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Abstract:

In aggregation theory, index numbers are judged relative to their ability to track the exact

aggregator functions nested within the economy’s structure.  Within the monetary sector,

Barnett, Liu, and Jensen (1997) compared two statistical index numbers:  the Divisia monetary

aggregate and the simple sum monetary aggregate.  They produced those comparisons using

simulated data.  In this paper, we again compare those two statistical index numbers with the

exact rational expectations monetary aggregate, but we use actual data.  Since we are not using

simulated data, we estimate the parameters of the Euler equations and thereby of the nested

monetary aggregator function using generalized method of moments.  We explore the tracking

errors of the two index numbers relative to the estimated exact aggregate.  We investigate the

circumstances under which risk aversion increases tracking error.  We also use polyspectral

methods to test for the existence of remaining nonlinear structure in the residual tracking errors.

Keywords:

Monetary aggregation, index number theory, spectral analysis, nonlinearity
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The Exact Theoretical Rational Expectations Monetary Aggregate

by William A. Barnett, Melvin J. Hinich, and Piyu Yue

1.  Introduction

In microeconomic aggregation theory, index numbers are judged relative to their ability to

track the exact aggregator functions nested within the economy’s structure.  Relative to that

criterion within the economy’s monetary sector, Barnett, Liu, and Jensen (1997) compared two

statistical index numbers:  the Divisia monetary aggregate (with and without CCAPM

adjustment for risk) and the simple sum monetary aggregate.  Barnett, Liu, and Jensen (1997)

produced those comparisons using simulated data at various settings of the parameters of an

Euler equations model of monetary assets demand.  In this paper, we similarly compare the two

statistical index numbers with the exact rational expectations monetary aggregate, but we use

actual data.  Since we are not using simulated data, we need to estimate the parameters of the

Euler equations and thereby of the nested monetary aggregator function.  We do so using

generalized method of moments.  We then plot the time paths of the resulting estimated exact

aggregate and the two approximating statistical index numbers.

We also compare the dynamic behavior of the two statistical index numbers with the

dynamic behavior of the estimated exact aggregator function in the frequency domain using

polyspectral methods.  In particular, we investigate the ability of the two statistical indexes to

extract the nonlinear structure from the estimated exact aggregate’s time series.  In addition to

using Hinich’s well know asymptotic bispectrum test, we bootstrap his test statistic to acquire a

finite sample inference.  The objective is to determine whether there exists any unexplained

residual nonlinear structure in the tracking errors of the two statistical index numbers.



5

This line of research in monetary economics began with Barnett (1980) in the perfect

certainty case. A long list of published papers and books have been motivated by Barnett's

original perfect certainty model, based upon consumer demand theory.  While the applications

of the perfect certainty approach are far more extensive than those of the recent extensions to a

stochastic environment, there is in place a small but growing literature on Euler equation

estimation of nested aggregator functions over monetary assets.  That extended literature began

with Poterba and Rotemberg (1987) and Barnett, Hinich, and Yue (1991) for consumer demand.

Analogous research, in both the perfect certainty and risk cases, has recently been applied to

manufacturing firms that demand monetary services and financial intermediaries that produce

monetary services.  A collection of many of the most important papers on this subject for all

three categories of economic agents, with unifying discussion, can be found in Barnett and

Serletis (2000).1

According to the “Barnett critique,” as defined by Chrystal and MacDonald (1994, p. 76),

an internal inconsistency exists between the microeconomics used to model private-sector

structure and the aggregator functions implicitly used to produce the monetary aggregate data

supplied by most central banks.  This internal inconsistency can do considerable damage to

inferences about private-sector behavior, when central bank monetary aggregate data are used.

Chrystal and MacDonald (1994, p. 76) have observed the following regarding “the problems

with tests of money in the economy in recent years …  Rather than a problem associated with

the Lucas crituque, it could instead be a problem stemming from the ‘Barnett Critique.’”  In fact,

Barnett-critique issues have been used to cast doubt upon many widely held views in monetary

economics, as emphasized by Barnett, Fisher, and Serletis (1992), Belongia (1996), Chrystal and

MacDonald (1994), and Barnett and Serletis (2000).  Based upon this rapidly growing line of
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research, Chrystal and MacDonald (1994, p. 108) conclude---in our opinion correctly---that

“rejections of the role of money based upon flawed money measures are themselves easy to

reject.”

In the current paper, we compare the behavior of the exact monetary aggregate with that

of the statistical index number approximations under risk, but only for consumers.  Comparable

results for manufacturing firms and financial intermediaries already have been published in

Barnett and Zhou (1994) and Barnett, Kirova, and Pasupathy (1995), but without frequency

domain tests of successful extraction of nonlinear dynamics from the tracking errors.  The data

used in this paper are those supplied in Barnett, Hinich, and Yue (1991), to assure comparability

with the results in that paper.  In one case, we explore robustness to increased sample size, by

extending the sample to include the most recently available data.

2.   Consumer Demand for Monetary Assets

In this section we formulate a representative consumer's stochastic decision problem over

consumer goods and monetary assets.  The consumer's decisions are made in discrete time over

a finite planning horizon for the time intervals, t, t+1, ..., s, ...,t+T,  where t is the current time

period and t+T is the terminal planning period.  The variables used in defining the consumer's

decision are as follows:

xs = n dimensional vector of real consumption of goods and services during period s,

   ps = n dimensional vector of goods and services prices and of durable goods rental  prices

during period s,
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   as = k dimensional vector of real balances of monetary assets during

period s,

   ρρρρs  = k dimensional vector of nominal holding period yields of monetary assets,

   As = holdings of the benchmark asset during period s,

Rs = the one-period holding yield on the benchmark asset during period s,

Is = the sum of all other sources of income during period s,

p*
s = p*

s(ps) = the true cost of living index.

Define Y to be a compact subset of the n+k+2 dimensional nonnegative orthant.  The

consumer's consumption possibility set, S( s), for s ∈{t,...,t+T} is:

S(s) = { (as,xs,As) ∈Y:  ∑
=

n

i
isis xp

1
=

      +  ∑
i=1

k
 [(1 + ρρρρi,s-1)p*

s-1 ai,s-1 - p*
sais ] + (1 + Rs-1)p*

s-1 As-1  -  p*
s As  +  Is}.            (1)

Under the assumption of rational expectations, the distribution of random variables is known to

the consumer.  Since current period interest rates are not paid until the end of the period, they

may be contemporaneously unknown to the consumer.  Nevertheless, observe that during period

t the only interest rates that enter into S(t) are interest rates paid during period t-1, which are

known at the start of period t.  Similarly pt and p *
t  are determined and known to the consumer at

the start of period t.  Hence (at,xt,At) can be chosen deterministically in a manner that assures

that (at,xt,At) ∈ S(t) with certainty.  However, that is not possible for s > t, since at the

beginning of time period t, when the intertemporal decision is solved, the constraint sets S(s) for
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s > t are random sets.  Hence for s > t, the values of (as,xs,As) must be selected as stochastic

process.

The benchmark asset As provides no services other than its yield Rs.  As a result, the

benchmark asset does not enter the consumer's intertemporal utility function except in the last

instant of the planning horizon.2  The asset is held only as a means of accumulating wealth to

endow the next planning horizons.   The consumer's intertemporal utility function is

U = U (at, ..., as, ...,at+T; xt, ..., xs, ...,xt+T; At+T),

where U is assumed to be intertemporally additively (strongly) separable, such that

U = u( at, xt) + (
1

1+ξ )u(at+1,xt+1) + ...

..... + (
1

1+ξ )T-1 u(at+T-1,xt+T-1)  +  (
1

1+ξ )T u(at+T,xt+T,At+T)

= ∑
s=t

t+T-1
     (

1
1+ξ )s-t u(as,xs) + (

1
1+ξ )T uT(at+T,xt+T,At+T),         (2)

and the consumer's subjective rate of time preference, ξ, is assumed to be constant.3  The single

period utility functions, u and uT, are assumed to be increasing and strictly quasiconcave.

Given the price and interest rate processes, the consumer selects the deterministic point

(at,xt,At) and the stochastic processes (as,xs,As), s = t+1, ..., t+T, to maximize the expected

value of U over the planning horizon, subject to the sequence of choice set constraints.

Formally, the consumer's decision problem is the following.

Problem 1:  Choose the deterministic point (at,xt,At) and the stochastic process (as,xs,As), s =

t+1, ..., t+T, to maximize
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u(at,xt) + Et[ ∑
s=t+1

t+T-1
  (

1
1+ξ )s-t u(as,xs) + (

1
1+ξ )T uT(at+T,xt+T,At+T)] (3)

subject to (as,xs,As)∈S(s)  for s = t, . . . , t+T.

We use Et to designate the expectations operator conditionally upon the information that exists

at time t.

In the infinite planning horizon case, the decision problem becomes:

Problem 2:  Choose the deterministic point (at, xt, At) and the stochastic process

(as,xs,As), ∞+= ,...,1ts , to maximize

u(at, xt) + Et[ ∑
∞

+= 1ts
(

1
1+ξ )s-t u( as, xs)] (4)

subject to (as,xs,As)∈S(s)  for s ≥  t, and also subject to

Et (
1

1+ξ )s-t As  → ∞→s  0.

The latter constraint rules out perpetual borrowing at the benchmark rate of return, Rt.

3.  Existence of a Monetary Aggregate for the Consumer

In order to assure the existence of a monetary aggregate for the consumer, we partition the

vector of monetary asset quantities, as, such that as = (ms, hs).  We correspondingly partition the

vector of interest rates of those assets, ρρρρs, such that ρρρρs=(rs,is).  We then assume that the utility

function, u, is blockwise weakly separable in ms and in xs for some such partition of as.  Hence

there exists a monetary aggregator ("category utility") function, M, and consumer goods
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aggregator function, X, and a utility function, u*, such that

u(as, xs) = u*(M(ms),hs,X(xs) ). (5)

We assume that the terminal period utility function in the finite planning horizon case is

correspondingly weakly separable, such that uT(as, xs, As) = u*
T(M(ms),hs,X(xs) ,As).

Then it follows that the exact monetary aggregate, measuring the welfare acquired from

consuming the services of ms, is

Ms =  M(ms). (6)

We define the dimension of ms to be k1, and the dimension of  hs to be k2, so that k = k1+k2.

It is clear that equation 6 does define the exact monetary aggregate in the welfare sense,

since Ms measures the consumer's subjective evaluation of the services that he receives from

holding ms.  However it also can be shown that equation 6 defines the exact monetary aggregate

in the aggregation theoretic sense.  In particular, the stochastic process Ms, s ≥ t, contains all of

the information about ms that is needed by the consumer to solve the rest of his decision

problem.  This conclusion is based upon the following theorem, which we call the consumer's

aggregation theorem.

Let  Ds = Is +  ∑
i=1

k1
 [(1 + ri,s-1)p*

s-1mi,s-1 - p*
smis],

and let

∆(s) = {(hs,xs,As) ∈Y:  ∑
=

n

i
isis xp

1
=

      + ∑
i=1

k2
 [(1 + ii,s-1)p*

s-1 hi,s-1 - p*
shis] + (1 + Rs-1)p*

s-1As-1 - p*
s As + Ds}.              (7)
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Let the deterministic point (a*
t ,x*

t ,A*
t ) and the stochastic process (a*

s,x*
s,A*

s), s ≥ t+1, solve

problem 1 (or problem 2, if T= ∞ ).  Consider the following decision problems, which are

conditional upon prior knowledge of the aggregate process M*
s=M(m*

s), although not upon the

component processes m*
s.

Problem 1a:  Choose the deterministic point (ht,xt,At) and the stochastic process (hs,xs,As),

s=t+1, ..., t+T, to maximize

u*(M*
t ,ht,xt)

+ Et[ ∑
s=t+1

t+T-1
  (

1
1+ξ )s-t u*(M*

s,hs,xs) + (
1

1+ξ )T u*
T(M*

T,hs,xs,As)]    (8)

subject to (hs,xs,As) ∈∆( s)  for s = t, . . . , t+T, with the process M*
s given for s≥ t.

Problem 2a:  Choose the deterministic point (ht,xt,At) and the stochastic process (hs,xs,As),

∞+= ,...,1ts , to maximize

u*(M*
t ,ht,xt) + Et[ ∑

∞

+= 1ts
(

1
1+ξ )s-t u*(M*

s,hs,xs)] (9)

subject to (hs,xs,As) ∈∆(s)  for s ≥ t, and also subject to

Et(
1

1+ξ )s-t As  → ∞→s 0,

 with the process M*
s given for s ≥  t.
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Theorem 1 (Consumer's Aggregation Theorem):  Let the deterministic point (mt,ht,xt,At) and

the stochastic process (ms,hs,xs,As), s = t+1, ..., t+T, solve problem 1.  Then the deterministic

point (ht,xt,At) and the stochastic process (hs,xs,As), s = t+1, ..., t+T, will solve problem 1a

conditionally upon M*
s = M(ms) for s = t, ... , t+T.  Similarly let the deterministic point

(mt,ht,xt,At) and the stochastic process (ms,hs,xs,As), s ≥ t+1 solve problem 2.  Then the

deterministic point (ht,xt,At) and the stochastic process (hs,xs,As), s ≥  t+1 will solve problem 2a

conditionally upon M*
s = M(ms) for s ≥  t.

Clearly this aggregation theorem, proved in the appendix of Barnett, Liu, and Jensen

(1997),  applies not only when Ms is produced by voluntary behavior, but also when the Ms

process is exogenously imposed upon the consumer, as through a perfectly inelastic supply

function for Ms, set by central bank policy.  In that case, problems 1a and 2a describe optimal

behavior by the consumer in the remaining variables.  Since (hs,xs,As) are not assumed to be

weakly separable from Ms, the information about Ms is needed in the solution of problems 1a

and 2a for the processes (hs,xs,As).  For example, the marginal rate of substitution between labor

and goods may depend upon the value of Ms.  Alternatively information about the simple sum

aggregate over the components of ms is of no use in solving either problem 1a or 2a unless the

monetary aggregator function M happens to be a simple sum.  In other words, the simple sum

aggregate contains useful information about behavior only if the components of ms are perfect

substitutes in identical ratios (linear aggregation with equal coefficients).

4.  The Solution Procedure

Using Bellman's principle, we can derive the first order conditions for solving Problems 1

and 2.  Under the somewhat more restrictive conditions assumed by Poterba and Rotemberg
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(1987), the first order conditions derived below reduce to those acquired by Poterba and

Rotemberg.

We concentrate on the infinite planning horizon problem 2, rather than on the finite

planning horizon problem 2, since the contingency plan functions ("feedback rules") that solve

problem 1 are time dependent in the finite planning horizon case, but not in the infinite planning

horizon case.  In the infinite planning horizon case, time enters only through the variables that

enter those equations as arguments, rather than through time shifting of the functions

themselves.

We begin by solving the budget constraint in equation (1) for the quantity of an arbitrary

consumer good, xjs, and we then use the resulting rearranged constraint to eliminate xjs from

the intertemporal utility function in problem 2 for all s ≥  t.  For notational simplicity, we let

j=1.  Let z1s = (as, As).  To apply Bellman's method, we must define the control and state

variables.  Define the control variables during period s to be zs = (z1s, x2s, ..., xns). We define

the state variables during period s to be  (ß1s,øs), where the price and income state variables are

øs  = ((p2s, ..., pns),p*
s,p*

s-1,Rs-1,ρρρρs-1,Is)/p1s, and where ß1s = (as-1,As-1).

Having eliminated the budget constraint by substitution as described above, problem 2

can be rewritten as follows:

Problem 2b:  Choose the deterministic point zt and the stochastic process zs, ∞+= ,...,1ts , to

maximize

u(zt,ßt) + Et[ ∑
∞

+= 1ts
(

1
1+ξ )s-t u(zs,ßs)] (10)

subject to
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ß1,s+1 = z1s (11)

and

 Et(
1

1+ξ )s-tAs  → ∞→s 0, (12)

with ßt given.

Equations (11) are the transition equations,  ßs+1 =  g (zs, ßs), providing the evolution of

future state variables as functions of the controls and the current state.  We assume that the øs

process is Markovian.  Applying the Benveniste and Scheinkman equations, we can acquire the

Euler equations for the control variables.

The Euler equations which will be of the most use to us below are those for monetary

assets.  Replacing X(xt) by ct in u, those Euler equations become:

0)(
1

*
1

*

=






 −−
++ tt

ittt

it
t c

u
p

rRp
m
uE

∂
∂ρ

∂
∂ (13a)

for i = 1, . . . , k1, where ct = X(xt) is the exact quantity aggregate over xt and p*
t  is its dual exact

price aggregate.4   Similarly we can acquire the Euler equation for the consumer goods aggregate

ct, rather than for each of its components.  The resulting Euler equation for ct is

0)1(
1

*
1

*

=






 +−
++ tt

tt

t
t c

u
p

Rp
c
uE

∂
∂ρ

∂
∂ (13b)

5.  Monetary Policy
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Having the Bellman solution at hand, we are in a position to give further consideration to

the policy implications of monetary aggregation through the Theoretical aggregate.  Hence we

now return to Theorem 1 and Problem 2a.  Clearly the Bellman equation for Problem 2a can be

written in a form analogous to that of the Bellman equation produced by Problem 2.  The only

changes are that the controls now are (hs,x2s,...,xns,As), s = t, ..., ∞ , while the state variables are

(hs-1,As-1,øs,M*
s), where øs is the vector of price and income state variables defined earlier.

Hence the solution contingency plans solving problem 2a are of the form:

(hs,x2s,...,xns,As) = f(hs-1,As-1,øs,M*
s), (14)

where all of the controls and state variables are deterministic for s=t.

The appearance of M*
s as a state variable has interesting policy implications.  Clearly if

M*
s is used as an indicator in the conduct of monetary policy, the monetary aggregate will indeed

contain information about (hs,x2s,...,xns,As) and thereby about the final targets of monetary

policy both in goods and labor markets.  Alternatively suppose that policy instruments, such as

the monetary base, are used to target the equilibrium path of M*
s as an intermediate target of

policy.  Assuming that the instruments are used in a manner that is not time inconsistent, as for

example through an open loop policy, the equilibrium stochastic process for M*
s can be

influenced by policy.  Under our assumption of rational expectations, economic agents will

know about the policy rule and hence about the targeted equilibrium process for M*
s.   The

consumer then can solve problem 2a to acquire the optimal solution for the remaining variables

conditionally upon the targeted process for M*
s.
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We see that only M*
s can play these roles, if policy operates through a monetary target or

indicator.  The simple sum aggregate, which does not appear as a control in f, can serve neither

role.  In fact the only information from the monetary asset portfolio, m*
s, that is useful in solving

problem 2a is M*
s=M(m*

s), since m*
s enters the contingency plans f only through M.

At this point, we have completed our theoretical analysis of demand for money in a risky

environment.   We now can use GMM estimation to estimate the parameters of first order

conditions under a particular specification for tastes.  We then can compute the estimated

theoretical monetary aggregate and proceed to investigate the quality of currently available

statistical index numbers in tracking the monetary service flow.  But we first determine the

applicability of existing index number theory under the assumptions of our exact aggregation

theory.

6.  The Risk Neutral Case

In the perfect certainty case, nonparametric index number theory is highly developed and

is applicable to monetary aggregation.  In the perfect certainty case, Barnett (1978,1980) proved

that the nominal user cost of the services of mit is πit, where

t

itt
tit R

rRp
+
−=

1
*π (15)

The corresponding real user cost is πit/p*.  In the risk neutral case, the user cost formulas are the

same as in the perfect certainty case, but with the interest rates replaced by their expected

values.  It can be shown that the solution value of the exact monetary aggregate M(mt) can be

tracked without error in continuous time (see, e.g., Barnett (1983)) by the Divisia index:
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 d log Mt  = ∑
=

1

1

k

i
its d log mit, (16)

where the user cost evaluated expenditure shares are sit = πitmit / ∑
=

1

1

k

i

πjtmjt.  The flawless

tracking ability of the index in the risk neutral case holds regardless of the form of the unknown

aggregator function, M.

However, under risk aversion the ability of equation (16) to track M(mt) is compromised.

We investigate the magnitude of that error below by econometrically estimating M(mt).

7.  A Generalization

 The fact that the Divisia index tracks exactly under perfect certainty or risk neutrality is

well know.  However, we show in this section that neither perfect certainty nor risk neutrality

are needed for exact tracking of the Divisia index.  Only contemporaneous prices and interest

rates need be known.  Future interest rates and prices need not be known, and risk averse

behavior relative to those stochastic processes need not be excluded.  The proof is as follows.

Assume that Rt, p
*
t , and rt are known at time t, although their future values are stochastic.

Then the Euler equations (13a) for mt are

01)(
1

*
1

* =







−−

++ tt
tittt

it c
u

p
ErRp

m
u

∂
∂ρ

∂
∂ (17)

for i = 1, . . . , k1.  Similarly the Euler equation (13b) for aggregate consumption of goods, ct,

becomes

01)1(
1

*
1

* =







+−

++ tt
ttt

t c
u

p
ERp

c
u

∂
∂ρ

∂
∂ (18)

Eliminating 








++ 1
*

1

1
tt

t c
u

p
E

∂
∂  between (17) and (18), we acquire
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tt

itt

it c
u

R
rR

m
u

∂
∂

∂
∂

+
−=

1
(19)

But by the assumption of weak separability of u in mt, we have

ittit m
M

M
u

m
u

∂
∂

∂
∂

∂
∂ = (20)

where Mt = M(mt) is the exact monetary aggregate that we seek to track.

Substituting (19) into (20) and using (15), we find that

t

t
it

it Mu
cu

m
M

∂∂
∂∂π

∂
∂

/
/= (21)

Now substitute (21) into the total differential of M to acquire

.
/
/

)(
1

1
∑

=

=
k

i
itit

t

t
t dm

Mu
cu

dM π
∂∂
∂∂m (22)

But since M is assumed to be linearly homogeneous, we have Euler's equation for linearly

homogeneous functions.  Substituting (21) into Euler's equation, we have

∑
=

=
1

1/
/)(

k

j
jtjt

t

t
t m

Mu
cuM π

∂∂
∂∂m (23)

Dividing (22) by (23), we acquire (16), which is the Divisia index.  Hence the exact tracking

property of the Divisia index is not compromised by uncertainty regarding future interest rates

and prices or by risk aversion.

Nevertheless, this assumption is not trivial, as emphasized by Poterba and Rotemberg (1987),

since current period interest rates are not paid until the end of the current period.  In fact current

period interest rates are not assumed contemporaneously known in our Euler equations (13a) and

(13b). Barnett, Liu, and Jensen (1997) have derived the consumption CAPM beta risk adjustment

to interest rates that removes the tracking error of the Divisia index under risk aversion.  With
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that adjustment inserted in the user cost prices, Barnett, Liu, and Jensen (1997) proved that the

Divisia index again tracks the aggregator function exactly in continuous time, regardless of the

degree of risk aversion.  But with the current controversies regarding CCAPM and the associated

“equity premium puzzle,” no central banks currently are using risk adjusted interest rates.  In the

current paper, we therefore do not include the risk adjusted Divisia index among the statistical

index numbers that we compare for their ability to track the GMM estimated theoretical

aggregator function.

8. Data and Specification

We conduct our comparisons at two levels of monetary aggregation:  M1 and M2.  In order to

simplify the illustration, we accept a common clustering of M2 components without first testing

for weak separability.  We first set ms equal to those components of M1 found by Belongia and

Chalfant (1989) to be weakly separable.5  We refer to the resulting aggregates over those

components to be M1 aggregates.  We then repeat our analysis with ms set equal to the

components of M2, but with those components clustered into three groups with prior aggregation

within groups, so that ms contains three aggregated elements.  Hence we implicitly assume that

as is partitioned in accordance with a recursively nested two level separable blocking, such that

the components of our M1 aggregate are separable within the components of our M2 aggregate,

which in turn are separable within as.  Considering the little that is known about testing for

separability in the risk averse case, the clustering that we have chosen without explicit

separability testing is hardly the last word on that subject.

We now select a specification for the function u satisfying our weak separability assumption,

and we estimate the parameters by GMM.  In that estimation, the data that we use is the monthly

monetary component data available in Fayyad (1986) for January 1969 to March 1985.6  In our
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estimation of the parameters of tastes, we use that data in per capita real balances form.  We

begin by defining ms to contain two components:  currency and demand deposits, which

Belongia and Chalfant (1989) found to be blockwise weakly separable, at least under risk

neutrality, from other goods and assets.7  In the utility function, u*(M(ms),hs, xs), we assume a

further higher level of nested blockwise strong separability, such that

u(ms,hs,xs ) = V(M(ms),Xs) +  H(hs), (24)

where Xs = X(xs) is the exact quantity aggregate over consumer goods.8  The utility function that

we specify and estimate is the category utility function V(M(ms),Xs).9

Since the variables in V(M(ms),Xs) are disjoint from those in H(hs), we can restrict the

original decision to be defined in terms of the utility function V(M(ms),Xs) in the following

manner, without altering the solution for the variables (ms,Xs).  We redefine the utility function

in Problem 2 to be

V(M(mt),Xt) + Et[ ∑
∞

+= 1ts
(

1
1+ξ )s-t V(M(ms),Xs)]. (25)

The utility function in Problem 1 can be restricted in the analogous manner.  The budget

constraint in either case is simplified in the following manner.  All terms containing the variables

(hs,hs-1) are absorbed into the "other income" variable, Is, with (hs,hs-1) replaced by their

stochastic processes solving the complete unrestricted decision (Problem 1 or 2).

The budget constraint then becomes:

{ (ms,Xs,As)∈H:  p*
s Xs =

      + ∑
i=1

k1
 [(1 + ri,s-1)p*

s-1mi,s-1 - p*
s mis ] + (1 + Rs-1)p*

s-1As-1 - p*
sAs + Is}.      (26)
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In short, with M1 components we estimate a three goods model, including two monetary

components and the aggregate quantity of consumer goods, Xs.  With M2 components we

estimate a four goods model, including three aggregated monetary components and the aggregate

quantity of consumer goods, Xs.  We now define our specification for V.10

We assume constant proportional risk aversion, such that the utility function

V = V(M(ms),Xs) is of the form

V(M(ms),Xs)=  
1
σ [J( Xs,Ms)]σ (27)

for some function, J, where Ms=M(ms) is the Theoretical monetary aggregate we seek to

estimate.  We then assume that the function J has the Cobb-Douglas form

J(Xs, Ms) = X β
s  M β−1

s (28)

Finally we assume that the monetary aggregator function, M(ms), has the CES (constant

elasticity of substitution) form

Ms = (∑
=

1

1

k

i

δimsi)1/ν (29)

with ∑
=

n

i 1
δi = 1, where n = 2 for M1 and n = 3 for M2.

Substituting (29) into (28), and then substituting the result into (27), we get

V(M(ms), Xs)=  
1
σ [X β

s  (∑
=

1

1

k

i
δimsi)(1-β)/ν]σ. (30)

Denoting the rate of subjective time discount by ρ = 1/(1+ξ) and substituting (30) into (25), we

get the complete intertemporal expected utility function

  Et(U) = 
1
σ [X β

t (∑
=

1

1

k

i
δimti)(1-β)/ν]σ + Et[ ∑

∞

+= 1ts
ρs-t 

1
σ[X β

s  (∑
=

1

1

k

i
δimsi)(1-β)/ν]σ].
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(31)

The parameters to be estimated are ρ, σ, β, {δi}, and ν.  The constraints imposed on those

parameters are

 ∑
=

1

1

k

i

δi = 1, 0 < β ≤ 1, and 0 < δi ≤ 1.

All consumption and asset quantity data are real per capita.  We approximate the benchmark

rate, Rs, by the maximum holding period yield across all assets in Fayyad's (1986) tables during

period s.  The particular asset which produced that rate of return need not be the same for all s,

since our measurement of Rs produces a proxy for the rate of return on some very illiquid asset

(such as human capital in a world without slavery), on which we may have no monthly data.

9. Estimation

We use Hansen and Singleton's (1982) generalized method of moments estimator to estimate

the parameters of the Euler equations, (13a) and (13b).  In accordance with Hansen and

Singleton's estimator, we iterate on the weighting matrix until convergence. The Hansen and

Singleton GMM estimator requires the selection of instrumental variables.  When estimating the

Theoretical M1 aggregate, we use the following five instruments:  Z1 = constant = 10,

Z2 =  Xs-1 - Xs,  Z3 = (ms+1,1 –ms1) + (ms+1,2 – ms2), Z4 = ms-1,1 + ms-1,2, and Z5  = Rs-1.

The sample size in Fayyad (1986) is 195 which covers monthly periods from January of 1969

to March of 1985.  In order to impose the constraints on the parameters, we transform the

parameters in the following manner:

 ∑
=

1

1

k

i

ρ  = B1, σ = B2, β = cos2B3, δ = cos2B4, ν = B5,

and we estimate the new parameters B1, B2, B3, and B4.  The GMM estimator converged at its
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fourth stage.  The resulting parameter estimates are as in Table 1.11  Using these parameter

estimates and the component data, the estimated theoretical M1 monetary aggregate, Ms =

M(ms), was computed at each observation.  We also computed the Divisia quantity index and the

simple sum index over the same components.

This procedure then was repeated with the M2 data.  The components of M2 were clustered

into three groups, and asset quantities within the groups were aggregated by simple summation to

produce three aggregated components over which we then aggregate by the three methods.  For

details of the prior clustering of components, see Table 4-1 in Barnett, Hinich, and Yue (1991).

In order to impose the constraints on the parameters, we transform them as follows

            ρ  = B1,  σ = B2,  β = cos2B3,  δ1 =  cos2B5,   δ2 =  sin2B5sin2B6, ν  =  B4.

The GMM estimation converged at the third stage.  The resulting parameter estimates are

provided in Table 2.

Using these parameter estimates and the component data, the estimated theoretical M2

monetary aggregate, Ms =  M(ms), was computed at each observation.  We also computed the

Divisia quantity index and the simple sum index over the same components.  In Figure 1, the

nominal per capita monetary indices are supplied for the three methods of aggregation at both the

M1 and M2 levels of aggregation.

The properties of the three aggregates at each level of aggregation are easily seen by

inspecting Figure 1.  At both levels of aggregation, the Divisia index tracked the estimated

Theoretical aggregate more closely than did the simple sum monetary aggregate.  At the M1

level, Divisia M1 tracks the estimated Theoretical aggregate rather well throughout the sample

period.  At the M2 level, the growth rates of the Divisia and estimated Theoretical aggregates

diverged from each other from September 1982 through April 1983, with the growth rate of the
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estimated Theoretical aggregate being consistently higher than that of the Divisia aggregate

throughout that time period.  This phenomenon opened a gap between the plots of the levels of

the two series.  However, the two paths tracked parallel to each other after the eight months of

diverging growth rates, since the growth rates of the two series returned to being very similar

after April 1983.

The source of the divergence from September 1982 through April 1983 probably can be

found in the unusual circumstances that existed in money markets.  Many innovations in money

markets evolved during that period, such as the introduction of super-NOW accounts and money-

market deposit accounts at commercial banks.12  There also was more than the usual degree of

uncertainty regarding monetary policy, since that period immediately followed the termination of

the Federal Reserve's "monetarist experiment," and the targets of monetary policy immediately

following the termination of that experiment were unclear.  In short, we find that the Divisia

monetary aggregates would have benefited from Barnett, Liu, and Jensen’s (1997) risk

adjustment only during that one period of unusually high risk in money markets.

10.  Frequency Domain Tests:

In earlier research, Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1995) detected

nonlinearity in the Divisia monetary aggregate time series.  In this paper, we seek to determine

whether the time series of the estimated Theoretical monetary aggregates exhibit similar

nonlinearity, and whether the nonlinearity in the Divisia monetary aggregate stochastic process is

induced by the nonlinearity in the Theoretical aggregate process that the Divisia index is

tracking.  In particular, we wish to investigate whether there exists any remaining nonlinear
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structure in the difference between the Divisia and estimated Theoretical monetary aggregate.

We use this test as a form of residual analysis to explore the dynamic properties of the Divisia

index as an approximation to the Theoretical aggregate.

The mathematical theory relating the normalized squared skewness function to linearity and

Gaussianity has been used to derive testing procedures by Hinich (1982) and Rao and Gabr

(1980).  The procedure used in this paper is the one derived in Hinich (1982).  Details of the

Hinich test are also discussed in Hinich and Patterson (1985, 1989) and Ashley, Hinich, and

Patterson (1986).

There are an infinite number of polyspectra, where the order of the polyspectra are

determined by the number of frequencies in their Fourier transform.  The bispectrum, having two

frequencies (its "bifrequencies"), is the second order polyspectrum.  The Hinich test is based

upon the skewness function, which is the normalized bispectrum, normalized by division by the

product of the ordinary power spectra of the two individual frequencies and their sum.

The conventional methods of bispectrum estimation are reviewed in Nikias and Raghuveer

(1987).  The bispectrum can be estimated consistently from a finite sample {x(1), ..., x(N)} by

the following procedure.  Segment the record of N observations into K (non-overlapped) blocks

of L observations each, where L is called the block-length.13 The parameter K/N = 1/L, is the

resolution bandwidth.14  For k = 1,...,K, define the bi-periodogram for the bifrequency pair (fi,fj)

as

)()()(1),( *
jikjkikjik ffXfXfX

L
ffG += ,

where ∑
+−=

−=
kL

Lkn
k NfninxfX

1)1(
]/2exp[)()( π  and where *

kX  denotes the complex conjugate of Xk.

 A consistent and asymptotically normal estimator of the bispectrum is
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∑
=

=
K

k
jikjixxx ffG

K
ffB

1
),(1),(ˆ ,

where 2fi + fj < N and 0 < fj < fi < N, and fi = i/L (i=1,2,...,L).  See Hinich and Messer (1995) for

details on the estimator.15 This type of estimator is analogous to the direct estimator of the power

spectrum described in Welch (1967) and Groves and Hannan (1968), in which the data record is

segmented into frames, and periodograms are computed frame by frame, and then averaged at

each frequency.

The lowest order polyspectrum, having only one frequency, is the ordinary power spectrum.

The power spectrum estimator is

∑
=

=
K

k
ikixx fI

K
fP

1
)(1)(ˆ ,

where the periodogram is defined as )()(
2

1)( *
ikikik fXfX

L
fI

π
= , k=1,2,...,K.16 In the

bispectrum case, bi-periodograms are computed frame by frame and then averaged at each

frequency pair.  It is the final averaging step which leads to consistency of the estimator in both

cases.  The variance is reduced by averaging over more frames, but at a cost of reduced

resolution.17

We estimate the bispectrum over a range of values for the block length, L, in accordance with

a suggestion of Stokes (1991).  The suggested range of block lengths is (N/3)1/2 to (N)1/2, which,

for our sample size (N=396), corresponds to a range of block lengths between 12 and 19.  See

Stokes (1991) for an example using a well known gas data model.  The setting L=12,

corresponds to N.42 and is the closest to Hinich’s suggestion of N.4.

The Hinich test for nonlinearity produces a test statistic Z, which is distributed asymptotically

as the standard normal under the null hypothesis of constant skewness.  Linear stochastic
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processes have constant skewness for all pairs of frequencies.  The test corresponds to a test of

flatness of the bispectrum against variations in the frequency pair.  If the bispectrum is not flat,

the power of clashes between frequency pairs depends upon the frequency pair.  If that power is

not only independent of the frequency pair, but is always zero, then the process has satisfied a

necessary condition for Gaussianity, which is a special case of linearity.  The conditions for

linearity and Gaussianity would not only be necessary but also sufficient, if the conditions also

applied to all higher order polyspectra.  The Hinich Gaussianity test produces a test statistic G,

which is asymptotically standard normal under the null of zero skewness, which corresponds to

flatness of the bispectrum at zero power.  Both the linearity and Gaussianity tests are one sided,

and the null is rejected if the test statistics are large.

The Hinich test is extremely conservative.  If the stochastic processes x(t) is linear, then all of

its polyspectra of order greater than or equal to two are independent of the frequency n-tuples,

(f1,f2,…,fn), for all n ≥ 2.  But the Hinich test is based only on the bispectrum having n=2.  A

rejection of its null would be a strong result, because the null includes all linear processes and

some nonlinear processes.  Consequently, the Hinich test cannot confirm linearity.  It only can

reject or fail to reject it.  In principle, we could test for nonlinearities using polyspectra of higher

order than the bispectrum, but estimation of even the trispectrum is not feasible for common

sample sizes of economic data sets.

The conservatism of the Hinich test has been reflected in empirical studies.  For example,

Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997) find that the Hinich test was

much less likely to reject its null than other competing tests, such as the BDS test (Brock,

Dechert, Scheinkman, and LeBaron (1996)).  In addition, Hong (1996) notes that the third order

cumulants of an ARCH (autoregressive conditional heteroskedastic) process can be identically
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zero, in which case the bispectrum test would fail to reject linearity.  Barnett, Gallant, Hinich,

Jungeilgies, Kaplan, and Jensen (1997) demonstrate that empirically the Hinich test has low

power against ARCH.  In fact ARCH is linear in the mean, and Ashley, Hinich, and Patterson

(1986) have shown that the Hinich nonlinearity test does have substantial power (at reasonable

sample sizes) against many commonly considered forms of nonlinear serial dependence.

The Hinich test has been applied previously in economic analysis. Hinich and Patterson

(1989) examine trade by trade stock market data for evidence of nonlinearity.  Barnett, Gallant,

Hinich, Jungeilges, Kaplan, and Jensen (1995)  find that Divisia monetary aggregate growth rate

data exhibit deep nonlinearity at the M1 level of aggregation. The value of the asymptotic Z

statistic for Divisia M1 in their test was 21.66, far exceeding customary rejection levels of 2 or 3.

Considering the conservative nature of the test, this rejection of linearity is dramatic.

11.  Frequency Domain Results

With the same monthly nominal per capita growth rate data used by Barnett, Gallant, Hinich,

Jungeilges, Kaplan, and Jensen (1995) and by Barnett, Hinich, and Yue (1991), we run the same

bispectrum tests for nonlinearity, but for the difference between the growth rate of the Divisia

monetary aggregate and its corresponding GMM estimated Theoretical monetary aggregate.  At

the M1 level of aggregation, the Hinich asymptotic Z statistic for testing nonlinearity of that

tracking error is 1.322. Hence we cannot reject linearity of the residual process for the Divisia

approximation.  We conclude that the strong evidence of nonlinearity found in the Divisia

monetary aggregate M1 data by Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1995)

was induced by the stochastic process of the exact Theoretical monetary aggregate that is tracked

by the corresponding Divisia monetary aggregate.
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At the M2 level, Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1995) found little

evidence of nonlinearity in the Divisia monetary aggregate’s stochastic process.  The Hinich

asymptotic Z statistic was 1.542, and hence they could not reject linearity.  At that level of

aggregation, we similarly find little evidence of nonlinearity in the residual process.  The Hinich

Z statistic for the difference in growth rates between the Divisia and estimated Theoretical M2

aggregate is 1.426.  Hence there was little nonlinear structure for Divisia to remove from the

Theoretical aggregate’s time series at the M2 level, and little nonlinear structure is evident in the

tracking errors.

Since sample size is important in the Hinich test, we decided to determine whether

nonlinearity would become evident in Divisia M2 when the data is updated to include the latest

observations reported by the Federal Reserve Bank of St. Louis.  We repeated the Hinich test

with the full available sample size of monthly Divisia M2 data.  The sample is from January

1959 through October 1999 and is seasonally adjusted. We converted  it to per capita form by

division by noninstitutional population and transformed to growth rates.  We ran the Hinich test

for nonlinearity with that data, both with and without deflation to real balances using the

consumer price index as the deflator. In addition to computing Hinich's asymptotic Z statistic to

test for linearity, we also bootstrapped his test statistic to acquire a finite sample inference.

The bootstrap method used was to resample the data 300 times and compute the Z statistic for

each resample. The 300 Z statistics are then sorted, and the 95%, 96%, 97%, 98%, 99%, 99.5%,

and 99.9% quantiles are computed. The level of the 95% quantile is the threshold to use for the Z

statistic, if one wants to achieve a 5% size for the test based on the resampling method.

For the per capita real growth rate data, the asymptotic Z statistic was 0.26 and the 95%

quantile of the bootstrapped Z was 1.19. With the per capita real nominal growth rate data, the
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asymptotic Z statistic was 0.96 and the 95% quantile of the bootstrapped Z was 1.01. Hence there

is even less evidence of statistically significant nonlinearity in the Divisia M2 data in the large

sample than in the original smaller sample using the Hinich asymptotic Z statistic.

Nevertheless, it is interesting to inspect the estimated bispectrum.  That three dimensional

surface can contain information about the frequency pairs at which nonlinear interactions might

exist, even if the inference about general nonlinearity is statistically insignificant. Recall that the

test seeks to detect deviations from flatness of the skewness function (the normalized

bispectrum). The skewness function is the square of the absolute value of the bispectrum divided

by the product of the spectra of the bifrequencies and their sum.

Rather than plotting the skewness values, we plot the normal cumulative distribution of the

skewness multiplied by a scale factor to make skewness have a chi square distribution with two

degrees-of-freedom, using the mean non-centrality parameter for each bifrequency pair. Again

the theory is developed for a large sample, but simulations have shown that the results are

conservative. Thus the values plotted are the probabilities of obtaining such a value of the

skewness at that bicorrelation under the null of linearity. In figure 2 we display the skewness

function plotted against the two periods (inversely related to the two frequencies) for the per

capita real growth rate Divisia M2 data. The view is looking down from above, and the color

code designates height.18 Although the true bispectrum and normalized skewness function are

smooth functions, Hinich's test uses discrete bifrequencies in accordance with the sampling

procedure described above.  With this extended sample, we used a resolution bandwidth in

monthly time units of 12 months, which produces nine bifrequencies. Figure 2 displays level

surfaces corresponding to the tops of the boxes produced in estimating the bispectrum and

skewness functions from the finite samples.
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It was evident from the plots of the nominal and real per capita Divisia M2 data that the

estimated skewness function is not flat versus frequency (or period) pairs. The (4 month, 4

month) bifrequency for the nominal data has a probability value of 0.971. If we believe that the

use of asymptotic theory is valid, then the probability of obtaining such a result for one of the

nine bifrequencies is 2.9%. This result suggests that there is some nonlinear structure remaining

in that data, although in the test of general nonlinearity we cannot reject the null of linearity.  We

do not supply that plot, but we do supply the corresponding plot for the deflated real data. Figure

2 was produced from that deflated real data. Inspection of Figure 2 suggests that deflation to real

balances filtered out whatever little nonlinearity existed in the nominal data.  In particular, in

Figure 2 we see that the largest probability value for the real data is 0.944 for the (12 month, 4

month) bifrequency.

12.  Conclusions

We conclude from the M1 level data that the nonlinear serial dependence in the Divisia M1

stochastic process was induced from the nonlinearity in the exact Theoretical aggregate that the

Divisia index tracks.  No statistically significant nonlinearity remains in the tracking error

process, so we find that the Divisia index successfully extracted the nonlinearity from the

theoretical aggregate’s process.  At the M1 level of aggregation, we find no evidence of

significant gains from the use of the risk adjusted Divisia monetary aggregate, so our frequency

domain tests are based upon the tracking ability of the unadjusted Divisia M1 index.

At the M2 level, we find that the use of the CCAPM beta adjusted Divisia monetary

aggregate would be advantageous only during a brief period of a few months.  That period was

one during which the level of risk in the financial sector of the economy was unusually high.
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Risk aversion does not seem to be a significant problem for the unadjusted Divisia monetary

aggregates, except at broad levels of aggregation during periods of unusually high risk.
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                                                                 Table  1
GMM  Estimates  of  Parameters  of  M1  Theoretical  Aggregator  Function Nested within

Consumer Demand Model
                                          ________________________________________________

Inside Aggregator Outside Aggregator
                                          ________________________________________________
Estimated Parameter                     B1            B2              B3            B4              B5
Estimate                                   0.9168      -0.3329       7.6018       42.717       0.6800   
t-ratio                                       62.489       -3.726        19.171      10.424        2.3769
______________________________________________________________________
Derived Parameter                        ρ               α               β                δ                 ν
Implied Estimate                       0.9168     -0.3329      0.9825       0.5398       0.6800
_____________________________________________________________________                



39

                                                                 Table  2
GMM  Estimates  of  Parameters  of  M2  Theoretical  Aggregator  Function Nested within

Consumer Demand Model
                                  _____________________________________________________

                                         Inside Aggregator                       Outside Aggregator
                                 _____________________________________________________
Estimated Parameter         B1            B2            B3           B4            B5           B6
Estimate                       0.8975      -0.2669      0.2173      0.8426       0.8198    0.9177
t-ratio                          43.9094     -3.3072     13.1376     1.9011     17.6566    14.6081
______________________________________________________________________
Derived Parameter            ρ               σ               β                   ν              δ1           δ2
Implied Estimate         0.8975     -0.2669       0.9535         0.8426      0.4656    0.3371
______________________________________________________________________
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FOOTNOTES:

1. For a survey limited to the consumer demand side, see Barnett, Fisher, and Serletis (1992).

See Belongia (1996) and Belongia and Chalfant (1989) for some empirical results.  For a

presentation of the theory in the perfect certainty case for consumers, manufacturing firms, and

financial intermediaries, see Barnett (1987).  For international results on Divisia monetary

aggregation, see Belongia and Binner (2000).

1A nonzero probability must exist that the holding period return, Rs, on the benchmark asset will

exceed that of any other asset during period s, since no other motivation for holding the

benchmark asset exists within the consumer's decision problem, as defined below.  In fact, since

the variance of the distribution of Rs is likely to be high relative to that of ris for any i, we should

expect the mean of Rs to exceed that of any element of rs.

2. Although money may not exist in the elementary utility function, there exists a derived utility

function that contains money, so long as money has positive value in equilibrium.  See, e.g.,

Arrow and Hahn (1971), Phlips and Spinnewyn (1982), and Feenstra (1986).  We implicitly are

using that derived utility function.

1Assuming that X is linearly homogeneous, the exact price aggregator function is the unit cost

function.

3. On testing for weak separability, also see Swofford and Whitney (1987).

4. Although component data is available for more recent months, we decided to use the data

supplied in the appendix of Fayyad (1986) to assure comparability with Barnett, Hinich, and Yue

(1991), who also published that data along with results which are worth comparing with those in

this paper.  But in our frequency domain analysis, we use that data only when comparison with
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Barnett, Hinich, and Yue (1991) is relevant.  Otherwise we use updated data now maintained and

published by the St. Louis Federal Reserve Bank.  That data can be found in St. Louis Federal

Reserve Bank’s data web site, FRED.  For links to that source of Divisia monetary aggregate

data, as well as to international sources of Divisia monetary aggregate data, see:

http://wuecon.wustl.edu/~barnett/.

5. See Barnett, William A., Melvin Hinich, and Piyu Yue (1991) regarding the need to test for

weak separability and for further details regarding the data.

6. Formally, we assume that xs is in a weakly separable block within u, with linearly

homogeneous category utility function X(xs).  The true cost of living index p*
s=p*(ps) is the unit

cost function dual to the quantity aggregator function, Xs.  As described earlier, we approximate

the true cost of living index by the Fisher ideal index.

We are able to appeal to perfect certainty aggregation theory in this case, since current

period prices, unlike current period interest rates, are known in the current period.  Hence two

stage budgeting over consumer goods is possible, and thereby perfect certainty aggregation and

index number theory are applicable to consumer goods.

7. The strong separability assumption is largely for expository convenience.  Weak separability

of the form u(m1s,m2s,Ls,xs) = U[V(M(m1s),Xs),m2s,Ls] would be sufficient to assure the

existence of the function V(M(m1s), Xs) that we use below.

8. We use the same aggregator function specifications used by Poterba and Rotemberg (1987),

although we believe that at a later stage of this research the aggregator functions should be

replaced by those of the highly flexible seminonparametric AIM (asymptotically ideal model)

specification.  See, e.g., Barnett, Geweke, and Wolfe (1991a,b) and Barnett, Geweke, and

Yue(1991).
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9. The t-ratios should be interpreted with caution, since the use of transformations of parameters

to impose inequality constraints biases conventional methods of estimating standard errors.  As a

result, we supply no standard errors or t-ratios for the original untransformed parameters.

1In particular, superNow accounts were introduced during January 1983 and money market

deposit accounts were introduced during December 1982.  The period during which the growth

rate of the estimated Theoretic M2 aggregate diverged from the Divisia and simple sum M2

aggregates was September 1982 through April 1983.

10. Melvin Hinich, in personal correspondence, has suggested that the block-length be set to

insure that ln(L)/ln(N) ≈ .4.  Consistency of the estimators requires that the parameter e =

ln(L)/ln(N) < .5.

11. If the last frame is incomplete, it is dropped from the calculation of the estimator.

12. For highly kurtotic stochastic processes, Hinich and Messer (1995) state that the use of the

asymptotic distribution may not be warranted.

13. We employ a trapezoidal taper to reduce side lobe distortion.  Some modification of these

formulas is therefore required.

14. Koopmans (1974) called this tradeoff the Grenander uncertainty principle.  For a discussion

of power spectral estimation, see Kay and Marple (1981).

15. The axes are the periods of the two frequencies, varying from 12 down to 2.  The vertical axis

(not displayed in the figure) is scaled identically to the horizontal axis, and also varies from 12

down to 2 as the vertical axis rises in the figure.  The height of the estimated skewness function

above the frequency pair plane is identified by the color code.
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FOOTNOTES:

                                                
1 For a survey limited to the consumer demand side, see Barnett, Fisher, and Serletis (1992).   See

Belongia (1996) and Belongia and Chalfant (1989) for some empirical results.  For a presentation

of the theory in the perfect certainty case for consumers, manufacturing firms, and financial

intermediaries, see Barnett (1987).  For international results on Divisia monetary aggregation, see

Belongia and Binner (2000).

2A nonzero probability must exist that the holding period return, Rs, on the benchmark asset will

exceed that of any other asset during period s, since no other motivation for holding the

benchmark asset exists within the consumer's decision problem, as defined below.  In fact, since

the variance of the distribution of Rs is likely to be high relative to that of ris for any i, we should

expect the mean of Rs to exceed that of any element of rs.

3Although money may not exist in the elementary utility function, there exists a derived utility

function that contains money, so long as money has positive value in equilibrium.  See, e.g.,

Arrow and Hahn (1971), Phlips and Spinnewyn (1982), and Feenstra (1986).  We implicitly are

using that derived utility function.

4Assuming that X is linearly homogeneous, the exact price aggregator function is the unit cost

function.

5On testing for weak separability, also see Swofford and Whitney (1987).

6Although component data is available for more recent months, we decided to use the data

supplied in the appendix of Fayyad (1986) to assure comparability with Barnett, Hinich, and Yue

(1991), who also published that data along with results which are worth comparing with those in
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this paper.  But in our frequency domain analysis, we use that data only when comparison with

Barnett, Hinich, and Yue (1991) is relevant.  Otherwise we use updated data now maintained and

published by the St. Louis Federal Reserve Bank.  That data can be found in St. Louis Federal

Reserve Bank’s data web site, FRED.  For links to that source of Divisia monetary aggregate

data, as well as to international sources of Divisia monetary aggregate data, see:

http://wuecon.wustl.edu/~barnett/.

7See Barnett, William A., Melvin Hinich, and Piyu Yue (1991) regarding the need to test for

weak separability and for further details regarding the data.

8Formally, we assume that xs is in a weakly separable block within u, with linearly homogeneous

category utility function X(xs).  The true cost of living index p*
s=p*(ps) is the unit cost function

dual to the quantity aggregator function, Xs.  As described earlier, we approximate the true cost

of living index by the Fisher ideal index.

We are able to appeal to perfect certainty aggregation theory in this case, since current

period prices, unlike current period interest rates, are known in the current period.  Hence two

stage budgeting over consumer goods is possible, and thereby perfect certainty aggregation and

index number theory are applicable to consumer goods.

9The strong separability assumption is largely for expository convenience.  Weak separability of

the form u(m1s,m2s,Ls,xs) = U[V(M(m1s),Xs),m2s,Ls] would be sufficient to assure the existence

of the function V(M(m1s), Xs) that we use below.

10We use the same aggregator function specifications used by Poterba and Rotemberg (1987),

although we believe that at a later stage of this research the aggregator functions should be

replaced by those of the highly flexible seminonparametric AIM (asymptotically ideal model)
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specification.  See, e.g., Barnett, Geweke, and Wolfe (1991a,b) and Barnett, Geweke, and

Yue(1991).

11The t-ratios should be interpreted with caution, since the use of transformations of parameters to

impose inequality constraints biases conventional methods of estimating standard errors.  As a

result, we supply no standard errors or t-ratios for the original untransformed parameters.

12In particular, superNow accounts were introduced during January 1983 and money market

deposit accounts were introduced during December 1982.  The period during which the growth

rate of the estimated Theoretic M2 aggregate diverged from the Divisia and simple sum M2

aggregates was September 1982 through April 1983.

13 Melvin Hinich, in personal correspondence, has suggested that the block-length be set to insure

that ln(L)/ln(N) ≈ .4.  Consistency of the estimators requires that the parameter e =  ln(L)/ln(N) <

.5.

14 If the last frame is incomplete, it is dropped from the calculation of the estimator.

15 For highly kurtotic stochastic processes, Hinich and Messer (1995) state that the use of the

asymptotic distribution may not be warranted.

16 We employ a trapezoidal taper to reduce side lobe distortion.  Some modification of these

formulas is therefore required.

17 Koopmans (1974) called this tradeoff the Grenander uncertainty principle.  For a discussion of

power spectral estimation, see Kay and Marple (1981).

18 The axes are the periods of the two frequencies, varying from 12 down to 2.  The vertical axis

(not displayed in the figure) is scaled identically to the horizontal axis, and also varies from 12
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down to 2 as the vertical axis rises in the figure.  The height of the estimated skewness function

above the frequency pair plane is identified by the color code.


