 (2.36)

and

βi
i

j
j

y

y
=

∑
∀

=

| ~ |

| ~ |
1

2    i = 1,2 , (2.37)

where ~xi  and ~yi  are the sample means of ~xi  and ~yi  respectively. The α i  and βi

are thus chosen to satisfy restrictions (2.14) and (2.19) respectively.

Equation (2.20) implies b b1 2 1+ = , which is imposed through the

substitution b b1 21= − .   There are also inequality restrictions to be imposed. The

monotonicity condition (2.30) implies b ii ≥ =0 1 2 for  , ,  and hence from equation

(2.20) we also have b ii ≤ ∀ =1 1 2 , .  Combining these two conditions and the

mathematical identity sin cos2 2 1θ θ+ = , we have the substitutions

θθ 2
2

2
1 cosb  and sin ==b , where the parameter θ must now be estimated.

We further normalize a0 1= , since Ω( ) .y, x = 0  The monotonicity condition

(2.30) implies that a f ii ≤ =0 1 2 3 4 or  , , , . We impose that restriction by replacing

ai  by − ~ai
2 for i = 1,2,3,4 , and estimating ~ai . The convexity conditions are

imposed by replacing the matrices A and B  by the matrices qq′  and uu′

respectively, where the lower triangular matrices q and u  are given by
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Equation (2.21) implies
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u u
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
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which, when solved, produces the restrictions u u u22 210 11= = − and .

These relationships reduce the matrix B  to

B =
−

−








u11

2 1 1

1 1
.

Following these substitutions, the parameters that remain to be estimated within

technology are θ,  u11 , q , and ~ (~ , ~ , ~ , ~ )a = a a a a1 2 3 4 .  In addition the subjective rate

of time discount µ and the risk aversion parameter ρ must be estimated.

The data used for estimating the model was mainly obtained from the Federal

Reserve Bank Functional Cost Analysis (FCA) Program.9

2.5.  Results

Barnett, Kirova, and Pasupathy (1995) estimated the Euler equations ((2.33)-

(2.37)) using the GMM estimation procedure on heteroskedasticity and

autocorrelation in the disturbance terms. They specified a second order moving

average serial correlation. Bartlett kernels were specified for the kernel density.

Discount window rate, federal funds rate, composite bond rate, lagged value of

excess reserves, lagged value of interest paid on time deposits, and a constant

                                                
9For details of the data used in this mainframe TSP (version 7.02). This estimation process
allows for project, see Barnett, Kirova, and Pasupathy (1995).  The sample period was 1966-
1992, and the primary source of data was the Federal Reserve's Functional Cost Analysis for
National Average Banks.
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were chosen as instruments.  To ensure that 0 1< <ρ , they replace ρ  by sin ( �)2 ρ

and estimate �ρ . Similarly, to rule out the possiblity of negative values for the

subjective rate of time preference, µ , they replace µ  by ~µ 2  and estimate ~µ .

The test for weak separability of monetary assets, using Hansen's χ 2  test for

no over-identifying restrictions, was conducted by Barnett, Kirova, and Pasupathy

(1995) and showed that weak separability could not be rejected. This implies the

existence of an output aggregator function.  Using the Barnett, Kirova, and

Pasupathy (1995) parameter estimates, we now check the functional form to see if

the  regularity conditions, namely monotonicity and curvature conditions, are

satisfied at all data points. This exercise reveals that monotonicity conditions were

satisfied at all points within the output aggregator function: i.e., the condition
∂
∂
y0 0
y

≥  was satisfied at all data points. Within the transformation function, Ω ,

the condition 
∂
∂
Ω
y

i
i

≥ ∀0,   was satisfied at all points, so there were no violations

of the monotonicity conditions with respect to the outputs. For inputs, the

condition 
∂
∂
Ω
x

≤ 0  was tested for each of the four inputs at all data points. It was

found that this condition was satisfied everywhere in the case of cash and labor,

while it was violated at two data points in the case of materials and at four data

points in the case of capital. The curvature condition for the composite function,

H y( ( ), )0 y x , was satisfied globally, since it was found that the condition
∂

∂
H y

y

( , )0

0
0

x
≥  was satisfied at all data points, so that reversals of curvature of the

composite function could not be induced by violations of monotonicity of H in y0.

2.6 Consequences of Regularity Violations

As stated in the concluding portion of the previous section, the functional

form failed to satisfy some of the regularity conditions that are required by
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economic theory of a valid transformation function. In this section, we provide

further details of this problem.

The weak separability of outputs from inputs within the transformation

function implies that the equation H y( ( ), )0 0y x =  can be solved to represent

y0( )y  as a function of the inputs x , if the conditions imposed by the implicit

function theorem are satisfied. In our case this condition reduces to verifying that
∂

∂
H y

y

( , )0

0
0

x
≠  at all data points. We found that this condition was indeed

satisfied at all data points. Hence, we proceeded to solve the equation for y0( )y ,

so that the model can be used to obtain the elasticities of substitution between the

inputs and outputs of the production technology.

We were in fact able to find an explicit solution to the equation. The function

H , specified as an adaptation of the symmetric generalized quadratic functional

form, is given (from equation 2.17) by:

H y a y

y y y y
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0 0 0
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1
0 0

1
0 0

2

1
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= + ′ + ′ ′

− ′
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+ ′
′

−

− −

α

α α                 * *
(2.40)

where ( , )* *y0 x  is the point of local flexibility.

These points were chosen as y0 1* =  and x* ( , , , )= 1111  during estimation. At

this point using the representation given in equation (2.40),  equation

H y( ( ), )0 0y x = , can be rewritten as a quadratic equation in y0 . The quadratic

equation is given by:

( ) ( ) ( )* * *′ ′





+ − ′ ′





+ ′ + ′ ′ =− − −α α αx x Ax x x Ax a x x x Ax1
0
2

0
1

0
12 2 0y a y

(2.41)
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We found that both roots to the equation (2.41) existed. Hence, there were two

values for the production possibility surface y0 , which implies that y0 was in fact

a correspondence and not a function, as it should be. We believe that the problem

of multiple solutions has arisen due to the violations of regularity conditions

reported earlier. We further found that for part of the sample (1976 - 1992), the

term

( )a0
1

2
1 12− ′ ′



 − ′ ′ ′ + ′ ′− − −( ) ( ) ( )* * *α α αx x Ax x x Ax a x x x Ax

had negative values. Since, this term appears under the square root in the solution

to equation (2.43), the roots to the equation had complex values at these sample

points.

To study this rather strange behavior of the functional form further, we tried

to plot the isoquants. We once again encountered the phenomenon of multiple

solutions. We found that there were two sets of isoquants for every pair of inputs.

The isoquants between labor and capital and between materials and capital entered

the complex plane.

3.  THE OTHER COUNTEREXAMPLE

Barnett, Kirova, and Pasupathy (1995) not only used the generalized

quadratic model to estimate the technology of financial intermediaries, but also to

estimate the technology of manufacturing firms.  In this paper, we report primarily

on the results with the financial intermediary, since the regularity violations were

the most disturbing in that case.  But we also ran some similar checks on the

manufacturing firm model.  The manufacturing firm model is of a particularly

common form, with financial services and other factors treated as inputs to the

technology of a single product firm, as opposed to the financial intermediary
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model, in which financial services are outputs of a multiproduct firm.  Some of

the strangest regularity violations that we found in our financial intermediary

model results did not arise, when we ran similar checks with the manufacturing

firm model.  But when we plotted the isoquants for the estimated manufacturing

firm model, we did find that the slopes of many isoquants, instead of intersecting

axes or approaching them asymptotically, eventually curved back by acquiring

positive slopes, and some of the data points were found to lie in the regions of

positive isoquant slopes.  This demonstrates violations of monotonicity, even with

the more conventional manufacturing firm model estimated in Barnett, Kirova,

and Pasupathy (1995).

At the time that we estimated and published the results with that model, we

had found all results to be plausible and had encountered no reason to suspect that

anything had gone wrong.  Only more recently when we acquired the isoquants of

the financial intermediary model and then decided to plot the isoquants of the

manufacturing firm model did we find that regularity had again been violated in

very troubling ways, despite the fact that in both models we had imposed

curvature globally and monotonicity locally and had found plausible elaticities at

the center of the approximation.10

4. ARE THESE TWO COUNTEREXAMPLES REPRESENTATIVE?

The financial intermediary example that produced the most severe regularity

problems is particularly sophisticated in its use of econometric methodology.  But

as we have observed, regularity problems also arose in our less exotic

                                                
10 The plots of the isoquants for the manufacturing firm model are available upon request and
are very revealing.  Some of those plots are available in Barnett (2002).  The sample period
was 1949-1988, and the data are on U. S. manufacturing.  The two primary sources of the data
were the Division of Multifactor Productivity of the Bureau of Labor Statistics and the
Quarterly Financial Report for Manufacturing, Mining, and Trade Corporations.  The details
of the data can be found in Barnett, Kirova, and Pasupathy (1995).
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manufacturing firm application.  Applied econometricians should not take comfort

in the sophisticated nature of either of these counterexamples, since the relevant

criteria for judging whether or not these results should be viewed as representative

indicate very clearly that they are representative.

The reason is the parsimoneous nature of the generalized quadratic model.

As was demonstrated in the original Diewert and Wales (1987) paper that

proposed the model (then called generalized McFadden), the model has just

enough parameters to be able to attain arbitrary elasticities at a point, when

curvature is imposed globally and monotonicity at the point.  That is the reason

that monotonicity is not normally imposed globally.  If monotonicity were

imposed globally, the model’s flexibility would be compromised, so that it would

not be possible to attain arbitrary elasticities at a point.

Hence whatever adverse regularity properties this model may exhibit are a

consequence of the elasticities at the “point of approximation.”  When Barnett,

Kirova, and Pasupathy (1995) published the point estimates from these two

applications, they did not suspect severe regularity problems since the elasticities

at the point of approximation were very reasonable, especially in the

manufacturing firm case. The only way that our results could be viewed as

unlikely special cases would be if the elasticities at the center of the

approximation were in some way unusual or odd---and they were not!

In addition the isoquant plots that we mention in footnote 9, and that we

would be happy to supply on request, display very dramatically the manner in

which the isoquants curve back such that their slopes become positive.  In each of

the cases of those two dimensional plots, the elasticities are entirely normal and

plausible at the center of the approximation, with curvature satisfied globally.

5.  CONCLUSIONS
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We find that the generalized quadratic specification of technology produces

violations of monotonicity in our application, when curvature is imposed globally.

In addition, we find that the violations of monotonicity can create induced

violations of curvature in composite functions defined by weakly separable

nesting of aggregator functions within the firm's technology---even when

curvature has been imposed globally for all of the inner and outer component

functions defining the composite function.  Although we did not encounter that

local reversal problem, we did encounter considerably more troubling problems

involving nonuniqueness of isoquants and complex valued solutions induced by

violations of monotonicity.  In short, imposing curvature without monotonicity,

while perhaps to be preferred to the prior common practice of imposing neither, is

not adequate without at least reporting data points at which violations of

monotonicity occur.  Monotonicity is too important to be overlooked.

In fact, we believe that imposition of curvature can produce spurious

violations of monotonicity that would not otherwise have occurred.  Without

imposition of curvature, an estimator can most readily improve fit spuriously

through violating curvature.  But when curvature is imposed, the only spurious

means remaining to improve fit by leaving the neoclassical function space is

through violation of monotonicity.  This problem is likely to be especially

common with quadratic models, such as the generalized quadratic model, since

quadratic functions can have a bliss point.

While our counterexample is produced by a particularly sophisticated

application of the generalized quadratic technology for a multiproduct financial

firm, we have confirmed that the same problem arises in a more elementary model

of a single product manufacturing firm, also estimated using generalized method

of moments.  In addition, because of the parsimonious nature of the model’s

specification after imposition of global curvature, and because of the plausible
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elasticities estimates at the center of the approximation, we believe that our

disturbing findings are representative of those that would be found by similar

explorations of isoquants from other models estimated within this tradition.

When we first estimated those two models and published results from the two

models in Barnett, Kirova, and Pasupathy (1995), we had not anticipated the

regularity problems that we recently found in those results, when we went back

and tried to plot the isoquants.  In short, we were not looking for examples to

make the point that regularity is a problem with the generalized quadratic model.

But now that we have become aware of the problem in that work, we believe it is

important for us to reveal the issue, which we believe has potentially widespread

relevancy in the production modeling literature.

We have no doubt that replication of this experiment with other data sets

estimated under perfect certainty by maximum likelihood will further confirm our

conclusions.  We do not expect that induced nonuniqueness of isoquants will be a

common problem, and we doubt that induced violations of curvature of the

composite technology will be common.  But on the other hand, we strongly doubt

that global satisfaction of monotonicity will often be attained by this model, when

estimated subject to imposed curvature conditions, and in fact in our ongoing

research on this subject, we have not yet found a single such case.  We believe

that a search and display of the model's regular regions, using the procedures of

Caves and Christensen (1980), is warranted and will demonstrate that the now

common procedure of ignoring monotonicity when curvature is imposed is not

justifiable.  We plan to provide those replications and to display those function

properties in future research, if no one else does it.

Research on models permitting imposition of both curvature and monotonicity

remains at an early stage and has so far had little impact on the literature on

production modeling.  While a difficult literature, we believe that research on



28

models permitting flexible imposition of true regularity---i.e. both monotonicity

and curvature---should expand.11  In short, the recent advances in imposing

curvature alone are an important step in a positive direction, but do not yet

produce the ultimate result sought from this direction of research: the ability to

impose full regularity without loss of flexibility.
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