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Abstract

In a recent paper, we studied bifurcation phenomena in continuous time macroe-

conometric models. The objective was to explore the relevancy of Grandmont's (1985)

�ndings to models permitting more reasonable elasticities than were possible in Grand-

mont's Cobb Douglas overlapping generations model. Another objective was to explore

the relevancy of his �ndings to a model in which some solution paths are not Pareto op-
timal, so that policy rules can serve a clearly positive purpose. We used the Bergstrom,

Nowman, and Wymer (1992) UK continuous time second order di�erential equations

macroeconometric model that permits closer connection with economic theory than is

possible with most discrete time structural macroeconometric models. We do not yet

have the ability to explore these phenomena in a comparably general Euler equations

model having deep parameters, rather than structural parameters.

It was discovered that the UK model displays a rich set of bifurcations including

transcritical bifurcations, Hopf bifurcations, and codimension two bifurcations. The

point estimates of the parameters are in the unstable region. But we did not test the

null hypothesis that the parameters are actually in the stable region. In addition, we

did not investigate the dynamical properties on the bifurcation boundaries; and we did
not investigate the relevancy of stabilization policy rules.

In this paper, we further examine the stability properties and bifurcation boundaries

of the UK continuous time macroeconometric models by analyzing the stability of the

model along center manifolds. The results of this paper show that the model is unstable

on bifurcation boundaries for those cases we consider. Hence calibration of the model to

operate on those bifurcation boundaries would produce no increase in the model's ability

to explain observed data. However, we have not yet determined the dynamic properties

of the model on the Hopf bifurcation boundaries, which sometimes do produce useful

dynamical properties for some models. Of more immediate interest, it is also shown

that bifurcations exist within the Cartesian product of 95% con�dence intervals for the

estimators of the individual parameters. This seems to suggest that we cannot reject the
null hypothesis of stability, despite the fact that the point estimates are in the unstable

region. However, when we decreased the con�dence level to 90%, the intersection of

the stable region and the Cartesian product of the con�dence intervals became empty,

thereby suggesting rejection of stability. But a formal sampling theoretic hypothesis test

of that null would be very di�cult to conduct, since some of the sampling distributions

are truncated by boundaries, and since there are some corner solutions. A Bayesian

approach might be possible, but would be very di�cult to implement.

A new formula is also given for �nding the closed forms of transcritical bifurcation

boundaries. Finally, e�ects of �scal policy on stability are considered. It is found that

change in �scal policy may a�ect the stability of the continuous time macroeconometric

models. But we �nd that the selection of an advantageous stabilization policy is more
di�cult than expected. Augmentation of the model by feedback policy rules chosen from

plausible economic reasoning can contract the stable region and thereby be counterpro-

ductive, even if the policy is time consistent and has insigni�cant e�ect on structural

parameter values.
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1 Introduction

1.1 Objectives

In Barnett and He (1998), we studied bifurcation phenomena in continuous time macroecono-
metric models to determine the degree to which Grandmont's (1985) �ndings with a simple
Cobb Douglas overlapping generations model are relevant to less restrictive models. It has of-
ten been asked whether the complex dynamics attained by Grandmont in multiple bifurcation
regimes could be attained with a more general model in a manner that would be consistent
with more reasonable settings of elasticities for tastes and technology. In addition, since all
solutions in Grandmont's model are Pareto optimal, the policy relevancy of complex dynam-
ics in his model is not clear. It has sometimes been asked whether a policy relevant model
might present a more important role for complex dynamics and for the existence of multiple
bifurcation regimes. See, e.g., Woodford (1989), who speculates that the existence of complex
dynamics may increase the potentially useful role of active policy, if imperfections exist in
�nancial markets. Policy relevance also is implied by the recent paper by Goenka, Kelly, and
Spear (1998).

Barnett and Chen (1988) and Barnett et al. (1997), among others, have tested for chaos
and for other forms of nonlinearity in univariate time series. Their �ndings, however, do not
condition upon an economic model, and hence cannot isolate the source of instability to be
within the economy. If there were chaos in the weather, those chaotic shocks to the economy
would be the source of the chaos observed in economic time series. Similarly the many �ndings
of nonlinearity in univariate economic time series could have been caused by nonlinear shocks
from the weather or other such sources external to the economy. Hence further progress in
this areas requires the ability to condition upon an economic model. Mathematical solution
for the boundary of the chaotic subset of the parameter space currently is not possible with
models having more than three parameters, and at present we are not seeking to solve for
that subset by numerical methods. But we do �nd that numerical solution for bifurcation
boundaries between the stable subset and broader classes of nonlinear dynamic behavior can
be accomplished. Although nonlinearity is central to this literature, our results currently are
inherently local, since our approach is based upon a local analysis of a nonlinear model.

Extending Grandmont's results to more general and empirically plausible stochastic dy-
namic general equilibrium models is extremely di�cult, and presents problems that currently
cannot be solved analytically by methods available to mathematicians. With the implied
systems of nonlinear Euler equations, even numerical methods have so far not been success-
fully applied to locating and characterizing bifurcation boundaries for such direct extensions
of Grandmont's model. But with some policy relevant structural macroeconometric models,
numerical methods for locating bifurcation boundaries currently are applicable. For that rea-
son, we have chosen at present to work with a structural macroeconometric model. Although
this approach does not permit us to access the deep parameters of tastes and technology,
we nevertheless can produce closer connection to theory than would be possible with a more
conventional discrete time macroeconometric model, by using a continuous time macroecono-
metric model. For that reason, in the prior paper and in this paper we currently are applying
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our numerical procedures to the Bergstrom, Nowman, and Wymer (1992) UK continuous time
second order di�erential equations macroeconometric model. At a later date, we contemplate
extending these procedures to apply to the Powell and Murphy (1997) model and eventually
to a system of Euler equations derived from a reasonably plausible stochastic dynamic gen-
eral equilibrium model. A �rst step in that direction is likely to be the application of these
methods to the model in Leeper and Sims (1994).

In our prior paper, we demonstrated the existence of bifurcation boundaries within the
economically feasible subset of the parameter space. Since the point estimates of the param-
eters are within the unstable region, it is natural to ask whether or not the null hypothesis
of stability can be rejected. In this paper we have three objectives: (1) we explore the ques-
tion of whether or not we can reject the hypothesis that the true values of the parameters
are across a bifurcation boundary in the stable region. (2) We investigate the nature of the
model's dynamics on bifurcation boundaries. (3) We explore the ability of policy control rules
to move the bifurcation boundaries in such a manner as to include within the stable region
the existing unchanged point estimates of the parameters.

The reason for the �rst objective is clear. But how to do it is less than obvious. The
various subsets of the parameter space bounded by bifurcation boundaries and by economic
feasibility constraints are de�ned by nonlinear inequality constraints. Such inequality con-
straints truncate sampling distributions. Not only were some of the parameter estimates
close to boundaries, but in fact some of the parameter estimates were on boundaries. These
facts violate regularity conditions for most sampling theoretic hypothesis testing procedures.
While such methods as Kuhn-Tucker tests exist to deal with inequality constraints, those tests
are available only for much simpler classes of models than we are using. While in principle, a
Bayesian approach is possible, the application of Bayesian methods with such high dimensional
irregular shaped sets is prohibitively challenging at the present time. In addition, the existing
parameter estimates reported for the UK model by Bergstrom, Nowman, and Wymer (1992)
were provided with standard errors but not with a full covariance matrix. Hence we do not
have available the covariances between those estimators. Under these adverse circumstances,
we limit our statistical inference to the use of the con�dence intervals about the individual
parameter estimates, and we produce the region de�ned by the Cartesian product of those
intervals. The resulting Cartesian product region is centered about the point estimate, which
is in the unstable region. The correct unknown multidimensional con�dence region ellipsoid
is likely to be a subset of that Cartesian product, and hence the resulting \test" is probably
biased towards accepting stability when it is false. Clearly a rejection of stability by this
approach is more convincing than an acceptance.

The second objective relates to the following fact: calibration of dynamic models such that
the parameters are on a Hopf bifurcation boundary sometimes can produce a better match
of model dynamics to observed data than is possible o� bifurcation boundaries. Despite
the fact that bifurcation boundaries are measure zero subsets of the parameter space, the
economy's selection of parameter values from the parameter space may be far from random.
In fact, there has been much recent interest in how the economy determines parameter values,
perhaps through learning. Since the stable parameter subset typically is a small subset of
the parameter space for dynamical models of physical systems, there is little reason in nature
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to expect to observe stable dynamics, unless human engineers have intentionally moved the
parameters of a designed system into the stable region. Since human engineers do not set the
parameters of atmospheric conditions and other natural phenomena, such natural systems do
not typically converge to a stable solution. Similarly in economic systems, we should expect
some mechanism to be at work in the setting of parameters, if they are observed to be in stable
regions, rather than in any of the other in�nite number of possible bifurcation regimes. The
\uncertainty principle" suggested by Grandmont (1998) is a possibility. But if parameters
are not drawn at random and can be expected to appear in unlikely subsets, then we cannot
exclude the possibility that they might be on bifurcation boundaries through an unknown
selection process. In addition, if the observed settings of parameters in the economy resulted
from a currently unknown learning process, then what happens as bifurcation boundaries
are crossed during that process becomes a nontrivial issue and could depend upon what
happens on that measure zero boundary as it is being crossed. Finally the most important
reason for concern about what happens when a bifurcation boundary is crossed is described
in the third objective below: augmenting the model with a policy feedback law operates by
intentionally moving bifurcation boundaries, even if all of the parameters elsewhere in the
model are una�ected by the existence of the policy. Hence bifurcation need not result from
parameters moving across �xed bifurcation boundaries, but rather from bifurcation boundaries
themselves moving, while the parameters outside the policy feedback rule remain constant.

The third objective investigates the implications of augmenting the model's equations by
a policy feedback rule. According to the Lucas critique, the augmentation of Euler equations
with such a feedback rule can alter structural parameters. We ask whether the use of such
feedback rules is as straightforward as previously believed, even if their use does not a�ect
structural parameters. We �nd the selection of stabilization policy to be more easily coun-
terproductive than previously believed, even without Lucas critique problems a�ecting the
selection. When we consider the use of optimal control theory to choose feedback rules, the
chance of success increases, but the risk of time inconsistency increases, and the existence of
speci�cation error in the model could undermine the appearance of policy success within the
model.

1.2 Background

Much research e�ort has been devoted to analyzing economic dynamics. One particular area
of interest is the analysis of bifurcation and chaotic phenomena in economic systems [see, for
example, Barnett et al. (1996), Gandolfo (1996), Medio (1992), Wymer (1997)]. It has been
demonstrated that economic systems exhibit many types of bifurcations such as pitchfork
bifurcations in the tatonement process [see, Bala (1997), Scarf (1960)], transcritical bifur-
cations in the Bergstrom, Nowman and Wymer continuous time macroeconometric model
[Barnett and He (1998)], Hopf bifurcations in growth models [e.g., Benhabib (1979), Boldrin
and Woodford (1990), Dockner and Feichtinger (1991), Nishimura and Takahashi (1992)], and
codimension two bifurcations in Barnett and He (1998). The theory of bifurcations and chaos
in economics are described in several textbooks such as Gandolfo (1996), Medio (1992), and
Puu (1991).
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Bifurcations exist in both discrete time models [see, for instance, Boldrin and Woodford
(1990), Gandolfo (1996)] and continuous time models [e.g., Barnett and He (1998), Gan-
dolfo (1996), Medio (1992)]. Recently, there has been increasing interest in continuous time
macroeconometric models since such models have several advantages, including higher mod-
eling accuracy and the capability of forecasting the continuous time path of the variables [see,
Bergstrom (1996), Bergstrom and Wymer (1976), Bergstrom et al. (1992), Nieuwenhuis and
Schoonbeek (1997), Wymer (1997)]. Bergstrom (1996) provides an excellent survey of research
advances in continuous time macroeconometric models. Continuous time models have been
established for several countries including the UK and the US [see, for example, Bergstrom
(1996)]. A typical feature of those models is that parameters are estimated to be in the unsta-
ble region, but close to the boundary with the stable region [see, for example, Bergstrom et al.
(1992), Barnett and He (1998)]. In those models, parameter values are estimated based on real
historical economic data. Since errors exist in parameter estimation, a natural and important
task is to determine whether the inference of instability is statistically signi�cant. Structural
analysis of continuous time models has been considered in Gandolfo (1992), Nieuwenhuis and
Schoonbeek (1997). Recently, Barnett and He (1998) investigated bifurcation phenomena in
the Bergstrom, Nowman and Wymer continuous time macroeconometric model of the United
Kingdom. We found that both transcritical bifurcations and Hopf bifurcations exist in that
model. A detailed procedure was given in that paper for determining the bifurcation bound-
aries. The existence of an important class of codimension two bifurcations was also con�rmed
in that paper.

This paper is a continuation of Barnett and He (1998), aiming at further analysis of
bifurcations in continuous time macroeconometric models. Contributions of this paper are
stated as the follows:

� Analysis of dynamic behavior on bifurcation boundaries. A detailed analysis of the
dynamic behavior of the continuous time model is provided when the parameters take
their values on some of the bifurcation boundaries. In many cases we have tested, the
Bergstrom, Nowman and Wymer model is unstable on bifurcation boundaries. But the
nature of the dynamics at some points on the bifurcation boundaries remain unknown.

� A new formula for determining transcritical bifurcation boundaries. By utilizing the spe-
cial structure of the linearized part of the system, a formula is provided for determining
the analytical forms of the transcritical bifurcation boundaries.

� The statistical signi�cance of the instability inference. Although the point estimates of
the parameters are in the unstable region, those estimates appear to be relatively close
to the bifurcation boundaries with the stable region. To determine whether the infer-
ence of instability is statistically signi�cant, we �rst determine whether the bifurcation
boundaries are within the economically feasible region of the parameter space. Those
feasibility constraints are described in Table 2 of Bergstrom et al. (1992). We then
produce the intersection of that feasible region with the Cartesian product of con�dence
intervals about each parameter estimate, to determine whether any of the bifurcation
boundaries enter that intersection.
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� E�ect of �scal policy on stability. To determine the potential usefulness of �scal policy,
we investigate the e�ect on bifurcation boundaries of augmenting the model with a
�scal policy feedback rule. We assume that the parameters of the other equations are
not a�ected by the addition of the feedback �scal policy rule, so that the source of
the movement of the bifurcation boundaries is not the Lucas critique issue. The intent
is to determine whether such rules can be expected to move the boundaries in such
a manner as to include the point estimate of the parameters within the stable region.
We investigate this matter both with a policy based upon heuristic economic reasoning
and a policy derived from optimal control theory under the assumption of reputation
equilibrium and intertemporal time consistency of the policy.

2 A continuous time macroeconometric model

Although the approach adopted in this paper is applicable to any continuous time macroecono-
metric systems, we will restrict our discussion to the well-regarded Bergstrom, Nowman and
Wymer continuous time macroeconometric model of the United Kingdom given in Bergstrom
et al. (1992) to ensure the relevance of the theory with practice. The model is described by
the following 14 second-order di�erential equations.

D2 logC = 
1(�1 + �2 �D logC)

+
2 log

"
�1e

�f�2(r�D log p)+�3D log pg(Q+ P )

T1C

#
(1)

D2 logL = 
3(�2 �D logL) + 
4 log

"
�4e

��1tfQ��6 � �5K
��6g�1=�6

L

#
(2)

D2 logK = 
3(�1 + �2 �D logK) + 
6 log

"
�5(Q=K)1+�6

r � �7D log p+ �8

#
(3)

D2 logQ = 
7(�1 + �2 �D logQ)

+
8 log

"f1� �9(qp=pi)
�10g(C +Gc +DK + En + Eo)

Q

#
(4)

D2 log p = 
9(D log(w=p)� �1)

+
10 log

"
�11�4T2we

��1tf1� �5(Q=K)�6g�(1+�6)=�6

p

#
(5)

D2 logw = 
11(�1 �D log(w=p)) + 
12D log(pi=qp)

+
13 log

"
�4e

��1tfQ��6 � �5K
��6g�1=�6

�12e�2t

#
(6)
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D2r = �
14Dr + 
15

"
�13 + rf � �14D log q + �15

p(Q+ P )

M
� r

#
(7)

D2 log I = 
16(�1 + �2 �D log(piI=qp))

+
17 log

"
�9(qp=pi)

�10(C +Gc +DK + En + Eo)

(pi=qp)I

#
(8)

D2 logEn = 
18(�1 + �2 �D logEn) + 
19 log

2
4�16Y �17

f (pf=qp)
�18

En

3
5 (9)

D2F = �
20DF + 
21[�19(Q + P )� F ] (10)

D2P = �
22DP + 
23f[�20 + �21(rf �D log pf)]Ka � Pg (11)

D2Ka = �
24DKa+
25f[�22+�23(rf�r)��24D log q��25dx](Q+P )�Kag (12)

D2 logM = 
26(�3 �D logM) + 
27 log

"
�26e

�3t

M

#

+
28D log

"
En+Eo+P�F

(pi=qp)I

#
+ 
29 log

"
En+Eo+P�F�DKa

(pi=qp)I

#
(13)

D2 log q = 
30D log(pf=qp) + 
31 log

"
�27pf
qp

#
+ 
32D log

"
En + Eo + P � F

(pi=qp)I

#

+
33 log

"
En + Eo + P � F �DKa

(pi=qp)I

#
(14)

where t is time, D is the derivative operator, Dx = dx=dt, D2x = d2x=dt2, and C;En; F; I,
K, Ka,L, M;P;Q; q; r; w are endogenous variables whose de�nitions are listed below.

C real private consumption
En real non-oil exports
F real current transfers abroad
I volume of imports
K amount of �xed capital
Ka cumulative net real investment abroad (excluding changes in o�cial reserve)
L employment
M money supply
P real pro�ts, interest and dividends from abroad
p price level
Q real net output
q exchange rate (price of sterling in foreign currency)
r interest rate
w wage rate
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The variables dx; Eo; Gc; pf ; pi; rf ; T1; T2; Yf are exogenous variables with the following def-
initions:

dx= dummy variable for exchange controls (dx=1 for 1974-79, dx=0 for 1980 onwards)
Eo= real oil exports
Gc= real government consumption
pf= price level in leading foreign industrial countries
pi= price of imports (in foreign currency)
rf= foreign interest rate
T1= total taxation policy variable de�ned by Bergstrom et al. (1992, p. 317)
T2= indirect taxation policy variable de�ned by Bergstrom et al. (1992, p. 317)
Yf= real income of leading foreign industrial countries,

The structural parameters �i; i = 1; 2; :::; 27, 
j; j = 1; 2; :::; 33, and �k; k = 1; 2; 3, can be
estimated from historical data. A set of their estimates using quarterly data from 1974 to
1984 are given in Table 2 of Bergstrom et al. (1992). These equations are derived from
economic theory. The exact interpretations of these 14 equations are available in Bergstrom
et al. (1992).

Both endogenous and exogenous variables are time-varying quantities. The exogenous
variables are assumed to satisfy the following conditions in equilibrium: dx = 0; Eo = 0; Gc =
g�(Q + P ); pf = p�fe

�4t; pi = p�i e
�4t; rf = r�f ; T1 = T �

1 ; T2 = T �
2 ; Yf = Y �

f e
((�1+�2)=�17)t, where

g�, p�f , p
�
i , r

�
f , T

�
1 , T

�
2 , Y

�
f and �4 are constants. As explained in Bergstrom et al. (1992),

the assumptions are reasonable. Under such assumptions, it has been proven that C(t), ...,
q(t) in (1)-(14) change at constant rates in equilibrium. Note that the system described by
(1)-(14) is not autonomous, since time itself enters as an exogenous variable. To study the
dynamics of the system around the equilibrium, we make a transformation by de�ning a set
of new variables y1(t), y2(t), ..., y14(t):

y1(t) = logfC(t)=C�e(�1+�2)tg

y2(t) = logfL(t)=L�e�2tg

y3(t) = logfK(t)=K�e(�1+�2)tg

y4(t) = logfQ(t)=Q�e(�1+�2)tg

y5(t) = logfp(t)=p�e(�3��1��2)tg

y6(t) = logfw(t)=w�e(�3��2)tg

y7(t) = r(t)� r�

y8(t) = logfI(t)=I�e(�1+�2)tg

y9(t) = logfEn(t)=E
�
ne

(�1+�2)tg
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y10(t) = logfF (t)=F �e(�1+�2)tg

y11(t) = logfP (t)=P �e(�1+�2)tg

y12(t) = logfKa(t)=K
�
ae

(�1+�2)tg

y13(t) = logfM(t)=M�e�3tg

y14(t) = logfq(t)=q�e(�1+�2+�4��3)tg

where C�; L�; K�; Q�; p�; w�; r�; I�; E�
n; F

�; P �; K�
a ;M

�; q� are functions of the vector (�; 
; �)
of 63 parameters in equations (1)-(14) and the additional parameters g�, p�f , p

�
i , r

�
f , T

�
1 , T

�
2 ,

Y �
f , �4. The following is a set of di�erential equations derived from (1)-(14):

D2y1 = �
1Dy1 + 
2flog(Q�ey4 + P �ey11)

� log(Q� + P �)� �2y7 + (�2 � �3)Dy5 � y1g (15)

D2y2 = �
3Dy2 + 
4

�
1

�6
log

"
(Q�)��6 � �5(K

�)��6

(Q�)��6e��6y4 � �5(K�)��6e��6y3

#
� y2

�
(16)

D2y3 = �
5Dy3 + 
6

�
(1 + �6)(y4 � y3) + log[r� � �7(�3 � �1 � �2) + �8]

� log[y7 + r� � �7(Dy5 + �3 � �1 � �2) + �8]
�

(17)

D2y4 = �
7Dy4 + 
8

�
log

"
1� �9(q

�p�=p�i )
�10e�10(y5+y14)

1� �9(q�p�=p�i )
�10

#

+ log (C�ey1 + g�(Q�ey4 + P �ey11) +K�ey3(Dy3 + �1 + �2) + E�
ne

y9)

� log (C� + g�(Q� + P �) +K�(�1 + �2) + E�
n)� y4

�
(18)

D2y5 = 
9(Dy6 �Dy5) + 
10

�
y6 � y5 � 1 + �6

�6
log

"
1� �5

�
Q�

K�

��6

e�6(y4�y3)
#

+
1 + �6
�6

log

"
1� �5

�
Q�

K�

��6
# �

(19)

D2y6 = 
11(Dy5 �Dy6)� 
12(Dy5 +Dy14) + 
13

�
1

�6
log[(Q�)��6 � �5(K

�)��6]

� 1

�6
log[(Q�)��6e��6y4 � �5(K

�)��6e��6y3]
�

(20)
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D2y7 = �
14Dy7 + 
15[[�15
p�ey5(Q�ey4 + P �ey11)

M�ey13
� �15

p�(Q� + P �)

M�
� �14Dy14 � y7](21)

D2y8 = 
16(Dy5 +Dy14 �Dy8) + 
17

�
(1 + �10)(y5 + y14)� y8

+ log[C�ey1 + g�(Q�ey4 + P �ey11) +K�ey3(Dy3 + �1 + �2) + E�
ne

y9 ]

� log[C� + g�(Q� + P �) +K�(�1 + �2) + E�
n]
�

(22)

D2y9 = �
18Dy9 � 
19f�18(y5 + y14) + y9g (23)

D2y10 = �f
20+2(�1+�2)gDy10�(Dy10)
2+
21�19

�
Q�ey4+P �ey11

F �ey10
� Q�+P �

F �

�
(24)

D2y11 = �f
22 + 2(�1 + �2)gDy11 � (Dy11)
2

+
23f�20 + �21(r
�
f � �4)g

�
K�

ae
y12

P �ey11
� K�

a

P �

�
(25)

D2y12 = �f
24 + 2(�1 + �2)gDy12 � (Dy12)
2 + 
25

�
[�22 + �23(r

�
f � r� � y7)

��24(Dy14 + �1 + �2 + �4 � �3)]
Q�ey4 + P �ey11

K�
ae

y12
� [�22 + �23(r

�
f � r�)

��24(�1 + �2 + �4 � �3)]
Q� + P �

K�
a

�
(26)

D2y13 = �
26Dy13 � 
27y13 + 
28

�
E�

ne
y9Dy9 + P �ey11Dy11 � F �ey10Dy10

E�
ne

y9 + P �ey11 � F �ey10

+Dy5 +Dy14 �Dy8

�
+ 
29

�
log[E�

ne
y9 + P �ey11 � F �ey10

�K�
ae

y12(Dy12 + �1 + �2)]� log[E�
n + P � � F � �K�

a(�1 + �2)]

+y5 + y14 � y8

�
(27)

D2y14 = �
30(Dy5 +Dy14)� 
31(y5 + y14)

+
32

�
E�

ne
y9Dy9 + P �ey11Dy11 � F �ey10Dy10

E�
ne

y9 + P �ey11 � F �ey10
+Dy5 +Dy14 �Dy8

�

+
33

�
log[E�

ne
y9 + P �ey11 � F �ey10 �K�

ae
y12(Dy12 + �1 + �2)]
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� log[E�
n + P � � F � �K�

a(�1 + �2)] + y5 + y14 � y8

�
(28)

The equilibrium of the original system (1)-(14) corresponds to the equilibrium yi = 0; i =
1; 2; :::; 14 of (15)-(28). The major advantage of the new system described by (15)-(28) is that
it is autonomous, but still retains all the dynamic properties of the original system (1)-(14).
Autonomous systems are the main subject of nonlinear systems theory. Generally speaking,
it is di�cult to analyze non-autonomous systems. In this paper, we will analyze the local
dynamics of (15)-(28) in a local neighborhood of the equilibrium yi = 0; i = 1; 2; :::; 14. For
simplicity, the system (15)-(28) is denoted as

Dx = f(x; �); (29)

where

x = [y1 Dy1 y2 Dy2 ::: y14 Dy14]
0 2 R28

is the state vector, while

� = [�1; :::; �27; 
1; :::; 
33; �1; �2; �3]
0 2 R63

is the parameter vector, and f(x; �) is a vector of functions of x and � obtained from (15)-
(28). Every component of f(x; �) is smooth (in�nitely di�erentiable) in a neighborhood of
the origin. Note that (29) is a �rst-order system. The point x� = 0 is an equilibrium of
(29). Since � represents physical quantities, its entries are bounded by theoretical and a priori
feasibility constraints [see, Table 2 of Bergstrom et al. (1992)]. Let � denote the feasible
region determined by those bounds. � is a bounded region.

3 Stability of the Equilibrium

In this section, we examine the local stability of the system (29) around the equilibrium x� = 0.
For this purpose, write (29) as

Dx = A(�)x + F (x; �); (30)

where

A(�) =
@f(x; �)

@x
jx=x�

is the Jacobian of f(x; �) evaluated at the equilibrium x� = 0, A(�) 2 R28�28, and

F (x; �) = f(x; �)� A(�)x = o(x)

is the terms of higher order. In nonlinear systems theory, the local stability of (29) can be
studied by examining the eigenvalues of the coe�cient matrix A(�). Brie
y,

(a) if all eigenvalues of A(�) have strictly negative real parts, then (29) is locally asymptot-
ically stable in the neighborhood of x�.

11



(b) If at least one of the eigenvalues of A(�) has positive real part, then (29) is locally
asymptotically unstable in the neighborhood of x�.

(c) If all eigenvalues of A(�) have nonpositive real parts and at least one has zero real part,
the stability of (29) usually cannot be determined from the matrix A(�). One needs to
analyze higher order terms in order to determine the stability of the system. In most
cases, one needs to examine the system behavior along a certain manifold to determine
the stability [see, e.g., Khalil (1992)].

Since A(�) is a function of �, stability of (29) could be dependent on �, which we shall verify
is indeed true. For the set of estimated values of f�ig, f
jg, and f�kg given in Table 2 of
Bergstrom et al. (1992), all the eigenvalues of A(�) are stable except three of them:

s1 = 0:0033; s2 = 0:0090 + 0:0453i; s3 = 0:0090� 0:0453i;

where i =
p�1 is the imaginary unit. However, the real parts of these unstable eigenvalues

are (relatively) so small that it is unclear that their signs are statistically signi�cant. Next,
we shall examine the statistical signi�cance of the inference of instability.

For each �i; i = 1; 2; :::; 63, its estimate and the corresponding standard deviation are
provided in Table 2 of Bergstrom et al. (1992). For a given con�dence level p, a con�dence
interval can be obtained for any �i:

[�̂i � �p�i; �̂i + �p�i]

where �̂i and �i are respectively the estimate and standard deviation for parameter �i, and
�p is the standard normal percentile, as is consistent with the distributional assumptions in

Bergstrom et al. (1992). Both �̂i and �i are available in Table 2 of Bergstrom et al. (1992).
For example, the 95% con�dence interval for �1 = �1 is [0:9324; 0:9476]. Let [�i; ��i] denote
the con�dence interval for parameter �i, i = 1; 2; :::; 63. For several parameters, the estimates
were on the boundaries of the theoretical feasible intervals. In this case, we assume �i = 0
and the con�dence interval becomes one point, the estimate. There are 8 such parameters:
�8; �11; �13; �28; �33; �48; �60; �63. Hence our inferences condition upon their corner solution val-
ues. De�ne

�1 = f� 2 � j �i 2 [�i; ��i]; i = 1; 2; :::; 63g:
Then �1, �1 � �, denotes the region of � determined by the Cartesian product of those
con�dence intervals. Any change in the stability of (29) over �1 implies that we cannot reject
the hypothesis that the parameters are on the other side of the bifurcation boundary from the
side on which their points estimates lie.

Consider the following problem of minimizing the maximum real parts of eigenvalues of
matrix A(�):

min
�2�

Rmax(A(�)) (31)
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where

Rmax(A(�)) = max
i
freal(�i) : �1; �2; :::; �28 are eigenvalues of A(�)g:

Since the dimension of A(�) is 28�28, which is relatively high, we cannot acquire a closed-form
expression for Rmax(A(�)). We use the gradient method to solve the minimization problem
(31). More precisely, let �(0) be the estimated set of parameter values given in Table 2 of
Bergstrom et al. (1992). At step n, n � 0, with �(n), let

�(n+1) = ��1 [�
(n) � an

@Rmax(A(�))

@�
j�=�(n)];

where fan; n = 0; 1; 2; :::g is a sequence of (positive) step sizes and ��1[�] is the projection
onto �1. The algorithm found the following point, �� 2 �1,

�� = [0:9400; 0:2936; 2:6871; 0:2030; 0:2562; 0:1961; 0:1345; 0:0000; 0:2440;

�0:2577; 1:0000; 23:5000;�0:0100; 0:0473; 0:0288; 13:5460; 0:4562; 1:0678;

0:0100; 0:0061; 0:2763; 0:2948; 44:8543; 0:1173; 0:0004; 71:4241; 0:8213;

4:0000; 1:0289; 0:6698; 0:0697; 0:1311; 0:0010; 3:7078; 0:4860; 1:0537;

0:0042; 3:4562; 0:4858; 0:1300; 1:0044; 0:0379; 1:3839; 0:3777; 3:9947;

3:6534; 3:9995; 4:0000; 4:0000; 3:9400; 0:4775; 0:0071; 0:6114; 0:0574;

0:1718; 0:1227; 2:2845; 0:1489; 0:0035; 0:0000; 0:0042; 0:0036; 0:0100]:

The corresponding Rmax(A(�
�)) = �0:0017, implying that all eigenvalues of A(��) have strictly

negative real parts and the system (29) is locally asymptotically stable around x� = 0 for ��.
This suggests that we cannot reject the hypothesis of stability.

One interesting fact is that if we reduce the con�dence level to 90%, which results in smaller
con�dence intervals, the algorithm failed to �nd a value of � under which the system (29) is
stable. This seems to suggest that, with 90% con�dence level, the system (29) is unstable for
all parameter � 2 �1, and we cannot accept the hypothesis of stability.

4 Transcritical bifurcations

On one hand, we have seen in the previous section that A(�) has three eigenvalues with strictly
positive real parts for the set of parameter values given in Table 2 of Bergstrom et al. (1992).
On the other hand, all eigenvalues of A(�) have strictly negative real parts for � = ��. Since
eigenvalues are continuous functions of entries of A(�), there must exist parameter values of �
such that the (29) becomes unstable from stable (or stable from unstable) when � crosses such
values. Those parameter values correspond to bifurcation points at which the system (29) has
structural changes. Di�erent types of bifurcations may arise according to the way unstable
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eigenvalues are created. In this section, we analyze the occurrence of transcritical bifurcations.
Another important class of bifurcations, the Hopf bifurcations, will be considered in the next
section.

An equilibrium point x� of (29) is called hyperbolic if the coe�cient matrix A(�) has no
eigenvalues with zero real parts. For a hyperbolic equilibrium x�, the asymptotic behavior
of (29) is determined by the eigenvalues of A(�) according to (a)-(b) in the previous section.
For small perturbations of parameters, there are no structural changes in the stability of
a hyperbolic equilibrium, provided that the perturbations are su�ciently small. Therefore,
bifurcations occur at non-hyperbolic equilibria only.

Transcritical bifurcation:

A transcritical bifurcation occurs when a system has a non-hyperbolic equilibrium with
a geometrically simple zero eigenvalue at the bifurcation point and additional transversality
conditions are satis�ed [given by the Sotomayor's Theorem in Sotomayor (1973)].

For a one-dimension system,

Dx = G(x; �);

the transversality conditions for a transcritical bifurcation at (x; �) = (0; 0) are

G(0; 0) = Gx(0; 0) = 0; G�(0; 0) = 0; Gxx(0; 0) 6= 0; and G2
�x �GxxG��(0; 0) > 0: (32)

Transversality conditions for higher-order dimension systems are given in Sotomayor (1973).
The canonical form of such systems is

Dx = �x� x2:

The bifurcation diagram of a transcritical bifurcation is

θ

x

Figure 1. Transcritical bifurcation diagram.
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When det(A(�)) = 0, A(�) has at least one zero eigenvalue. If A(�) has exactly one simple
zero eigenvalue under the transversality conditions in (32), this � corresponds to a transcritical
bifurcation. So the �rst condition we are going to use to �nd the bifurcation boundary is

det(A(�)) = 0: (33)

Analytical forms of bifurcation boundaries can be obtained for most parameters. For
example, if we are interested in bifurcations when two parameters �i; �j change, while others
are kept at ��, the matrix A(�) may be rewritten as

A(�) = A(��) +B(��)D(�)C(��); (34)

where � = [�i; �j], and D(�) is a matrix of appropriate dimension. The dimension of D(�) is
usually much smaller than that of A(�). In this case, the following proposition is helpful for
simplifying the determination of transcritical bifurcation boundaries.

Proposition 1. Assume that A(�) has structure (34) and that all eigenvalues of A(��)
have strictly negative real parts. Then det(A(�)) = 0 if and only if

det(I +D(�)C(��)A�1(��)B(��)) = 0: (35)

Proof. Consider the matrix"
A(��) �B(��)

D(�)C(��) I

#
:

Then "
A(��) �B(��)

D(�)C(��) I

# "
I A�1(��)B(��)
0 I

#

=

"
A(��) 0

D(�)C(��) I +D(�)C(��)A�1(��)B(��)

#
:

Hence,

det(

"
A(��) �B(��)

D(�)C(��) I

#
) = det(A(��))det(I +D(�)C(��)A�1(��)B(��)): (36)

On the other hand,"
I B(��)
0 I

# "
A(��) �B(��)

D(�)C(��) I

#
=

"
A(��) +B(��)D(�)C(��) 0

D(�)C(��) I

#
;

which implies that

det(

"
A(��) �B(��)

D(�)C(��) I

#
) = det(A(��) +B(��)D(�)C(��)) = det(A(�)): (37)
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The combination of (36) and (37) results in

det(A(�)) = det(A(��))det(I +D(�)C(��)A�1(��)B(��)):

Since all eigenvalues of A(��) have strictly negative real parts, det(A(��)) 6= 0. Therefore, the
preceding equation implies that det(A(�)) = 0 if and only if (35) holds. 2

Proposition 1 is useful for simplifying the calculation of det(A(�)). To demonstrate the
usefulness of this approach, consider �nding the bifurcation boundary for � = [�2; �23] =
[�2; �23]. Only the following entries of A(�) are functions of �.

A2;10(�) = 
2(�2 � �3); A2;13(�) = �
2�2

A24;7(�) = 
25�Q
�=K�

a ; A24;13(�) = �
25�23(Q� + P �)=K�
a

A24;21(�) = 
25�P
�=K�

a ; A24;23(�) = �
25�(Q� + P �)=K�
a

where � = �22 + �23(rf � r�)� �24(�1+ �2+ �4� �3). In this case, B(��) 2 R28�2 has all zero
entries except that its (2; 1) entry is 1 and its (24; 2) entry is 1. C(��) 2 R5�28 also has zero
entries, except the entries are 1 at the following locations: (1,7), (2,10), (3,13), (4,21), (5,23),
and D(�) is

D(�) = d(�)� d(��)

where

d(�) =

"
0 A2;10(�) A2;13(�) 0 0

A24;7(�) 0 A24;13(�) A24;21(�) A24;23(�)

#

Direct calculation yields

C(��)A�1(��)B(��) =

2
6666664

13:7090 �17:1187
0 0

�1:7276 2:1573
�616:4935 389:2039
�616:4935 389:2039

3
7777775
:

Using Proposition 1, we know that det(A) = 0 is equivalent to

det(

"
1 0
0 1

#
+D(�)

2
6666664

13:7090 �17:1187
0 0

�1:7276 2:1573
�616:4935 389:2039
�616:4935 389:2039

3
7777775
) = 0;

or equivalently,

�14:23 + 15:91�2 + 0:28�23 � 0:50�2�23 = 0:
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The following diagram depicts the bifurcation boundary when � varies inside �1.
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Figure 2. Candidate of transcritical bifurcation boundary for �2, �23 within �1.

Stability of the system (29) when parameters take values on the bifurcation boundary
needs to be determined by examining the higher order terms in (30). This is usually done
with the help of center manifold theory. After appropriate coordinate transformation, it is
possible to write (30) as [see, for example, Glendinning (1994), Guckenheimer and Holmes
(1983)]:

Dx1 = A1(�)x1 + F1(x1; x2; �) (38)

Dx2 = A2(�)x2 + F2(x1; x2; �) (39)

where all eigenvalues of A1(�) have zero real parts and all eigenvalues of A2(�) have strictly
negative real parts. Center manifold theory says that there exists a center manifold x2 = h(x1)
such that

h(0) = 0 and Dh(0) = 0:

Substituting x2 = h(x1) into (38), we obtain

Dx1 = A1(�)x1 + F1(x1; h(x1); �): (40)

The stability of (29) is connected to that of (40) through the following theorem.

Theorem 1 [Henry (1981), Carr (1981)] If the origin of (40) is locally asymptotically stable
(respectively unstable) then the origin of (29) is also locally asymptotically stable (respectively
unstable).

Substituting x2 = h(x1) into (39), we have

Dx2 = Dh(x1)Dx1 = Dh(x1)[A1(�)x1 + F1(x1; h(x1); �)] = A2(�)h(x1) + F2(x1; h(x1); �)

or h(x1) satis�es

Dh(x1)[A1(�)x1 + F1(x1; h(x1); �)] = A2(�)h(x1) + F2(x1; h(x1); �); (41)
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h(0) = 0; Dh(0) = 0: (42)

The equations (41) and (42) can be used to solve or approximate, at least in principle, h(x1).
In practice, solving (41) and (42) would be di�cult. One usually uses a Taylor series approxi-
mation of h(x1) with several terms to determine the local asymptotic stability (instability) of
(40). For most cases, especially codimension one bifurcations, the dimension of (40) is usually
one or two. In the case of transcritical bifurcations, the dimension of (40) is one. In this case,
let

F1(x1; x2; �) = a1
x21
2!

+ x1a2x2 + a3
x31
3!

+ :::

F2(x1; x2; �) = b1
x21
2!

+ x1b2x2 + b3
x31
3!

+ :::

Assume that h(x1) has the following Taylor expansion

h(x1) = �
x21
2!

+ �
x31
3!

+ :::

Then (41) becomes

(�x1 + �
x21
2!

+ :::)[A1(�)x1 + a1
x21
2!

+ x1a2(�
x21
2!

+ �
x31
3!

+ :::) + a3
x31
3!

+ :::]

= A2(�)(�
x21
2!

+ �
x31
3!

+ :::) + b1
x21
2!

+ x1b2(�
x21
2!

+ �
x31
3!

+ :::) + b3
x31
3!

+ ::: :

By comparing coe�cients of the same order terms and also observing that A1(�) = 0 at a
bifurcation point, we know that

� = �A�1
2 (�)b1; � = A�1

2 (�)(�a1 � b2�):

Therefore, (40) becomes

Dx1 = A1(�)x1 + a1
x21
2!

+ (
a2�

2!
+
a3
3!
)x31 + ::: (43)

The stability analysis of (43) determines the stability information of (30).

As an example, consider the stability of (30) on the transcritical bifurcation boundary for
parameters �2; �23. On the bifurcation boundary shown in Figure 2, the stability of the system
(29) could be determined using the previously described approach. For example, consider the
point (�2; �23) = (0:1068; 55:9866) on the boundary. We found that (40) becomes

Dx1 = 0:1308x21 + o(x21);

which is locally asymptotically unstable at x1 = 0. Therefore, we know from center manifold
theory that the system (29) is locally asymptotically unstable at this transcritical bifurcation
point.
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5 Hopf bifurcations

In this section, we examine the existence of Hopf bifurcations in the system (29).

Hopf bifurcations

Hopf bifurcations occur at points at which the system has a non-hyperbolic equilib-
rium with a pair of purely imaginary eigenvalues, but without zero eigenvalues, and addi-
tional transversality conditions also are satis�ed [Hopf Theorem in Guckenheimer and Holmes
(1983)].

The dimension of a system needs to be at least two in order for a Hopf bifurcation to
occur. The transversality conditions are rather lengthy and given in Glendinning (1994). The
canonical form of such systems is

Dx = �y + x(� � (x2 + y2));

Dy = x + y(� � (x2 + y2)):

The bifurcation diagram of a Hopf bifurcation is

θ

y

x

Figure 3. Hopf bifurcation diagram.

We next determine the boundaries of Hopf bifurcations. Consider the case of det(A(�)) 6= 0,
but A(�) has at least one pair of pure imaginary eigenvalues (with zero real parts and non-
zero imaginary parts.) If A(�) has exactly one such pair, and some additional transversality
conditions hold, this point is on a Hopf bifurcation boundary.

To �nd Hopf bifurcation points, let p(s) = det(sI �A) be the characteristic polynomial of
A and express it as

p(s) = c0 + c1s+ c2s
2 + c3s

3 + :::+ cn�1s
n�1 + sn
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where n = 28 for the system (29). Construct the following (n� 1) by (n� 1) matrix

S =

2
66666666666664

c0 c2 ::: cn�2 1 0 0 ::: 0
0 c0 c2 ::: cn�2 1 0 ::: 0

::: :::
0 0 ::: 0 c0 c2 c4 ::: 1
c1 c3 ::: cn�1 0 0 ::: 0
0 c1 c3 ::: cn�1 0 0 ::: 0

::: :::
0 0 ::: 0 c1 c3 ::: cn�1

3
77777777777775

9>>>>=
>>>>;

n�2
2

rows

9>>>>=
>>>>;

n
2

rows

Let S0 be obtained by deleting rows 1 and n/2 and columns 1 and 2, and let S1 be obtained
by deleting rows 1 and n/2 and columns 1 and 3. Then the matrix A has exact one pair of
pure imaginary eigenvalues if [see, e.g., Guckenheimer et al. (1997)]

det(S) = 0; det(S0)det(S1) > 0:

If det(S) 6= 0 or if det(S0)det(S1) < 0, then A has no pure imaginary eigenvalues. If det(S) = 0
and det(S0)det(S1) = 0, then A may have more than one pair of pure imaginary eigenvalues.
Therefore, the second condition for a bifurcation boundary is

det(S) = 0; det(S0)det(S1) � 0: (44)

We will use (44) to �nd candidates for bifurcation boundaries and then check which seg-
ments are true boundaries. Since solving (44) analytically is impossible for most problems, a
numerical procedure was given in Barnett and He (1998) to �nd bifurcation boundaries. The
stability of (29) at parameter values on the bifurcation boundary can be analyzed in the same
manner as for transcritical bifurcations.

6 Numerical Examples

Example 1. Figure 4 (a) and (b) show bifurcation boundaries for � = [�2; �62]. Figure 4 (a)
illustrates bifurcation boundaries when � varies within �1, which is the Cartesian product
of the 95% con�dence intervals of the estimates, while Figure 4 (b) describes bifurcations
within �. All other parameters are kept at ��. In both (a) and (b), the dashed lines are
determined by (33) and the solid lines are calculated according to (44). The shaded area is
the parameter region for which the system (29) is stable. Therefore, the dashed lines along
the shaded regions are the transcritical bifurcation boundaries and the solid lines along the
shaded regions represent the Hopf bifurcation boundaries.

Of special interest is the intersection point of the transcritical bifurcation boundary and
the Hopf bifurcation boundary. This point corresponds to a codimension two bifurcation. The
properties of (29) near this point deserve further investigation.
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Figure 4. Bifurcation boundaries for �2; �62.

Example 2. If we add another parameter, �23, to our consideration, a bifurcation surface
in 3-dimensional space could be obtained. Figure 5 shows the bifurcation boundaries for
� = [�2; �23; �62]. Both transcritical and Hopf bifurcation boundaries are shown.
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Figure 5. Bifurcation boundaries for �2; �23; �62.

Example 3. Figure 6 shows bifurcation boundaries for �23; �62.
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Figure 6. Bifurcation boundaries for �23; �62.

Example 4. Figure 7 shows bifurcation boundaries for �12; �23; �62.
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Figure 7. Bifurcation boundaries for �12; �23; �62.

7 Control of bifurcations

We have seen in the previous section that both transcritical and Hopf bifurcations exist in the
continuous time macroeconometric model. In this section, we shall investigate the control of
bifurcations using �scal feedback laws.

We �rst consider the e�ect of a heuristically plausible �scal policy of the following form as
suggested in Bergstrom et al. (1994):

D logT1 = 


"
� logf Q

Q�e(�1+�2)t
g � log

(
T1
T �
1

)#
: (45)

The control feedback rule (45) adjusts the �scal policy instrument, T1, towards a partial
equilibrium level, which is an increasing function of the ratio of output to its stead state level.

22



In (45), � is a measure of the strength of the feedback, and 
 governs the speed of adjustment.
By choosing appropriate parameters �; 
, it was found in Bergstrom et al. (1994) that the
control law (45) can reduce the positive real parts of unstable eigenvalues, implying that the
policy might be stabilizing. However, we �nd that the control law (45) is unlikely to stabilize
the systems (1)-(14).

De�ne

y15 = log

(
T1
T �
1

)
:

Then it is easy to verify that y15 satis�es

Dy15 = 
�y4 � 
y15:

Adding this equation to the system (29), we obtain

Dw = A0(�)w + F 0(x; �) (46)

where

w =

"
x
y15

#
; F 0(x; �) =

"
F (x; �)

0

#

and A0(�) is the corresponding coe�cient matrix. Figure 8 shows the e�ect of the simple �scal
policy on the bifurcation boundaries for �2 and �5. Three sets of parameter values of �; 
 are
considered. The case � = 0; 
 = 0 corresponds to the original system (1)-(14), in which no
�scal policy control is applied.
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Figure 8. E�ect of a simple �scal policy.

Figure 8 clearly indicates that some stable regions could be destabilized and some unstable
regions could be stabilized. Since the feasible stable region is smaller under control than
without control, the policy is not likely to succeed.
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Next we consider a more sophisticated �scal control policy, based upon optimum control
theory. Let the control be

u = log

(
T1
T �
1

)
: (47)

Under the control (47), the system (29) becomes

Dx = A(�)x +Bu+ F (x; �) (48)

where B = [0 � 
2 0 ::: 0]
T 2 R28. Direct veri�cation yields that the controllability matrix

[B AB ::: A27B] has rank 7, implying that the pair (A;B) is not controllable. Therefore, it
is not possible to set the closed-loop eigenvalues of the coe�cient matrix of (48) arbitrarily.
However, a numerical analysis shows that there exists a linear transformation z = Tx such
that

Dz =

"
A11 0
A21 A22

#
z +

"
0
B2

#
u

where A11 2 R21�21; A21 2 R7�21; A22 2 R7�7, B2 = [0 ::: 0 1] 2 R7,

TA(�)T�1 =

"
A11 0
A21 A22

#
; TB =

"
0
B2

#
;

and (A22; B2) is controllable. The exact numerical procedure for this decomposition can be
found, for example, in Khalil (1992). Further, all eigenvalues of A11 have negative real parts,
implying that (A(�); B) is stabilizable.

To obtain a feedback control law stabilizing (48), we consider solving the problem of
minimizing

J =
Z 1

0
[xTUx + V u2]dt

where U 2 R28�28 and V 2 R1 are positive de�nite. It is known from linear system theory
that the optimal feedback control law is given by

u = Kx; K = �V �1BTP

where P is positive de�nite and solves the algebraic Ricatti equation

PA+ ATP � PBV �1BTP + U = 0:

Choose U = I, V = 1. Then we get

K = [1:5036; 0:4754; 0:0178; 0:0307;�1:1897; 18:5851; 7:2979;

1:9063; 2:3147; 23:2392; 0:7488; 7:2091; 38:9965; 39:4000;

0:1841; 0:2129; 0:3061; 0:0494;�0:0027; 0:0000;�0:0013;
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�0:0002; 0:9550; 1:8482;�0:3329;�0:5475; 0:9369;�1:0402]: (49)

Under the control u = Kx, (48) becomes

Dx = [A(�) +BK]x + F (x; �): (50)

The choice of K ensures that all the eigenvalues of A+BK have strictly negative real parts.
Therefore, the state feedback law u = Kx indeed stabilizes the system (50). Direct veri�cation
con�rms that there exist no bifurcations under the control law (50) for (�2; �5).

We further check the stability of (50) under the control law (50) for all parameter � 2 �.
Our purpose is to see if there is a parameter �0 2 � at which the system (50) is unstable.
Such a parameter can be found by replacing (31) with maximizing the maximum real parts
of eigenvalues of matrix A(�). The following �0 2 �1 has been found

�0 = [0:9400; 0:5074; 2:0913; 0:2030; 0:2612; 0:1933; 0:2309; 0:0000; 0:2510;

�0:3423; 1:0000; 23:5000;�0:0100; 0:2086; 0:0332; 13:5460; 0:4562; 0:9322;

0:0100; 0:0034; 0:1324;�0:5006; 100:0000; 0:0000; 0:0004; 71:4241; 0:8213;

4:0000; 1:0289; 0:3631; 0:1201; 0:1000; 0:0010; 3:7015; 0:4860; 1:1270;

0:0042; 3:3994; 0:4802; 0:1300; 0:6851; 0:0620; 1:2134; 0:3830; 4:0000;

3:2535; 3:8592; 4:0000; 4:0000; 3:5723; 0:4775; 0:0071; 0:6104; 0:0143;

0:1718; 0:1227; 2:5551; 0:1833; 0:0035; 0:0000; 0:0018; 0:0004; 0:0100]:

The corresponding Rmax(A(�
0)) = 0:4971. Therefore, there indeed exists a parameter �0 2 �1

at which (50) is unstable.

Because of the Lucas critique, the problems associated with using structural models for
policy simulations are well known. In addition, the possibility of time inconsistency of optimal
control policy conditionally upon a structural model is well known. While the use of Euler
equation models having deep parameters is to be preferred for policy simulations, we are not
yet able to investigate bifurcation with a su�ciently rich Euler equation model. Nevertheless,
it is interesting to ask whether the use of control feedback policy with a structural model
would be easily implemented, if the Lucas critique and time inconsistency issues did not exist.
It seems often to be assumed that such active policy easily could be designed, if it were not
for the problems produced by the Lucas critique parameter instability to policy variation and
the time inconsistency of optimal control.

But our results above indicate that even without those problems, the design of a successful
feedback policy can be di�cult. Even when the structural parameters of the other equations
remain constant, adjoining a policy feedback rule to a system causes bifurcation boundaries to
shift. The policy is successful, if those shifts cause the stable region to move towards the actual
values of the parameters su�ciently to include the parameters within the stable region. We

25



�nd that with the UK continuous time model, the selection of a �scal policy feedback rule from
heuristic economic reasoning is counterproductive. While the use of optimal control theory is
successful conditionally upon the model, the negative results from the heuristic nonoptimal
policy raise serious questions about the robustness of that conclusion to speci�cation error,
and hence the relevancy of the conclusion to real world policy. Furthermore, this abstracts
from the problems of possible time inconsistency of optimal control policy, which further
complicates the matter.

In short, the e�ects of policy feedback rules depend upon the complicated geometry of
bifurcation boundaries and how they are moved by augmentation of the model by the feedback
rule. It is not at all unlikely that such policies, when applied in the real world, could prove
to be counterproductive.

8 Conclusions

In this paper, we continue our investigation of bifurcation phenomena in continuous time
macroeconometric models, using the Bergstrom, Nowman, and Wymer continuous time sec-
ond order di�erential equations macroeconometric model of the United Kingdom. We have
obtained a new formula for determining bifurcation boundary candidates for transcritical bi-
furcations, and we �nd that the dynamics of the model are locally asymptotically unstable on
those bifurcation boundaries. While the dynamical properties on the Hopf bifurcation bound-
ary are likely to be more interesting, we have not yet successfully solved the more di�cult
problem of numerically investigating dynamics on that boundary.

We found the intersection of the stable region with the feasible subset of the Cartesian
product of the individual parameters' con�dence intervals. Although the point estimates of
the parameters are in the unstable region, we �nd that intersection is nonempty when the
con�dence level is set at 95%, but becomes empty when the con�dence level is decreased to
90%. These results suggest that an inference of instability for this model may be reasonable,
at least in the 90% con�dence level case. However, the problems associated with conducting
a rigorous hypothesis test of the null hypothesis of stability in this model are prohibitively
di�cult.

We also investigate the e�ects of �scal policy on stabilization, and we �nd that conducting
a successful active countercyclical policy may be more di�cult than previously believed, as
a result of the manner in which the bifurcation boundaries are a�ected by policy and the
complex geometry of those boundaries.

The obvious priority for further advances in this area would be application of these methods
to a stochastic dynamic general equilibrium model that could be viewed as an empirically
plausible and policy relevant extension of the model investigated by Grandmont (1985). But
the use of these methods with the implied system of Euler equations poses signi�cant challenges
that are likely to motivate our future research in this area. One possibility, as a next step in
the direction, would be to apply the methods in this paper to the model in Leeper and Sims
(1994), while progress in a related direction could be acquired by applying these methods to
the model in Powell and Murphy (1997).
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